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Abstract. We give a case-free proof that the lattice of noncrossing
partitions associated to any finite real reflection group is EL-shellable.
Shellability of these lattices was open for the groups of type Dn and
those of exceptional type and rank at least three.

1. Introduction

Consider a finite real reflection group W and the partial order on W
defined by letting u ¹ v if there exists a shortest factorization of u as a
product of reflections in W which is a prefix of such a shortest factorization
of v. This order turns W into a graded poset having the identity 1 as
its unique minimal element, where the rank of w is the length of a shortest
factorization of w into reflections. For any w ∈ W we denote by NCW (w) the
interval [1, w] in this partial order. We are primarily interested in the case
that w is a Coxeter element γ of W , viewed as a finite Coxeter group. Since
all Coxeter elements of W are conjugate to each other, the isomorphism
type of the poset NCW (γ) is independent of γ. We denote this poset by
NCW when the choice of the Coxeter element γ is irrelevant and call NCW

the noncrossing partition lattice associated to W .
The poset NCW plays a crucial role in the construction of new monoid

structures and K(π, 1) spaces for Artin groups associated with finite Coxeter
groups; see for instance [3, 6, 7] and the survey articles [11, 12]. It is self-
dual [3, Section 2.3], graded and has been verified case by case to be a
lattice [3, Fact 2.3.1] [7, Section 4]. For Coxeter groups of types A and B
in the Cartan-Killing classification it is isomorphic to the classical lattice of
noncrossing partitions of an n-element set, defined and studied by Kreweras
[10], and to its type B analogue, defined by Reiner [14], respectively. The
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main purpose of the present article is to give a case-free proof of the following
theorem.

Theorem 1.1. The poset NCW is EL-shellable for any finite Coxeter group
W .

EL-shellability (see Section 2) for a bounded graded poset P of rank r
implies that the simplicial complex ∆(P̄ ) of chains in the proper part of P is
shellable. In particular it implies that the geometric realization of ∆(P̄ ) has
the homotopy type of a wedge of (r−2)-dimensional spheres, the number of
which is determined by the EL-labeling, and that the Stanley-Reisner ring
of ∆(P̄ ) is Cohen-Macaulay over an arbitrary field.

Theorem 1.1 was proved by Björner and Edelman [4, Example 2.9] in
the case of Coxeter groups of type A and by Reiner [14, Section 6] in the
case of type B while it was left open in [2, Section 7] in that of type D
and was conjectured by Reiner [15] for all finite Coxeter groups. After
introducing basic definitions, notation and some preliminary lemmas related
to real reflection groups, root systems and shellability (Section 2) we proceed
as follows. We give sufficient conditions on a total ordering of the set of
reflections T and a Coxeter element γ of a crystallographic group W for
the natural edge labeling of NCW (γ) with label set T to be an EL-labeling
(Theorem 3.5). We exploit these conditions to describe explicit families of
EL-labelings in the cases of the classical reflection groups (Examples 3.3
and 3.4 and Corollary 3.12). The existence of a total ordering and Coxeter
element for any W which satisfy these sufficient conditions follows from
recent work of the last two authors [8], where a case-free proof of the lattice
property of NCW is given. The particular orderings and Coxeter elements
considered there (see Section 4) were introduced by Steinberg [18] and play
a crucial role in the constructions of [8]. It is shown in Section 4 (Theorem
4.2) that they provide EL-labelings of NCW for any finite real reflection
group (including the non-crystallographic ones). A result on the Möbius
function of NCW is deduced (Corollary 4.3).

2. Preliminaries

Reflection groups and root systems. Let W be a finite real reflection
group of rank ` with a corresponding root system Φ, acting faithfully by
orthogonal transformations on an `-dimensional Euclidean space V with
inner product ( , ). Thus W is generated by elements acting as orthogonal
reflections in V while Φ is invariant under the action of W and consists
of a pair {α,−α} of nonzero vectors for each reflection t in W , which are
orthogonal to the reflecting hyperplane of t. We denote by T the set of all
reflections in W , by Hα the linear hyperplane in V orthogonal to α and
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by tα the orthogonal reflection in Hα. We refer the reader to the texts by
Björner and Brenti [5] and Humphreys [9] for any undefined terminology and
background on reflection groups and root systems. In particular we assume
the notions of a positive system, simple system and simple reflection. A
Coxeter element of W is the product of the simple reflections in an arbitrary
order for any choice of simple system for Φ. The order of any Coxeter
element of W is the Coxeter number, denoted by h. The root lattice QΦ

is the Z-span of Φ. The root system Φ is called crystallographic and W is
called a Weyl group if W preserves QΦ.

The next lemma follows from the results of Sommers in [16, Section 3]
(see also [13, Lemma 2.3]).

Lemma 2.1. ([16]) If α1, α2, . . . , αr ∈ Φ and α1 + α2 + · · · + αr = α ∈ Φ
then α1 = α or there exists i with 2 ≤ i ≤ r such that α1 + αi ∈ Φ ∪ {0}.
Proof. See [1, Lemma 2.1 (ii)]. ¤

Lemma 2.2. If {α1, α2, . . . , α`} ⊆ Φ+ is a Z-basis of the root lattice QΦ

and αi−αj /∈ Φ for all i < j then {α1, α2, . . . , α`} is the set of simple roots
in Φ+.

Proof. It suffices to prove that any positive root α ∈ Φ+ can be written as
a linear combination of α1, α2, . . . , α` with nonnegative integer coefficients.
Since {α1, α2, . . . , α`} is a Z-basis of the root lattice we can write uniquely
α = r1α1 + r2α2 + · · · + r`α` for some integers ri. Let us rewrite this
expression as

α = β1 + β2 + · · ·+ βr

where there are ri copies of αi or −ri copies of −αi among the β’s if ri ≥ 0
or ri < 0, respecively. To show that ri ≥ 0 for 1 ≤ i ≤ ` we must show that
βi ∈ Φ+ for 1 ≤ i ≤ r. Suppose that βi is a negative root for some i, say for
i = 1. Since α ∈ Φ+ at least one of the β’s is a positive root. By applying
repeatedly Lemma 2.1 and reordering the β’s if necessary we may assume
that there exists an index 2 ≤ j ≤ r such that β1 + β2 + · · · + βi ∈ Φ for
1 ≤ i < j, βj ∈ Φ+, βi ∈ −Φ+ for 1 ≤ i < j and β1+β2+ · · ·+βj ∈ Φ ∪{0}.
Since the α’s are linearly independent we must have β1 + β2 + · · ·+ βj ∈ Φ.
Applying Lemma 2.1 once more we conclude that βi + βj ∈ Φ for some
1 ≤ i < j, which means that αi − αj ∈ Φ for some i < j, contrary to the
hypothesis. ¤

EL-labelings and shellability. Let (P,≤) be a finite bounded graded
poset (short for partially ordered set). Thus P has a unique minimal and
a unique maximal element, denoted 0̂ and 1̂ respectively, and all maximal
(with respect to inclusion) chains in P have the same length (one less than
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their number of elements), called the rank of P and denoted rank(P ). Let
E(P ) be the set of covering relations of P , meaning pairs (x, y) of elements
of P such that x < y holds in P and x < z ≤ y holds only for z = y, and
let Λ be a totally ordered set. An edge labeling of P with label set Λ is
a map λ : E(P ) → Λ. Let c be an unrefinable chain x0 < x1 < · · · < xr

of elements of P , so that (xi−1, xi) ∈ E(P ) for all 1 ≤ i ≤ r. We let
λ(c) = (λ(x0, x1), λ(x1, x2), . . . , λ(xr−1, xr)) be the label of c with respect
to λ and call c rising or falling with respect to λ if the entries of λ(c) strictly
increase or weakly decrease, respectively, in the total order of Λ. We say
that c is lexicographically smaller than an unrefinable chain c′ in P of the
same length (with respect to λ) if λ(c) precedes λ(c′) in the lexicographic
order induced by the total order of Λ.

Definition 2.3. ([4]) An edge labeling λ of P is called an EL-labeling if for
every non-singleton interval [u, v] in P

(i) there is a unique rising maximal chain in [u, v] and
(ii) this chain is lexicographically smallest among all maximal chains in

[u, v]
with respect to λ. The poset P is called EL-shellable if it has an EL-labeling
for some label set Λ.

See [17, Chapter 3] for more background on partially ordered sets and EL-
shellability. If P is EL-shellable then the simplicial complex of chains (order
complex) ∆(P̄ ) of the proper part P̄ = P − {0̂, 1̂} of P has the homotopy
type of a wedge of spheres of dimension rank(P )− 2. The number of these
spheres is equal to the number of falling maximal chains of P with respect
to the EL-labeling and is also equal to the Möbius number of P , up to the
sign (−1)rank(P ); see [17, Section 3.13].

Reflection length and the poset NCW (w). For w ∈ W let lT (w) denote
the smallest k such that w can be written as a product of k reflections in
T . The partial order ¹ on W is defined by letting

u ¹ v if and only if lT (u) + lT (u−1v) = lT (v),

in other words if there exists a shortest factorization of u into reflections in
T which is a prefix of such a shortest factorization of v. With this order W
is a graded poset having the identity 1 as its unique minimal element and
rank function lT . We denote by F (w) the subspace of V fixed by w. The
next lemma follows from the results in [7, Section 2] (see also [3, Lemma
1.2.1]).

Lemma 2.4. ([7]) Let w ∈ W .
(i) lT (w) = `− dim F (w).
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(ii) For α ∈ Φ+ we have tα ¹ w if and only if F (w) ⊆ Hα.

The interval [1, w] in (W,¹), denoted NCW (w), is also graded with rank
function lT and has rank ` = dim V if w is a Coxeter element of W .

3. Reflection Orderings, Coxeter elements and EL-Labelings

Let W be a finite real reflection group of rank ` with corresponding root
system Φ ⊂ V and set of reflections T . Let Φ+ ⊂ Φ be a fixed choice of a
positive system. A total ordering < of T is called a reflection ordering for
W [5, Section 5.1] if whenever α, α1, α2 ∈ Φ+ are distinct roots and α is a
positive linear combination of α1 and α2 we have either

tα1 < tα < tα2

or
tα2 < tα < tα1 .

An induced subsystem of Φ of rank i is the intersection Φ′ of Φ with the
linear span of i linearly independent roots in Φ. The set Φ′ is a root system
on its own and Φ′∩Φ+ is a choice of a positive system for Φ′. The following
is the main definition in this section.

Definition 3.1. A reflection ordering < of T is compatible with a Coxeter
element γ of W if for any irreducible rank 2 induced subsystem Φ′ ⊆ Φ the
following holds: if α and β are the simple roots of Φ′ with respect to Φ′∩Φ+

and tαtβ ∈ NCW (γ) then tα < tβ.

Observe that a rank 2 subsystem Φ′ ⊆ Φ is irreducible if and only if
Φ′ ∩ Φ+ has at least three roots.

Example 3.2. Let W be of rank 2, so that W is a dihedral group of order
2m for some m ≥ 2. Let α and β be the two simple roots in Φ. There are
m reflections in W , namely t1, t2, . . . , tm where ti = tα(tβtα)i−1 (so t1 = tα
and tm = tβ) and two reflection orderings, namely t1 < t2 < · · · < tm
and its reverse. The reflection ordering < is compatible with the Coxeter
element γ = tαtβ . The poset NCW (γ) has m maximal chains corresponding
to the m shortest factorizations γ = t1tm = t2t1 = · · · = tmtm−1 of γ into
reflections. Clearly the chain corresponding to the factorization γ = t1tm is
the unique rising maximal chain and the lexicographically smallest maximal
chain in the edge labeling of NCW (γ) which assigns the label (ti, tj) to the
chain corresponding to a factorization γ = titj , when the label set T is
totally ordered by <. ¤

Example 3.3. Let W be of type An−1 and Φ+ = {ei − ej : 1 ≤ i < j ≤ n}
be the set of positive roots. Thus W is isomorphic to the symmetric group
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of permutations of the set {1, 2, . . . , n} and the reflections correspond to the
transpositions (i, j) for 1 ≤ i < j ≤ n. If the n-cycle γ = (1, 2, . . . , n) is
chosen as the Coxeter element for W then there is a canonical isomorphism
of NCW (γ) with the classical lattice of noncrossing partitions of {1, 2, . . . , n}
(see for instance [3, Section 4] or [6, Section 3]). One can easily check that
any total ordering on the set of transpositions (i, j), where 1 ≤ i < j ≤ n,
for which

(i, j) < (i, k) < (j, k)

for 1 ≤ i < j < k ≤ n (such as the lexicographic ordering) induces a
reflection ordering for W which is compatible with γ. ¤

Example 3.4. Let W be of type Bn or Dn and

Φ+ =

{
{ei : 1 ≤ i ≤ n} ∪ {ei ± ej : 1 ≤ i < j ≤ n}, for W of type Bn

{ei ± ej : 1 ≤ i < j ≤ n}, for W of type Dn

be the set of positive roots. In what follows we use the notation of [7, Section
3] (and [2, Section 2]) to represent elements of W as certain permutations of
the set {1, 2, . . . , n,−1,−2, . . . ,−n}, so that ((i1, i2, . . . , ik)) stands for the
product of cycles (i1, i2, . . . , ik)(−i1,−i2, . . . ,−ik) and [i1, i2, . . . , ik] for the
ballanced cycle (i1, i2, . . . , ik,−i1,−i2, . . . ,−ik). If

γ =

{
[1, 2, . . . , n], for W of type Bn

[1, 2, . . . , n− 1] [n], for W of type Dn

is chosen as the Coxeter element of W then there is a canonical isomorphism
of NCW (γ) with Reiner’s Bn analogue [14] of the lattice of noncrossing
partitions of {1, 2, . . . , n} (see [3, Section 4] or [7, Section 3]) if W is of
type Bn, and an explicit combinatorial description of NCW (γ) in terms of
planar noncrossing diagrams [2, Section 3] if W is of type Dn. One can
check directly that in the case of type Bn any total ordering on the set of
signed transpositions ((i, j)) and ((i,−j)) for 1 ≤ i < j ≤ n and [i] = (i,−i)
for 1 ≤ i ≤ n for which

((i, j)) < ((i, k)) < ((j, k)) for 1 ≤ i < j < k ≤ n
((i, j)) < ((i,−k)) < ((j,−k)) for 1 ≤ i < j ≤ n and 1≤k<i or j <k≤n
((i, j)) < [i] < ((i,−j)) < [j] for 1 ≤ i < j ≤ n,

such as the ordering

((1, 2)) < ((1, 3)) < · · · < ((1, n)) < ((2, 3)) < · · · < ((n− 1, n)) <
[1] < ((1,−2)) < ((1,−3)) < · · · < ((1,−n)) <

< [2] < ((2,−3)) < · · · < ((2,−n)) <
· · · < [n− 1] < ((n− 1,−n)) < [n],
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induces a reflection ordering for W which is compatible with γ. Similarly
in the case of type Dn any total ordering on the set of signed transpositions
((i, j)) and ((i,−j)) for 1 ≤ i < j ≤ n for which

((i, j)) < ((i, k)) < ((j, k)) for 1 ≤ i < j < k ≤ n
((i, j)) < ((i,−k)) < ((j,−k)) for 1 ≤ i < j ≤ n− 1

and 1 ≤ k < i or j < k ≤ n
((i,±n)) < ((i,−j)) < ((j,±n)) for 1 ≤ i < j ≤ n− 1,

such as the ordering

((1, 2)) < ((1, 3)) < · · · < ((1, n− 1)) < ((2, 3)) < · · · < ((n− 2, n− 1)) <
((1, n)) < ((1,−n)) < ((1,−2)) < ((1,−3)) < · · · < ((1,−(n− 1))) <

((2, n)) < ((2,−n)) < ((2,−3)) < · · · < ((2,−(n− 1))) <
· · · < ((n− 1, n)) < ((n− 1,−n)),

induces a reflection ordering for W which is compatible with γ. ¤

Let γ be a Coxeter element of W . Any covering relation in NCW (γ) is of
the form (u, v) with u−1v ∈ T . Setting λ(u, v) = u−1v for any such covering
relation defines an edge labeling λ of NCW (γ) with label set T which we
call the natural edge labeling of NCW (γ). Part (ii) of the following theorem
is the main result of this section.

Theorem 3.5. Let W be a finite real reflection group with set of reflections
T and Coxeter element γ and let λ be the natural edge labeling of NCW (γ).

(i) For any total ordering of T and any non-singleton interval [u, v] in
NCW (γ) there is a unique lexicographically smallest maximal chain
in [u, v] and this chain is rising with respect to λ.

(ii) If T is totally ordered by a reflection ordering which is compatible
with γ and W is a Weyl group then λ is an EL-labeling.

We first need to establish a few lemmas. For any interval [u, v] in NCW (γ)
we denote by λ([u, v]) the set of natural labels of all maximal chains in [u, v],
with the convention that λ([u, v]) = {∅} if u = v, and abbreviate λ([1, w])
as λ(w).

Lemma 3.6. Let [u, v] be a non-singleton interval in NCW (γ).
(i) If [u, v] has length two and (s, t) ∈ λ([u, v]) then (t, s′) ∈ λ([u, v])

for some s′ ∈ T .
(ii) It t ∈ T appears in some coordinate of an element of λ([u, v]) then

t = λ(u, u′) for some covering relation (u, u′) in [u, v].
(iii) The reflections appearing as the coordinates of an element of

λ([u, v]) are pairwise distinct.
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Proof. Part (i) is clear since T is closed under conjugation, so that s′ = tst
is also an element of T . Parts (ii) and (iii) follow from repeated application
of part (i). ¤

Lemma 3.7. Let [u, v] be a non-singleton interval in NCW (γ) and let w =
u−1v. There is a poset isomorphism f : [1, w] → [u, v] such that λ(x, y) =
λ(f(x), f(y)) for all covering relations (x, y) in [1, w].

Proof. It follows immediately from the definitions that the map f : [1, w] →
[u, v] with f(x) = ux for x ∈ [1, w] is well defined and has the desired
properties. ¤

Recall that a parabolic Coxeter element in W is a Coxeter element w in
a parabolic subgroup of W , meaning a subgroup generated by a subset of a
set of Coxeter generators of W . This subgroup, denoted Ww, depends only
on w and contains all reflections t ¹ w (see [3, Corollary 1.6.2]).

Lemma 3.8. ([3, Lemma 1.4.3]) Let w ∈ W . There exists a Coxeter ele-
ment γ of W with w ¹ γ if and only if w is a parabolic Coxeter element. ¤

Lemma 3.9. If w ¹ γ for some Coxeter element γ of W then any reflection
ordering for W which is compatible with γ restricts to a reflection ordering
for Ww which is compatible with w.

Proof. We may assume that w has rank at least two in NCW (γ). Let Φw ⊆
Φ be the root system corresponding to Ww. We first check that if Φ′w is an
induced rank 2 subsystem of Φw and Φ′ = RΦ′w ∩ Φ is the corresponding
induced rank 2 subsystem of Φ then Φ′w = Φ′. Clearly Φ′w ⊆ Φ′. Let α and
β be the two simple roots of Φ′w and let α′ ∈ Φ′. To show that α′ ∈ Φ′w
note that Hα ∩Hβ ⊂ Hα′ and hence F (w) ⊂ Hα′ . It follows from Lemma
2.4 (ii) that tα′ ¹ w and hence that tα′ ∈ Ww, in other words that α′ ∈ Φ′w.
To conclude the proof suppose that Φ′w is irreducible and that tαtβ ¹ w.
From w ¹ γ we conclude that tαtβ ¹ γ. Since Φ′w = Φ′ and the reflection
ordering on T is compatible with γ, tα must preceed tβ in this ordering. ¤

Recall also from [3, Section 1.5] that the Artin group B` of type A`−1

acts on the set of shortest factorizations of γ into reflections or, equiva-
lently, on the set λ(γ). More precisely, the ith generator of B` acts on
(t1, t2, . . . , t`) ∈ λ(γ) by replacing the pair (ti, ti+1) by (titi+1ti, ti) while
leaving other coordinates of λ(γ) fixed.

Lemma 3.10. The action of B` on the set of shortest factorizations of γ
into reflections is transitive.

Proof. See Proposition 1.6.1 in [3]. ¤



SHELLABILITY OF NONCROSSING PARTITION LATTICES 9

Lemma 3.11. Let tα1tα2 · · · tα`
be a shortest factorization of a Coxeter

element of W into reflections.
(i) {α1, α2, . . . , α`} is a linear basis of V .
(ii) If W is a Weyl group then {α1, α2, . . . , α`} is a Z-basis of the root

lattice QΦ.

Proof. Part (i) is follows from the fact that Coxeter elements have trivial
fixed space in V . The conclusion of part (ii) is clear for a shortest factor-
ization of the Coxeter element into simple reflections. In view of Lemma
3.10 it suffices to show that if two shortest factorizations tα1tα2 · · · tα`

and
tβ1tβ2 · · · tβ`

are related by the action of a single generator of the Artin
group B` then {α1, α2, . . . , α`} is a Z-basis of QΦ if and only if the same
is true for {β1, β2, . . . , β`}. We may thus assume that there exists an index
1 ≤ i < ` such that αj = βj for j 6= i, i+1, βi+1 = αi and tβi

= tαi
tαi+1tαi

.
The last equality implies that

±βi = tαi(αi+1) = αi+1 − 2(αi, αi+1)
(αi, αi)

αi

and the claim follows since 2(αi, αi+1)/(αi, αi) ∈ Z. ¤

Proof of Theorem 3.5. In what follows we will write NCW instead of
NCW (γ).

(i) We proceed by induction on the length of the interval [u, v], the claim
being trivial if this is equal to one. Clearly all covering relations of the form
(u, u′) in [u, v] have distinct labels. Let (u, ut) be the one with the smallest
label t. In view of the induction hypothesis applied to the interval [ut, v] it
suffices to prove that all covering relations in [ut, v] have labels greater than
t. This follows from parts (ii) and (iii) of Lemma 3.6 which imply that any
such label is different from t and equal to the label of a covering relation
(u, u′) in [u, v].

(ii) Let <γ be the reflection ordering of T which is compatible with the
Coxeter element γ of W . In view of part (i) it remains to show that there
is at most one rising maximal chain in a non-singleton interval [u, v] with
respect to λ. In view of Lemma 3.7 it suffices to prove this for an interval
of the form [1, w] in NCW . Since w ¹ γ, by Lemma 3.8 w is a parabolic
Coxeter element in W . By Lemma 3.9 the restriction of <γ on the set of
reflections of the parabolic subgroup Ww is a reflection ordering which is
compatible with w. Hence we may as well assume that w = γ, so that
[1, w] is the entire poset NCW = NCW (γ). Clearly there is at most one
rising maximal chain in NCW whose label is a permutation of the set S of
simple reflections. Hence it suffices to show that a maximal chain c in NCW
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whose label λ(c) is not a permutation of S cannot be rising. Indeed, let c
be such a maximal chain and let λ(c) = (tα1 , tα2 , . . . , tα`

). By Lemmas 2.2
and 3.11 (ii) there exist indices i < j such that αi − αj ∈ Φ. By repeated
application of Lemma 3.6 (i) it follows that tαi

tαj
¹ γ. From αi − αj ∈ Φ

we conclude that {αi, αj} cannot be the simple system in the rank two
induced subsystem of Φ spanned by αi and αj . Since <γ is compatible with
γ, Example 3.2 shows that tαi

>γ tαj
which implies that c is not rising. ¤

Corollary 3.12. If W has type An−1, Bn or Dn then the natural edge
labeling of NCW (γ) is an EL-labeling under the choices of Coxeter element
and total ordering on T described in Examples 3.3 and 3.4. ¤

4. Proof of Theorem 1.1

Let W be any finite real reflection group of rank ` with set of reflections T ,
root system Φ and fixed choice of a positive system Φ+. Let {σ1, σ2, . . . , σ`}
be a choice of simple system for Φ such that {σ1, . . . , σr} and {σr+1, . . . , σ`}
are orthonormal sets for some r [9, Section 3.17] [18]. It is proved in [18]
(under the additional assumption that W is irreducible, which is acually not
needed here) that Φ+ = {ρ1, ρ2, . . . , ρ`h/2}, where ρi = tσ1tσ2 · · · tσi−1(σi)
for 1 ≤ i ≤ `h/2 and the σj are indexed cyclically modulo `. Consider the
total ordering

(1) tρ1 < tρ2 < · · · < tρ`h/2

of T . The next statement follows from Theorem 5.4 in [8].

Theorem 4.1. ([8]) The total ordering (1) of T is a reflection ordering for
W which is compatible with the Coxeter element γ = tσ1tσ2 · · · tσ`

.

The previous theorem establishes the existence of a reflection ordering
which is compatible with some Coxeter element for any W . Combined with
Theorem 3.5 (ii) it gives a case-free proof of the statement in Theorem 1.1 in
the case of Weyl groups. Using other results from [8] we can give a different
case-free proof that the ordering (1) yields an EL-shelling of NCW (γ) for
any W as follows.

Theorem 4.2. If T is totally ordered by (1) and γ = tσ1tσ2 · · · tσ`
then the

natural edge labeling of NCW (γ) with label set T is an EL-labeling.

Proof. We claim that there is at most one rising maximal chain with respect
to the natural edge labeling λ in any non-singleton interval [u, v] in NCW (γ).
In view of part (i) of Theorem 3.5 it suffices to prove this claim. As in the
proof of part (ii) of the same result, it suffices to treat the intervals of the
form [1, w].
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Let (t1, t2, . . . , tk) be the label of a rising maximal chain in [1, w] and let
ti = tτi

for 1 ≤ i ≤ k, where τi ∈ Φ+. We will prove that {τ1, τ2, . . . , τk}
is the set of simple roots of the subsystem Φw ⊆ Φ corresponding to the
parabolic subgroup Ww (see Lemma 3.9) with respect to the positive system
Φw ∩ Φ+. This clearly implies the claim. Let τ be the largest positive root
in Φw with respect to (1). By part (i) of Lemma 3.11 and Lemma 3.8 the
set {τ1, τ2, . . . , τk} is a basis of the real vector space spanned by Φw. Hence
there is a unique expression of the form

(2) τ = a1τ1 + a2τ2 + · · ·+ akτk

with ai ∈ R for all i. As in [8, Lemma 3.9] let µ(x) = −2(γ − I)−1x, where
I is the identity map. For notational convenience we write x · y instead of
(x, y). From γ = t1t2 · · · tk and part (ii) of this lemma we have µ(τi) · τj = 0
for i < j. Moreover [8, Theorem 3.7] implies that µ(τj) · τi ≤ 0 for i < j
and that µ(τi) · τi = 1 and µ(τi) · τ ≥ 0 for all i. Taking the inner product
of (2) with µ(τi) we get

0 ≤ µ(τi) · τ
= a1µ(τi) · τ1 + · · ·+ ai−1µ(τi) · τi−1 + ai.

It follows by induction that ai ≥ 0 for all 1 ≤ i ≤ k. Thus τ is in the positive
cone of {τ1, τ2, . . . , τk}. Corollary 3.8 in [8] gives τk = τ . By induction on
the length of w we may assume that {τ1, τ2, . . . , τk−1} is the simple system
in Φwtk

∩ Φ+. Theorem 5.1 in [8] implies that {τ1, τ2, . . . , τk} is the simple
system of Φw, as desired. ¤

Proof of Theorem 1.1. It follows from Theorem 4.2. ¤

The next corollary follows from Theorem 4.2 and standard facts on
Möbius functions of EL-shellable posets; see [17, Section 3.13]. In view of
Theorem 3.5 (ii) it applies to any Coxeter element and compatible reflection
ordering in the case of Weyl groups.

Corollary 4.3. If T is totally ordered by (1) then the Möbius function on
any interval [u, v] in NCW (γ) is equal to (−1)lT (v)−lT (u) times the number
of falling maximal chains in [u, v] with respect to the natural edge labeling
of NCW (γ). ¤

In particular the Möbius number of NCW (γ) is equal to (−1)` times the
number of falling maximal chains in NCW (γ) with respect to this labeling.
It can be deduced from the results of [8, Section 8] that this number of
falling chains is equal to the number of positive clusters of the generalized
associahedron of corresponding type.
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