LP-SOLUTIONS TO BSDES WITH SUPER-LINEAR
GROWTH COEFFICIENT.
APPLICATION TO DEGENERATE SEMILINEAR PDES.

K. BAHLALI!, E. ESSAKY?2, M. HASSANI3, E. PARDOUX

ABsTracT. We consider multidimensional backward stochastic dif-
ferential equations (BSDEs). We prove the existence and uniqueness
of solutions when the coefficient grow super-linearly, and moreover,
can be neither locally Lipschitz in the variable y nor in the variable z.
This is done with super-linear growth coefficient and a p-integrable
terminal condition (p > 1). As application, we establish the existence
and uniqueness of solutions to degenerate semilinear PDEs with su-
perlinear growth generator and an LP-terminal data, p > 1. Our result
cover, for instance, the case of PDEs with logarithmic nonlinearities.

1. INTRODUCTION

Let (Wi)o < <7 be a r-dimensional Wiener process defined on a com-
plete probability space (2, F, P). Let (Fi)o < t<r denote the natural fil-
tration of (W}) such that Fy contains all P-null sets of F, and £ be an Fp-
measurable d-dimensional random variable. Let f be an R%valued function
defined on [0, 7] x © x R% x R4*" such that for all (y,z) € R% x R4*" the
map (t,w) — f(t,w,y, z) is F-progressively measurable. We consider the

following BSDE,
T T

(EED) Yt=£+/ f(s,Ys,Zs)ds—/ ZdW, 0<t<T
t t

Linear BSDEs have appeared long time ago, both as the equations for the
adjoint process in stochastic control, as well as the model behind the Black
and Scholes formula for the pricing and hedging of options in mathemat-
ical finance. However the first publishing paper on nonlinear BSDEs,[29],
appeared only in 1990 where the existence and uniqueness of the solution
under conditions including basically the Lipschitz continuity of the driver
f-

In the last decade, the theory of BSDEs has found further important
applications and has become a powerful tool in many field, above all financial
mathematics, optimal control and stochastic game, non-linear PDEs and
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homogenization. The collected texts [14] give a useful introduction to the
theory of BSDEs and some of their applications. See [10, 9, 11, 15, 24,
27, 28, 30] and the references therein for applications of BSDEs to PDEs,
homogenization as well as in mathematical finances.

From the beginning, many authors attempted to improve the result of
[29] by weakening the Lipschitz continuity of the coefficient f, see e.g [1, 2,
3,7,12,13, 17, 18, 19, 21, 25, 26], or the L2-integrability of the initial data
&, see [15, 7]).

A third direction in the theory of BSDEs has been the developed recently
by introducing the notions of of weak solutions, i.e. a solution which can
be not adapted to the filtration generated by the initial driver Brownian
motion. This allow to improve slightly the regularity condition on the coef-
ficient f, see [4, 8, 24]. However, if one mimics the methodology developed
to define weak solutions for forward Itd’s SDE, it is important to introduce a
reasonable topology on the canonical space of (Y, Z) which allows one to get
reasonable compactness properties of the laws, as well as the identification
of the limits. This fact is very difficult to prove in the context of BSDEs,
in particular for the variable Z.

In another hand, the difficulty encountered for establishing the existence
and uniqueness of strong solutions to BSDEs, with relatively weak condi-
tions on the coefficient, stay essentially on the fact that the gradient com-
ponent Z is only known implicitly, by the It6’s representation theorem, as
the integrand of a Brownian stochastic integral, i.e. we know information
on ([ Z) but not on (Z) himself. For instance, we don’t know if Z is P-
square integrable (resp. time continuous) or not . Consequently the usual
localization technique by exit times could not applied naturally.

Recently in [1, 2, 3], new results on the existence and uniqueness, as well
as on the stability of the solutions for multidimensional BSDEs with local
assumptions (on the two variables y, z) on the coeflicient are established by
using a localization which is more adapted to BSDEs. However in [1, 2, 3],
the terminal data remains square integrable and the conditions imposed on
the coefficient f are uniform in w and hence can not cover for example the
stochastic Lipschitz condition.

The main purpose of the present paper is to extend our previous work
[3] in several ways.

First, we prove existence and uniqueness of the strong solution to the BSDE
(E') when the coefficient, f can be neither locally monotone in y nor locally
Lipschitz in z, moreover f may has a super linear growth in its two variables
y and z. For example f can take the form f(y, z) = —ylog |y|+h(2)+/|log|#||
for some fonction h : R? x R” — R?. Moreover, the assumptions which we
impose on f are local not in y, z only but also in w. This allow us to cover
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some BSDEs with stochastically monotone coefficient also. We give some
examples which are covered by our result and, in our knowledge, not covered
by the previous works. Second, the terminal data is merely p-integrable with
p > 1. Our conditions on the coefficient seem to be new for the classical
It6’s SDEs also.

As application, we prove existence and uniqueness of the solution to cer-
tain system of semi-linear PDEs having a generator f(s,z,u, Vu which is
super-linear on u and Vu. For example, we cover the nonlinearities of the
form f(s,z,u, Vu = —ulog|u| and/or + f(s,z,u, Vu) = h(Vu)+/|log|Vul|.
Both the result as well as its proof are news. We prove, in particular,
that the semi-linear system W + Lu(s,z) + f(s,z,u(s, z), Vu(s,z) =
0, u(T,z) = g(z) has a unique solution if and only if 0 is the unique so-
lution of the linear system % + Lu(s,x) = 0, w(T,z) = 0, where
L is the second order parabolic operator associated to a given R?diffusion
process. This fact is completely proved here by using the BSDEs. This
proof seems to be new also.

The paper is organized as follows. In section 2, we state the assumptions
and the main result. In section 3 we give some examples which are (in
our knowledge) not covered by the previous works on BSDEs. Section 3
is devoted to the proof of the main result. The proofs mainly consist to
establishing an a priori estimate between two solutions (Y1, Z1), (Y2, Z?),
with respectively the data (f!,£') and (f?,£?), from which we deduce the
existence of solutions by approximating ( f, &) by a suitable sequence (fy, &)
and by using a suitable localization close to those of [1, 2, 3].

As in [3], this estimate is obtained by applying It6’s formula to
(Y1 =Y224¢)% for some 1 < B < pA2 and € > 0, instead of Y1 — V2|2 as
is usually done. This enables us to treat BSDEs with super-linear growth
coeflicient in the two variables y and z. However, in contrast to [3], we
don’t use the L2-weak compactness of the approximating process (Y™, Z").
We prove directly that (Y™, Z™) converges strongly in some L7, 1 < ¢ < 2.
We first establish the existence and uniqueness of a solution for a small
time duration and then, we use the continuation procedure to extend the
result to an arbitrarily prescribed time duration. The uniqueness as well as
the stability of solutions are established by similar arguments. Our method
makes it possible to prove both existence and uniqueness, as well as the
stability of solutions by using the same computations. In section 4, apply
our result to prove the existence and uniqueness of a weak LP—gsolution
for degenerate semi-linear PDEs with super-linear generators. Using the
BSDEs, we prove in particular that the uniqueness for linear PDEs gives
the uniqueness the associated semi-linear PDEs.
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2. DEFINITION, ASSUMPTIONS, MAIN RESULT AND EXAMPLES.

Throughout this paper, p > 1 is an arbitrary fixed real number and all
the considered processes are (F;)-predictable.

2.1. Definition. A solution of equation (E&/)) is an (F;)-adapted and
R4 valued process (Y, Z) such that
T 5
/ |Zs|2ds
0

T
Esup |YV;|P + E +IE/ |f(s,Ys, Zs)|ds < +00
t<T 0

and satisfies (E(&f)).

2.2. Assumptions. We consider the following assumptions on (&, f):

There are M € LO(Q; LY([0,T]; R.)),
IN(p—1
K € LO(Q;L2([0, T);R,.)) and ~ €]0, 7(1; )|
T
(H.0) g/ Asds

such that: E | P e Jo < 00,

K2
where g := 2M, + =2

2y

(H.1) f is continuous in (y, z) for almost all (¢,w)

There are n and f° € LO(Q x [0, T]; Ry) satisfying

s 3
T / A\-dr
E /e 0 Nsds < oo and
0

p

(H.2) s
T 1 Ardr

E / e J0 flds | < oo such that:
0

(i, [y, 2)) < me+ flyl+ Mely|* + Kilyl|]
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There are 77 € LI(2 x [0,T];R,)) (for some ¢ > 1) and
(H.3) a €]1,p[,a’ €]1,p A 2[ such that:

| ftw,y,2) | < Tt [y |* + 2]

There are v € LY (Q x [0,T]; Ry)) (for some ¢’ > 0) and
K’ € R, such that for every N € N and every y,y’ 2,2’
satistying |y |, | v |,| 2z |,| 2/ | N

(H.4) ]lvt(w)gN<y - ylv f(taw7ya Z)—f(t7w, y/, Z/)> ) 4
< K'|ly—y |2 logAny+E Tog AN |y—y/ || z—2" | +K' Oi N
N

where Ay is a increasing sequence and satisfies Ay > 1,
limy 00 Ay = o0 and Ay < N* for some p > 0.

2.3. The main result.

Theorem 2.1. If (H.0)-(H.4) hold then (E&1)) has a unique solution

(Y, Z). Moreover we have
T s
/ elo Ardr | 712 ds}
0

T 2 T p
<clE | ¢ ‘p e% S xeds +E (/ef(f /\Tdr’r]sd8> +E (/65 Iy ATdeSdS)
0

0

(NS}

Esup | Y; [Pe? Jorads |
t

for some constant C depending only on p and ~.

We shall give some examples of BSDEs which satisfy the assumptions
of Theorem 2.1. In our knowledge, these examples are not covered by the
previous works in multidimensional BSDEs.

2.4. Examples. Example 1. Let f(y) := —ylog|y | then for all £ €
LP(Fr) the following BSDE has a unique solution

T T
}/t:gf/ Y, log| Y |dsf/ ZsdWs.
t t

1
Indeed, f satisfies (H.1)-(H.3) since (y, f(y)) < 1 and | f(y) |[< 1+ — |
€
y |7+ for all € > 0. In order to verify (H.4), thanks to triangular inequality,
1
it is sufficient to treat separately the two cases: 0 <| y |,| ¢/ |< i and
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1

~ Sly LIy s N

In the first case, since the map z — —xzlogx increases for z €]0,e7 1], we
obtain for N > e

lf(y) = FWO < 1F W)+ 1 f )]
log N
N

<2

In the second case, the finite increments theorem applied to f in the interval
[lyl,|y'|] shows that

[f(y) = f) <A +1logN) [y —y'|.

Hence (H.4) is satisfied for every N > e with vy =0 and Ay = N.

Example 2. Let g(y) := ylog 1+y|:|U| and h € C(R¥;R,)NCHR¥ —
{0};R;) be such that

h(z) — |z|\/—log |#] if |z] <1—¢gg
|z|\/1og |2| if [z2| > 14 ¢eg

where g9 €]0,1[. Finally, we put f(y,z) := g(y)h(z). Then for every & €
L?(Fr) the following BSDE has a unique solution

T T
Yt=s+/ f(Ys,zsws—/ Z.dw,.
t t

It is not difficult to see that f satisfies (H1). We shall prove that f satisfies
(H2)-(H4).

(¢) Since g is continuous, g(0) = 0 and ¢(y) tends to 0 as |y| tends to oo,
we deduce that g is bounded. Moreover, g satisfied (y—y', g(y) —g(y’)) < 0.
Indeed, in one dimensional case it is not difficult to show that ¢ is an
increasing function. Since, —(y,y’) log 1|+y|‘y‘ < —|ylly'| log 1|+y||y| (because

ly|
1+]y|

log

< 0), we can reduce the multidimensional case to the one dimension
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case by developing the inner product as follows,

(—v,9@) —g)) <

ly /"2 Y| / |yl ly']

< y21og + |y'|” log — |ylly'|(log + log

P log gy pyy WM os gy — Wl lUos - +loe -7

/ lyl ' Y|

= (lyl = [v'(ly| log — |y’ log

(1 = /Dl Tox =21 = /| Tog =)
= (vl = 1¥'l, 9(lyl) — 9(I¥']))
<0

(74) The function h(z) satisfies for all € > 0
1
0<h(z) <M+ —|z|', where M = sup |h(z
(2) \/%| | |z\g1+ao| (2) |

The last inequality follows since \/2elog|z| = y/log|z[>¢ < |z|¢ for each
e > 0and |z| > 1. (H3) now follows directly from the previous observations
(i) and (ii). (H2) is satisfied since (y, f(y, 2)) = (y, g9(y))h(z) < 0. To verify
(H.4) it suffices to show that for every z,z’ such that | z |,| 2/ |[< N

| h(z) = h(Z) < ¢ (x/logN |z —2"| —&—IO}(;VN>

for some positive constant ¢ and N large enough. This can be proved

1
by considering separately the following five cases, 0 <| z [,] 2/ |< N
1
i <l z|,| 2 |1<1=ep, 1—e0<|z],|2 |<14egandl+ey <|z|,|2 |<N.

In the first case (ie. 0 <| z [,| 2 |[< %), since the map = — xy/=logx
increases for x € [0, ﬁ], we obtain for N > /e, |h(z) — h(2)] < |h(2)] +

1 1 1
|h(2")| < 2N“_10gﬁ < 2N10gN.

The other cases can be proved by using the finite increments theorem.

Example 3. Let (X;);<r be an (F;)—adapted and R*—valued process
satisfying the following forward stochastic differential equation

t t
X; = Xo +/ b(s, Xs)ds +/ o(s, Xs)dWs
0 0

where Xo € R¥ and 0,b : [0,T] x R¥ — R*" x R* are measurable functions
such that ||o(s,z)|| < ¢ and |b(s,z)| < ¢(1 + |z]), for some constant c.
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Lemma 2.1. There exist kK > 0 and C > 0 depending only on ¢,T and k
such that

Eexp (ksup| X; |2) < Cexp(C | Xo \2)
t<T

Consider the following BSDE

T T
Yt:g<XT>+/ \Xsﬁyfmogmus—/ Zoaw,.
t t

where g €]0,2[ and g is a measurable function satisfying | g(z) |<
cexpe |z [T, for some constants ¢ > 0, 7 € [0,2].
The previous BSDE has a unique solution (Y, Z) which satisfies: for every
p > 1 there exists a positive constant C such that

P

2

T
Esup | Y: |P +E / | Zs 2ds} < Cexp(C| Xy |?).
t 0

Indeed, we can show that

)y, fty) <1+ | X 7]y 2
i1) Using Young inequality we obtain, for every e > 0 there is a constant
ce > 0 such, that

| f(ty) < ce(lt | Xe [7 + |y ')
i11) f satisfies assumption (H.4) with v; = exp| X, [T and Ay = N.

The following example shows that our assumptions enable to treat BSDEs
with stochastic monotone coefficient

Example 4. Let (&, f) satisfying (H.0)-(H.3) and

There are a positive process C' satisfying E/ e ds < 0o
0
(for some ¢’ > 0) and K’ € R, such that:

(H'.4) ¢ (y—y, f(t,wy 2)— flt,wy,2)) <

<K' [y—y PA{Cw)+ [logly -y [}

+K [y —y' | 2 =2 | VCi(w)+ [log| 2 = 2 [].

In particular we have for all z, 2’

|f(t,w,y,z) ff(t,w,y,zl)| < K’ | z—2 ‘ \/C\(t(u})+ | 1Og‘ z—7 | |
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Then the following BSDE has a unique solution

T T
th:f—’—/ f(S,YS,ZS)dS—/ stWs-
t t

To check that (H.4) is satisfied, it enough to show that for some constant
¢ we have

(=o' f(ty,2) = f(t,y',2)) < clogN <| y—y |2 +le)

0:2) = Flt ) < VN (122 |+

whenever v, := e < Nand |y|,|v |, |2], |2 | <N.
This assertion can be proved by considering the following cases

1 1
— < — — <]y -9 |<2N.
|y yI_QN, <ly—y'|<

2N
and
|z —2"|< ! ! <|z-2"|<2N
~ 2N’ 2N — - '

Example 5. Let (X;)i<r and £ be as in example 3, let F(t,z,y, z) such
that

i) F(t,x,.) is continuous

ii) |F(t,z,y,0)| < Cexp(C | z |9)+ | y |*, for some ¢, a €]0,2[ and C > 0,
Z“) (F(t,a:,y,z)—F(t,x,y’,z’),y—y’) <K' ‘ y_yl ‘2 +K’ | y_y/ || z—2' |
Let ¢,¢’,q” > 0 such that g +¢” <2 and ¢ + ¢ < 1, the following BSDE
has a unique solution

T T
Y,—c+ / X7 F (s, Xo | Xs[TYs, | X |7 Z4)ds — / Z,dWw,.
t t

3. PROOF OF THEOREM 2.1.

First, we give some a priori estimates from which we derive a stability
result for BSDEs and next we use this stability result and a particular
approximation of (&, f) to complete the proof. Here, the difficulty comes
from the fact that the generator f can be neither locally Lipschitz in the
variable y nor in the variable z and moreover it also may have a super-linear
growth in its two variables y and z.

3.1. Estimates for the solutions of equation (E¢-f)), In the first step,
we give estimates for the processes Y and Z.
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t t o 2
Proposition 3.1. Let A; = \Yt|2 er + 2/ esnsds + (/ eﬁfgds) and
0 0

t
er = exp/ Asds. Assume that E sup |Yi|” etg < oo and (H.2) hold.
0 0< s<T

Then, there ezists a positive constant C®7) such that
p

2

2 T P
E sup A2 +E ( / es|Zs|2ds> < CPYIEAZ.
0< s<T 0

To prove this proposition we need the following lemmas

Lemma 3.1. For every € > 0, every > 1 and every positive functions h
and g we obtain

/t (h(s) "= g(s)ds <e sup | h(s) |7 +&'° </ g<s>ds>

t<s<T

B

Proof . Let ¢ > 0 and B > 1. Using Young’s inequality we get for every ~
and v’ such that % + % =1

!
(175)7 T

T
B—1 1 B-1~ B-1y €
) T aorts < 255 s 10s) 195 -2 ( [ gts)as)”
t

t<s<T Y t

We now choose v = % and use the fact that v, > 1. [ ]

Lemma 3.2. If (H.2) holds then for every 3 > 14 2~ there exist positive

C«l(ﬁ,v)7 Céﬁ,v)

constants such that for every e > 0,every stopping time ™ < T

and every t < T
B T p=2
A? +/ As? ey|Z|%ds <
t

8 8 T oB_
< esupyc o, A2 +5(1’5)C’£B’W)A$ — Cz(ﬁ’ﬂ’) A2 !

t

es(Ys, ZsdWs).

Proof . Without loss of generality, we suppose that n and f° are strictly
positives.
It follows by using 1t&’s formula that for every ¢ € [0, 7],

|Yt\2et+/ Y, [? Aseods =
t
:eT|YT\2+2/ es (Y, f(s,Y'S7ZS)>ds—/ es | Zs |? ds
t t

—2/ es(Ys, ZodW,).
t
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Again It6’s formula, applied to the process A, shows that

8 T 8_41/1 1 s 1
A7 _,_g/ A2 1 <2 \Ys|2 Ases + esns + fgeé [/ f}?eé dr}) ds
t 0
B T B B T 2
= A? + ﬁ/ As2 <65Y97 f(s7Y:97 ZS)>dS - 5 A: |ZS| est
t t

T os_ T B g . ?
- €s 5 sy 4Ls s/ — ——1 € 5 ? S
B [ esA2” Y., Z,dW. 5§ 20272 Yizii | d
t t =1 1

1=

r d 2
Observe that Z (Z YjZé’ﬂ) < V4?1 Zs)? < e7'Ay|Zs|? then use the

j=1 \i=1
assumption (H.2) to get
B8 T oB_
A7 + §(1 —2y— (2~ ﬁ)ﬂ/ A2 ey |Z, ds
t

8 T o B_1 1 T oB_
< A2 +ﬁ/ A2 Qfgegds—ﬁ/ A2 NeY,, Z,dWy).
t t

1 T 1 B 8
It follows from Lemma 3.1 with g(s) = fle2, since (/ foe2 ds) < AZ,
t
that for every € > 0
ToB 1 1 8 1 8
/ A2 2fleids< e sup AZ +¢ A2
t t<s<Tt
Since 3 > 1+ 2v implies 1 — 2y — (2 — 8)T > 0, Lemma 3.2 is proved. ®

p
Lemma 3.3. Let (H2) be satisfied and assume that E sup |Y;|" e < oc.
0< s<T

Then the following assertions hold
1) There exists a positive constant C®) such that for every € > 0, we have

T p—2 )4 i
]E/ AT €4 Z,%ds < €E sup AZ + PP VEAZ,
0 0<s<T
2) There exists a positive constant CPY) such that
" )
IE(/ eS|ZSst> < CPYE sup AZ.
0

0<s<T

Proof . The first assertion follows by a standard martingale localization
procedure. To prove the second assertion, we successively use Lemma 3.2
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(with e = 1 and § = 2), the Burkholder-Davis-Gundy inequality, the fact
that es|Y;|? < A; and Young’s inequality to obtain

T v
E(/ es|Z:%ds) <
0

e T z
SCYW)E( sup A§)+C§P’7)E(|/ es(Ys, ZsdWy)|?)
0<s<T t

e T p
< C{"VE( sup A§)+C’§p’7)E(|/ 2|Y,[?|Z, 2ds| %)
0<s<T 0

i T
Scipw/)E( sup AE)—}-CQ(p’W)EU/ Ases|Zs|2d3\%)
0<s<T 0

P P T
< C’l(p’A/)IE( sup AZ)+ C’Q(p’W)E[( sup AE)(/ es|Zs|2ds)%]
0<s<T 0<s<T 0

p o1 r .
< [Cfpﬁ) ++2(C§pﬁ))2]]E sup AZ 4 fE[(/ es|Z,|2ds) %]
0<s<T 2 0

S [20§P7’Y) + 4(02(P:V))2] EOEHET As%

Lemma 3.3 is proved. [ ]
Lemma 3.4. Let the assumptions of Lemma 8.3 be satisfied. Then, there

exists a constant CPY) such that

E sup AP < CPDEAL
0< s<T

Proof . Lemma 3.2 and the Burkholder-Davis-Gundy inequality show that
there exists a universal positive constant ¢ such that for every ¢ > 0, ¢t <T

E sup A§ < ¢E sup A§+E(1_p)C£p’7)EA§
0<s<T 0<s<T

T
+cCPYE ( / A§—2(|Y;|Qes)eszs|2ds>

0

Nl

Young’s inequality gives, for every ¢’ > 0,

P P 1 ( ) P
E sup AZ < eE sup AZ + e3P CPVEAZ
0<s<T 0<s<T

2
. [002(?’7)} T ps
—|—€/E sup At2 + n E/ As2 es‘Zs|2d‘9'

0<s<T € 0
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Applying Lemma 3.3, we find for every €” > 0

. I:CC2(P,’Y):| 2 e’ »
E sup A} < (e+¢&' + - JE sup A2
0<s<T € 0<s<T
2
{Ccépﬂ)} C£P7'Y)(€77)(17p) i
+ (eIl 4 = JEAZ.
Choose suitable €,&’,&” to conclude the proof. [ ]

Proof of Proposition 3.1. It follows from Lemma 3.3 and Lemma 3.4. B
Proposition 3.2. If (H.3) holds then,
T .
B [ 17 Y 2)Pds <
0
T T .
<91+ T)[1 +E/ 7lds +E sup |Yi|P +E(/ | Z4|?ds)? ]
0 0

0<s<T

- 2
whereﬂ::—//\g/\g//\q.
o a o«

Proof. We successively use Assumption (H.3), Young’s inequality and
Holder’s inequality to show that

T R
JE/ (s, Ys, Z5)|Pds
0
T .4
SIE/ (. + [Va|* + 24 )Pds
0
T A .
<38 [ + %10 4120 s
0
. T , , L
§35]E/ (147,)° + (1 + YD + (14 |Z,))* P)ds
0
) T
§351E/ (L4+7,)9 + (1 + |Ya))P + (1 + | Z, )P ?)ds
0

R T
g3ﬁ3p+QE/ (L4702 + Y, [P +|Z,[P"?)ds
0

-~ T —(pA T D
§353P+Q[T+E/ 7ilds + TE sup |Y,|P + T % 2>]E(/ FARDH
0 0<s<T 0

T T
<91+ T) [1+E/ nids + E sup |Ys|p+E(/ | Z,|?ds)2].
0 0<s<T 0

Proposition 3.2 is proved. ]
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3.2. Estimate of the difference between two solutions.

The next proposition gives an estimate which is a key tool in the proof
of existence, uniqueness and stability of solutions.

Lemma 3.5. Let (&', f;)i—12 satisfy (H.3) (with the same 7, and o' ) and
let (Y, Z%) be a solution of (E€"f9)). Then, there exist 3 = B(p,q, o, a') €
1LpA2, r=rpqad, K pnq) >0 and a=alpqad K uqg)>0
such that for every u € [0,T),u’ € [u, TA(u+7r)], N > 0 and every function
f satisfying (H.4)

u’ 7l _ 722
]E sup |Y;1_}/;2|ﬁ+]E/ | s S| Bds
u<t<u’ u (14|} — y52|2)1*5
142 1 28 g
< NAG 2 |EY,, —Yol" +E [ pon(fi — f)s +pn(fo— f)sds| +
0

T T
1+®§,+@§+E/ ﬁgds—&—E/ vg/ds].
0 0

Ay
where
pn(fi = f)tw) = sup [f(t,w,y,2) = fi(t,w,y,2)]
lyl,lz| < N
and

T g
O :=Esup |Y/[" +E (/ |Z§,|2d5>
t 0

Proof . Let g be the number defined in assumption (H3) and ¢/, K/, u
those defined in assumption (H4). Let ¥ > 0 be such that 1 4+ 27 <
/

o 2 K ~
ﬁ::—/\g/\ﬁ/\qandset[(77 =K'+ —. Let 8 €]1 4 2¥,0[ and
o o o 45

_8 / v o1
v €]0, (1~ )1 A Let r €0, e A g ML

For N € N, we set

o= (An)P 0 and A = {|V = V2 + (An) e

Using I1t6’s formula, we show that for every stopping time 7 € [u,v’] and
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every t € [u, 7]
8 T 8 T 8_
A} —|-210g(AN)K”/ e A2 ds+§/ e, AZ ! |22 —Z§|2ds
t t
8 R 2 (1 2
=A7 -0 €A <Ys _Ys 7(Zs _ZS)dWS>
t

T s
+ﬁ/ EsAg 1<}/31 7Y92v.f1(sa}/sl7zsl)7f2(53)/327Zs2)>d$
t
2

d
VLR, - zzj,») s

T B _ T
—B(5 —1) / N (
t j=1 \i=1

B T B_
—af =g [e AT YI-Y2 (2 22) W+ 51— 65 - D,
t
(3.1)
where
T B
L= / EATT Y Y2 fi(5, Y ZY) — fals, Y2, Z2))ds
t
and

d 2
(Z(}/ﬁs - Yv?s)(Z},js - Zi],s)) ds.

=1

T 8_o T
I = / e2AITY
t

j=1
In order to complete the proof of Lemma 3.5 we need to estimate I; and Is.

Estimate of . Let ®(s) := [V +|Y2|+|ZL|+|Z2|+vs. Since Ljp, < Ny <
Iy, < n} and f satisfies (H4), then a simple computation shows that

(V! =Y21(s,Y) Z)) = fa(s. Y2, Z2))
< @7 ARfi(s, Y2, ZY) - fols, Y2, ZD)| a0
+2N[pn(f1 — f)s + pn(f2 = )] Lo, <n}
+ [K7 log(An)e; " A +7}Zsl - Z‘3|2]]1{<I>s < N}
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Therefore, using Lemma 3.1 with hy = Ag, we get

T 1 p-1
L < / AT (s, Y, ZY) — fols, Y2, 22) g oy ds
t

42N / A2 on(f1 — s + pn(fo — )T, <nyds

[R S - ——1 =~ |71 22
+ [ @A K log(An)e, A+ 7|2 — Z2| e, < nyds

t

B
<e sup A2

s€u,u’]

el v
4+ e0-Pg / (.Y ZY) — fols, Y2, 22) P lyo, o nyds

T B_
+ 2N/ a2 on (fr = s+ pn(fo — F)s]Lp, <nyds
t

R S ——1 =~ |71 212
+ [ @A K log(AN)e, A+ 7|2 — Z2| e, < nyds
t

Estimate of I,. Since

2

IN

r d 2
(Sot-vtaed-z0) < vz z

j=1 \i=1
e 'A, |zl - 22)

S

IN

then

T B _
125/ e A2zl — 72 ds.
t
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Now, coming back to equation (3.1) and taking into account the above
estimates we get for every € > 0,

B8
aii?

T B _
(/6’—1—27)/ e A2zl — 727 ds
t
13

g 8
ez|lyt —v2)8 Gy Be sup A2
AN s€[u,u’]

5P, / i, Y2, Z) — fols, V2, 22)Pie, o nyds
8 .8 [T
+2Nges Al ® / o (fi— Dat pn(fo— Fellpn, < nyds

o B _
—5/ e AZ 1<Y; —Y2, (2} - Z2) aw,).
t

(3.2)
For a given h > 1, let 7, be the stopping time defined by

S
T = inf{s >u, |V} Y2 +/ |Z} — Z2%dr > b} AW/,
u
Choosing 7 = 75, t = u, then passing to the expectation in equation (3.2)
we obtain, when i — o0,

_ “ — 81 1 212
(B-1-29E | eAZ |Z;—Z| ds

u

@

8
< e2E|lY} - Y2|5+ +561E sup AZ
AN s€[u,u’]

8
+ﬂ5(1*ﬁ)éle/ If1(s, Y2, Z1) — fas, Y Z )\ l{p,>nyds

u

’

8 q_8 “
+2N e, Ay QE/ pn(fr = s +pn(f2 = Fslpn, < nyds.
“ (3.3)
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Return to (3.2) and use the Burkholder-Davis-Gundy inequality to get a

universal constant ¢ such that

B
E sup AP
u<t<T
ﬁ
B8 B8
< ELElY) — V2P + % + BeE sup A2
A]% s€fu,u’]
8 u!
B [ 1A Y20 ~ fa(s Y2 2D e, ds

’

ﬁ B u
+oNges Ay TR / ox (= Fa+ pn(fo— elpu, < ayds

T r d
+ CﬁE(/ éiAg_Q Z[Z(Y;ls - st) Z] s Z22] s)] dS)%
u j=1 i=1

But, there exists a positive constant C3 depending only on 3 such that

d

cPE( /“ 22AP- 222 Y2)(ZL, — 72 )2ds)d

j=1 i=1

’

1 2 “ 2-1,,1 212
< -E sup A2 —&—C’gIE/ e A2 | Z, — ZZ|ds.

u<t<u’
Use (3.3) and take € small enough to obtain the existence of a positive

constant C' = C(3,7) such that

’

g v 2-1,1 722
E sup A7 +E esAZ | Z;— ZZ|“ds
u<t<u’ u

8 1y B o’ i v B
S c EE‘Y u/| + j,supE |fi(8,Y;7ZS)| ]l{q>s>N}d8
7 u

2
N

—|—Ne A / pn(fi = f)s +on(fo = [slio, < N}dS] :

We shall estimate J := supZ-E/ | fi(s, Y2, Z;)|Bﬂ{<ps>N}dS, i=1,2.
Using the fact that 1o, >y} < ﬁ{vs>5*1N}+]1{\Y§1|>5*1N}+]1{|Y3\>5 i+

L(z1>5-1ny + g z2j>5-18) and Lygspy < Z—V for every a,b,v > 0, we show
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that for every N > 1
J< ( ) supE/ |f1(S7YZ7Z;)|ﬁU;/dS
5

Sup]E \fl(s,YJ, Z)I°|Y " ds

2\0* 2\

‘fi(s?YZ7 Z§)|B|Z;‘Vd3'

)WE \fi<s,1@f,zz>|f’|Y3\”ds
) supIE

5 . .
+ (N> Sl;p]E/u ‘fi(S,YSZaZ;)|ﬁ|Zsz‘VdS'

Young’s inequality gives the existence of a positive constant C' such that for
every N > 1

C o’ ‘ '
J S ]\f”{1+9117+@127+81;1pE u‘fi(s,}/v;7zl)|ﬁ( - 2 v p V)ds+Equ dS}

[N

T
where ©}, := Esup, |Y/[? + E (/ |Z.§|2d5>
0

Using Proposition 3.2, we have (since 5( 72V ) < 3)

’

J< ]\?{1+@1+@2+E/ |ﬁs|qd5+E/ v? ds

v

Hence, for a := (5 A §) — OrK” and N large enough we get

’

el w B_
E sup Af+IE/ e, A2 N2 — 72)2ds

u<t<u’/

B T
< NA]lv+2 E‘Yulf — Yuz,|5 —i—E/pN(fl — f)s + pN(fz — f)sﬂ{U5<N}d81
0

A(l

T T
1+®1+®2+E/ ﬁgdsHE/ vg’ds] .
0

here we have used the assumption Ay < N* (see (H.4)). Lemma 3.5 is
proved. [ ]
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As a consequence of lemma 3.5

Lemma 3.6. Let (&, fi)i—1.2 satisfies (H.3) (with the same 7, o and o)
and let (Y',Z') be a solution of (E€ /1)),  Then, there exists f3
= B(p,q,a,a’) €]1,p A 2] such that for every € > 0 there is an integer
N. = N.(p,q, 0,/ ,K' i, ¢’ e, (An)n) such that for every function [ satis-
fying (H.4)

T 1 2|2
Z;—Z
E sup IYE—YEIﬂJrE/ 2. 2] 7
0<t<T 0 (14 |V} _y82|2)1—§

< Ne

T
El¢! - €|F +E/O pn.(fr = f)s +pn.(f2 = f)st]

+e€

T T
1+@11,+@12,+IE/ ﬁgds—HE/ vglds].
0 0

Proof . Let (ugp =0 < ... < ugqp1 =T) be a subdivision of [0, 7] such that
for every i € {0, .., ¢}

Uipl — Uy ST

From lemma 3.5, we have for all € > 0 there is an integer N, such that for
every functional process f satisfying (H.4)

T 1 212
Zs—Z
E sup \Y;—YWHE/ 12 = Z:] —ds
ug<t<T ug (1+|y51_y52|2)1*§

T
< Ne lEk‘l - &P +E/O pn.(f1 = f)s + pn.(f2 — f)st]

+e€

T T
1+@;+@§+1E/ ﬁgds—HE/ vg’ds].
0 0

Suppose that for some i € {0,..,¢} we have for all ¢ > 0 there is an
integer N, such that for every function f satisfying (H.4)

T z-zp

1-8

won (L Y2 - Y2P) 8

E sup |Ytl—Y;2|5+E/ ds

i1 <t<T

T
< N, lEKl *§2|’6+E/0 pn. (fr f)erpNs(fo)st]

+e€

T T
1+®},+@f,+114:/ ﬁgdsHE/ vgds].
0 0
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Then for every &’ > 0 there is an integer N, such that for every function
f satisfying (H.4)

T 1 212
Zs—Z
E sup |Y,51—Yt2|ﬁ+E/ 12 5| —ds
u; <t<T wi (14 |V — ysz‘z)l*a
w |z 2P

ds

<E sup |Y£—Y3|B+E/ —3
ui <t<u;y1 Uu; (1 + |szl _ Ys2|2) -2

+N5’

T
El¢! — €28 -I-E/O pn. (fi = f)s +pn., (f2 — f)st]

+¢&

T T
1+@;+@§+1E/ ﬁgdsﬂez/ vglds].
0 0

Using lemma 3.5 we obtain, for every &,¢” > 0 there exist N, > 0 and
Ng» > 0 such that for every function f satisfying (H.4)

T 1 212
A
E sup \Ytl—Yf\ﬁ—i-E/ 12 5| —ds
u; <t<T wi (14]Y) —Y2]2)' 2
T
< Ne» E‘Yulwl - YL%H»l‘B +E/ PN (fl - f)s + PN (fQ - f)sds‘|
0
T
+ N |El¢" —&?)° +E / p. (fr = s + pn., (fo —f)st]
0
T T
+2¢ 1+®§,+®§+E/ ﬁqcls+]E/ v?ds]
0 0

< Ne'Ne» E|€1 - 52‘ﬂ
T
+ (No/Ne» +2N.1) ]E/ PN N (f1 = s + v Ny (f2 = [)sds
0

+ (26" +€"Ny)

T T
1+@},+@§+]E/ ﬁgds—FE/ vgds].
0 0
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€ 3

For € > 0, let &' := 1 and " := we have then the existence of an
)

integer N, such that for every function f satisfying (H.4)

1 1 212
Z; Z
E sup |)t1*)t2|’6+E/ | £ S| ds

u; <t<T

B
Y -2

T
< N [E|£1_§25+E‘/0 PNa(fl_f)s+PNs(f2_f)sd3]

+e€

T T
1+®§,+®§+]E/ ﬁstJrE/ vg'ds].
0 0

We complete the proof by induction [ ]

Proposition 3.3. Let (¢', f;)i—12 satisfies (H.3) (with the same 7, and
o) and let (Y*,Z%) be a solution of (E€/)). Then, there exists 3 =
B(p,q,a, ') €]1,p A 2[ such that for every € > 0 there is an integer N. =
N.(p,q, o, &', K' i, ¢y, (An)N) such that for every function f satisfying
(H.4)

T 2
& sup ml—mhﬂ*:(/ |Z;—Z§|2ds>
0<t<T 0

< Ne

T
E|§1—§2\B+E/O PNE(fl_f)s+PNg(f2_f)sd3]

+e€

T T
1+@;+@§+1E/ ﬁgds—HE/ vglds],
0 0

ya
2

T
where 6, == Esup, [V, " + E </ |Z§2ds>
0

Proof . Using Holder’s inequality, Young’s inequality and the fact that
p

5 < 1, we obtain for all ¢’ > 0
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vl

T
E </ |zl — Z§|2ds>
0

N[

T 1 2|2
4, — Z; _8y8
< E{ / | s s| 1_Ed3 Sup(1+|Ysl—Ys2|2)(l 2)2}
N A ORI
Ji2 2-8
T 1 2|2 2 =
Z;, -7 2
< E/ 12: = Zi] 3 Bds} <1+Esqu;—Y5”)
0 (LY -y =
B
T 1 2|2 2
Zs — 7
< [empyvapan [ P,
= O (Lt [¥d - Y2
T 1 2|2
Zy =7
+ |E sup |Yt1—Yt2|B+IE/ 12 2| —ds
0<t<T 0 (1+]Y}— Y32|2)1*5

< &+ (1+€,%)

T 1 2|2

A

E sup |Ytl—Yt2|ﬂ+1E/ 2. = 2. Sds| .
0<t<T 0 (14 |V} — ys2|2)1*5

Use lemma, 3.5 to conclude for every /,&” > 0

B

T 2
E / |z} — Z22ds
0

, 1p=2 T
<e'+(1+e 7 )N

]E|$l - £2|ﬁ+EA PN_» (fl - f)e + PN.» (f2 - f)sd5‘|

o2
+e”(14+¢e 7))

T T
1+®,1,+®§+E/ ﬁZdS—HE/ vgds].
0 0

€
Letting ¢/ = 3 and €” = ———————, we finish this proof of proposition

3.3. |

Remark 3.1. The uniqueness of equation (E&1) follows by letting f1 =
fo=f and & = & = & in Proposition 3.5.

The following stability result follows from propositions (3.3), (3.2) and
(3.1)

Proposition 3.4. Let (&, f) satisfies (H.0)-(H.4) and (", fn)n satisfies
(H.0)-(H.3) uniformly on n. Assume moreover that
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there exist M™ and K™ € L°(Q x [0, T]; R, satisfying
(H™.2) M <M, K" <K and (M",K") — (M, K) a.e. such that:
(W, fu(t.y,2)) < me+ flyl + MP Y[ + K7 Jyll]
(a) & — & a.s.
(b) For every N, lim, pn(fn —f) =0 a.e.
(¢) for each n € N (E€" /")) has a solution (Y™, Z™) which satisfies
n Kn 2
Esup,<r Y |Pes Jo Ads < oo | where A := 2M™ + (27)3
Then, there exists (Y,Z) €  LP(Q;C([0,T);RY)) x LP(Q;L2([0, T]; R"))
such that

i)

yaa
2

T
Esup | Y, [P e foods 4 | / elo | Z, |2 ds
t 0

T B T
SC’P»'Y E ‘ g |;D 6% ng,gdS+E (/@fos )\Tdrnsd8> +E (/ 6% f§rdrf£ds>
0 0

p

i) for every p/ < p, (Y™, Z") — (Y, Z) strongly in L¥ (Q;C([0,T];R%)) x
L (9 L2([0, T, R™)).

N 2
141) foreveryﬂ<—//\£/\£//\q
o a o«

T A
lim IE/ |fn(s, Y, Z) — f(s,Ys, Z)|[Pds = 0
0

Moreover, (Y, Z) is the unique solution of (E&1)).

Proof . From Proposition 3.1, Proposition 3.2 and Proposition 3.3, we have

P

T 2
a/) ]Esupt |}/fn|p6% fot Alds +E (/ efgt )\;ldsZ;n|2dS>
0

2

T
<ol | f" |p eg foT Asds o) (/ ef& /\Tdrnsds> +
0

T p
+E </ eéfd“fdffgds) };: D,
0

b’)E/ |fuls, Y™, ZM)Bds < C(1 + Dy, + /ﬁgds)‘
0
) There exists 8 > 1 such that for every € > 0 there exists N > 0:



LP-SOLUTIONS TO BSDES WITH SUPER-LINEAR GROWTH COEFFICIENT. 25

8

2

T
Esuptift”)’tmﬁJrE(/ |Z(?Z.Zn|2d5>
0
T
< N E‘Sn_gnW"’E/ pNs(fn_f)s+pNa(fm_f)sd8‘|
0

T T
0 0

We deduce the existence of (Y,Z) € LP(Q;C([0,T);R?Y)) x
LP(Q;1L2([0, T]; R9")) such that

(M)

T
i) Esup, | Y; [P e o reds 4 /0 elo Ardr | 7z 2 ds

(SIS

T
< CPILE|E|P et Jo Asds 4| (/ elo ’\Tdrnsds> +
0

T
+E</ e2f0’\de0ds> }
0

i) for all p' < p, (Y™, Z") — (Y,Z) strongly in L (Q;C([0,T]; R%))
LY (Q; L2([0, T]; R™")).

T
Let us show #ii). To this end set a := limsupnéwE/ |f(s, Y, Z70) —
0

f(s,Ys,Zs)|Bds and consider a subsequence n’ of n such that
T

= limn/HOOIE/\f(s,YS”/,Z;‘/)—f(s7Y5,ZS)|Bds and (Y™, 2") — (Y, 2)

0
a.e. The continuity of f and assumption (H.3) ensures us that ¢ = 0. It
remains to prove that

limsupn_,ooE/ |fuls, Y™, ZM) — f(s, Y, Z™)|Pds = 0.

0
We use holder’s inequality, the previous claim b’), proposition 3.2 and
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Chebychev’s inequality to get
T .
B[ Ufals, Y7 20) ~ 5,720 20)Pds
0
T .
< ]E/ pN(fn - f)?d8+
0
r—1

T T
n rrn n ny\rB 1
+(E/ ‘fn(SaYs 7Zs ) - f(SaYs 7Zs )‘ ﬁds) " (]E/ 1|YS”\+|Z;"|2NdS) "
0 0

3 const(r
S]E/O pN(fnf)deﬂLN(rm(pA)zm

A 2
for some reel » > 1 such that r8 < — A b A L Aq.
o a o

Let n — oo first and then N — oo to obtain assertion #ii).
Proposition 3.4 is proved u

3.3. Approximation. Now, what we would like to do is to construct a
sequence (£, f,) which approximate (&, f) and satisfy properties (a) — (f)
below. With the help of this approximation, we can construct a solution
(Y, Z) to the BSDE (E(1)) via Proposition 3.4.

Set Ay := n + 71, + f2 + My + K; and let hy be a predictable process
such that 0 < hy < 1.

Proposition 3.5. Assume that (€, f) satisfies (H.0)-(H.3). Then there
exists a sequence (§", f) such that

(a) For each n, £ is bounded and |£™| < |€| and £ converges to € a.s.

(b) For each n, f, is bounded and globally Lipschitz in (y, z).

There exists a constant C = C(d,r,p) such that for each n

© Ualtws ) € Lz, < {mtlylo+12 1% +Chi}.

d) <y, folt,wy,2)> < g, o o dmet Flyl+Melyl? + Kelyllz|+Che ).
(e) For every N, pn(fn — f)(t,w) — 0 as n — o0 a.e (t,w).

(f) For every N, px(fu— f)(t,w) < 2{7, + N*+ N + Ch,}.

exp(fl)]

Proof . Let v : R — [0,
a1

defined by:

1
W(z) = { cl_lexp(f1 —a:2) if |z <1

0 else

1
1
where ¢; = [1 exp (—1 — xQ)dac.
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The sequence (£, fr,) defined by " := {1j¢gn<,) and

falty,2) =(c1e)’ Lz, < (2 [y2)e(n=2]]?) x

m(d+dr)/Rd H{:(»t’ Y— U,z — U)Hlew(mui)Hlel_[;:li/)(mvij)dudv,

2p

n

with m := . satisfies the required properties ]
t

proofs being almost the same as

4. APPLICATION TO PARTIAL DIFFERENTIAL EQUATIONS (PDE)

In this section we give a Feynman-Kac formula to multidimensional PDEs
for which we establish a uniqueness via the BSDEs. The new idea here, is
to prove that the uniqueness for a system of semilinear PDE follows from
the uniqueness of an associated system of linear PDE.

4.1. Formulation of the problem. For this we consider the following
system of semilinear PDE

Ou(t, x)
(/P(g,F)) ot
uw(T,z) =g(z) =cRF

+Lu(t,x)+F(t,z,ut,x),c*™Vu(t,r))=0 t €]0,T[,z€R*

1
where £ := 5 > (00)i05 + Y bioh, o € CHRFRF), b e CFRF,RY)
%7 %
and g : RF — R, F : [0,T] x R* x R? x R — R are measurable

functions.
Let,

HT = U {1} e C([0, T}; LA(R*, e %12l dz; RY))

5>0,8>1
T
/ / lo* Vo (s, z)[Pe 017l dads < oo
o Jrr
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Definition 4.1. A (weak) solution of (P9F)) is a function u € H'* such
that for every t € [0,T] and every ¢ € CL([0,T] x R?)

T
/t <uls), 82(33) > ds+ < uls), p(s) >=
= <g,0(s)> —|—/t < F(s,.,u(s),0"Vu(s)), p(s) > ds +

T
—|—/t < Lu(s), p(s) > ds

where < f(s), h(s) >= [pu f(s,2)h(s, z)dx.
Noticing that an integrating by part allows to see that,
1
< Lu(s), p(s) >:/ §<U*Vu(s,x);a*Vgp(s,x))d:cds
Rk

+ < u(s), div(bp)(s) >

~ 1 i}
where b; 1= b; — 3 zj:@j(aa )ij

4.2. Assumptions. In the sequel, we need the following assumptions:

There exist 6 > 0 and p > 1 such that
(A.0) g(z) € LP(RF, e~0*ldz; RY)

(A.1) F(t,z,.,.) is continuous a.e. (t,z)

There are 1/ € LEV1([0,T] x R¥, =3l dtda; R.)),
O e LP([0,T] x R¥, e~ dtda; R, )), and M, M’ € R,
(A.2) such that
{y, F(t,2,y,2)) <
<0/ (t,2)+ 0 (o) ly[+ (M+M|z]) [yl / M+ M| |y 2]
There are 77/ €L9([0, T] x R*, e~01#ldtdax; R, ))(for some ¢ > 1),
a €]L,p]
(A.3) and o' €]1,p A 2] such that

| (t 2y, 2)| <7 (t2) + [yl + |2
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There are K,r € R, such that for every N € N and every z,v,
Yy, z, 2

satisfying e"1®l, |y |, | v/ |, | 2|, | 2/ |< N,

(A.4)

(y—y's F(t,z,y,2) = F(t,z,y,2")) <
1
< KlogN (N + y—y’l2> + VKIog Ny — ||z — 2|

4.3. Existence and uniqueness for (P9)). We consider the diffusion
process with infinitesimal operator £

X o [Loxiars oG, t<ssT
t t

Theorem 4.1. Under assumption (A.0)-(A.4) we have
1) The PDE (PY9)) has a unique solution u on [0, T
2) For all t € [0,T) there exists Dy C R such that
i) / 1dz=0
Dz
i) for all t € [0,T] and all x € D; (E€""I"")) has a unique solution
(Y, Z57) on [t,T]
where £4% 1= g(X5") and f1%(s,y,2) == Mgy F(s, X0y, 2)
3) Moreover, for all t € [0,T)

(u(s, X0"),0*Vu(s, XL")) = (YD*, Zb7) a.e.(s,x,w)
Letp €lava/,p[ if M' >0 and p=p if M’ = 0. Then there is a constant
C' depending only on 6, M, M’ ,p, P, |0|so; |b|oc and T

T
SUPogth/ | u(t,z) |P e 1*lda +/ / | o*Vu(t, z) |P? % 1®ldtdx
RF o Jre

T _ T
< (varso [ o) P ot [ [os,08 o] [0 <s,x>pdsdx>
Rk R& 0O Rk JO

ppM'T

where &' =8 + k' + 1 and k' =4
Mr20) (@ —p)

44. Proof of Theorem 4.1. A) Existence.

Lemma 4.1. 1) There exists k > 0 depending only on 0|, |blec and T
such that

supE[exp(k sup | X5% —z [2)] < oo. (4.0)
t,x t<s<T
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In particular for all v > 0 there is a constant C(r, k) such that for all (t,x)

Elexp(r sup | X [)] < C(r, k) exp(r | 2 )
t<s<T

2) For all § > 0 there exists a constant Cs 1 > 1 such that for all ¢ € LO(R¥),
allt € 10,T) and all s € [t,T)
05_%/ |p(x)le™*ldz < ]E/ p(XE") eI da < C&,T/ ()] de.
? Rk Rk Rk
(4.2)

Moreover for all 6 > O there exists a constant Csp > 1 such that for all
Y € LY([0,T] x R¥), all t € [0,T) and all s € [t,T)

T T
C’(;%/ / [i(s, )| dse®1*ldz < E/ / E|¢(s, Xb)|dse 01" dx
RF Jt RF Jt

T
< C(;,T/ / (s, x)|dse™°1"ldx.
RE Jt

Proof. The first assertion is well known. Its particular case follows by
using Young’s inequality, indeed

Elexp(r sup | X7 |)] < exp(r | « JE[exp(r sup | X1% —a |)
1<s<T t<s<T

s
<exp(r |z I)E[exp(ﬁ\/@tgu%l Xt —x|)]
2 <s<

< exp(=) exp(r | @ )Efexp(x_sup | X1 —x |2)],
K t<s<T
For the second assertion, see [?] proposition 5.1. Lemma 4.1 is proved. =
Lemma 4.2. Letp €laVa/,plif M' >0 andp=pif M' =0. Lett € [0, T].
There ezists Dy C RFsuch that
i) / lde =0

Dg
i) for all x € Dy

T
| g(X47) [ o N 4 ( [ s xmes d>
t

P

2

T P T
+E </ 7o (S,X};’I)S% J Atr’@‘”ds) +E/ 7' (s, XL%)9ds < +o0,
t t

where \b® .= 4(M + M'|X5*|).
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Proof . Using Young’s inequality and lemma 4.1 we obtain

P
T
E | g(X;m) |p 6% ftT )\iyrds + E </t nl(s7X§,w)ef; Atrudrds)

T p T
+E ( / fo'(&X?”)e%fff”?’*d"ds> +E / (s, Xo7)"ds
t t

2

T -~ T -
<C <E | g(Xz") P +IE/ i (s, XE7) 24 E/ £ (s, X 17 )P
t t

T
+]E/ T]/(S, Xﬁ’aj)qu —+ H[M/;éo]eN/lw)
t

— Ft,ac

for some constant C' depending only on M, M’ p,p, |0|so, |bloc and T and
ppM'T

®-p)’
Using Lemma 4.1-2) and assumptions (A.0)-(A.3), we can show that

where k' := 4

/ rtre=917ldy < oo
RE

where 0’ = 0++x'+1. The set D, := {x; T'»* < oco}. Lemma 4.2 is proved.
|

Lemma 4.3. Assume (A.0)-(A.4). Leip €lava/,plif M' >0 andp=17p
if M =0. Then, for every t € [0,T] and every x € D;

(E€""F")) has a unique solution (Y**, Z4®) which satisfies, for every t €
[0,T] and every x € Dy,

P

T 2
E sup |Y]" |7 +E (/ | Zo" P dS)
t<s<T t

T —
<C (E | g(X;ﬂ?) |ﬁ+ E/ T]I(S,X;’x)%\ﬂds (43)
t
T
+ E/ £ (s, X5%)Pds + 11[]\4,7&0]&’%)
t

for some constant C' depending only on M, M',p,p, |0|so, |bloc and T .

Proof . For all t and all x € Dy, (§4%, f**) satisfies (H.0)-(H.4) with v =
1 p-1
inf( 1, 2 My = MM XE], Ky = /M XS, = o (5, X0,
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fO = (s, X5"), 7, = 7 (s, X57), vs = exp(r|X57|) and Ay = N. Hence
Lemma 4.3 follows from Theorem 2.1 and Lemma 4.2. [ ]

Set gn(x) := g(2)Ly|g(a)|<n}>
F(t,@,y,2) =
= (n2pe‘z‘)(d+dr) (016)2ll{n,(t@)ﬁl(m)”m(t’w)ﬂm‘gn}w(ﬂ*z|y|2)¢(n*2|2\2)><
Jza Jpar F(t, 2,y — u, 2 — 0)II p(nPellu, ) T T op(n®Pel*lv;; ) dudv,
gffT = gn(X’?w) and f’fL,x(Sa Y, Z) = H{S>t}Fn(S’ X£7x’ Y, Z)
The sequence (gy,, F},) satisfies (A.0)-(A..3) uniformly in n, hence (¢4, f1-7)

satisfies (H.0)-(H.3) uniformly in n . Moreover, for every n : (4%, fb®) is
bounded and fY* is globally Lipschitz.

n
Let (Y5®n Z4%:m) be the unique solution of (E®<"/x"). It is not diffi-
cult to show that for every ¢, x € D; and every n

T Z
E sup | Y™™ P +E (/ | Zben |2 ds)
t

t<s<T

T ¥ t,x o =
<C (]E/ e~ BVDIXTNds L B | g(XE") P +
t

T _ T
+IE/ n’(s,Xﬁ’g”)%Vlds + E/ I (s, XE™)Pds + Wjppr 2 e” ””)
t t

(4.4)
for some constant C not depending on (¢, z,n). To see this, use proposition

3.5 (with hy := e*|X§’m|), proposition 3.1) and the proof of proposition 3.4.
a’).

From the result of [5] (see also [6]) we have

Lemma 4.4. There exists a unique solution u™ of
ou™(t, x)

+Lu™(t,z)+F,(t, x,u™(t, x),c*Vu™(t,x)) =0,
(PlonFu)) ot (t,) ( (t,z) (t,x))

t €]0,T], x € R*
u™(T,z) = go(z) 2z €RF

such that for all t

u(s, XL") = YIS and  o*Vu"(s, X0T) = ZLT a.e(s,w,x).
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From Proposition 3.4-(ii) we have

Lemma 4.5. [Stability] For allt € [0,T], all x € Dy and all p’ < p

’
p_

T 2
lim |E sup |YS%" —YE* P 4K / | Zb@m — 767 |2 ds =0.
n 0<s<T t

Using Lemma 4.1 assertion 2), inequality 4.4, Lemma 4.5 and the Lebesgue
dominated convergence theorem, we obtain

Lemma 4.6. [Covergence of PDE]

lim sup / | u™(t,z) —u™(t, ) \p/ e Veldr =0
nmO<t<T JRF

T
lim/ / | o*Vu" (t, 2) — o*Vu (t, z) |2 e 17l dtda = 0.
o Jre

n,m

Using Lemma 4.1, Lemma 4.6 and the fact that H'* is complete, we
show that there exists u € H* such that
i) SUPg< < fpil ult, ) |p/e_5/‘“|dx+f0Tka| o*Vu(t,z) [P e~ 1#ldtde < oo
ii) limy, supg<i<q [pi | 0™ (t, ) — u(t, ) P el dg = 0

iii) lim, E [, (ftT | oV (s, Xb%) — o*Vu(s, X00) |2 e*‘s’mds) dz =0
Vit € 10,7
iv) (u(s, X1®),0*Vu(s, X1®)) = (YH* ZL®)  ae.

»’
2

On the other hand, we use Proposition 3.2 and Proposition 3.4 we re-
spectively have for every t € [0,7] and every © € D,

T .
E/ |Ep (s, X0% u"(s, X0%), 0" V" (s, X027 [Pds <
t

T
<C <1 + 05" + IE/ |17’(3,X§"”)|qu>
t

and

T
lim]E/ |Fo(s, X5 u" (s, X07), 0*Vu™ (s, X07))—
n t

—F(s, X1 (s, X7), 0" Vu(s, X1))Pds = 0
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P
2

2ds> , 3 is some real in

T
taxn __ t,x,n t,z,mn
where ©;7" = Esup, [Y]""P + E / |Z%
t

]1,00[ and C is a constant not depending on (¢, z,n).
We deduce from Lemma 4.1, the Lebesgue dominated convergence theorem
and the inequality (4.4) that

T
lim/ / | (s, z,u™(s,x), 0" Vu" (s, x))—
mJo JRe

—F(s,z,u(s,z),0"Vu(s, ))|’e” 1+l dzds = 0,

As a consequence of Lemma 4.3 and the proof of Proposition 3.2, we have
the following existence result

Proposition 4.1. Under assumptions (A.0)-(A.4), the PDE (P9)) has
a unique solution u such that u(s, X\®) = YH* and o*Vu(s, X1*) = Z6H*,
Moreover, letting p €]aV o/, pl if M' > 0 and p = p if M' = 0, then there is
a constant C depending only on &', M, M’ p, D, |0|co,|blco and T such that
s

T
SuPogth/ | u(t,z) |P e~ 17l da +/ / | o*Vu(t, z) |P"? e~% 1=l dtdx
RE o Jre

T - T
<C (1 + [ | g(x) P dsc—l—/ / s, z)%V dsdz + / / 0 (s,x)pdsdac>
RF R’k Jo R’k Jo

ppM'T

(T —p)

where O =0 +kKk' +1 and k' :=4

B) Uniqueness:

In order to prove uniqueness we need the following lemmas

Lemma 4.7. Let € €]0,1[, g € C>°([0,T] x R*;R). Then, there exists a
unique solution ¢° € ﬁq>%W;’2([O,T] x R*;R) N CH2([0,T] x R¥:R) of the
following PDE

9¢°(t,z) _ %div(ao*vf) —e & ¢ (t,x) + (b(x);

(P(9) § wole, ) <yt )
#0.0)=0 & R

Moreover the solution ¢° satisfies the following bounds
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sup {18, + V6 (0,0)] + 07,21 | <
(e,t,x)

Proof . The existence and uniqueness, of the solution ¢°, follow from [23]
(p. 318 and pp. 341 — 342). We shall prove the uniform bounds for ¢°
and for their first derivatives. These bounds can be established by adapting
the proof given in Krylov [22] pp. 330 — 344. However, we give here a
probabilistic proof which is very simple. We assume that the dimension
kis 1. Let XZ(z) denote the diffusion process associated to the problem
(P-(g9)). For the simplicity, and without loss of the generality, we assume
that g does not depend from ¢ and the drift coefficient of X5 (z) is zero. The
process X;(x) is then the unique (strong) solution of the following SDE

¢
Xf(x):;L'Jr/ 0e(XE(x))dWs, 0<t<T
0

Let M :=sup(. ; . (|g'(X{ (7)) + |o(t,z)| + [0’ (t,7)]). Since the coefficients
O, b are smooth and o, is uniformly elliptic, then the solution ¢ belongs
to C12. Hence, Itd’s formula shows that,

T
5 (t0) = E [ g(Xi(a))ds.
t
Since g € C2°, we immediately get

a &
sup {| 0 (t,x)+|¢5(t,m)|}<oo.
() L O

Since 0. € C3, we then have

09° (t, x) T 0x:(x)
— <
| ox |_ME/t | Ox [ds

0Xs(x
It remains to show that sup E(|—% (2) )
(e,t,x) Ox

Since |o.(t,x)| < |o’(t,2)| < sup( . [0’ (¢, )| < M, we have

0XF () o /t /(e 2 0X;: () 2
T\ 2 « s\
B(=5, 1) STHE [ ol (X5 =5, s

t 5
< 1—|—M2E/ ‘Mﬁds
0 8(1}'
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The Gronwall Lemma gives now the desired result.

In multidimensional case, the proof can be performed similarly since it is
based on the fact that the first derivative of o. is bounded uniformly in €.
which is valid in multidimensional case also, see [16] pp. 198-201. Lemma
4.7 is proved. [ |

Lemma 4.8. 0 is the unique solution of
ow(t, x)
(PO—dn®@wy ] Ot
w(T,z) =0 2z ¢cRF

+ Lw(t,z) — div(b)(z)w(t,z) =0
t€]0,T], x € R¥

satisfying for some > 1

sup [ |w(t, z) |°+| w(t, z) | de+ (4.1)
0<t<T JR*

T
+//\ o*Vuw(t,z) |°+| o*Vuw(t,z) | dtdz < cc.
0 Jre

Proof . Let w be a solution of (P(0, —div(b)(x)y)) satisfying (4.1) and
consider w,, € C2°(R*) such that

/OT /Rk |w(87x)—wn(s7x)dxds+/oT /Rk 0%V (w(s, z)—wn (s, 2))|deds — 0.

Let € €]0,1[, g € C°([0,T] x R¥;R) and consider the unique solution ¢¢ €
Ng>3 Wy ([0, T) x R R) N C12([0, T) x R¥;R) of the following problem

“(t,x 1 -
W — Sdiv(o V)~ A ¢ (t,2) + (o)
(P=(9)) \ Voe(t,2)) = g(t, 2)

#°(0,2) =0 zcRF
the existence and uniqueness of ¢° follows from Lemma 4.7.

Let (¢;)ien C C°(RF) be such that ¢; € [0,1], ; — 1 uniformly on every
compact set and  Vp; — 0 uniformly on R*.
By considering ¢°1); as a test function, we have

/ / { 8¢E (0*Vw; 0*V¢F) + w(b; Vo©) | hsdadt+
Rk

/ / §<U*Vw; o* Vb)) + (b; Vb )¢S wdzdt = 0.
0o Jrk
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Introducing w,,, we obtain
T 8¢6 1 * e 7 & €,1 eng .
wp; | —=— — =div(oo*V¢®) + (b; Vo) | dtdx = x7"(n) + x5 (i),
0 Rk 325 2
where

== [ [ Jw-w %+ v - wioves

ot 2
(w — wn) (b; v¢€>} bidwdt
and
T 1 -1
X5 " (7)== —/ / (=¢°c0"Vw + ¢°wb — —w,,00*V¢° ; Vih;)dxzdt.
0 Rk 2 2

From Lemma 4.7, we have

ol
supsup { |50 (0,2)] + 965 (1.0)| +16°(,2)] | < o
Hence )
e p—"
£,
and

sup x5 (1)] —i—oo 0.

Since by integrating by part we have, fOT Jpr wnti A ¢Fdxdt

= — fOT Jer V(wn1hi) V¢ dadt, then using the Lebesgue dominated conver-
gence theorem we deduce that

T T
/ / wg(t, z)dzdt =1im lim lim/ / wp;(g(t, x) + € A ¢°)dadt
0 JRF not o f Jo JRk
= limlim lim(x7"(n) + x5" (7)) = 0.
n (2 €

Lemma 4.8 is proved. [ ]
Proof of uniqueness for (P9F)). The proof is divided into two steps:

Stepl. 0 is the unique solution of (P9 satisfying (4.1).

Let w; be a solution of (P(*9)) satisfying (4.1) then by Lemma 4.8 it
is also the unique solution of (P(O:—divb(@)y+divb(z)w(t:2)) gatisfying (4.1)
[since if u is a solution of (P(O’_dwg(m)y*dw’;(””)wl(t’””))), then u — wq is a so-
lution of (P(O’_dwg(‘”)y)) and hence v —w = 0 by Lemma 4.8]. From Propo-
sition 4.1 we have (w1(s, X5*),0*Vwi (s, X1®)) is the unique solution of
the BSDE (E(0:—divb(X")y+divb(X:")wi(s.X1"))  Thanks to the uniqueness
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of BSDE and Lemma 4.1, we get w; = 0.

Step2. 0 is the unique solution of (P(*0).
Let w; be a solution of (P(®). Since w; € H't, then there exist
B > 1,6 > 0 be such that,

T
sup / |wy(t,2) | 676/|$|d$+/ / | o*Vwy (t,z) |7 e 01l dzdt < oco.
o<t<T Jrr o Jre
Let 6 > ¢ and set w1 = wy f(z), where f € C*(R*;R%) such that f(z) =
el if | 2 |> 1, then by Lemma 4.8 1, is the unique solution of
ow(t -
00, % + Lt ) — div(B) (@)w(t,«) + H(z)dn (4, 2)+
(P1) +(H(z),0* Vi (t,z)) =0
w(T,z) =0
satisfying (4.1)

where H and H are bounded and continuous functions.
Proposition 4.1 implies that (w1 (s, X5%), 0*Vw; (s, X1®)) is the unique so-
lution of the _

BSDE (E(Ordi'v(b)(Xﬁ’w)H(Xﬁ’””)'tin(S»Xf’w)+<H(X§’“')7U*V’u?1(stﬁ’m)D)’ hence @,

0 which implies that w; = 0.

Step 3. (P9 has a unique solution if and only if O is the unique solution
of (P0:0)),

By Proposition 4.1, there exists a unique solution u of the problem
(P such that u(s, X1®) = Y5® and 0*Vu(s, X0?) = ZL%. Let o'
be another solution of (PF)) and set

E(t,x) = F(s,z,u(s,z), 0" Vu(s,z)) — F(s,z,u (s, x), 0" V' (s, x)).

w := u — u’ is then a solution of the problem

ow(t .
(PO:F)) { # + Lw(t,z) + F(t,x) =0 t€]0,T[, v € R*

w(T,r) =0 zcRF

On the other hand (0, F') satisfies assumptions (A.0)-(A.4), then Propo-

sition 4.1 ensures the existence of a unique solution w of (P(O’F)) such that
w(s, XH*) =Y5* and o*Vw(s, XL*) = ZH where (Y%, Z5%) is the unique
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solution of
~ T A T ~
Y;@:/ F(r,X,f’x)dr—/ ZhrdW,

S

The uniqueness of (77(07F )} (which follows from step 1) allows us to deduce
that

u' (s, X0¥) = YT —ybe and 0"V (s, Xb%) = Zbv — Zb=,
This implies that u'(t, X?) is solution to the BSDE (E9:¥)). The uniqueness

of this BSDE shows that u/(¢, X!) = u(t, X!). We get then that u(t,z) =
u'(t,x) a.e. by using Lemma 4.1. Theorem 4.1 is proved. [

Consequence: Let g € LP([0,T] x R*, e~%*ldz; R?) for some p > 1 and
§ > 0. Let A: [0,T] x RF — R4 B : [0,T] x RF — (R and
C : [0,T] x R — R%4 be measurable functions such that there is a
constant K, for all (¢, z)

1A @)+ 1Bt 21 < K1+ J2f), [C(t,2)]| < K and C(t,z) > 0.

Under this consideration we have

Proposition 4.2. The PDE
ow(t,x)

PR b Lut, @) + Alt,2)ut,2) + ( B(t,2); 0" Vu(t,2) ))-

—C(t, v)w(t, ) log lw(t, z)| = 0,
w(T,z) =g(xr) xRk
has a unique solution w and (w(s, X"),0*Vw(s, XL%)) is the unique

solution of

E(g(X3"), A(s, X"y + ((B(s, XL7);2)) — C(s, X" )ylog ly),

d r
where ((B;z)) 1= ZZB”ZU‘

i=1j=1
Set
F(t,.’E, Y, Z) = A(tvx)y + <<B(ta IE); Z>> - C(t7x)y IOg |y|

Arguing as in the introductory examples, we show the following claims 1)
and 3). The claim 2) follows by using Young’s inequality.

1) (y, F(t,z,y,2)) < K + (K + Klz|)|y|* + /K + K|z||y]| 2|

2) for all € > 0 there is a constant C. such that
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|F(t,2,y,2)] < Ce(14|z|% + [y['Te +]2]'F9)

3) for every N > 3 and every z,y, v z, 2’ satisfying el*l, | y |, | v/ |
sz 12 IS N:

N

1
(v — v F(t,r,y,2) — F(t,z,y,2")) < K’logN(Hyy’IQ)Jr

+VEK log Nly — y'||z — 2|,
where K’ :=1+4Kd + K2

So assumptions (A.0)-(A.4) are satisfied for (g, F'). [ ]
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