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Abstract. We study quadratic perturbations of the integrable sys-
tem (1 + x)dH, where H = (x2 + y2)/2. We prove that the first three
Melnikov functions associated to the perturbed system give rise at
most to three limit cycles.

1. Introduction and statement of the main result

Planar vector fields ẋ = X(x, y), ẏ = Y (x, y) defined in the real plane,
when X(x, y) = 0 and Y (x, y) = 0 are arbitrary conics, are usually called
quadratic systems. The Hilbert sixteenth problem [5] restricted to them
asks for the number and distribution of limit cycles inside this family. It
is known that each limit cycle must surround a unique singularity of focus
type, that at most two nest of limit cycles can coexist and that the following
distributions of limit cycles exist: (0, 0), (1, 0), (2, 0), (3, 0), (1, 1), (2, 1) and
(3, 1), see [1, 2, 3, 8]. It has been recently proved that (2,m) distribution is
only possible for m ∈ {0, 1}, see [10, 11]. It is also generally believed that no
more distributions of limit cycles than the ones listed above can exist and
so, that quadratic systems have at most four limit cycles. Nevertheless the
proof of this assertion turns out to be a very elusive problem. So, nowadays
some people pretends to prove this result while other people studies different
degenerate bifurcations inside quadratic systems to check whether there
appear or not more limit cycles. This paper goes in this second direction.
We study how many limit cycles can appear in the following quadratic
system

(1) ẋ = −y(1 + x)− εP (x, y),
ẏ = x(1 + x) + εQ(x, y),
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where ε > 0 is a small parameter and P and Q are arbitrary polynomials
of degree two given by P (x, y) = a00 + a10x + a01y + a20x

2 + a11xy + a02y
2

and Q(x, y) = b00 + b10x + b01y + b20x
2 + b11xy + b02y

2. The unperturbed
system (i.e. for ε = 0) has a center at the origin and the first integral
H = (x2 + y2)/2 in the region x2 + y2 < 1. Using the energy level H = h
as a parameter, we can express the Poincaré map P of (1) in terms of h
and ε. For the corresponding displacement function d(h, ε) = P(h, ε) − h
we obtain the following representation as a power series in ε:

(2) d(h, ε) = εM1(h) + ε2M2(h) + ε3M3(h) + ...,

which is convergent for small ε. The Melnikov functions Mk(h) are defined
for h ∈ (0, 1/2). Each simple zero h0 ∈ (0, 1/2) of the first non-vanishing
coefficient in (2) corresponds to a limit cycle of (1) emerging from the circle
x2+y2 = 2h0. We compute these functions by using the algorithm developed
in [4, 7]. Our main result is:

Theorem 1. For i = 1, 2, 3, let Mi(h) be the first Melnikov functions as-
sociated to system (1). Then M1 has at most 2 zeros, taking into account
their multiplicities. If M1(h) ≡ 0 then M2 has also at most 2 zeros, taking
into account their multiplicities. If M1(h) ≡ M2(h) ≡ 0 then M3 has at
most 3 zeros, taking account their multiplicities, and all these upper bounds
are sharp. Moreover, the functions Mi(h), i = 1, 2, 3, can be explicitly ob-
tained from the coefficients of the polynomials P and Q given in (1) and are
elementary functions of h.

We have the following corollary:

Corollary 2. For system (1) at most three limit cycles can bifurcate from
the set of periodic orbits of the unperturbed system, when considering the
expansion of the displacement map (2) up to third order in ε. Furthermore
this upper bound is reached.

2. Proof of Theorem 1

We consider the following 1-form

(3) ω =
Q(x, y)
1 + x

dx +
P (x, y)
1 + x

dy,

such that we rewrite (1) in a Pfaffian form

dH = εω.
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The Melnikov functions will be calculated using the ideas of Françoise [4]
and Iliev [7]. For example, the first order Melnikov function is given by

M1(h) =
∮

H=h

ω.

In order to go further with the calculation of M1 and, after, to give the
integral expression of M2, we need the relative cohomology decomposition
of ω (see [4, 6]). We denote

ωij =
xiyj

1 + x
dx, δij =

xiyj

1 + x
dy, 0 ≤ i + j ≤ 2

and we give first the decomposition of these forms.

Lemma 3. All the 1-forms ωij and δij, for 0 ≤ i + j ≤ 2, can be expressed
as follows:

δ01 = 1
1+xdH − d(x− ln(1 + x)), δ10 = dy − δ00, δ02 = y

1+xdH − ω11,

δ11 = x
1+xdH − d

(
x2

2 − x + ln(1 + x)
)

, δ20 = 2Hδ00 − y
1+xdH + ω11,

and

ω00 = d(ln(1 + x)), ω10 = d(x−ln(1 + x)), ω20 = d(x2

2 −x+ln(1 + x)),
ω01 = d(xy)−dy+ y

1+xdH+(1−2H)δ00−2ω11,

ω02 = 2d(H ln(1 + x))−2 ln(1 + x)dH−d(x2

2 −x+ln(1 + x)).

Proof. First of all, by definition, we have

δ01 =
dy2

2(1 + x)
=

d(2H − x2)
2(1 + x)

=
1

1 + x
dH − d(x− ln(1 + x)).

In a similar way, we can check one by one the following relations, where we
omit some relations whose validity is obvious.

δ02 =
yd(y2)

2(1 + x)
=

y

1 + x
dH − xy

1 + x
dx =

y

1 + x
dH − ω11.

δ11 =
xy

1 + x
dy =

x

1 + x
dH − x2

1 + x
dx,

δ20 =
2H − y2

1 + x
dy = 2Hδ00 − δ02 = 2Hδ00 − y

1 + x
dH − ω11,

and
ω01 =

y

1 + x
dx = d(xy)− dy +

y

1 + x
dH + (1− 2H)δ00. ¤
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With the above notations, the 1-form ω given by (3) becomes ω = a00δ00 +
a10δ10+a01δ01+a20δ20+a11δ11+a02δ02+b00ω00+b10ω10+b01ω01+b20ω20+
b11ω11 +b02ω02. Replacing these with the expressions given in Lemma 3 and
collecting the terms correspondingly, the following result can be found.

Lemma 4. The 1-form ω given by (3) can be expressed in the following
way

ω = r1dH + dS1 + N1,(4)

where r1 = r1(x, y), dS1 = dS1(x, y, H) and N1 are given as follows:

r1 =
a01 + a11x + (a02 − a20 + b01)y

1 + x
− 2b02 ln(1 + x),

dS1 = (a10 − b01)dy + b01d(xy) + 2b02d(H ln(1 + x))

+
b00 + (b10 − a10)x + (b20 − b02 − a11)x2

1 + x
dx.

N1 = (b11 + a20 − a02 − 2b01)ω11 + 2(a20 − b01)Hδ00 + (a00 − a10 + b01)δ00.

Using (4) the expression of the first order Melnikov function M1(h) =
∮

H=h

ω

follows as,
(5)
M1(h)=(b11+a20−a02−2b01)J1(h)+2(a20−b01)hJ0(h)+(a00−a10+b01)J0(h),

where
J0(h)=

∮

H=h

δ00, J1(h) =
∮

H=h

ω11.

The explicit expressions of J0(h) and J1(h) are

J0(h) = 2π

(
1− 1√

1− 2h

)
, J1(h) = 2π(1− h)− 2π

√
1− 2h.

We notice that, for each z ∈ (0, 1),

M1((1− z2)/2) =
1− z

z
(A + Bz + Cz2),

where A = 2π(a10 − a00 − a20), B = π(b11 + a20 − a02 − 2b01) and C =
π(a20− b11 +a02). Then, the equation M1(h) = 0, h ∈ (0, 1/2) is equivalent
through the change 2h = 1 − z2 with A + Bz + Cz2 = 0, z ∈ (0, 1). Now
it is clear that M1 has at most 2 zeros, taking into account their multiplici-
ties, and there are some coefficients such that M1 has exactly 2 simple zeros.
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Since J0(h), hJ0(h) and J1(h) are linearly independent, M1(h) ≡ 0 if and
only if all the coefficients of J0(h), hJ0(h) and J1(h) vanish, namely,

(6) b01 = a20, a10 = a20 + a00, b11 = a20 + a02.

From now on we assume that

M1(h) =
∮

H=h

ω ≡ 0.

Then, from (4) and (6) we have the decomposition

ω = r1dH + dS1,

where r1 and dS1 are given in Lemma 4. This assures that Assertion 2.1
from [7] holds true. On the basis of this assertion, it is proved in [7] that
the second order Melnikov function is given by

M2(h) =
∮

H=h

r1ω.

In order to go further with the calculation of M2 and, after, to give the
integral expression of M3, we need the relative cohomology decomposition
of r1ω. Before stating this result, we make some notations.

c0 = a01 − a11, c1 = b00 − b10 + a01 + b20 − b02 − a11,(7)
c2 = b00 − c1, c3 = b20 − b02 − a11.

Lemma 5. The following decomposition holds,

(8) r1ω = r2dH + dS2 + N2,

where

N2 = (a00c0 + a02c1 + a02c2 + 2a00b02)δ00

+2(a02b02 − a20c0 − a02c2 − 2a00b02)Hδ00

+(a02c3 + 2a20b02 − 2a20c0 − 2a02c2 − 4a00b02)ω11,

and where r2 = r2(x, y) and dS2 = dS2(x, y,H) are given by the following
relations

r2 = r2
1 + a02a20 + (2c0b02 + a02a00 − a02a20)

1
1 + x

− 2b2
02(ln(1 + x))2

−2a02a20 ln(1 + x) + 2c0b02
ln(1 + x)

1 + x
+ 2a02b02

y ln(1 + x)
1 + x

+(c0a20 + c2a02 + 2a00b02 + 2a02b02)
y

1 + x
,
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dS2 = (a11c2 + c0c3 − 2a02a20 + a02a00)dx + (a11c3 − 2a02a20)xdx

+(a11c1 + c0c2 − c0c3 + a00a02 − 2a02a20)
1

1 + x
dx

+c0c1
1

(1 + x)2
dx− 2b02c2 ln(1 + x)dx− 2b02c3x ln(1 + x)dx

−2b02c1
ln(1 + x)

1 + x
dx + 2a11b02d(H ln(1 + x))− 2b02c0d

(
H

1 + x

)

−2b2
02d(H(ln(1 + x))2)− a02c1d

(
y

1 + x

)
− 2b02a00d(y ln(1 + x))

−2b02a20d(xy ln(1 + x)) + (a00a11 − a02c2 − 2a00b02)dy

−2a02b02d

(
Hy

1 + x

)
+ (a20a11 + a20c0 + a02c2 + 2a00b02)d(xy).

Proof. First we notice that r1ω = r2
1dH + r1dS1. We sketch in the sequel

how the decomposition of r1dS1 can be obtained.

r1dS1 = a11dS1+a00c0δ00+c0c2ω00+c0c3ω10+c0a20δ10+c0a20ω01+

2c0b02
H

(1 + x)2
dx + 2c0b02

ln(1 + x)
1 + x

dH + c0c1
1

(1 + x)2
dx

+a00a02δ01 + a02c2ω01 + a02c3ω11 + a02a20δ11

+a02a20ω02 + 2a02b02
Hy

(1 + x)2
dx

+2a02b02
y ln(1 + x)

1 + x
dH + a02c1

y

(1 + x)2
dx

−2b02a00 ln(1 + x)dy − 2b02c2 ln(1 + x)dx

−2b02c3x ln(1 + x)dx− 2b02a20 ln(1 + x)d(xy)

−4b2
02

H ln(1 + x)
1 + x

dx

−4b2
02(ln(1 + x))2dH − 2c1b02

ln(1 + x)
1 + x

dx.

In the above relation, we replace all the expressions of these 1-forms given
in Lemma 3 and also the following equalities

y

(1 + x)2
dx = δ00 − d

(
y

1 + x

)
,

ln(1 + x)dy = d(y ln(1 + x))− ω01,

ln(1 + x)d(xy) = d(xy ln(1 + x))− ω11,
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and
Hy

(1 + x)2
dx = Hδ00 − d

(
Hy

1 + x

)
+

y

1 + x
dH.

Then the decomposition follows by collecting these terms correspondingly.
¤

Using (8), the expression of the second order Melnikov function,

M2(h) =
∮

H=h

r1ω, is given by

M2(h) = (a00c0 + a02c1 + a02c2 + 2a00b02)J0(h)
+2(a02b02 − a20c0 − a02c2 − 2a00b02)hJ0(h)
+(a02c3 + 2a20b02 − 2a20c0 − 2a02c2 − 4a00b02)J1(h).

It is not difficult to see that the coefficients of J0(h), hJ0(h) and J1(h) in-
volved in the above expression of M2 are independent and, hence, they can
be considered like three arbitrary real numbers. The discussion concerning
the number of zeros of M2 is the same as for M1. Thus, the statement of
Theorem 1 about M2 is proved.

The relation M2(h) ≡ 0 holds if and only if one of the following three cases
holds.

(9) a02 = a20 = a00 = 0,

(10) a02 = b02 = c0 = 0,

a02 6= 0, a02c1 = a20c0 − a00c0 − a02b02,(11)
a02c2 = a02b02 − c0a20 − 2a00b02, a02c3 = −2b02(a20 − a02).

From now on we assume also that

M2(h) =
∮

H=h

r1ω ≡ 0.

Then, from (8), in each of the three cases listed above, we have the decom-
position

r1ω = r2dH + dS2,

where r2 and dS2 are given in Lemma 5. Since this decomposition holds
true, according to Remark 2.3 from [7], the third order Melnikov function
is given by

M3(h) =
∮

H=h

r2ω.
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Theorem 6. We assume that M1(h) = M2(h) ≡ 0. Then, when (9) or
(10) holds true,

Mk(h) ≡ 0, k ≥ 3.

When (11) holds true, the third order Melnikov function has the following
general form:

(12) M3(h) = (α0 + β0h)J0(h) + α1J1(h) + α2J2(h),

where

(13) J2(h) =
∮

H=h

xy ln(1 + x)
(1 + x)2

dx

and

α0 = 2a00a
2
02 − 6b2

02a00 − 4a2
02a20 + a2

00a02 − 3c0b02a00 + a02a20a00,

β0 = −2(3a02a20a00 + a00a
2
02 − 6b2

02a00 − a02a
2
20 − 2a2

02a20 +
3a02a11b02 + 6c0a02b02 − 3a02b02a20 − 3a02b02a00 − 3b02c0a20),

α1 = −2(−6b2
02a00 + a00a

2
02 + 3b2

02a20 − a2
02a20 − 2a02a

2
20 − 3b2

02a02

+3a02a11b02 + 6c0a02b02 + 3a02a20a00 − 3a02b02a20

−3a02b02a00 − 3b02c0a20),
α2 = −2a02b02(−c0 − a11 + a20 + a00).

Proof. We denote s2 = r2 − r2
1 and we write r2ω = r2

1ω + s2ω = r1r2dH +
r1dS2 + s2r1dH + s2dS1. Then, the third order Melnikov function can be
calculated as

M3(h) =
∮

H=h

r2ω =
∮

H=h

r1dS2 + s2dS1.

Now we notice that we can write

r1(x, y) = f1(x) + g1(x)y, dS1 = F1(x)dx + dG1(x,H) + d (R1(x)y)
s2(x, y) = f2(x) + g2(x)y, dS2 = F2(x)dx + dG2(x,H) + d (R2(x, H)y) ,

where

f1(x) =
a01 + a11x

1 + x
− 2b02 ln(1 + x), g1(x) =

(a02 − a20 + b01)
1 + x

R1(x) = (a10 − b01) + b01x, G1(x, H) = 2b02H ln(1 + x)

F1(x)=
b00 + (b10 − a10)x+(b20 − b02 − a11)x2

1 + x
,
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and

f2(x) = a02a20 + (2c0b02 + a02a00 − a02a20)
1

1 + x
− 2b2

02(ln(1 + x))2

−2a02a20 ln(1 + x) + 2c0b02
ln(1 + x)

1 + x
,

g2(x) = 2a02b02
ln(1 + x)

1 + x
+

(
c0a20 + c2a02+2a00b02+2a02b02

)
1

1 + x
,

F2(x) = (a11c2 + c0c3 − 2a02a20 + a02a00) + (a11c3 − 2a02a20)x

+(a11c1 + c0c2 − c0c3 + a00a02 − 2a02a20)
1

1 + x

+c0c1
1

(1 + x)2
− 2b02c2 ln(1 + x)− 2b02c3x ln(1 + x)

−2b02c1
ln(1 + x)

1 + x

G2(x,H) = 2a11b02H ln(1 + x)− 2b02c0
H

1 + x
− 2b2

02H(ln(1 + x))2

R2(x,H) = −a02c1
1

1 + x
− 2b02a00 ln(1 + x)

−2b02a20x ln(1 + x) + (a00a11 − a02c2 − 2a00b02)

−2a02b02
H

1 + x
+ (a20a11 + a20c0 + a02c2 + 2a00b02)x.

Then∮

H=h

r1dS2 =

=
∮

H=h

f1(x)F2(x)dx + f1(x)dG2(x,H) + f1(x)d (R2(x,H)y) +

g1(x)yF2(x)dx + g1(x)ydG2(x,H) + g1(x)yd (R2(x,H)y) =

−
∮

H=h

f ′1(x)R2(x,H)ydx + g1(x)F2(x)ydx + g1(x)ydG2(x, H)

and, analogously,
∮

H=h

s2dS1 = −
∮

H=h

f ′2(x)R1(x,H)ydx + g2(x)F1(x)ydx + g2(x)ydG1(x,H).

Taking into account the conditions between the coefficients that guaran-
tee that M1(h) ≡ M2(h) ≡ 0 and the notations (7) we make the following
substitutions:
b01 = a20, a10 = a20 + a00, b11 = a20 + a02, a01 = c0 + a11, b10 =
b00 + a01 + b20 − b02 − a11 − c1, b00 = c2 + c1, b20 = c3 + b02 + a11
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and, moreover,
Case (i): a02 = a20 = a00 = 0,
Case (ii): a02 = b02 = c0 = 0,
Case (iii): c1 = (a20c0 − a00c0 − a02b02)/a02, c2 = (a02b02 − c0a20 −
2a00b02)/a02, c3 = −2b02(a20 − a02)/a02.
After these substitutions, all the remaining coefficients are independent.
In Case (i) we have g1 ≡ g2 ≡ R1 ≡ R2 ≡ 0, while in Case (ii) we have
r1 = a11 and s2 ≡ 0. From all these we deduce that, in both cases,
M3(h) ≡ 0. Moreover, going further with the procedure of Françoise [4]
and Iliev [7] for finding higher order Melnikov functions (described for ex-
ample in Remark 2.3 from [7]), it can be seen that all the Melnikov functions
vanish in these cases.
In Case (iii), the expression of M3 is found as linear combination of J2(h)
and the integrals of the following 1–forms:

ω11, ω01,
y

(1 + x)2
dx,

xy

(1 + x)2
dx,

yH

(1 + x)2
dx,

x2y

(1 + x)2
dx.

Using the following relations
∮

H=h

ω11 = J1(h),
∮

H=h

ω01 = (1− 2h)J0(h)− 2J1(h),
∮

H=h

y

(1 + x)2
dx = J0(h),

∮

H=h

xy

(1 + x)2
dx = −2hJ0(h)− 2J1(h),

∮

H=h

x2y

(1 + x)2
dx = 2hJ0(h) + 3J1(h),

the expression (12) is obtained. ¤

The function J2 given in the integral form (13) can be expressed in terms
of elementary functions as:
(14)

J2(h) =
2π√

1− 2h

[
2h−(1+

√
1−2h)2 ln

1+
√

1−2h

2
+4(1−h) ln

√
1−2h

]
.

Since the method of calculating J2 is not a standard one, we will present it
in an Appendix at the end of the paper. It remains to study the number of
zeros of M3. Through the change 2h = 1− z2, the equation

M3(h) = 0, h ∈ (0, 1/2)

is equivalent with

A + Bz + Cz2 =
1
2π

z

1− z
J2((1− z2)/2), z ∈ (0, 1),
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where A = (2α0 + β0)/2α2, B = −α1/2α2 and C = (−β0 + α1)/2α2.
We denote

f(z) =
1
2π

z

1− z
J2((1− z2)/2),

and g(z) = f(z)−A−Bz−Cz2 such that we need to study the number of
zeros of the function g. We have

f(z) = 1 + z − (1 + z)2

1− z
ln

1 + z

2
+ 2

1 + z2

1− z
ln z

and g′′′(z) = f ′′′(z) =
24

(1− z)4
P (z), where

P (z) =
z6 − z5 − 19z4 + 7z3 + 22z2 − 14z + 4

24z3(z + 1)
− ln

z + 1
2z

.

After noticing that limz→0 P (z) = ∞, P (1) = 0 and that for all z ∈ (0, 1),

P ′(z) =
(z4 + 4z3 + 8z2 + 12z + 6)(z − 1)3

12z4(z + 1)2
< 0,

we deduce that, for all z ∈ (0, 1), P (z) > 0 and, as a consequence, g′′′(z) > 0.
By applying the Rolle‘s rule we have that g has at most 3 zeros, taking into
account their multiplicities. Hence, M3 has also at most 3 zeros, taking into
account their multiplicities, as we wanted to prove.

We consider now the system (1) with the following coefficients a00 = 0,
a10 = 3/4, a01 = −√3759/358+3/4, a20 = 3/4, a11 = −3

√
3759/1253+3/4,

a02 = −1, b00 = 0, b10 = −√3759/1432, b01 = 3/4, b20 = 75
√

3759/716 +
3/4, b11 = −1/4 and b02 =

√
3759/42. By direct calculations, it can be seen

that relations (6) and (11) hold, i.e. M1(h) = M2(h) ≡ 0. The coefficients
from the expression (12) of M3 are α0 = −3, β0 = 0, α1 = −25, α2 = 1/2
and, moreover, A = −6, B = 25, C = −25. It can be easily seen that
g(0.01) < 0, g(0.1) > 0, g(0.4) < 0 and g(0.8) > 0. Hence, g has at least
3 zeros. Since we have proved before that g has at most 3 zeros, it follows
that it has exactly 3 zeros. Then, the corresponding M3 has exactly simple
3 zeros and the theorem follows.

Appendix

This appendix is devoted to proving that the function J2(h) defined in (13)
is given by (14), i.e. that
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J2(h) =
∮

H=h

xy ln(1 + x)
(1 + x)2

dx =(15)

=
2π√
1−2h

[
2h−(1+

√
1−2h)2 ln

1+
√

1−2h

2
+4(1−h) ln

√
1−2h

]
.

First denote for each −1 < r < 1,

J(r) =
∫ 2π

0

sin2 θ cos θ ln(1 + r cos θ)
(1 + r cos θ)2

dθ.

Once the expression of J is known, we calculate J2 as

J2(h) = −2h
√

2hJ(
√

2h), for 0 < h < 1/2.

In order to find J we will find first the expression of

Fk(r) =
∫ 2π

0

cosk θ ln(1 + r cos θ)
1 + r cos θ

dθ,

for k = 0 and k = 2. We will prove that for each −1 < r < 1,

(i) F0(r) =
2π√

1− r2
ln

2(1− r2)
1 +

√
1− r2

,

(ii) F2(r) =
2π

r2
(1−

√
1− r2)− 2π

r2
ln

1 +
√

1− r2

2

+
2π

r2
√

1− r2
ln

2(1− r2)
1 +

√
1− r2

.

Proof of (i): Mainly, we use the Poisson‘s formula [9]. A function f that is
harmonic in the unit disk of the complex plain can be calculated using only
its values on the boundary of the disk according to the formula:

f(ρeit) =
1
2π

∫ 2π

0

f(eiθ)
1− ρ2

|1− ρeite−iθ|2 dθ,

for all 0 < ρ < 1 and 0 ≤ t < 2π. For t = 0 we have
∫ 2π

0

f(eiθ)
1 + ρ2 − 2ρ cos θ

dθ = 2π
f(ρ)

1− ρ2

Now let fs(ρeit) = ln |1 − sρeit| that is an harmonic function in the unit
disk of the complex plain for each fixed 0 < s < 1 and we write the above
equality for this function:

∫ 2π

0

ln(1 + s2 − 2s cos θ)
1 + ρ2 − 2ρ cos θ

dθ = 2π
ln(1− sρ)2

1− ρ2
.



THE THIRD ORDER MELNIKOV FUNCTION 13

Taking s = ρ in this last formula, we have
∫ 2π

0

ln(1 + ρ2 − 2ρ cos θ)
1 + ρ2 − 2ρ cos θ

dθ = 4π
ln(1− ρ2)

1− ρ2
.

Using this we obtain

F0

(
− 2ρ

1 + ρ2

)
= 4π

(1 + ρ2)
1− ρ2

ln(1− ρ2)− 2π
(1 + ρ2)
1− ρ2

ln(1 + ρ2),

where we have also used that∫ 2π

0

1
1 + ρ2 − 2ρ cos θ

dθ = 2π
1

1− ρ2
.

Then (i) follows now for −1 < r < 0 and, using that it is an even function,
also for −1 < r < 1.

Proof of (ii): Denote

f(r) =
∫ 2π

0

cos θ ln(1 + r cos θ)dθ and g(r) =
∫ 2π

0

ln(1 + r cos θ)dθ.

Then
F2(r) =

1
r
f(r)− 1

r2
g(r) +

1
r2

F0(r).

In order to find f and g we notice that

f ′(r) =
∫ 2π

0

cos2 θ

1 + r cos θ
dθ =

2π

r2
√

1− r2
(1−

√
1− r2),

g′(r) =
∫ 2π

0

cos θ

1 + r cos θ
dθ = −rf ′(r).

Then, taking also into account that f(0) = g(0) = 0 we obtain

f(r) =
2π

r
(1−

√
1− r2) and g(r) = 2π ln

1 +
√

1− r2

2
,

and (ii) follows.

The last step in finding the expression of J is noticing that

J(r) = F ′2(r)− F ′0(r) + h(r),

where

h(r) =
∫ 2π

0

sin2 θ cos θ

(1 + r cos θ)2
dθ = − 2π

r3
√

1−r2
(1−

√
1−r2)2.

Hence we obtain

J(r) =− 2π

r3
√

1−r2

[
r2−(1+

√
1−r2)2 ln

1+
√

1−r2

2
+2(2−r2) ln

√
1−r2

]
.
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From the above formula the expression (15) follows.
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