
RESTRICTED WALKS IN REGULAR TREES

LAURA CIOBANU∗ AND SAŠA RADOMIROVIĆ†

Abstract. Let T be the Cayley graph of a finitely generated free
group F . Given two vertices in T consider all the walks of a given
length between these vertices that at a certain time must follow a
number of predetermined steps. We give formulas for the number of
such walks by expressing the problem in terms of equations in F and
solving the corresponding equations.

1. Introduction

Let T be an infinite regular tree and n a positive integer. Fix two vertices
x and y in T . By a walk or a path between x and y we mean any finite
sequence of edges that connect x and y in which backtrackings are allowed.
There are many formulas in literature which give the number of walks of
length n between x and y, such as recurrence formulas, generating functions,
Green functions, and others. Here we consider walks of length n between x
and y which at a certain time follow a number of predetermined steps.

This work was motivated by the following question of Tatiana Smirnova-
Nagnibeda, in relation to finding the spectral radius of a given surface group.
Let F2 be the free group on generators a and b, K a field of characteristic
0, T = a−1 + a + b−1 + b an element in the group algebra K[F2] and
c = [a, b] = aba−1b−1. What is the projection, for any m, and for any
m-tuple of integers (k1, ..., km), of Tck1Tck2 ...T ckm onto the group algebra
of the subgroup generated by c? Alternately, this can be formulated as a
question in the free group F2. Given an m-tuple of integers (k1, ..., km), how
many of the words of type x1c

k1x2c
k2 ...xmckm with xi ∈ {a±1, b±1}, turn

out to be a power of c? In turn, this question can be translated into counting
certain paths in the Cayley graph of F2, since each word in F2 corresponds
uniquely to a walk in the Cayley graph of F2, the infinite regular tree of
degree four. In the rest of the paper we will use the formulation of the
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question in terms of the free group or in terms of walks in regular trees
interchangeably.

We answer this question in the case (k1, . . . , km) = (0, . . . , 0, ki, 0, . . . , 0),
ki 6= 0, not only for the free group on two generators, but on any num-
ber of generators, by counting (see Section 5) the number of solutions
(x1, x2, . . . , xm) of the equation x1 . . . xic

kxi+1 . . . xm = cl. This equation
is a particular instance of an equation of type WX = Y U in a free group,
where W and U are given fixed words. The study of equations in free
groups is a fully-developed area, with Makanin [3] and Razborov [4] having
provided an algorithm that finds the solutions to equations that have solu-
tions, and Diekert, Gutierez and Hagenah [2] having considered solutions to
equations with rational constraints. While WX = Y U clearly has infinitely
many solutions (X, Y ) in a free group and does not require the complicated
machinery developed by Makanin-Razborov, when we put restrictions on
the lengths of X and Y , finding the number of solutions becomes delicate.
We treat the equation WX = Y U in Section 4. Section 3 contains results
about a type of restricted words or paths which will be used in later sections,
but is also of independent interest.

2. Background and Example

Let us fix a set X = {a1, a2, . . . , ar}, where r is a positive integer, and
let X−1 be a set of formal inverses for the elements of X, that is, X−1 =
{a−1

1 , . . . , a−1
r }. Let X± = X∪X−1. Elements of X will be called generators

and elements of X± will be called letters. For x ∈ X set (x−1)−1 = x. A
finite string of letters is called a word. We define the inverse of a word
U = x1 · · ·xn to be U−1 = x−1

n · · ·x−1
1 . The length of U will be denoted by

|U |. For a word W , a string of consecutive letters in W forms a subword of
W . A word W is reduced if it contains no subword of the form xx−1 with x
in X ∪X−1. We will denote the free group on generators a1, . . . , ar by Fr.
The elements of Fr are the reduced words in letters a±1

1 , . . . , a±1
r . Reduced

words correspond to paths without backtracking in the Cayley graph of Fr,
while unreduced words or simply “words” correspond to arbitrary paths in
the Cayley graph.

Let a and b be the generators of F2, K a field of characteristic 0, T =
a−1 + a + b−1 + b an element in the group algebra K[F2] and c = [a, b] =
aba−1b−1. Let us consider the easiest case of the projection computation
we mentioned in the Introduction. In the case in which ki = 0 for all i, one
simply counts how many words of length n in a±1 and b±1 are powers of the
commutator c = [a, b]. This is a special case of the following computation.
Let x and y be fixed points in the Cayley graph of Fr, let l = d(x, y) be the
distance between x and y, and let V r

l (n) be the number of paths of length
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n between x and y. If r = 2, then the projection of Tck1Tck2 ...T ckn with
k1 = k2 = . . . = kn = 0 is

· · ·+ V 2
8 (n)c−2 + V 2

4 (n)c−1 + V 2
0 (n)c0 + V 2

4 (n)c + V 2
8 (n)c2 + . . .

In other words, among all the elements of length n in F2 we get V 2
0 (n) of

them equal to the identity, V 2
4 (n) equal to the commutator c, and so on.

We will use the same additive notation to count the number of words in F2

equal to commutators. Note that if n− l is an odd integer, then V 2
l (n) = 0.

Formulas for V r
l (n) have been known for a long time and are often used in

the context of random walks on graphs [5, 1]. After computing the values
of V 2

l (n) we get, that among all the words of length 4 in F2, there are
c−1 +28c0 +c1 commutators. Among all the words of length 6 in F2, we get
16c−1 + 232c0 + 16c1 since the generating function for V 2

0 (n) is 3
1+
√

4−3x2 ,

with V 2
0 (0) = 1, V 2

0 (2) = 4, V 2
0 (4) = 28, V 2

0 (6) = 232, V 2
0 (8) = 2092.

Bartholdi gives a generalization to the computation of V r
l (n) in [1], where

he considers more general graphs, not just regular trees. His computations
of the number of walks also involve the number of backtrackings or ‘bumps’
in the walks. One standard tool for studying random walks on graphs or
groups is the Green function.

Definition. Let G be a graph with x, y ∈ G and let p(n)(x, y) be the prob-
ability that the walker who started at point x will be at point y at the n-th
step. Then the associated Green function is

G(x, y|z) =
∞∑

n=0

p(n)(x, y)zn,

where z ∈ C.

For a regular infinite tree of degree M the Green function is [5]

G(x, y|z)=
2(M − 1)

M − 2+
√

M2−4(M−1)z2

(
M−

√
M2−4(M−1)z2

2(M−1)z

)d(x,y)

Thus the generating function for V r
l (n) is G(x, y|2rz), where d(x, y) = l

is fixed.

3. Restricted words

In this section we count the number of a type of reduced words that will
appear in our later results.

Let |A| denote the cardinality of the set A, and let A−1 = {a−1 : a ∈ A}.
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Proposition 1. Let a1, . . . , ar be the generators of Fr, A and B be subsets
of {a±1

1 , . . . , a±1
r }. The number of elements of length n in Fr that do not

start with a letter in A and do not end with a letter in B is equal to

φ′n(A,B) =
(2r − |A|)(2r − |B|)(2r − 1)n−1 + δr + (−1)n(|A||B| − σr)

2r
,

where δ = |A ∩B| − |A−1 ∩B|, σ = |A ∩B|+ |A−1 ∩B|.

Proof.

Let χ
A
(x) be the characteristic function for A, i.e. χ

A
(x) =

{
1 x ∈ A

0 x 6∈ A
, let

A+ = A∩{a1, . . . , an} and A− = A∩{a−1
1 , . . . , a−1

n }. Furthermore, let αi,n

be the number of reduced words of length n > 0 that do not start with a
letter in A, but end in ai, and let ᾱi,n be the number of reduced words of
length n that do not start with a letter in A, but end in a−1

i . Then we have

α1,n + ᾱ1,n + · · ·+ αr,n + ᾱr,n = (2r − |A|)(2r − 1)n−1, (1)

and αi,1 = 1− χ
A
(ai), ᾱi,1 = 1− χ

A
(a−1

i ).
The following recursion relations hold

αi,n+1 = (α1,n + ᾱ1,n + · · ·+ αr,n + ᾱr,n)− ᾱi,n,

ᾱi,n+1 = (α1,n + ᾱ1,n + · · ·+ αr,n + ᾱr,n)− αi,n,

where i ≥ 1.
This implies αi,n − ᾱi,n = χ

A
(a−1

i ) − χ
A
(ai) for all n and i. Now fix i.

Then for any j with 1 ≤ j ≤ r, when we subtract the recursion relation
for αj,n+1, from the recursion relation for αi,n+1, we get αi,n+1 − αj,n+1 =
ᾱj,n − ᾱi,n = αj,n − αi,n + χ

A
(aj) − χ

A
(a−1

j ) + χ
A
(a−1

i ) − χ
A
(ai). Let

ej,n = αi,n − αj,n and ēj,n = αi,n − ᾱj,n . Then ej,1 = χ
A
(aj)− χ

A
(ai) and

it is easy to see that ej,2k = χ
A
(a−1

i )−χ
A
(a−1

j ), ej,2k+1 = χ
A
(aj)−χ

A
(ai),

and ēj,n = ej,n + χ
A
(a−1

j )− χ
A
(aj). Equation (1) can now be written as

(αi,n − e1,n) + (αi,n − e1,n + χ
A
(a1)− χ

A
(a−1

1 )) + . . .

+ (αi,n−er,n)+(αi,n−er,n+χ
A
(ar)−χ

A
(a−1

r ))=(2r−|A|)(2r−1)n−1.
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This gives αi,n =
(2r−|A|)(2r−1)n−1+2

P
j ej,n−|A+|+|A−|

2r , where the sum runs
from 1 to r. Thus

αi,2k =
(2r − |A|)(2r − 1)2k−1 + 2rχ

A
(a−1

i )− |A|
2r

,

αi,2k+1 =
(2r − |A|)(2r − 1)2k − 2rχ

A
(ai) + |A|

2r
,

ᾱi,2k =
(2r − |A|)(2r − 1)2k−1 + 2rχ

A
(ai)− |A|

2r
,

ᾱi,2k+1 =
(2r − |A|)(2r − 1)2k − 2rχ

A
(a−1

i ) + |A|
2r

.

Now, the number of reduced words of length n that do not start with a
letter in A and do not end with a letter in B is equal to

(α1,n + ᾱ1,n + · · ·+ αr,n + ᾱr,n)−
∑

j:χ
B

(aj)=1

αj,n −
∑

j:χ
B

(a−1
j )=1

ᾱj,n

= (2r − |A|)(2r − 1)n−1 − |B|
2r

((2r − |A|)(2r − 1)n−1 − (−1)n|A|) (2)

−(−1)n




∑

j:χ
B

(aj)=1

χ
A
(a−(−1)n

j ) +
∑

j:χ
B

(a−1
j )=1

χ
A
(a(−1)n

j )


 .

If n is even, then we have
∑

j:χ
B

(aj)=1

χA(a−1
j ) +

∑

j:χ
B

(a−1
j )=1

χA(aj) = |A−1 ∩B|

If n is odd, then we have
∑

j:χ
B

(aj)=1

χ
A
(aj) +

∑

j:χ
B

(a−1
j )=1

χ
A
(a−1

j ) = |A ∩B|

By simplifying (2), one easily obtains that the number of these reduced
words is {

(2r−|A|)(2r−|B|)(2r−1)n−1+|A||B|
2r − |A−1 ∩B| if n even,

(2r−|A|)(2r−|B|)(2r−1)n−1−|A||B|
2r + |A ∩B| if n odd.

The desired formula follows now by averaging the two expressions, then
adding and subtracting the deviation to and from the average for even and
odd n, respectively. ¤

A more natural quantity to count is the number of reduced words that
start with a letter from a given set and end with a letter from another set.
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By applying the De Morgan formulas for set identities to Proposition 1 we
obtain the following

Corollary 1. Let A and B be subsets of {a±1
1 , . . . , a±1

r }. The number of
elements of length n in Fr that start with a letter in A and end with a letter
in B is equal to

φn(A,B) =
|A||B|(2r − 1)n−1 + δr + (−1)n(|A||B| − 2r(|A|+ |B|) + σr)

2r
,

where δ = |A−1 ∪B| − |A ∪B|, σ = |A ∪B|+ |A−1 ∪B|.
4. Main results

In this section we count the number of solutions (X,Y ) of the equation

WX = Y U, (3)

in the free group Fr, for fixed elements W and U , and fixed lengths of X
and Y . The number of solutions varies widely, depending on the lengths
of W and U with respect to the lengths of X and Y . We will need the
following.

Definition. : (i) Let (W )i be the i-th letter in the word W , where
1 ≤ i ≤ |W |, with the convention that (W )0 = (W )|W |+1 = e,
where e is the empty word.

: (ii) Define (W )j
i to be the subword of W which starts with the i-th

letter of W and ends with the j-th letter of W and the convention
that (W )j

i = e if j < i.
: (iii) Let γW,U (i, n, j) be the correlation function of two words W ,

U . Whenever W and U are fixed we will use γ(i, n, j) instead of
γW,U (i, n, j). The correlation function identifies whether W and U
have a common maximal subword s of length exactly n, followed by
j letters in W , and preceded by i letters in U . More precisely, when
n > 0

γ(i, n, j) =





1 if (W )|W |−j
|W |−n−j+1 = (U)i+n

i+1 ,

(W )|W |−n−j 6= (U)i, (W )|W |−j+1 6= (U)i+n+1

0 else.

If n = 0, γ(i, 0, j) =





1 if (W )|W |−j(U)i+1 6=e,

(W )|W |−j 6=(U)i, (W )|W |−j+1 6= (U)i+1

0 else.

Example. Let W = abc and U = bcd be words in the free group on four
letters. Then γ(0, 2, 0) = 1, but γ(1, 1, 0) = γ(0, 1, 1) = 0. In all three cases
the overlap between W and U is bc, a subword of both W and U . Since bc
doesn’t have length 1 it follows that γ(1, 1, 0) = γ(0, 1, 1) = 0.
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Definition. Let LW,U (N,M) be the number of solutions of the equation
WX = Y U , where X and Y are reduced words of length N and M , respec-
tively.

It can be seen at once that

LU,W (N,M) = LW,U (N,M), (4)

LW,U (N, M) = LW−1,U−1(M, N) (5)

LW,U (N, M) = 0 whenever |U |+ |W |+ N + M is odd (6)

In the following propositions we adopt the convention that if e, the iden-
tity element of Fr, is in some set A, then A = A \ {e}.
Proposition 2. The number LW,U (N, M) of solutions of WX = Y U ,
where X and Y are reduced words of length N and M , respectively, is given
below. Let d = N−M+|W |−|U |

2 and n = N+M−|W |−|U |
2 ,

: (i) If N + M <
∣∣|U | − |W |∣∣ or n 6∈ Z then LW,U (N,M) = 0,

: (ii) If
∣∣|U | − |W |

∣∣ ≤ N + M ≤ |W |+ |U |, n ∈ Z,

LW,U (N, M) =





min(|U |,M)∑

i=0

γ(i,−n, i + d) if d ≥ 0

min(|W |,N)∑

i=0

γ(i− d,−n, i) if d < 0

: (iii) If N + M > |W |+ |U |, n ∈ Z, then

LW,U (N, M) =
min(|U |,|W |−d)∑

i=max(0,−d)

φ′n(Ai, Bi)

where Ai = {((W )|W |−d−i)−1, (W )|W |−d−i+1},
Bi = {(U)i, ((U)i+1)−1}.

Proof. : (i) If |W | − |X| > |U | + |Y |, then the length of the reduced
word equal to WX is strictly longer than the length of the reduced
word equal to Y U , so there is no solution. Similarly, if |W |+ |X| <
|U | − |Y | there is no solution.

: (ii) For a solution (X, Y ), |X| = N , |Y | = M , the length of the
resulting reduced words on both sides of the equation is N + |W | −
2|w| = M+|U |−2|u|, and it is easy to see that U and W must have a
common subword s of exactly |W |−M+|u|−|w| = |U |−N+|w|−|u|
letters. From the equation above it follows that 2|w| − 2|u| = N −
M + |W | − |U | = 2d, thus |s| = |W |+|U |−N−M

2 = −n.
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: (iii) The equation WX = Y U can be rewritten as

W ′w̄wX ′ = Y ′uūU ′,

where w, u, X ′, Y ′ are reduced words with w and u maximal such
that W = W ′w̄, X = wX ′, Y = Y ′u and U = ūU ′. From this
equation we have

2|w| = |W | − |U |+ N −M + 2|u|. (7)

Since N + M > |W | + |U |, the suffix of X ′ is U ′ = uU and
the prefix of Y ′ is W ′ = Ww. Thus we can write every solution
(X, Y ) as (wX ′′uU,WwY ′′u) = (wX ′′U ′, W ′Y ′′u), where X ′′ = Y ′′

is any reduced word of length n = M+N−|U |−|W |
2 which does not

begin with the inverse of the last letter of W ′ or w, nor end with
the inverse of the first letter of U ′ or u, since X and Y are reduced
words. Notice that the inverses of the last letter of W ′ and w are
(W )−1

|W |−|w| and (W )|W |−|w|+1, respectively, and the inverses of the
first letter of u and U ′ are (U)|u| and (U)−1

|u|+1, respectively. Note
that the length of X ′′ is constant, regardless of the length of u and
w.

The following diagram better exemplifies the equalities between
the words.

W X
Y U

=
W ′w̄ wX ′

Y ′u ūU ′ =
Ww X ′′ U ′

W ′ Y ′′ uU

Let d = |W |−|U |+N−M
2 , then it follows from (7) that |W | − |w| =

|W | − d − |u|. For every (possibly empty) word u such that u−1

is a prefix of U , let A|u| = {(W )−1
|W |−d−|u|, (W )|W |−d−|u|+1} and

B|u| = {(U)|u|, (U)−1
|u|+1}.

Thus for a fixed u, and n = |X ′′| = M+N−|U |−|W |
2 , the number

of choices for X ′′ is φ′n(A|u|, B|u|).
To obtain the total number of solutions, we consider the cases

d ≥ 0 and d < 0 separately.
• d ≥ 0

It follows from equation (7) that the smallest length of |w| for
which there can be a solution is |w| = |W |−|U |+N−M

2 in which
case we have |u| = 0. Thus |u| ranges from 0 to min(|U |,M−n),
while |w| ranges from |W |−|U |+N−M

2 to |W |+|U |+N−M
2 = N −n

(if |U | < M − n) or |W |−|U |+N+M−2n
2 = |W | (else).

• d < 0
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It follows from equation (7) that the smallest length of |u| for
which there can be a solution is |u| = |U |−|W |+M−N

2 in which
case |w| = 0. Thus |w| ranges from 0 to min(|W |, N − n),
while |u| ranges from |U |−|W |+M−N

2 to |U |+|W |+M−N
2 = M −n

(if |W | < N − n) or |U |−|W |+M+N−2n
2 = |U | (else).

In both cases, the formula follows immediately.
¤

Note that Proposition 2 not only counts the number of solutions to an
equation of the form (3) but the proof also sketches a strategy for computing
the actual solutions of that equation. We can now use Proposition 2 to give
a formula for the number of restricted walks in regular trees.

Theorem 1. Let U be a fixed element in Fr, T the Cayley graph of Fr,
and P a fixed point in T . Let W be the element in Fr describing the path
from the origin to P . Then the number of paths in T , from the origin to the
point P , of length M + |U |+N which after M steps follow the path outlined
by U and proceed with N arbitrary steps is equal to

N∑
n=0

M∑
m=0

LW,U (n,m)V r
n (N)V r

m(M).

Proof. The Theorem follows easily from Proposition 2, because for every
reduced word R of length ρ, there are exactly V r

ρ (l) words of length l which
are equal to R. ¤

5. The commutator case

For ease of notation, let a = a1, b = a2 and c = [a, b] = aba−1b−1. Here
we consider the projection computation in the case when ki = 0 for all
except one value of i. Let us fix integers k and l. Then we want to find the
number of solutions of the equation:

x1 . . . xic
kxi+1 . . . xm = cl, (8)

where xi ∈ {a±1
1 , . . . , a±1

r }. We count the number of solutions by first
rearranging the equation as

ckX = Y cl, (9)

where X = xi+1 . . . xm and Y = (xi . . . x1)−1.
Let Lk,l(N, M) be the number of solutions of the equation 9, where

X and Y are reduced words of length N and M , respectively. We com-
pute Lk,l(N, M) by specializing our results from the previous section to the
case when W and U are commutators. Clearly Lk,l(N,M) = Ll,k(N,M),
Lk,l(N, M) = L−k,−l(M, N), Lk,l(N,M) = 0 whenever N+M ≡ 1 (mod 2),
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and Lk,l(N,M) = Lk,l(M, N). When N + M is smaller or equal to the
combined length of the commutators, then we have the following number of
solutions.

Proposition 3. Let k and l be positive integers.
: (i) If N + M <

∣∣|4k| − |4l|
∣∣ then Lk,l(N,M) = L−k,l(N, M) = 0.

: (ii) For |4k − 4l| ≤ N + M < 4k + 4l

Lk,l(N, M) =





2 if 4|N , k = l and N = M

1 if 4|N , |4k − 4l| = N + M or |4k − 4l| = |N −M |
0 else

L−k,l(N, M) =





min(4l, M) if 4k + 4l = M + N + 2
and M ≡ 1 (mod 4)

0 else

: (iii) For N + M = 4k + 4l, M ≤ N

Lk,l(N, M) =





⌈
min(4l,M)+1

2

⌉
if M odd

2
⌈

min(4l,M)
4

⌉
if M even and M 6= 4k

2
⌈

min(4l,M)
4

⌉
+ 1 if M = 4k

L−k,l(N, M) =

{
min(4l, M) if M ≡ 2 (mod 4)
0 else

Proof. Let n′ = 4k+4l−N−M
2 . (Here n′ = −n, where n is as defined in

Proposition 2.)
: (i) follows immediately from Proposition 2 (i).
: (ii) We can assume without loss of generality that k ≥ l and N ≥ M .

Here we determine
min(4l,M)∑

i=0

γ(i, n′, i + d) for n′ > 0. Notice that

d ≥ 0, since d = N−M+4k−4l
2 . Two commutators cannot have a

common maximal subword of a certain length in their interiors, but
only at the end or beginning of a commutator. In other words, γ
will be non-zero only when some of the following are satisfied: i = 0,
i + d = 0, n′ = 4l.

Let us first assume that n′ = 4l, which is equivalent to 4k− 4l =
N + M . Then we must have i = 0, so in this case Lk,l(N, M) = 1
because only γ(0, n′, d) is nonzero. Now let’s assume n′ < 4l. If
d = 0, which is equivalent to k = l and N = M . Then we can have
i = 0 and i = 4l − n′, so in this case Lk,l(N, M) = 2. If d > 0
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then i = M , which is equivalent to 4k− 4l = N −M , and so we get
Lk,l(N,M) = 1.

Since n′, d and i must be multiples of 4 in order to have solutions,
we get that M and N must also be multiples of 4. The formula now
follows.

If we consider c−kX = Y cl, then we must consider γ′(i, n′, i +
d) := γc−k,cl(i, n′, i + d). Notice that γ′(i, n′, i + d) 6= 0 if and only
if n′ = 1, which is equivalent to 4k + 4l = M + N + 2. Let the
common maximal subword s be the letter x. If x is the (i + 1)-st
letter in cl, then x−1 appears in a position 4k− j− 1 in c−4k where
i ≡ j (mod 4). Since x is two positions before or after x−1 in a
commutator, we get that we must have i ≡ i+d+2 (mod 4), which
is equivalent to d ≡ 2 (mod 4). Since n′ = 2, after a few identities
we get M ≡ 1 (mod 4), and in this case i can have the entire range,
and so the number of solutions is min(4l, M).

: (iii) Here we determine
min(4l,M)∑

i=0

γ(i, n, i + d) for n = 0, which is

equivalent to N + M = 4k + 4l. Then γ(i, 0, i + d) is nonzero if and
only if (ck)4k−i−d(cl)i+1 6= e, (ck)4k−i−d 6= (cl)i and (ck)4k−i−d+1 6=
(cl)i+1. Notice that the last two conditions are equivalent. Now
remove the last i + d letters from ck and the first i letters from
cl, and concatenate the resulting words to get a word of lengths
4k + 4l − 2i − d. In order to satisfy the two conditions for γ to be
nonzero we must have that 2i + d is M4 + 2 or M4 + 3, where M4

is a multiple of 4. Since d ≡ −M (mod 4), we need to count for
how many i between 0 and min(4l, M) the congruence 2i − M ≡
2, 3 (mod 4) holds. By considering the cases when M is even or
odd, we get the desired formula.

If d = 0 we get M = 4k, and we get an extra solution to the ones
counted above.

As in (ii), let γ′(i, 0, i + d) := γc−k,cl(i, 0, i + d). In this case
γ′(i, 0, i + d) is nonzero if and only if (c−k)4k−i−d(cl)i+1 6= e,
(c−k)4k−i−d 6= (cl)i and (c−k)4k−i−d+1 6= (cl)i+1. It is easy to
see that these three conditions are satisfied if and only if the
(c−k)4k−i−d+1

4k−i−d = xy and (cl)i+1
i = yx. This can happen, similar

to case (ii), only when d ≡ 2 (mod 4). Since n′ = 2, we get that
M ≡ 2 (mod 4), and the entire range for i.

¤
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The number of solutions to equation 9, when the combined length of the
solutions is greater than the combined length of the commutators, is given
by the following two propositions.

Proposition 4. The number of solutions of ckX = Y cl, where X and Y are
words in Fr of length N and M , respectively, k, l > 0, N + M > 4k + 4l, is
given by the following formulas. Let d = 2k−2l+ N−M

2 , n = N+M
2 −2l−2k,

R = min(4l, 4k − d)−max(0,−d).
(i) If d 6= 0 and 4l 6= 4k − d, then

Lk,l(N, M) =
(2r − 1)n−1(2r − 2)(R(r − 1) + r) + R(−1)n(2− r)

r

+

{
sgn(d)(−1)

d+1
2 d odd, |N −M | > |4k − 4l|

0 else.

(ii) If d = 0 or 4l = 4k − d, then Lk,l(N,M) =
{

(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r + (2r−1)n+1+(−1)n

r +1, if d = 0, k = l

(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r + (4r−3)(2r−1)n+(−1)n(3−r)

2r + 1
2 , else.

Proof. We begin by computing the sets Ai and Bi in Proposition 2. If
k, l > 0, then for max(0,−d) ≤ i ≤ min(4l, 4k − d)

Ai =





{a} i = 4k − d

{b} i = −d

{a, b} i 6∈ {−d, 4k − d}, i ≡ − d (mod 4)
{a, b−1} i 6∈ {−d, 4k − d}, i ≡ 1− d (mod 4)
{a−1, b−1} i 6∈ {−d, 4k − d}, i ≡ 2− d (mod 4)
{a−1, b} i 6∈ {−d, 4k − d}, i ≡ 3− d (mod 4)

(10)

and

Bi =





{a−1} i = 0
{b−1} i = 4l

{a−1, b−1} i 6∈ {0, 4l}, i ≡ 0 (mod 4)
{a, b−1} i 6∈ {0, 4l}, i ≡ 1 (mod 4)
{a, b} i 6∈ {0, 4l}, i ≡ 2 (mod 4)
{a−1, b} i 6∈ {0, 4l}, i ≡ 3 (mod 4)

(11)

We will call the cases where i ∈ {0, 4l,−d, 4k − d} borderline cases and
refer to all the other cases as the general case. Comparison with Proposi-
tion 2 shows that there are two borderline cases, namely i = max(0,−d)
and i = min(4l, 4k − d), while the remaining R − 1 cases form the general
case.
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General case. In order to compute the sum
min(4l,4k−d)−1∑

i=max(0,−d)+1

φ′n(Ai, Bi), (12)

we will first compute the (δ, σ) pairs in Proposition 1 from (Ai, Bi) then
sum up the corresponding values of the φ′-function. The following table
can be easily obtained from the definition of δ and σ in Proposition 1. It
shows the values of (δ, σ) for all possible values of i, d modulo 4.

(mod 4) i ≡ 0 i ≡ 1 i ≡ 2 i ≡ 3
d ≡ 0 (−2, 2) (2, 2) (−2, 2) (2, 2)
d ≡ 1 (0, 2) (0, 2) (0, 2) (0, 2)
d ≡ 2 (2, 2) (−2, 2) (2, 2) (−2, 2)
d ≡ 3 (0, 2) (0, 2) (0, 2) (0, 2)

Table 1. (δ, σ) for all possible values of i, d mod 4

Thus the sum in (12) is given by
• d ≡ 1, 3 (mod 4)

(R− 1)
(2r − 2)2(2r − 1)n−1 + (−1)n(4− 2r)

2r

• d ≡ 0, 2 (mod 4)
If d ≡ 0 (mod 4) then R−1 = (min(4l, 4k−d)−max(0,−d)−1) ≡

3 (mod 4) and i ranges from i ≡ 1 (mod 4) to i ≡ 3 (mod 4), thus
we have 1

2 (R − 2) + 1 values of the φ′-function with (δ, σ) = (2, 2)
and 1

2 (R− 2) values with (δ, σ) = (−2, 2).
If d ≡ 2 (mod 4) then (R−1) is odd, thus we can pair the values

of the φ′ function for (2, 2) and (−2, 2) in all but one case. Since i
ranges from i ≡ 1 or 3 (mod 4) to i ≡ 1 or 3 (mod 4) we have a φ′

value for (−2, 2) left over in all four cases.
Hence the sum is equal to

(R− 1)
(2r − 2)2(2r − 1)n−1 + (−1)n(4− 2r)

2r
+ (−1)d/2.

Borderline cases. Let i0 = max(0,−d), i1 = min(4l, 4k − d). We need to
compute

φ′n(Ai0 , Bi0) + φ′n(Ai1 , Bi1).
We are going to compute the (δ, σ) pairs and corresponding values of

the φ′-function from Proposition 1 for all possible values of i0 and i1. The
results follow from simple inspection of equations 10 and 11. It turns out
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that for certain values of i0 and i1 we have φ′n(Ai0 , Bi0) = φ′n(Ai1 , Bi1),
thus we will list these cases under a common item and let i ∈ {i0, i1}.

• If d > 0 and 4l > 4k − d, then (δ, σ) =

{
(−1, 1) d ≡ 0, 1 (mod 4)
(1, 1) d ≡ 2, 3 (mod 4)

φ′n(Ai, Bi) =

{
(2r−2)(2r−1)n−r+(−1)n(2−r)

2r d ≡ 0, 1 (mod 4)
(2r−2)(2r−1)n+r+(−1)n(2−r)

2r , d ≡ 2, 3 (mod 4)

• If d < 0 and 4l < 4k − d, then (δ, σ) =

{
(−1, 1) d ≡ 0, 3 (mod 4)
(1, 1) d ≡ 1, 2 (mod 4)

φ′n(Ai, Bi) =

{
(2r−2)(2r−1)n−r+(−1)n(2−r)

2r d ≡ 0, 3 (mod 4)
(2r−2)(2r−1)n+r+(−1)n(2−r)

2r , d ≡ 1, 2 (mod 4)

• If d = 0 and 4l = 4k − d, then (δ, σ) = (0, 0)

φ′n(Ai, Bi) =
(2r − 1)n+1 + (−1)n

2r
.

Putting it all together. Adding up the solutions in the general and borderline
cases, we obtain

• d ≡ 0 (mod 4)
If d = 0 and k = l then
(R− 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)

2r + 1 + 2 (2r−1)n+1+(−1)n

2r ,
If (d = 0 and k 6= l) or (d 6= 0, 4l = 4k − d) then
(R− 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)

2r + 1 + (2r−1)n+1+(−1)n

2r +
(2r−2)(2r−1)n−r+(−1)n(2−r)

2r
If d 6= 0, 4l 6= 4k − d

(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r +1+2 (2r−2)(2r−1)n−r+(−1)n(2−r)

2r .
• d ≡ 1 (mod 4)

If d > 0 and 4l > 4k − d

(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r +2 (2r−2)(2r−1)n−r+(−1)n(2−r)

2r
If (d > 0 and 4l < 4k − d) or (d < 0 and 4l > 4k − d) then
(R− 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)

2r

+ 2 (2r−2)(2r−1)n+(−1)n(2−r)
2r

If d < 0 and 4l < 4k − d then
(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)

2r +2 (2r−2)(2r−1)n+r+(−1)n(2−r)
2r

• d ≡ 2 (mod 4) This is the simplest case. For all possible values of
d, l, and k, we obtain

(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r −1+2 (2r−2)(2r−1)n+r+(−1)n(2−r)

2r
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• d ≡ 3 (mod 4)
If d > 0 and 4l > 4k − d then
(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)

2r +2 (2r−2)(2r−1)n+r+(−1)n(2−r)
2r

If (d > 0 and 4l < 4k − d) or (d < 0 and 4l > 4k − d) then
(R− 1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)

2r + 2 (2r−2)(2r−1)n+(−1)n(2−r)
2r

If d < 0 and 4l < 4k − d then
(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)

2r +2 (2r−2)(2r−1)n−r+(−1)n(2−r)
2r

The proposition now follows after consolidating equal cases and simpli-
fying terms. ¤

Since Lk,l(N,M) = L−k,−l(N,M), the number of solutions of equation 9
when k, l < 0 is equal to L|k|,|l|(N,M). Thus it remains to compute the
number of solutions when kl < 0. With minimal changes to the proof of
Proposition 4, we obtain

Proposition 5. The number of solutions of ckX = Y c−l, where X and Y
are words in Fr of length N and M , respectively, k, l > 0, N+M > 4k+4l, is
given by the following formulas. Let d = 2k−2l+ N−M

2 , n = N+M
2 −2l−2k,

R = min(4l, 4k − d)−max(0,−d).
(i) If d 6= 0 and 4l 6= 4k − d, then

Lk,−l(N,M) =
(2r − 1)n−1(2r − 2)(R(r − 1) + r) + R(−1)n(2− r)

r

−





(−1)d/2R d even
sgn(d)(−1)

d+1
2 d odd, |N −M | > |4k − 4l|

0 else.

(ii) If d = 0 or 4l = 4k − d, then Lk,−l(N,M) =
{
(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)

2r + (2r−1)n+1+(−1)n(1−r)
r −R, if d=0, k= l

(R−1) (2r−2)2(2r−1)n−1+(−1)n(4−2r)
2r + (4r−3)(2r−1)n+(−1)n(3−2r)

2r −R, else.

The propositions in this sections now allow us to compute the number of
solutions of equation 8 in the following theorem, which is a special case of
Theorem 1.

Theorem 2. Let k, l be nonzero integers, and N, M be positive integers,
x1, . . . , xN+M , a, b ∈ {a±1

1 , . . . , a±1
r } with a and b fixed such that a, a−1 6= b,

and let c = [a, b]. Then the number of solutions (x1, x2, . . . , xN+M ) of the
equation x1 . . . xNckxN+1 . . . xN+M = cl is given by

N∑
n=0

M∑
m=0

Lk,l(n, m)V r
n (N)V r

m(M).
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We finish this section by computing the following expressions for the
Lk,l(N,M) function in the case r = 2 using Propositions 4 and 5. Let d =
2|k|−2|l|+ N−M

2 , n = N+M
2 −2|l|−2|k|, R = min(4|l|, 4|k|−d)−max(0,−d).

Proposition 3 directly computes Lk,l(N,M) for the case N +M ≤ 4|k|+4|l|.
If d 6= 0 and 4|l| 6= 4|k| − d, then Lk,l(N,M) =

3n−1(R + 2) + sgn(kl)





(−1)d/2R d even, kl < 0
sgn(d)(−1)

d+1
2 d odd, |N −M | > ∣∣4|k| − 4|l|∣∣

0 else.

If d = 0 or 4l = 4k − d, then Lk,l(N,M) =



(R− 1)3n−1 + 3n+1+(−1)n

2 + 1 d = 0 and k = l

(R− 1)3n−1 + 3n+1−(−1)n

2 −R d = 0 and k = −l

(R− 1)3n−1 + 5·3n+(−1)n

4 + 1
2 (d 6= 0 or k 6= l) and kl > 0

(R− 1)3n−1 + 5·3n−(−1)n

4 −R else.

6. Conclusion

We have counted the number of bounded length solutions to two variable
equations of the form WX = Y U , which is equivalent to counting the
number of restricted walks that lie in a given ball of an infinite regular tree
of even degree.

While we have tackled only the simplest case of the general question
posed in the Introduction, the methods used can be generalized to obtain
formulas for more complicated cases. The expressions for the Lk,l(N, M)
function in the case r = 2 indicate that writing out a formula for a more
general case will be very tedious.
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