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ALGEBRAIC EXTENSIONS IN FREE GROUPS

ALEXEI MIASNIKOV, ENRIC VENTURA AND PASCAL WEIL

ABSTRACT. The aim of this paper is to unify the points of view of
three recent and independent papers (Ventura 1997, Margolis, Sapir
and Weil 2001 and Kapovich and Miasnikov 2002), where similar mod-
ern versions of a 1951 theorem of Takahasi were given. We develop a
theory of algebraic extensions for free groups, highlighting the analo-
gies and differences with respect to the corresponding classical field-
theoretic notions, and we discuss in detail the notion of algebraic
closure. We apply that theory to the study and the computation of
certain algebraic properties of subgroups (e.g. being malnormal, pure,
inert or compressed, being closed in certain profinite topologies) and
the corresponding closure operators. We also analyze the closure of a
subgroup under the addition of solutions of certain sets of equations.

1. INTRODUCTION

A well-known result by Nielsen and Schreier states that all subgroups of a
free group F’ are free. A non-specialist in group theory could be tempted to
guess from this pleasant result that the lattice of subgroups of F' is simple,
and easy to understand. This is however far from being the case, and a
closer look quickly reveals the classical fact that inclusions do not respect
rank. In fact, the free group of countably infinite rank appears many times
as a subgroup of the free group of rank 2. There are also many examples of
subgroups H, K of F such that the rank of H N K is greater than the ranks
of H and K. These are just a few indications that the lattice of subgroups
of F' is not easy.

Although the lattice of subgroups of free groups was already studied
by earlier authors, Serre and Stallings in their seminal 1977 and 1983 pa-
pers [14, 16], introduced a powerful new technique, that has since turned
out to be extremely useful in this line of research. It consists in thinking of
F as the fundamental group of a bouquet of circles R, and of subgroups of
F as covering spaces of R, i.e. some special types of graphs. With this idea
in mind, one can understand and prove many properties of the lattice of
subgroups of F' using graph theory. These techniques are also very useful to
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solve algorithmic problems and to effectively compute invariants concerning
subgroups of F.

The present paper offers a contribution in this direction, by analyzing a
tool (an invariant associated to a given subgroup H < F') which is suggested
by a 1951 theorem of Takahasi [17] (see Section 2.3). The algorithmic con-
structions involved in the computation of this invariant actually appeared
in recent years, in three completely independent papers [20], [11] and [7],
where the same notion was invented in independent ways. In chronological
order, we refer:

e to the fringe of a subgroup, constructed in 1997 by Ventura (see [20]),
and applied to the study of maximal rank fixed subgroups of auto-
morphisms of free groups;

e to the overgroups of a subgroup, constructed in 2001 by Margolis,
Sapir and Weil (see [11]), and applied to improve an algorithm of
Ribes-Zaleskii for computing the pro-p topological closure of a fi-
nitely generated subgroup of a free group, among other applications;
and

e to the algebraic extensions constructed in 2002 by Kapovich and
Miasnikov (see [7]), in the context of a paper where the authors
surveyed, clarified and extended the list of Stallings graphical tech-
niques.

Turner also used the same notion, restricted to the case of cyclic sub-
groups, in his paper [18] (again, independently) when trying to find exam-
ples of test elements for the free group.

The terminology and the notation used in the above mentioned papers are
different, but the basic concept — that of algebraic extension for free groups
— is the same. Although aimed at different applications, the underlying
basic result in these three papers is a modern version of an old theorem by
Takahasi [17]. It states that, for every finitely generated subgroup H of a
free group F, there exist finitely many subgroups Hy, ..., H, canonically
associated to H, such that every subgroup of F' containing H is a free
multiple of H; for some i = 0,...,n. The original proof was combinatorial,
while the proof provided in [20], [11] and [7] (which is the same up to
technical details) is graphical, algorithmic, simpler and more natural.

The aim of this paper is to unify the points of view in [20], [11] and [7],
and to systematize the study of the concept of algebraic extensions in free
groups. We show how algebraic extensions intervene in the computation of
certain abstract closure properties for subgroups, sometimes making these
properties decidable. This was the idea behind the application of algebraic
extensions to the study of profinite topological closures in [11], but it can
be applied in other contexts. In particular, we extend the discussion of the
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notions of pure closure, malnormal closure, inert closure, etc (a discussion
that was initiated in [7]).

A particularly interesting application concerns the property of being clo-
sed under the addition of the solutions of certain sets of equations. In this
case, new results are obtained, and in particular one can show that the rank
of the closure of a subgroup H is at most equal to rk(H).

The paper is organized as follows.

In section 2, we remind the readers of the fundamentals of the represen-
tation of finitely generated subgroups of a free group F' by finite labeled
graphs. This method, which was initiated by Serre and Stallings at the end
of the 1970s, quickly became one of the major tools of the combinator-
ial theory of free groups. This leads us to the short, algorithmic proof of
Takahasi’s theorem discussed above (see Section 2.3).

Section 3 introduces algebraic extensions, essentially as follows: the alge-
braic extensions of a finitely generated subgroup H are the minimum family
that can be associated to H by Takahasi’s theorem. We also discuss the
analogies that arise between this notion of algebraic extensions and classical
field-theoretic notions, and we discuss in detail the corresponding notion of
algebraic closure.

Section 4 is devoted to the applications of algebraic extensions. We show
that whenever an abstract property of subgroups of free groups is closed
under free products and finite intersections, then every finitely generated
subgroup H admits a unique closure with respect to this property, which
is finitely generated and is one of the algebraic extensions of H. Examples
of such properties include malnormality, purity or inertness, as well as the
property of being closed for certain profinite topologies. In a number of
interesting situations, this leads to simple decidability results. Equations
over a subgroup, or rather the property of being closed under the addition
of solutions of certain sets of equations, provide another interesting example
of such an abstract property of subgroups, which we discuss in Section 4.4.

Finally, in section 5, we collect the open questions and conjectures sug-
gested by previous sections.

2. PRELIMINARIES

Throughout this paper, A is a finite non-empty set and F'(A) (or simply
F if no confusion may arise) is the free group on A.

In the algorithmic or computational statements on subgroups of free
groups, we tacitly assume that the free group F' is given together with a
basis A, that the elements of F' are expressed as words over A, and that
finitely generated subgroups of F' are given to us by finite sets of generators,
and hence by finite sets of words.
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2.1. Representation of subgroups of free groups. In his 1983 paper
[16], Stallings showed how many of the algorithmic constructions introduced
in the first half of the 20th century to handle finitely generated subgroups
of free groups, can be clarified and simplified by adopting a graph-theoretic
language. This method has been used since then in a vast array of articles,
including work by the co-authors of this paper.

The fundamental notion is the existence of a natural, algorithmically
simple one-to-one correspondence between subgroups of the free group F
with basis A, and certain A-labeled graphs — mapping finitely generated sub-
groups to finite graphs and vice versa. This is nothing else than a particular
case of the more general covering theory for topological spaces, particular-
ized to graphs and free groups. We briefly describe this correspondence in
the rest of this subsection. More detailed expositions can be found in the
literature: see Stallings [16] or [20, 7] for a graph-oriented version, and see
one of [4, 22, 11, 15] for a more combinatorial-oriented version, written in
the language of automata theory.

By an A-labeled graph I' we understand a directed graph (allowing loops
and multiple edges) with a designated vertex written 1, and in which each
edge is labeled by a letter of A. We say that I' is reduced if it is connected
(more precisely, the underlying undirected graph is connected), if distinct
edges with the same origin (resp. with the same end vertex) have distinct
labels, and if every vertex v # 1 is adjacent to at least two different edges.

In an A-labeled graph, we consider paths, where we are allowed to travel
backwards along edges. The label of such a path p is the word obtained
by reading consecutively the labels of the edges crossed by p, reading a~!
whenever an edge labeled a € A is crossed backwards. The path p is called
reduced if it does not cross twice consecutively the same edge, once in one
direction and then in the other. Note that if I" is reduced then every reduced
path labels a reduced word in F'(A).

The subgroup of F(A) associated with a reduced A-labeled graph T" is the
set of (reduced) words, which label reduced paths in T' from the designated
vertex 1 back to itself. One can show that every subgroup of F'(A) arises
in this fashion, in a unique way. That is, for each subgroup H of F(A),
there exists a unique reduced A-labeled graph, written I'4 (H ), whose set of
labels of reduced closed paths at 1 is exactly H.

Moreover, if the subgroup H is given together with a finite set of gen-
erators {hi,...,h,} (where the h; are non-empty reduced words over the
alphabet A LU A~1), then one can effectively construct I'4(H), proceeding
as follows. First, one constructs r subdivided circles around a common dis-
tinguished vertex 1, each labeled by one of the h; (and following the above
convention: an inverse letter, say a~! with a € A, in a word h; gives rise
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to an a-labeled edge in the reverse direction on the corresponding circle).
If h; has length n;, then the corresponding circle has n; edges and n; — 1
vertices, in addition to the vertex 1. Then, we iteratively identify identi-
cally labeled pairs of edges starting (resp. ending) at the same vertex. One
shows that this process terminates, that it does not matter in which order
identifications take place, and that the resulting A-labeled graph is reduced
and equal to T'4(H). In particular, it does not depend on the choice of a
set of generators of H. Also, this shows that I'4(H) is finite if and only if
H is finitely generated (see one of [16, 20, 4, 22, 11, 7, 15] for more details).

Example 2.1. Let A = {a,b,c}. The above procedure applied to the
subgroup H = (aba~!, aca™!) of F(A) is represented in Figure 1, where the
last graph is T 4(H). O

Let T" and A be reduced A-labeled graphs as above. A mapping ¢ from
the vertex set of T" to the vertex set of A (we write p: I' — A) is a morphism
of reduced (A-)labeled graphs if it maps the designated vertex of I’ to the
designated vertex of A and if, for each a € A, whenever I" has an a-labeled
edge e from vertex u to vertex v, then A has an a-labeled edge f from vertex
©(u) to vertex ¢(v). The edge f is uniquely defined since A is reduced. We
then extend the domain and range of ¢ to the edge sets of the two graphs,
by letting ¢(e) = f.

Note that such a morphism of reduced A-labeled graphs is necessarily
locally injective (an immersion in [16]), in the following sense: for each
vertex v of T', distinct edges starting (resp. ending) at v have distinct
images. Further following [16], we say that the morphism ¢: I' — A is a
cover if it is locally bijective, that is, if the following holds: for each vertex
v of I, each edge of A starting (resp. ending) at ¢(v) is the image under ¢
of an edge of T starting (resp. ending) at v.

The graph with a single vertex, called 1, and with one a-labeled loop for
each a € A is called the bouquet of A circles. It is a reduced graph, equal
to T'4(F(A)), and every reduced graph admits a trivial morphism into it.
One can show that a subgroup H of F(A) has finite index if and only if this
natural morphism from I'4(H) to the bouquet of A circles is a cover, and
in that case, the index of H in F(A) is the number of vertices of T'4(H).
In particular, it is easily decidable whether a finitely generated subgroup of
F(A) has finite index.

This graph-theoretic representation of subgroups of free groups leads to
many more algorithmic results, some of which are discussed at length in
this paper. We will use some well-known facts (see [16]). If H is a finitely
generated subgroup of F'(A), then the rank of H is given by the formula

tk(H)=E—V +1,
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FIGURE 1. Computing the representation of H
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where E (resp. V) is the number of edges (resp. vertices) in T4 (H). A
more precise result shows how each spanning tree in I' 4 (H) (a subtree of the
graph I" 4 (H) which contains every vertex) determines a basis of H. It is also
interesting to note that if H and K are finitely generated subgroups of F'(A),
then T4 (H N K) can be easily constructed from I'4(H) and T'4(K): one
first considers the A-labeled graph whose vertices are pairs (u, v) consisting
of a vertex u of T'4(H) and a vertex v of I'4(K), with an a-labeled edge
from (u,v) to (v/,v") if and only if there are a-labeled edges from u to v’
in T'4(H) and from v to v’ in I'4(K). Finally, one considers the connected
component of vertex (1,1) in this product, and we repeatedly remove the
vertices of valence 1, other than the distinguished vertex (1,1) itself, to
make it a reduced A-labeled graph.

To conclude this section, it is very important to observe that if we change
the ambient basis of F' from A to B, we may radically modify the labeled
graph associated with a subgroup H of F', see Example 2.2 below. In fact,
a clearer understanding of the transformation from I'4(H) to I'g(H) (put
otherwise: of the action of the automorphism group of F(A) on the A-
labeled reduced graphs) is one of the challenges of the field.

Example 2.2. Let F' be the free group with basis A = {a,b,c}, and let
H = (ab, acba). Note that B = {a’,¥’, '} is also a basis of F, where o’ = a,
b = ab and ¢’ = acba. The graphs I'y(H) and I'p(H) are depicted in
Figure 2. a

FIGURE 2. The graphs I'4(H) and I'g(H)

2.2. Subgroups of subgroups. A pair of free groups H < K is called an
extension of free groups. If H < M < K are free groups then H < M will
be referred to as a sub-extension of H < K.

If H < K is an extension of free groups, we use the following shorthand
notation: H <¢; K means that H is finitely generated; H < K means that
H has finite index in K; and H <g K means that H is a free factor of K.
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Extensions can be characterized by means of the labeled graphs associ-
ated with subgroups as in Section 2.1. We first note the following simple
result (see [11, Proposition 2.4] or [7, Section 4]).

Lemma 2.3. Let H, K be subgroups of a free group F with basis A. Then
H < K if and only if there exists a morphism of labeled graphs ¢m k from
TA(H) toT4(K). If it exists, this morphism is unique.

Given an extension H < K between subgroups of the free group with
basis A, certain properties of the resulting morphism g g have a natural
translation on the relation between H and K. For instance, it is not dif-
ficult to verify that ¢g x is a covering if and only if H has finite index
in K (and the index is the cardinality of each fibre). This generalizes the
characterization of finite index subgroups of F'(A) given in the previous
section.

If oy i is one-to-one (and that is, if and only if it is one-to-one on
vertices), then H is a free factor of K. Unfortunately, the converse is far
from holding since each non-cyclic free group has infinitely many free factors.
Furthermore, given K, the particular collection of free factors H <g K such
that ¢, K is one-to-one heavily depends on the ambient basis.

We recall here, for further reference, the following well-known properties
of free factors (see [8] or [9]).

Lemma 2.4. Let H, K, L, (H;)ier and (K;);cr be subgroups of a free group
F.

(1) IfH SffK SffL, then H SffL.

(ii) If H; <g K; for each i € I, then (), H; < (), K.
In particular, if H s a free factor of each K;, then H is a free factor of

their intersection; and an intersection of free factors of K is again a free
factor of K.

Finally, in the situation H < K, we say that K is an A-principal over-
group of H if ¢ k is onto (both on vertices and on edges). We refer to
the set of all A-principal overgroups of H as the A-fringe of H, denoted
Oa(H). As seen later, this set strongly depends on A. The A-fringe of H
is finite whenever H is finitely generated.

Principal overgroups were first considered under the name of overgroups
in [11] (see [22] as well). They also appeared later as principal quotients
in [7], and their first introduction is in the earlier [20], where O (H) was
called the fringe of H, its orla in catalan. We shall use the phrase principal
overgroup (to stress the fact that not every K containing H is a principal
overgroup of H) and fringe, omitting the reference to the basis A when
there is no risk of confusion. Both orla and overgroup justify the notation

OA(H).
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Given a finitely generated subgroup H < F(A), the fringe O4(H) is
computable: it suffices to compute I' 4 (H ), and to consider each equivalence
relation ~ on the set of vertices of I'4(H). Say that such an equivalence
relation ~ is a congruence (with respect to the labeled graph structure
of T4(H)) if, whenever p ~ ¢ and there are a-labeled edges from p to p’
and from ¢ to ¢’ (resp. from p’ to p and from ¢’ to ¢), then p’ ~ ¢
Then each congruence gives rise to a surjective morphism from I' 4 (H) onto
Ta(H)/~, and hence to a principal overgroup K of H such that I'4(K) =
T4(H)/ ~. Moreover, each principal overgroup K € O4(H) arises in this
fashion. At the time of writing, a computer program is being developed with
the purpose, among others, of efficiently computing the fringe of a finitely
generated subgroup of a free group (see [13]).

Example 2.5. Let F be the free group with basis A = {a,b,c}, and let
H = (ab,acba) < F (the graph I'4(H) was constructed in Example 2.2).
Successively identifying pairs of vertices of I' 4 (H) and reducing the resulting
A-labeled graph in all possible ways, one concludes that T'4(H) has six
congruences, whose corresponding quotient graphs are depicted in Figure 3.

Thus the A-fringe of H consists on O4(H) = {Hy, H1, Ho, H3, Hy, Hs5 },
where Ho= H, Hy = (ab,ac,ba), Hy = (ba,ba~',cb), H3 = (ab,ac,ab™*,a?),
Hy = (ab,aca, acba) and Hs = {(a,b,c) = F(A).

However, with respect to the basis B = {a,ab,acba} of F, the graph
I'p(H) has a single vertex, and hence the B-fringe of H is much simpler,
Op(H) ={H}. O

Finally we observe that, if H <g F(A), then O4(H) consists of all the
extensions of H. Indeed, suppose that H < K < F(A) and H <g F(A).
Since I'4(H) is a cover of the bouquet of A circles (that is, each vertex of
I'a(H) is the origin and the end of an a-labeled edge for each a € A), the
range of wp i is also a cover of the bouquet of A circles. It follows that
v,k is onto, since I'4(K) is connected, and so K € O4(H). In particular,
it H <4 F(A), then O4(H) does not depend on A, in contrast with what
happens in general.

2.3. Takahasi’s theorem. Of particular interest to our discussion is the
following 1951 result by Takahasi (see [9, Section 2.4, Exercise 8], [17, The-
orem 2] or [20, Theorem 1.7]).

Theorem 2.6 (Takahasi). Let F(A) be the free group on A and H < F(A)
a finitely generated subgroup. Then, there exists a finite computable collec-
tion of extensions of H, say H = Hy, H1,...,H, < F(A) such that every
extension K of H, H < K < F(A), is a free multiple of one of the H;.



10 ALEXEI MIASNIKOV, ENRIC VENTURA AND PASCAL WEIL

(O ()
a a
‘ IO s () =)
b b~
(1) (5) c
b

b

FIGURE 3. The six quotients of I"4({ab, acba))

The original proof, due to M. Takahasi was combinatorial, using words
and their lengths with respect to different sets of generators. The geo-
metrical apparatus described in this section leads to a clear, concise and
natural proof, which was discovered independently by Ventura in [20] and
by Kapovich and Miasnikov in [7]. Margolis, Sapir and Weil, also inde-
pendently considered the same construction in [11] for a slightly different
purpose. Finally, we note that Turner considered a similar construction in
the case of cyclic subgroups, in his work about test words [18]. We now
give this proof of Takahasi’s theorem.

Proof. Let K be an extension of H, and let ¢y x: Ta(H) — Ta(K)
be the resulting graph morphism. Note that the image of ¢y i is a re-
duced subgraph of I'4(K), and let Ly x be the subgroup of F(A) such
that Ta(Lu,x) = ¢,k (T a(H)). By definition, Ly x is an A-principal
overgroup of H and, by construction, I'a(Lg i) is a subgraph of IT'4(K),
which implies Ly g <g K (see Section 2.2). It follows immediately that the
A-fringe of H, O4(H), satisfies the required conditions. O
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Thus, for a given H <g F'(A), the A-principal overgroups of H form one
possible collection of extensions that satisfy the requirements of Takahasi’s
theorem, let us say, a Takahasi family for H. This is certainly not the only
one: firstly, we may add arbitrary subgroups to a Takahasi family; secondly,
we observe that the statement of the theorem does not depend on the am-
bient basis, so if B is another basis of F'(A4), then Op(H) forms a Takahasi
family for H as well. There does however exist a minimum Takahasi family
for H (see Proposition 3.7 below), which in particular does not depend on
the ambient basis. The main object of this paper is a discussion of this
family, which is introduced in the next section.

3. ALGEBRAIC EXTENSIONS

The notion of algebraic extension discussed in this paper was first intro-
duced by Kapovich and Miasnikov [7]. It seems to be mostly of interest
for finitely generated subgroups, but many definitions and results hold in
general and we avoid restricting ourselves to finitely generated subgroups
until that becomes necessary.

3.1. Definitions. Let H < K be an extension of free groups and let x € K.
We say that x is K -algebraic over H if every free factor of K containing H,
H < L <¢ K, satisfies z € L. Otherwise (i.e. if there exists H < L <g K
such that x ¢ L) we say that = is K-transcendental over H.

Example 3.1. If H < K, then every element x € H is obviously K-
algebraic over H.

Every element € K is K-algebraic over (™), for each integer n # 0.
In fact, it is straightforward to verify that if ™ lies in a free factor L of K,
then so does z.

If 2 is primitive in K (that is, if (z) <g K), then every element of K \ (z)
is K-transcendental over the subgroup (x).

The notion of algebraicity over H is relative to K. For example, in
F = F(a,b), a® is (a?,b?)-transcendental over H = (a?b?) since a?b? is
primitive in (a2, b?). However, a? is F-algebraic over H because no proper
free factor of F' contains a2b2. O

The following is a trivial but useful observation.

Fact 3.2. Let H < K be an extension of free groups, and let z,y € K.

(i) If z,y are K-algebraic over H then so are x~! and xy.
(ii) If x,y are K-transcendental over H then so is x~! (but not in gen-
eral xy).
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We say that an extension of free groups H < K is algebraic, and we write
H <, K, if every element of K is K-algebraic over H. It is called purely
transcendental if every element of K is either in H or is K-transcendental
over H. Naturally, there are extensions that are neither algebraic nor purely
transcendental. These concepts were originally introduced in [7], and the
following propositions further describe their properties.

Proposition 3.3. Let H < K be an extension of free groups. The following
are equivalent:
(a) H is contained in no proper free factor of K ;
(b) H <. K, that is, every x € K is K -algebraic over H;
(c) there exists X C K such that K = (HU X) and every x € X is K-
algebraic over H (furthermore, if K is finitely generated, one may
choose X to be finite).

Proof. (b) follows from (a) by definition. If (b) holds, then (c) holds with
X any system of generators for K. Finally, (a) follows from (c) in view of
Fact 3.2 (i). O

Proposition 3.4. Let H < K be an extension of free groups. The following
are equivalent:
(a) H is a free factor of K,
(b) H < K s purely transcendental, that is, every x € K \ H is K-
transcendental over H.

Proof. (a) implies (b) by definition. To prove the converse, let M be the
intersection of all the free factors of K containing H. By Lemma 2.4, M is
a free factor of K containing H, and (b) implies that M = H. O

Example 3.5. It is easily verified (say, using Example 3.1) that if 1 2 € F
and n # 0, we have (z") <,j¢ ().

By Proposition 3.4, an extension of the form (x) < F is purely transcen-
dental if and only if x is a primitive element of F'. Moreover, if F' has rank
two, then (x) < F is algebraic if and only if x is not a power of a primitive
element of F.

Assuming again that F' has rank two, H <, F for every non-cyclic
subgroup H. Indeed, every proper free factor of F' is cyclic and hence
cannot contain H. O

We denote by AE(H) the set of algebraic extensions of H, and we observe
that, in contrast with the definition of principal overgroups, this set does
not dependent on the choice of an ambient basis. This same observation
can be expressed as follows.
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Fact 3.6. Let H < K < F be extensions of free groups and let o € Aut(F).
Then H <, K if and only if p(H) <a5 p(K).

We can now express the connection between algebraic extensions and
Takahasi’s theorem.

Proposition 3.7. Let H <g F(A) be an extension of free groups. Then
we have:
(i) AE(H) CO4(H);
(ii) AE(H) is finite (i.e., H admits only a finite number of algebraic
extensions);
(iii) AE(H) is the set of <g-minimal elements of every Takahasi family
for H (see Section 2.3);
(iv) AE(H) is the minimum Takahasi family for H.

Proof. Let K be an algebraic extension of H. The proof of Takahasi’s
theorem shows that K is a free multiple of some principal overgroup L €
Oa(H). Then, Proposition 3.3 implies that L = K proving (i). Statement
(ii) follows immediately.

Let £ be a Takahasi family for H and let K € AE(H). By definition of £,
there exists a subgroup L € £ such that H < L <g K. By Proposition 3.3,
it follows that L = K, so K € L. Thus AE(H) is contained in every Takahasi
family for H. For the same reason, K is <g-minimal in L.

Now suppose that K € £ is <g-minimal in £, and let M be an extension
of H such that H < M <g K. By definition of a Takahasi family, there
exists L € L such that H < L <g M, so L <g K. Since K is <g-minimal
in £, it follows that L = K, so M = K. Hence, H <,z K concluding the
proof of (iii).

Finally, it is immediate that the <g-minimal elements of a Takahasi fam-
ily for H again form a Takahasi family. Statement (iv) follows directly. O

Example 3.8. If H <g K, then H <, K. This follows immediately from
the observation that a proper free factor of K has infinite index.

It follows that, if H <g F(A), then AE(H) = O4(H) is equal to the
set of all extensions of H. Indeed, we have already observed at the end of
Section 2.2 that every extension of H is an A-principal overgroup of H, and
since H has finite index in each of its extensions, it is algebraic in each. 0O

Proposition 3.7 shows that AE(H) is contained in O4(H) for each ambi-
ent basis A. We conjecture that AE(H) is in fact equal to the intersection
of the sets O4(H), when A runs over all the bases of F'. Example 3.8 shows
that the conjecture holds if H has finite index. It also holds if H <g F,
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since in that case, AE(H) = {H}, and F admits a basis B relative to which
I'p(H) is a graph with a single vertex.
We conclude with a simple but important statement.

Proposition 3.9. Let F'(A) be the free group on A and H <g F(A). The
set AE(H) is computable.

Proof. Since every algebraic extension of H is in O4(H), it suffices to
compute O4(H) and then, for each pair of distinct elements K, L € O4(H),
to decide whether L <g K: AE(H) consists of the principal overgroups of
H that do not contain another principal overgroup as a free factor.

In order to conclude, we observe that deciding whether L <g K can be
done, for example, using the first part the classical Whitehead’s algorithm.
More precisely, Whitehead’s algorithm (see [8, Proposition 4.25]) shows how
to decide whether a tuple of elements, say v = (uq,...,u,), of a free group
K can be mapped to another tuple v = (v1,...,v,) by some automorphism
of K. The first part of this algorithm reduces the sum of the length of
the images of the u; to its minimal possible value. And it is easy to verify
that this minimal total length is exactly = if and only if {uq,...,u,} freely
generates a free factor of K. We point out here that an alternative algorithm
was recently proposed by Silva and Weil [15]. That algorithm is faster, and
completely based on graphical tools. a

The efficiency of the algorithm to compute AE(H) sketched in the proof
of Proposition 3.9, is far from optimal. An upcoming paper by A. Roig,
E. Ventura and P. Weil discusses better computation techniques for that
purpose [13].

Remark 3.10. The terminology adopted for the concepts developed in this
section is motivated by an analogy with the theory of field extensions. More
precisely, if an element x € K is K-transcendental over H, then H is a free
factor of (H,z) and (H,x) = H # (z) (see Proposition 3.13 below). This
is similar to the field-theoretic definition of transcendental elements: an
element z is transcendental over H if and only if the field extension of H
generated by x is isomorphic to the field of rational fractions H(X).

However, the analogy is not perfect and in particular, the converse does
not hold. For instance, a? is (a, b)-algebraic over {a?b?) (see Example 3.1),
but (a?b?,a?) = (ab?) * (a?). This stems from the fact, noticed earlier, that
the notion of an element x being K-algebraic over H, depends on K and
not just on z.

It is natural to ask whether the analogy also extends to the definition
of algebraic elements: in other words, is there a natural analogue in this
context for the notion of roots of a polynomial with coefficients in H? The
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discussion of equations in Section 4.4 offers some insight into this ques-
tion. a

3.2. Composition of extensions. We now consider compositions of ex-
tensions. Some of the results in the following proposition come from [7]. We
restate and extend them here with simpler proofs. We also include in the
statement well-known facts (the primed statements), in order to emphasize
the dual properties of algebraic and purely transcendental extensions.

Proposition 3.11. Let H < K be an extension of free groups, and let
H < K; < K be two sub-extensions, i = 1,2.

(i) If H <alg K1 <o K then H <5 K.

(i) If H <g K1 <g K then H <g K.

(i) If H <ag K then K1 <,y K, while H < K; need not be algebraic.

(i) If H <¢ K then H <g K1, while K1 < K need not be purely
transcendental.

(ili) If H <y K1 and H <gg Ky then H <,y (K1 U K»), while H <

K1 N Ky need not be algebraic.
(iit") If H <g K1 and H <g K then H <g K1NK>, while H < (K1UK>)

need not be purely transcendental.

Proof. Statement (i’) and the positive parts of statements (ii’) and (iii’)
can be found in Lemma 2.4. The free group F on {a,b} already contains
counterexamples for the converse statements in (ii’) and (iii’): for the first
one, we have (a) <¢ I while (a) <¢ (a,b?) <5g F' (see Example 3.5). And
for the second one, we have ([a,b]) <g (a,[a,b]) and ([a,b]) <g (b,[a,]),
whereas ([a,b]) <aig (a,[a,b],b) = F.

Now assume that H <, K1 <ag K and let L be a free factor of K con-
taining H. Then, LN K is a free factor of K; containing H by Lemma 2.4.
Since H < K, is algebraic, we deduce that LN K; = K7, and hence K; < L.
But Ky <,ig K, s0 L = K. Thus, the extension H < K is algebraic, which
proves (1).

The first part of (ii) is clear. A counterexample for the second part
in F' = F(a,b) is as follows: we have ([a,b]) <g (a,[a,b]) < F, while
(la,b]) <aig F' by Example 3.5.

Suppose now that H <,z K; and H <,z Ko, and let L be a free factor
of (Kj U K3) containing H. Then Lemma 2.4 shows that, for i = 1,2,
LN K; <¢ K; containing H. Since H <, K;, we deduce that L N K; = K;
and hence, K; < L. Thus, L = (K1 UK>), and the extension H < (K7 UK>)
is algebraic, thus proving the positive part of (7).

Finally, to conclude the proof of (iii), it suffices to exhibit subgroups
H, K, Ky such that H <5 K; (i = 1,2) but H <g K; N Ky. Again in
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F(a,b) take, for example, K1 = (a?,b) and Ky = (a®,b), whose intersection
is K1 N Ky = (a®b). Letting H = (a®b), we have H <g K; N Ks but
H <alg Kq and H <alg K. O

To close this section, let us note another natural property of algebraic
extensions, which slightly generalizes a result of Kapovich and Miasnikov

[7].

Proposition 3.12. Let F be a free group. If H; <, K; < F (i € I), then
(U; Hi) <aig (U; Ki). The converse holds if (J; K;) = *i K.

Proof. Suppose that (|J, H;) < L <¢ (U, K;). Let j € I. By Lemma 2.4,
we have L N K; <¢ (U, K;) N K; = K;. Moreover, H; < LN Kj, so
K; = LN K; since H; <55 K;, and hence K; C L. This holds for each
je€l,so L= (U, K;) and we have shown that (|, H;) <ag (U, Ki)-

For the converse, suppose that (|J, K;) = *,K;. It follows that (J, H;) =
*;H;. Now we assume that «;H; <yg *;K;. Let j € I. If H; < L <¢ Kj,
then *;H; < L * %;2;K; <g *;K; and hence L * *;+;K; = *;K;. Taking
the projection onto Kj, it follows that L = K;. Thus H; <,z K; for each
jel. O

Note that the converse of Proposition 3.12 does not hold in general, as can
be seen from the counterexample provided in the proof of Proposition 3.11

(#d").
3.3. Elementary extensions. We say that an extension of free groups

H < K is elementary if K = (H, z) for some x € K. Elementary extensions
turn out to be either algebraic or purely transcendental, as we now see.

Proposition 3.13. Let H < F be an extension of free groups and let x € F'.
Let also X be a new letter, not in F. The following are equivalent:

(a) the morphism H % (X) — F acting as the identity over H and
sending X to x is injective;
(b) H is a proper free factor of (H,x);
(c) H is contained in a proper free factor of (H,zx).
If, in addition, H is finitely generated, then these are further equivalent to:
(d) rk({H,z)) = rk(H) + 1;
(e) rk((H,x)) > rk(H).

Proof. It is immediately clear that statement (a) implies (b), and that (b)
implies (c).

At this point, let us assume that H has finite rank. It is immediate that
rk((H,z)) < rk(H) + 1, so (b) implies (d) and (d) and (e) are equivalent.
Now consider the morphism from H * (X) to (H,z) mapping H identically
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to itself, and X to x. This morphism is surjective by construction, and
if rk((H,z)) = rk(H * (X)), then it is injective by the hopfian property
of finitely generated free groups. That is, (d) implies (a). Thus we have
shown that if H has finite rank, then statements (a), (b), (d) and (e) are
equivalent. It only remains to prove that (c) implies (a).

We now return to the general case, where H may have infinite rank, and
we assume that (c) holds, that is, (H,z) = K * L for some L # 1 and
H < K. We have (H,z) < (K,z), and hence (K,z) = (H,z) = K * L.
Moreover, x ¢ K and we let « = kol1ky - - - £k, be the normal form of z in
the free product K * L.

Let M be a finitely generated free factor of K containing the k;, and let
N be such that K = M x N. First we observe that

(Myz) < MxL<gK+«xL=MxNxL=(K,z) =(M,N,x).

It follows that N is a free complement of (M, z) in (K, z), that is, (K, z) =
(M,z)* N.

Next we note that M <g K <g (K,z), so M <g (K,z) and hence
M <g (M,z). Since z ¢ K, M is a finitely generated, proper free factor
of (M, x), and we already know that this implies that the morphism from
M x (X) to F mapping M identically to itself and mapping X to z, is
injective. Since N is a free complement of the range of this morphism in
(H,x), and also a free complement of M in K, it follows that the natural
mapping from K * (X) to F' mapping X to x is injective. Its restriction to
H % (X) is therefore injective, and statement (a) holds, which completes the
proof. a

Proposition 3.13 immediately translates into the following.

Corollary 3.14. Let F be a free group and H < K be an elementary exten-
sion of subgroups of F'. Then, either H <,5 K or H <g K. Furthermore,
if H is finitely generated then rk(K) < rk(H) + 1 with equality if and only
if H <g K.

Let us say that an extension H < K is e-algebraic, written H <eg K, if
it splits as a finite composition of algebraic, elementary extensions, H <,
Hy <ug -+ <aig Hi, = K. Then Proposition 3.13 yields the following.

Corollary 3.15. Let H be a finitely generated subgroup of a free group F
and let H <5 K be an e-algebraic extension. Then rk(K) < rk(H).

Obviously, every extension H < K with K finitely generated, splits into a
composition of elementary extensions, but an algebraic extension H <, K
cannot always be split into a composition of algebraic elementary exten-
sions. In view of Corollary 3.15, this is the case for the algebraic extension
([a,b]) <aig F'(a,b). Thus, H <,z K does not imply H <eg K.
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3.4. Algebraic closure of a subgroup. If H < K is an extension of free
groups, there exists a greatest algebraic extension of H inside K. This
can be deduced from Proposition 3.12, but the following theorem is a more
precise statement.

Theorem 3.16. Let H < L < K be extensions of free groups. The following
are equivalent.

(a) H<ue L <g K.

(b) L is the intersection of the free factors of K containing H.

(c) L is the set of elements of K that are K -algebraic over H.

(d) L is the greatest algebraic extension of H contained in K.

In this case, the subgroup L is uniquely determined by H and K.

Proof. Let v € K. By definition, x is K-algebraic over H if and only if =
sits in every free factor of K containing H. This is exactly the equivalence
of statements (b) and (c¢). The equivalence of (¢) and (d) is a direct con-
sequence of the fact that the elements that are K-algebraic over H form a
subgroup (Fact 3.2). Thus statements (b), (c) and (d) are equivalent.

Now let L be defined asin (b): by (d), H <ag L. Now let x € K'\ L. Since
x is not algebraic over H, there exists a free factor M <g K containing H
and missing z. But L < M, so x is not K-algebraic over L either. It follows
that the extension L < K is purely transcendental, and hence L <g K by
Proposition 3.4. This proves (b) implies (a).

Finally, let us assume that H <,g L <g K for some L. Let M be such
that H < M <g K. Then LN M <g L by Lemma 2.4 (ii). But we also have
H<LNM<Land H <,z L. 1t follows that LN M = L, that is L < M,
and (b) follows. This concludes the proof. O

Remark 3.17. It is interesting to compare Theorem 3.16 with M. Hall’s
Theorem, stating that every finitely generated subgroup H < F is a free
factor of a subgroup M of finite index in F. In other words, one can split
the extension H < F' in two parts, H <g M <g F, the first being purely
transcendental, and the second being finite index (and hence, algebraic).
Note that the intermediate subgroup M is not unique in general. Theo-
rem 3.16 yields a “dual” splitting of the extension H < F', where the order
between the transcendental and the algebraic parts is switched around, and
with the additional nice property that the intermediate extension is now
uniquely determined by H < F'. O

Let H < K be an extension of free groups. The subgroup L characterized
in Theorem 3.16 is called the K -algebraic closure of H, denoted clg (H). It
is natural to consider the extremal situations, where clg(H) = H (we say
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that H is K-algebraically closed) and where clg(H) = K (we say that H
is K-algebraically dense). Of course, these situations coincide with H < K
being purely transcendental and algebraic, respectively.

Fact 3.18. Let H < K be an extension of free groups. Then,
(i) H is K-algebraically closed if and only if H <g K,
(ii) H is K-algebraically dense if and only if H <5 K.

As established in the following proposition, maximal proper retracts of a
finitely generated free group K are good examples of extremal subgroups,
i.e. subgroups of K that are either K-algebraically closed or K-algebraically
dense. Recall that a subgroup H < K is a retract of K if the identity
id: H — H extends to a homomorphism K — H, called a retraction (see [9]
for a general description of retracts of finitely generated free groups); in
particular, free factors of K are retracts of K. Note that if H is a retract
of K then rk(H) < rk(K). Moreover, if K is finitely generated, the hopfian
property of finitely generated free groups shows that K is the unique retract
of K with rank equal to rk(K). So, if H is a proper retract of K then
rk(H) < rk(K).

We also say that H is compressed in K (see [5]) if rk(H) < rk(L) for each
H < L < K. By restricting a retraction to L, it is clear that every retract
of K (and, in particular, every free factor of K) is compressed in K.

Proposition 3.19. Let K be a finitely generated free group. A mazimal
proper compressed subgroup (resp. a mazimal proper retract) H of K is
either K -algebraically dense, or K-algebraically closed. In the latter case,
H is in fact a free factor of K, of rank rk(K) — 1.

Proof. The algebraic closure clg(H) is a free factor of K, and hence it
is also a retract and a compressed subgroup. By definition of H, either
cdg(H) = K, and H is K-algebraically dense; or clg(H) = H and H
is K-algebraically closed and a free factor. Maximality then implies the
announced rank property. a

We now discuss the behavior of the algebraic closure operator.

Proposition 3.20. Let H; < K, 1 = 1,2, be two extensions of free groups.
Then, clx(Hy N He) <g cli(Hy) Nl (Ha), and the equality is not true in
general.

Proof. By Theorem 3.16, clx(H;) is a free factor of K containing H;, so
clg(Hy) Nclg(Hy) is a free factor of K containing Hy N Hy (Lemma 2.4).
Again by Theorem 3.16, clx (H; N H2) is a free factor of clx (Hy) Nclg (Ha).

A counterexample for the reverse inclusion is as follows: let K = F(a,b),
Hy = {[a,b]) and Hy = {[a,b™!]). Both these subgroups are K-algebraically
dense (see Example 3.5) and their intersection is trivial. O
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Proposition 3.21. Let K; < K, i = 1,2, be two extensions of free groups
and let H < K1 N K. Then, clg,nk,(H) <g clg,(H) N clg, (H), and the
equality is not true in general.

Proof. By Theorem 3.16, clg,(H) is a free factor of K; containing H, so
clg, (H) Nclg,(H) is a free factor of K; N Ky containing H (Lemma 2.4).
Again by Theorem 3.16, cli,~x, (H) is a free factor of clx, (H) Nclg, (H).

The following is a counter-example for the converse inclusion. Let K =
{a,b,c) be a free group of rank 3, let H = ([a,b], [a,c]), K1 = {(a,b, [a,c])
and K2 = (a,c¢,[a,b]). One can verify that K; N K2 = (a, [a, b], [a, ]}, so
clg,nr,(H) = H. On the other hand, H <, K; by Example 3.5 and
Proposition 3.12, so clk,(H) = K; and clg,(H) Nclg,(H) = K1 N Ky #
ClKlﬂKg (H) (]

Remark 3.22. If H < K; < Ks, Proposition 3.21 shows that clg, (H) <
clg, (H). If in addition K7 <¢ K>, Proposition 3.16 shows that clg, (H) =
clg, (H). However, in general, even the inclusion clg, (H) < K Nclk, (H)
may be strict, as the following counterexample shows.

Let Ko = {(a,b) be a free group of rank 2, and let H = ([a,b]) and
K, = (a,[a,b]). Then H <g Ky <ug F and H <, F. So, clg,(H) = H is
properly contained in Ky Nclp(H) = K1 NF = Kj. O

Finally, let us consider e-algebraic extensions. There too, there exists a
greatest e-algebraic extension, at least for finitely generated subgroups. We
first prove the following technical lemma.

Lemma 3.23. Let H < K < I be extensions of free groups and let x € F'.
If H <,g (H,z), then K <5 (K, ).

Proof. Assume H <, (H,z). If K < (K, ) is not algebraic, then z ¢ K
and K <g (K,x) by Proposition 3.13. Tt follows that H < (H,z) N K <¢
(H,z)N(K,x) = (H,z), which forces either (H,z)NK = H or (H,z)NK =
(H,x). The first possibility implies H = (H,z) N K <g (H,z) contradicting
the hypothesis, while the second possibility contradicts ¢ K. a

Corollary 3.24. Let H < F' be an extension of free groups and let H <cu
K; (i =1,...,n) be a finite family of e-algebraic extensions of H. Then
K; <ealg (U] K;) for each i.

In particular, if H is finitely generated, then H admits a greatest e-
algebraic extension in F.

Proof. It suffices to prove the first statement for n = 2. Let us assume
that H = Hy <jg Hy <ag -+ <ag Hp = K, and that zi,...,z, are such
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that H; = (H;_1,z;) for each 1 < i < p. Then a repeated application of
Lemma 3.23 shows that Ko <eulg (K2, 1,...,2p) = (K1 U K>»).

If H <¢ F', H has finitely many algebraic extensions, and among them
finitely many e-algebraic extensions. The join of these extensions is again
an e-algebraic extension and this concludes the proof. a

The greatest e-algebraic extension of a subgroup H < F', whose existence
is asserted in Corollary 3.24, is called its e-algebraic closure. We say that
H is e-algebraically closed if it is equal to its e-algebraic closure. Proposi-
tion 3.13 immediately implies the following characterization.

Corollary 3.25. Let H < F be an extension of free groups. Then H is
e-algebraically closed if and only if (H,x) = H x (x) for each x & H.

Example 3.26. Let © € F' be an element of a free group not being a proper
power. Then, for every y € F, either (z) = (z,y) or rk({z,y)) = 2. In other
words, maximal cyclic subgroups of free groups are e-algebraically closed.

A subgroup H < Fis said to be strictly compressed if rk(H) < rk(K) for
each proper extension H < K < F. It is immediate that strictly compressed
subgroups form a natural class of e-algebraically closed subgroups.

By Example 3.5, we know that if F' has rank two, then (z) < F is al-
gebraic if and only if = is not a power of a primitive element of F'. Hence,
situations like H = ([a,b]) < (a,b) are examples of algebraic extensions
where the base group H is e-algebraically closed. This is a behavior signif-
icantly different from what happens in field theory. a

Corollary 3.27. Let H < F(A) be an extension of free groups. If H is
finitely generated, it is decidable whether H is e-algebraically closed.

Proof. Let = & H, viewed as a reduced word on the alphabet A, let p be
the longest prefix of x labeling a path starting at the designated vertex 1 in
Ta(H), and let s be the longest suffix of x labeling a path to 1 in I'4(H).
We denote by 1-p and 1-s7! the end vertices of these two paths.

First assume that the sum of the length of p and s is less than the length
of x, that is, if z = pys for some non-empty word y. Then T'4((H,z))
is obtained from I'4(H) by gluing a path (made of new vertices and new
edges) from 1-p to 1-s71, labeled y. In particular, rk((H,x)) = rk(H) + 1.

We now assume that the sum of the lengths of p and s is greater than or
equal to the length of x, and we let ¢ be the longest suffix of p which is also
a prefix of s. That is, p = p't, s = ts’ and x = p'ts’. Let 1-p’ be the end
vertex of the path starting at 1 and labeled p’ in Ta(H). If 1-p' =1-s71
then x = p’s labels in fact a loop at 1, that is, z € H, a contradiction. So
the labeled graph T'4((H,z)) is the quotient of T'4(H) by the congruence
generated by the pair (1-p/,1-s71) (see the end of Section 2.2).
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Thus, in view of Corollary 3.25, H is e-algebraically closed if and only if
the following holds: for each pair of distinct vertices (v, w) in I'4(H), the
subgroup represented by the quotient of ' 4 (H) by the congruence generated
by (v,w) has rank at most rk(H). This is decidable, and concludes the
proof. O

4. ABSTRACT PROPERTIES OF SUBGROUPS

Let F be a free group. An abstract property of subgroups of F' is a set P
of subgroups of F' containing at least the total group F' itself. For simplicity,
if H € P, we will say that the subgroup H satisfies property P.

We say that the property P is (finite) intersection closed if the intersec-
tion of any (finite) family of subgroups of F satisfying P also satisfies P, and
that it is free factor closed if every free factor of a subgroup of F' satisfying
P also satisfies P. Finally, we say that the property P is decidable if there
exists an algorithm to decide whether a given finitely generated subgroup
H < F(A) satisfies P.

4.1. P-closure of a subgroup. Let F be a free group, P be an abstract
property of subgroups of F', and let H < F. If there exists a unique minimal
subgroup of F satisfying P and containing H, it is called the P-closure of
H, denoted by clp(H); in this situation, we say that H admits a well defined
‘P-closure.

Proposition 4.1. Let F be a free group and let P be an abstract property
of subgroups of F.
(i) If P is intersection closed, then every subgroup H < F admits a
well defined P-closure.
(ii) If P is finite intersection closed and free factor closed then every
finitely generated subgroup H <g F admits a well defined P-closure.
(iii) If P-closures are well defined and P is free factor closed, then for
every subgroup H < F, we have H <., clp(H). In particular, if H
is finitely generated, then so is clp(H).

Proof. Statement (i) is immediate: it suffices to consider the intersection of
all the extensions of H satisfying P (there is at least one, namely F itself).

If P is only finite intersection closed, but is also free factor closed, we
use Theorem 3.16: since every extension of a finitely generated subgroup
H is a free multiple of an algebraic extension of H, then every extension
of H in P contains an algebraic extension of H in P. It follows that the
intersection of all extensions of H in P is equal to the intersection of the
algebraic extensions of H in P. But the latter intersection is finite, and
hence it satisfies P as well, which concludes the proof of (ii).
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Finally, if P is free factor closed, then H is not contained in any proper
free factor of its P-closure, that is, H <, clp(H). |

It would be interesting to produce an example of an abstract property
‘P that is closed under free factors and finite intersections, not closed under
intersections, and non-trivial for finitely generated subgroups (note that
the property to be finitely generated satisfies the required closure and non-
closure properties, but it is trivial for finitely generated subgroups).

Remark 4.2. It is well known that the property of being normal in F
is closed under intersections and not under free factors, and that given a
subgroup H < F, the normal closure of H is well-defined, and is not in
general finitely generated, even if H is. a

Proposition 4.3. Let P be an abstract property for subgroups of F(A)
for which P-closures are well defined. If P-closures of finitely generated
subgroups of F(A) are computable, then P is decidable. The converse holds
if, additionally, P is free factor closed.

Proof. Let us assume that P-closures are computable. Then, in order
to decide whether a given H <f F'(A) satisfies P, it suffices to compute
clp(H), and to verify whether H = clp(H).

Conversely, suppose that P is free factor closed and decidable. Then,
given H <g F(A), one can compute the set AE(H), check which algebraic
extensions of H satisfy P and identify the minimal one(s). By Proposi-
tion 4.1, only one of them is minimal, and that one must be clp(H). O

Remark 4.4. Proposition 4.1 states that every property of subgroups that
is closed under (finite) intersections and under free factors yields a well-
defined closure operator for (finitely generated) subgroups of F', that can
be obtained by looking exclusively at algebraic extensions.

A form of converse holds too: if K <g F, let Px be the following
property. A subgroup L satisfies Px if and only if L is a free factor of an
extension of K. Clearly, F' satisfies this property, and one can verify that Py
is intersection and free factor closed. Moreover, one can use Proposition 3.16
to verify that the Pg-closure of a subgroup H < K is exactly the K-
algebraic closure of H. In particular, for every algebraic extension H <,z K,
K is the P-closure of H for some well-chosen property P. a

4.2. Some algebraic properties. Let us recall the definition of certain
properties of subgroups, that have been discussed in the literature. Let
H < F be an extension of free groups. We say that H is

o malnormal if HYNH =1forall g € F'\ H;
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e pure if ™ € H, n # 0 implies x € H (this property is also called
being closed under radical, or being isolated);
e p-pure (for a prime p) if ™ € H, (n,p) = 1 implies x € H;

The following results on malnormal and pure closure were first shown in
[7, Section 13]. The proof given here, while not fundamentally different, is
simpler and more general. Corollary 4.14 below gives further properties of
these closures.

Proposition 4.5. Let F(A) be a free group. The properties (of subgroups)
defined by malnormal, pure, p-pure (p a prime), retract and e-algebraically
closed subgroups are intersection and free factor closed, and decidable for
finitely generated subgroups.

For each of these properties P, each subgroup H < F(A) admits a well-
defined P-closure clp(H), which is an algebraic extension of H. Finally, if
H <4 F(A), the P-closure of H has finite rank and is computable.

Proof. The closure under intersections and free factors of malnormality
is immediate from the definition. The decidability of malnormality was
established in [1], with a simple algorithm given in [7, Corollary 9.11].

The closure under intersections of the properties of purity and p-purity
is immediate. Now, assume that K is pure, H <g K, and let x be such that
™ € H with n # 0. Since K is pure, we have x € K, and we simply need to
show that a free factor of a free group F' is pure, which was established in
Example 3.1 above. Thus purity is free factor closed. The proof of the same
property for p-purity is identical. The decidability of purity and p-purity
was proved in [3, 4].

It is shown in [2, Lemma 18] that an arbitrary intersection of retracts
of F is again a retract of F. Moreover, it follows from the definition of
retracts that a retract of a retract is a retract, and that a free factor is a
retract. Thus the property of being a retract of F' is free factor closed. The
decidability of this property was established by Turner, but as no proof
seems to have been published, we give his in Proposition 4.6 below.

Suppose that H < K < F, K is e-algebraically closed and x ¢ H. If
x ¢ K, then (K, z) = Kx(x),so (H,z) = Hx{(x). If v € K\ H, then we have
that H is a free factor of (H,x) < K and so, by Proposition 3.13, we also
conclude that (H,z) = H % (x). Thus the property of being e-algebraically
closed is closed under free factors. Next, let (H;);cr be a family of e-
algebraically closed subgroups, let H = (), H;, and let ¢ H. There exists
i € I such that « ¢ H;, so (H;,x) = H; * (). Using Lemma 3.23, we
conclude that (H,z) = H % (x). Thus the property of being e-algebraically
closed is also closed under intersections. Finally, this property is decidable
by Corollary 3.27.
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The last part of the statement follows from Proposition 4.1. O

As announced in the proof of Proposition 4.5, we prove the decidability
of retracts, that was established by Turner [19].

Proposition 4.6. Let H < F(A) be an extension of finitely generated free
groups. It is decidable whether H is a retract of F(A).

Proof. (Turner) Suppose that A = {a1,...,a,} and let uy,...,u, be a
basis of H. Then H is a retract of F'(A) if and only if there exist z1,...,z, €
H such that the endomorphism ¢ of F/(A) defined by ¢(a;) = x; maps H
identically to itself. That is, if u;(z1,...,2,) =u; fori =1,... 7. This can
be expressed in terms of systems of equations.

Let e; be the word on alphabet {X1, ..., X,,} obtained from the word wu;
(on alphabet A) by substituting X; for a; for each j. Then H is a retract
of F'if and only if the system of equations e;(X1,...,X,) =w;, i =1,...,r
(where u; are viewed as constants in H) admits a solution in H. This is
decidable by Makanin’s algorithm [10] (note that the form of the system
(i.e. the words e;) depends on the way H is embedded in F', but once this
form is established, the system itself is entirely set within H, so Makanin’s
algorithm works, applied to this system over H). a

Let H < F be an extension of free groups. Recall that H is compressed
if rk(H) < rk(K) for every K < F containing H (see Section 3.4), and
say that H is inert if rk(H N K) < rk(K) for every K < F. Both these
properties were introduced by Dicks and Ventura [5] in the context of the
study of subgroups of free groups that are fixed by sets of endomorphisms
or automorphisms (see also [21]).

It is clear that an inert or compressed subgroup is finitely generated,
with rank at most rk(F'). It is also clear that inert subgroups (and retracts)
of F' are compressed. On the other hand, we do not know whether all
compressed subgroups are inert, nor whether retracts are inert (both these
facts are conjectured in [21] and related to other conjectures about fixed
subgroups in free groups).

Proposition 4.7. Let F' be a free group. The properties of inertness and
compressedness are closed under free factors. In addition, inertness is closed
under intersections.

FEach subgroup H < F admits an inert closure, which is an algebraic
extension of H.

Proof. The closure of inertness under intersections is shown in [5, Corol-
lary 1.4.13]. Free factors of F are trivially inert. Moreover, if H < K < F,
H is inert in K and K is inert in F', then H is inert in F'. So inertness is
also closed under free factors.
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Now suppose that H = L « M < F' is compressed, and let L < K < F.
Since H < (K, M), we have

rk(L) + rk(M) = rk(H) < rk({K, M)) < rk(K) + rk(M).

It follows that rk(L) < rk(K), and hence L is compressed. Thus, com-
pressedness is closed under free factors. The last statement is a direct
application of Proposition 4.1. a

Note that, even though a finitely generated subgroup H admits an inert
closure, which is one of its (finitely many) algebraic extensions of H, we
do not know how to compute this closure, nor how to decide whether a
subgroup is inert.

It is not known either whether compressedness is closed under intersec-
tions, or even finite intersections, so we don’t know whether each subgroup
admits a compressed closure. However it is decidable whether a finitely
generated subgroup of F' is compressed [20]. Indeed if H <¢ F, then H
is compressed if and only if rk(H) < rk(K) for every algebraic extension
H <,g K < F, which reduces the verification to a finite number of rank
comparisons.

4.3. On certain topological closures. Let 7 be a topology on a free
group F. The abstract property of subgroups consisting of the subgroups
that are closed in 7 is trivially closed under intersections. This property
becomes more interesting when the topology is related to the algebraic struc-
ture of F. This is the case of the pro-V topologies that we analyze now.

A pseudovariety of groups V is a class of finite groups that is closed
under taking subgroups, quotients and finite direct products. V is called
non-trivial if it contains some non-trivial finite group. Additionally, if for
every short exact sequence of finite groups, 1 — G; — G2 — G35 — 1, with
(1 and G5 in 'V, one always has G, € V, we say that V is extension-closed.

For every non-trivial pseudovariety of groups V, the pro-V topology on
a free group F is the initial topology of the collection of morphisms from F
into groups in V, or equivalently, the topology for which the normal sub-
groups N such that F/N € V form a basis of neighborhoods of the unit. We
refer the readers to [11, 22] for a survey of results concerning these topologies
with regard to finitely generated subgroups of free groups. In particular,
Ribes and Zalesskii showed that if V is extension-closed then every free
factor of a closed subgroup is closed [12]. The following observation then
follows from Proposition 4.1.

Fact 4.8. Let V be a non-trivial extension-closed pseudovariety of groups.
Then the pro-V closure of a finitely generated subgroup H is finitely gener-
ated, and an algebraic extension of H.
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In the case of the pro-p topology (p is a prime and the pseudovariety
V is that of finite p-groups, which is closed under extensions), Ribes and
Zalesskil [12] showed that one can compute the closure of a given finitely
generated subgroup of F(A). A polynomial time algorithm was later given
by Margolis, Sapir and Weil [11], based on the finiteness of the number of
principal overgroups of H, that is, essentially on the spirit of Fact 4.8. More-
over, they showed that one can simultaneously compute the pro-p closures
of H, for all primes p, using the fact that they are all algebraic extensions,
and hence that they take only finitely many values. This was also used to
show the computability of the pro-nilpotent closure of a finitely generated
subgroup: even though the pseudovariety of finite nilpotent groups is not
closed under extensions, it still holds that the pro-nilpotent closure of a
finitely generated subgroup is finitely generated and computable.

At this point, several remarks are in order. First, Ribes and Zalesskii
[12] proved that if V is extension-closed and if H is the pro-V closure of
H, then rk(H) < rk(H). The proof of this fact can be reduced to dimen-
sion considerations in appropriate vector spaces. This proof does not seem
related with the idea of e-algebraic extensions, which also lowers the rank
(Corollary 3.15).

Next, not every algebraic extension arises as a pro-V closure for some
V. This is clear if H <, K and rk(K) > rk(H) by the result of Ribes and
Zalesskil cited above, but rank is not the only obstacle. Consider indeed
H = {(a,bab™') < F(a,b). Then H <,; F (Example 3.5) and AE(H) =
Oa(H) = {H,F}. We now verify that H is V-closed for each non-trivial
extension-closed pseudovariety V, so F' is never the V-closure of H. Since
V is non-trivial, the cyclic p-element group C,, = (c | ¢?) sits in V for some
prime p. Let ¢,: F — C, be the morphism defined by ¢,(a) = 1 and
©p(b) = ¢, and let N, = ker¢,. Then H < N, and N, is V-closed, so H
is not topologically dense in F. Since the V-closure of H is in AE(H), it
follows that H is closed in the pro-V topology.

Solvable groups form an extension-closed pseudovariety, so the above
results apply to it: in particular, given an extension H <g F(A), we can
compute a finite list of candidates for being the pro-solvable closure of H,
namely AE(H) (or even this list, restricted to the extensions of rank at most
rk(H)). However, it is a wide open problem to compute this closure.

Finally, let us consider the (uncountable) collection of extension-closed
pseudovarieties of finite groups V as above. For each finitely generated
subgroup H < F', the pro-V closures of H are among the (finitely many)
algebraic extensions of H, so each finitely generated subgroup H naturally
induces a finite index equivalence relation on the collection of the V’s. It
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would be interesting to investigate the properties of these equivalence re-
lations. In particular, the intersection of these equivalence relations, as H
runs over all the (countably many) finitely generated subgroups of F(a,b),
has countably many classes, so there are pseudovarieties V that are indis-
tinguishable in this way.

4.4. Equations over a subgroup. In this section we use equations over
free groups to define abstract properties of subgroups. Let H < F be an
extension of free groups. A (one variable) H -equation (or equation over H)
is an element e = e(X) of the free group H * (X), where X is a new free
letter, called the variable. An element « € F is a solution of e(X ) ife(x) =1
in F (technically: if the morphism H * (X) — F mapping H identically to
itself and X to z, maps e to 1).

Example 4.9. If H = (a?), the H-equation ¢(X) = Xa?X ~'a=? admits a
as a solution. So does the H-equation X?a~2.

If e does not involve X, that is, e € H, then e has no solution unless it is
the trivial equation e = 1, in which case every element of F' is a solution. 0O

We immediately observe the following.

Lemma 4.10. Let H < F be an extension of free groups and let x € F.
The element x is a solution of some non-trivial H-equation if and only if
the elementary extension H < (H,x) is algebraic.

Proof. Let X be a new free generator and let ¢: H % (X) — F be the
morphism that maps H identically to itself and X to xz. By definition, z
is a solution of some non-trivial equation over H if and only if ¢ is not
injective, and we conclude by Proposition 3.13 and Corollary 3.14 that this
is equivalent to H <, (H, ). m|

In order to make this natural definition of equations independent on
the choice of the subgroup H, we consider a countable set X,Y7,Ys,... of
variables and we call equation any element e of the free group on these
variables. If H < F' is an extension of free groups, a particularization of e
over H is the H-equation e(X, hy, ho, . ..) obtained by substituting elements
hi,hs,... € H for the variables Y7,Y5,... (and having X as variable).

A solution of the equation e over H is a solution of some non-trivial
particularization of e over H, that is, an element x € F such that, for some
hi,hy...€ Hye(X,hy,ha,...) #1but e(x, hy, ha,...) = 1. (Note that even
when X occurs in e, some particularizations of e over H can be trivial).

Let £ be an arbitrary set of equations. We say that a subgroup H < F'is
E-closed if H contains every solution over H of every equation in £. Note
that, when looking for solutions, the set £ is not considered as a system of
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equations, but as a set of mutually unrelated equations. In particular, a
larger set £ yields a larger set of solutions.

Proposition 4.11. Let F' be a free group and let £ be a set of equations.
Then the property of being £-closed is closed under intersections and under
free factors.

Proof. The closure under intersections follows directly from the definition.
Now assume that K < F'is E-closed and let H <g K. Let x be a solution of
an equation of £ over H. Then x is also a solution over K, and hence x € K.
Now, by Lemma 4.10, H <,z (H, x) < K. This contradicts H <g K unless
H = (H,z), and hence z € H. O

Corollary 4.12. Let H < F and let £ be a set of equations. There exists
a least E-closed extension of H, denoted by clg(H) and called the E-closure
of H. Moreover, H <., clg(H).

If in addition H is finitely generated, then H <euq cls(H), rk(clg(H)) <
rk(H) and there exists a finite subset &y of € such that clg,(H) = clg(H).

Proof. Propositions 4.1 and 4.11 directly prove the first part of the state-
ment.

We now suppose that H <g F and we let Hy = H and suppose that
we have constructed distinct extensions Hy <ealg H1 Zealg =+ Zealg Hn
(n > 0), elements x1,...,x, € F, and equations e1,...,e, € £ such that
H; = (H;_1,x;) and z; is a solution of e; over H; ;. If H, is not £-closed,
then there exists an equation e, 1 € £, and an element x,, 1 € H,, such that
Tp41 is a solution of a non-trivial particularization of e, 41 over H,. Then
H, 1 = (H,,x,41) is a proper elementary algebraic extension of H, by
Lemma 4.10. Since H has only a finite number of algebraic extensions, this
construction must stop, that is, for some n, H,, is £-closed. It follows easily
that H,, is the &-closure of H, whose existence was already established. In
particular H <eq clg(H), and rk(clg (H)) < rk(H) by Corollary 3.15.

Finally, let & = {e1,...,en}. Any E-closed subgroup is also &-closed,
and the &y-closure of H must contain Hy, ..., H,. Thus clg(H) = clg,(H).
O

We conclude with the observation that some of the properties discussed
in Section 4.2 can be expressed in terms of equations. Let p be a prime
number and let

gmal = {X71Y1X§/72}7
& = {X"1|(n,p) =1},
& = {Xi|n#0}=J&,
p
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Eeom = {X'V'XV)

Proposition 4.13. Let H < F be an extension of free groups. The subgroup
H s
(i) malnormal if and only if it is Emar-closed;
(i) p-pure if and only if it is E,-closed;
(iii) pure if and only if it is Ez-closed, and if and only if it is Ecom-closed.

Proof. H is &,qi-closed if and only if, for all hq, he € H, not simultaneously
trivial, every solution of the equation X ~1h; Xhy = 1 belongs to H. That
is, if and only if 2 'Hx N H # 1 implies # € H. This is precisely the
malnormality property for H. This proves (i).

H is €,-closed if and only if H contains the n-th roots of every one of its
elements, for all n such that (n,p) = 1. Again, this is exactly the definition
of p-purity, showing (ii).

Similarly, H is £z-closed if and only if H is pure. Finally, we recall that
two elements x and y in F commute if and only if they are powers of a
common z € F. Thus the subgroup generated by H and all the roots of its
elements is exactly the E.op,-closure of H. O

Corollary 4.12 immediately implies the following.

Corollary 4.14. Let H <g F and let K be the malnormal (resp. pure,
p-pure) closure of H. Then H <5 K and rk(K) < rk(H).

5. SOME OPEN QUESTIONS

To conclude this paper, we would like to draw the readers’ attention to
a few of the questions it raises.

(1) We believe that the algebraic extensions of a finitely generated sub-
group H < I are precisely the extensions which occur as principal
overgroups of H for every choice of an ambient basis. That is, we
conjecture that AE(H) = (), Oa(H), where A runs over all the
bases of F'. As noticed in section 3.1, this is the case when H <g F'
or H <g F', but nothing is known in general.

(2) With reference to Corollary 3.15, we would like to find an algebraic
extension H <,g K of finitely generated groups, where rk(K) <
rk(H), yet the extension is not e-algebraic. It would be appropriate
to look for such an extension where H is e-algebraically closed in
K, that is, (H,z) = H * (z) for each € K \ H (Corollary 3.25).
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(3) Even though a finitely generated subgroup H admits an inert clo-
sure, which is one of the finitely many (computable) algebraic ex-
tensions of H, we do not know how to compute this closure. Equiva-
lently, it would be interesting to find an algorithm to decide whether
a subgroup is inert (see section 4.2).

(4) Tt is not known whether an intersection, even a finite intersection, of
(strictly) compressed subgroups is again (strictly) compressed. In
other words, does a finitely generated subgroup admit a (strictly)
compressed closure? If the answer was affirmative, then these clo-
sures would be computable, as indicated in section 4.2.

(5) As pointed out in section 4.3, we know that if V is a non-trivial
extension-closed pseudovariety of groups and H <¢ F', then H, the
pro-V closure of H, is an algebraic extension of H with rank at
most rk(H). However the known proof of this fact does not rely
on the notion of e-algebraic extensions. We would like to find an
example of such a subgroup H and a pseudovariety V such that
the extension H < H is not e-algebraic — or alternately to give
a new proof of Ribes and Zalesskii’s result (that in this situation,
rk(H) < rk(H)), by showing that H <eag H.

(6) As indicated at the end of section 4.3, it would be interesting to
find and investigate explicit examples of pseudovarieties V; and
Vs, such that the pro-V; and pro-Vs closures of H do coincide,
for every H <g F. As argued above, there are uncountably many
such pairs being indistinguishable by means of closures of finitely
generated subgroups.

(7) Finally, Corollary 4.12 shows that for every set of equations £ and
every H <g F', there exists a finite subset & C & such that
cle,(H) = clg(H). Is it true that such a finite set always exists
satisfying the previous equality for all finitely generated subgroups
of F at the same time (showing a kind of noetherian behavior)?
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