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Abstract. We give a 5-approximation algorithm to the rooted
Subtree-Prune-and-Regraft (rSPR) distance between two phylogenies,
which was recently shown to be NP-complete by Bordewich and Sem-
ple [5]. This paper presents the first approximation result for this
important tree distance. The algorithm follows a standard format for
tree distances such as Rodrigues et al. [24] and Hein et al. [13]. The
novel ideas are in the analysis. In the analysis, the cost of the al-
gorithm uses a “cascading” scheme that accounts for possible wrong
moves. This accounting is missing from previous analysis of tree dis-
tance approximation algorithms. Further, we show how all algorithms
of this type can be implemented in linear time and give experimental
results.

1. Introduction

Phylogenies, or evolutionary histories, are an important tool in almost all
branches of biology. They give a framework for analyzing the interrelation-
ships between species and are indispensable in studying evolution [14]. In
addition to the direct applications, techniques for building and comparing
phylogenies have been used for designing vaccines [7, 16, 21], haplotyping
[9, 12], and determining the evolution of human language [11, 26]. Most op-
timization criteria for creating phylogenies are NP-hard [1, 10]. To evaluate
the correctness of proposed phylogenies (given by heuristics and approxima-
tion algorithms), the distance between the two trees is needed. Efficiency is
key since algorithms that approximate the correct phylogeny often produce
thousands of candidate trees (for example [17, 25]) and analyzing and visu-
alizing these requires distances to be computed quickly [3, 15]. While the
Robinson-Foulds distance [23] (basically the sum of the false positives and
false negatives) is often used since it can be calculated in linear time [8], it
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lacks biological motivation. The TBR and rooted SPR metrics have better
biological intuition [14]. Unfortunately, both are NP-hard to compute [2, 5].

In addition to its value in phylogenetic reconstruction searches, rooted
SPR distance is also valuable for more complex evolutionary events. Mad-
dison [18] showed that the number of reticulation events between two gene
trees and rSPR of those two trees are closely related. Baroni et al. [4] refine
this, giving elegant results about the rSPR distance and the number of com-
plex evolutionary events. Building on this equivalence has led to advances
in network models of evolution [6, 20, 22].

Our contributions are a 5-approximation for the SPR distance between
rooted trees, counterexamples that point out subtle flaws of past approxima-
tion algorithms for TBR, and linear time versions of all these algorithms.
With a small modification to the algorithms of [13, 24], we can get a 5-
approximation algorithm for the related distance metric, rooted SPR. The
proof of the approximation bounds uses a “cascading” accounting scheme
to capture the complexity and illustrates the difficult situations to approx-
imate. On the application side, we can improve the running time of these
algorithms to linear time in the number of nodes. We end the paper by
giving initial experimental results on the effectiveness of these algorithms
on both biological and random datasets.

The problem of calculating TBR and SPR distances between trees has
generated much interest and past work. Hein et al. [13] had many good
intuitions and defined the maximum agreement forest (MAF), which is the
key to the NP-completeness proofs for both TBR and rooted SPR. Un-
fortunately, subtle details were missed in the proofs. Allen and Steel [2]
gave a counterexample to the argument in [13] and a correct proof for the
NP-completeness of TBR distance. Rodrigues et al. [24] gave a counterex-
ample to the approximation algorithm for TBR distance in [13] and provide
a new approximation algorithm. Unfortunately, the approximation bounds
of [24] are not correct– we give a counterexample in Section 5. Recently,
Bordewich and Semple [5] have shown that the calculation of SPR distance
on rooted trees is NP-hard. Their development of a Maximum Agreement
Forest for rooted SPR gives a natural way to prove bounds for approxima-
tion algorithms for this important distance metric. We use their new work
to give the first approximation algorithm with provable bounds for rooted
SPR distance.

2. Background

This section contains the basic definitions needed for the paper, which the
expert may wish to skip. We follow the standard definitions from [2, 5, 24].
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EA B C D F G GA B C D E F GA B C D E F C GDBAFE

start → → 1 TBR
tree move

EA B C D F G DA B E F GC E A B C D F G

→ 1 rSPR
move

Figure 1. Beginning with the start tree, we show an ex-
ample of a TBR move at the top and an example of a rSPR
move at the bottom. Note that the rSPR move prunes a
rooted subtree and must regraft it by the same cut edge.
For TBR, an edge is removed entirely and a new edge (the
blue dotted edge in the figure) is chosen. Since TBR al-
lows more freedom in reconnecting, there are pairs of trees
which take strictly less TBR moves than rSPR moves (e.g.
the TBR tree and the start tree).

Definition 1. [5]: A rooted binary phylogenetic X-tree (or more
briefly a tree) is a rooted tree where the root has degree two, all other inte-
rior nodes have degree 3 and the leaves are labeled by elements of the set X.
X is called the label set of the tree.

Definition 2. [2]: A subtree prune and regraft (SPR) operation on a
binary tree T is defined as cutting any edge and thereby pruning a subtree
t, then regrafting the subtree by the same cut edge to a new vertex obtained
by subdividing a pre-existing edge in T − t. We apply a forced contraction
to maintain the binary property of the resulting tree. The SPR distance
between two trees T1 and T2 is the minimal number of SPR moves needed
to transform T1 into T2. When working with rooted trees, we refer to this
distance as rooted SPR or rSPR. See Figure 1.

Definition 3. [2]: A tree bisection and reconnection (TBR) operation
on a binary tree T is defined as removing any edge, giving two new subtrees
t1 and t2, which are then reconnected by creating a new edge betweeen the
midpoints of any edge in t1 and any edge in t2. We apply a forced contraction
to maintain the binary property of the resulting tree. The TBR distance
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between two trees T1 and T2 is the minimal number of TBR moves needed
to transform T1 into T2. See Figure 1.

Allen and Steel [2] showed that the TBR distance between two trees is
one less than the size of the TBR maximum agreement forest, MAFTBRof
the two trees.

Definition 4. [2]: Suppose we have two binary trees T1 and T2 on the same
leaf set, L. Then

• An agreement forest (AF) for T1 and T2 is a collection F =
{t1, . . . , tk} of binary trees such that, if we let Lj be the leaf set of
tj for j ∈ {1, ..., k}, then the following are satisfied:
(1) L1, . . . ,Lk partitions L.
(2) tj = T1|Lj

= T2|Lj
for all j ∈ {1, . . . , k}; and

(3) for both i = 1 and i = 2 the trees {Ti(Lj) : j = 1, . . . , k} are
vertex-disjoint subtrees of Ti .

• A maximum agreement forest (MAFTBR) for T1 and T2 is an
agreement forest F for T1 and T2 for which |F| is minimal. Let
m(T1, T2) := min{|F|?1 : F is an AF for T1 and T2}.

Bordewich and Semple [5] showed that the rSPR distance of two trees is
the same as the size of the maximum agreement forest for rooted trees of
the two trees. Below we give the definition of maximum agreement forest
for SPR on rooted trees, and since we focus only on rooted trees, we will
call it simply maximum agreement forest for SPR or MAFSPR.

Definition 5. [5]: Let T be a rooted binary phylogenetic X-tree (or more
briefly a tree) and V a subset of the vertex set of T . T(V) is the minimal
rooted subtree of T that connects the elements of V . T | V is obtained from
T (V ) by splicing out all non-root vertices of degree two (that is, replacing
the vertex and its two adjacent edges with a single edge).

Definition 6. [5]: Let T1 and T2 be two rooted binary phylogenetic X-
trees. For the purposes of definition, we regard the root of both T1 and T2 as
a vertex ρ at the end of an edge adjoined to the original root. Furthermore,
we regard ρ as part of the label set of T1 and T2. An (rSPR) agreement
forest for T1 and T2 is a collection {Tρ, T1, T2, . . . , Tk} where Tρ is a rooted
tree and T1, T2, . . . , Tk are rooted binary phylogenetic trees with label sets
{Lρ,L1,L2, . . . ,Lk} such that the following properties are satisfied:

(1) The label sets partition X ∪ ρ and, in particular, ρ ∈ Lρ.
(2) For all i ∈ {ρ, 1, 2, . . . , k},

Ti ' T1 | Li ' T2 | Li.
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(3) The trees in {T1(Li) | i ∈ {ρ, 1, 2, . . . , k}}, and the trees in {T2(Li) |
i ∈ {ρ, 1, 2, . . . , k}} are vertex disjoint rooted subtrees of T1 and T2,
respectively.

Definition 7. A (rSPR) maximum agreement forest (MAFSPR) for T1

and T2 is the agreement forest for T1 and T2 with the minimal number of
components.

The MAFSPRneed not be unique, so in the subsequent proof, we will
select an arbitrary MAFSPRF and use it consistently.

Definition 8. Let F be an agreement forest for T1 and T2. We say that a
set E of edges in T1 (T2, respectively) are links with respect to F if removing
E and then splicing out all vertices of degree two yields the agreement forest
F .

Two algorithms [13, 24] have been proposed to approximate MAFTBRsize
(for the TBR distance) and therefore the TBR distance. In this paper, we
adapt these two algorithms to get an algorithm for the rooted version of
maximum agreement forest for SPR, and analyze its performance.

3. The General Algorithm

The general algorithm proceeds by examining the sibling pairs in the first
tree, T1 and finding the corresponding leaves in the second tree, T2. At each
step, the algorithm eliminates an edge or contracts identical sibling pairs,
creating, in the end, an agreement forest for T1 and T2. To distinguish
between the original trees and the forests that are created after each step
of the algorithms, we add a superscript with the step number. T 0

1 and T 0
2

are the initial trees given to the algorithm, and T i
1 and T i

2 are the forests
that result after the ith step of the algorithm. We let N be the count of
the number of components in the agreement forest that are created from T2

by the algorithm. N provides an upper bound on the distance between the
trees. At the start N = 1. At each step i, for each sibling pair a, b in T i

1,
we look at a and b in T i

2 and follow the cases in Figure 2. We repeat, until
all components are of size 1 and then output the number of cuts, N , and
the resulting agreement forest.

Figure 2 gives the Hein variant of the algorithm. The Rodrigues variant
differs only by a small change in Cases 1 and 2. Namely, Case 1 occurs when
there is either one or two subtrees between a and b in T i

2, and we cut them.
Case 2 occurs when there are three or more subtrees between a and b, and
we cut a and b. Due to Case 5, which contracts identical sibling pairs, the
leaves of the forests, T i

1 and T i
2, can differ from one step of the algorithm to

another.



6 M. L. BONET, K. ST. JOHN, R. MAHINDRU, AND N. AMENTA

Case 1: There’s 1 subtree between a & b
in T i

2 : Cut the subtree l in T i
2 .

N := N + 1
e

ba
A1

1

Case 2: There are ≥ 2 subtrees between a & b
in T i

2 : Cut a & b in T i
1 & T i

2 .
N := N + 2.

A
a b

Ak

1e e k

1

Case 3: a & b are in separate components of
T i

2 : Cut a & b in T i
1 & T i

2 .
N := N + 2.

a b

Case 4: b is a singleton in T i
2 : Cut

b in T i
1 .

N does not change.

a b

Case 5: The sibling pair occurs in both: Replace
it by “(a, b),” in T i

1 & T i
2 .

N does not change.

a b

Figure 2. The cases of Hein variant of the algorithm at
step i.

A slight modification is needed for the rSPR distance. Since you could
have the component that contains the root in the forest for one tree that
does not occur in the forest for the other tree, as in [5], we view the root
as a node ρ hanging off the pendant edge where the root is located in the
tree. We then apply the algorithm above to trees on the extended leaf set
of X ∪ ρ.

An edge cut in T i
2 at step i corresponds to a particular edge of T2. We

call this a cut edge in T2. Recall that the links are defined in terms of the
initial trees, T1 and T2 and the MAFSPRF . Next we will define a related
concept, that of virtual link, in terms of T2, the forest T i

2, and F .
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Definition 9. Consider a Case 5 step in which nodes a and b are contracted
into a new node (a, b). We call (a, b) a contraction and we say a and b are
contracted into (a, b). If a is contracted into b and b is contracted into c,
we also say a is contracted into c.

Definition 10. An edge e in T i
2 is a virtual link of T i

2 (or at step i) if
every path between it and a leaf contains a link. If the leaf is a contraction
of nodes due to Case 5, we undo the contractions.

Since virtual links are defined in terms of the forests T i
2 for some step i,

an edge may not be a virtual link at stage j but could become one at some
stage j + s. But once an edge becomes a virtual link, it remains a virtual
link.

4. 5-Approximation for rSPR

The basic idea of our proof that the algorithm gives a 5-approximation
for rSPR is to look at an arbitrarily chosen MAFSPRF for trees T1 and T2.
For each link of T2 with respect to F , we will “charge” a cost for the edges
the algorithm cuts. The overall charges on the links will equal the number
of cuts made by the algorithm, and we show that the charges do not exceed
5 for any link of T2. Thus, the algorithm produces a result that is at most
a multiplicative factor of 5 of the true distance.

Definition 11. Let F be an MAFSPRfor T1 and T2, and a and b be two
nodes of T i

1 and T i
2.

i) We say that a participates in component t of F if either a is a leaf
of t, or a is a contraction containing a leaf a′ of t.

ii) We say that a and b share a component t of F if both a and b
participate in t.

Notice that a contraction a may participate in multiple components of
F .

We split the analysis of the cases of the algorithm into two sub-cases:
those in which the nodes a and b of the sibling pair we are processing share
a component of the MAFSPR(the “A” cases), and those where a and b
do not share any component of the MAFSPR(the “B” cases). Thus we
consider Case 1A, Case 1B, etc.

4.1. Agreement Forest Lemmas. For the cost analysis of the algorithm,
we prove several lemmas about the trees with respect to the underlying
maximum agreement forest. Lemma 12 shows that in Cases 1A and 2A,
the edges ei might not be links, but virtual links. That is, it is possible
after repeated applications of Case 2 to have links “buried” in the subtrees
Ai, with ei not being a link. In both Hein el al. and Rodrigues et al., this
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subtlety was missed (Theorem 9 of [13] and Lemma 4 of [24]) and is the
main reason their approximation bounds are incorrect. This is illustrated
in the example in Section 5.

Lemma 12. Let T1 and T2 be rooted phylogenetic trees on the same leaf set.
Let F be a MAFSPRfor T1 and T2, and T i

1 and T i
2 be the result after the ith

step of the algorithm. Assume that a and b are a sibling pair in T i
1, and a

and b are in the same component of T i
2, but are not siblings, so that between

a and b, there are subtrees A1, A2, . . . , Ak, k ≥ 1. Call the edges above the
subtrees e1, e2, . . . , ek (see Figure 2). If a and b share a component t of F
(see Definition 11), then

i) For all j, none of the leaves of Aj participate in the MAFSPRcomponent
t.

ii) e1, e2, . . . , ek are all virtual links at stage i of the algorithm.

Proof of Lemma 12:
Proof of i: Towards a contradiction, assume that there exists j, such

that some leaf l in Aj participates in t. Since a, b and l all share the
MAFSPRcomponent t, there are nodes a′, b′ and l′ of the original trees such
that a′, b′ and l′ are in t, and a′ is contracted into a, b′ into b and l′ into
l. By the definition of MAFSPR, t is an induced rooted subtree of T 0

1 and
of T 0

2 , and therefore l′ should appear in T 0
1 between a′ and b′. Since a and

b are a sibling pair in T i
1, l′ (or a node into which l′ has been contracted)

has been detached from T1 at some step of the algorithm prior to step i.
Only Cases 2, 3 or 4 cut edges in T1. Case 2 and 3 cut the same nodes in
both trees. Case 4 only cuts off a node b if b is a singleton already in T2.
Therefore if l′ (or a node into which l′ is contracted) was detached at some
earlier step in the forest for T1, it must also have been detached in the forest
for T2 as well. But this is not the case, and we get a contradiction. Thus
Aj does not participate in t.

Proof of ii: Recall that a and b share a rooted component t of the
MAFSPRF . Then there are leaves a′ and b′ in T2, contracted into a and
b of T i

2 respectively, such that a′ and b′ belong to component t. Therefore
we know that there are no links nor virtual links in the path from a to b
in T i

2. Now, if say ei is not a virtual link, that means that there is a path
down from ei to a leaf l of T2 without a link, and hence a link-free path
from a′ and b′ to l′. So l′ would participate in t, which contradicts part i)
of this lemma. ¤

The following lemma will help us analyze Case 3A.

Lemma 13. Let a and b be a sibling pair in T i
1 but contained in different

components of T i
2, and assume a and b share a component t of F . Then
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the step j at which a and b were first separated into two components was a
Case 1B.

Proof of Lemma 13: Let (a′, b′) be the sibling pair in T j
1 handled in step j.

Step j has to be a Case 1, since neither a nor b is a singleton and Case 1 is
the only one in which two non-singleton components are created. Then in
T j

2 , the subtree induced by the four nodes a, b, a′, b′ has sibling pairs either
(a′, a) and (b, b′), or (a, b′) and (b, a′), while in T j

1 , the induced subtree has
to have sibling pairs (a′, b′) and (a, b). Thus the four nodes cannot all share
a component of F . Similarly, a and b cannot share one component t1 of
F while a′ and b′ share another component t2, since these two components
would have to intersect in T2. Since we assume a and b share a component
of F , a′ and b′ cannot share a component of F , and step j is a Case 1B. ¤

The following definition and lemmas will help us deal with the analysis
of the first three cases when the sibling pair does not share a component,
i.e., Cases 1B, 2B and 3B. We show here that there is a link for every “B”
case. We use the links in tree T1 since that makes the argument simpler.
The definition of virtual link can be trivially adapted to the tree T i

1.

Definition 14. Let a be a node of T i
1 or T i

2, and then let ua be the edge
that has a as its lower endpoint.

Definition 15. Let a be a leaf of T i
1 and let (a1, b1) . . . (ak, bk) be sibling

pairs handled in previous steps i1, . . . , ik of the algorithm. Suppose that
∀j, 1 ≤ j ≤ k, aj does not share any MAFSPRcomponents with bj and that
∀j, 1 ≤ j ≤ k, aj and bj are contracted into a, that is, steps i1, . . . , ik of the
were all Case 1B (which is always followed by a Case 5). Define nol(a) to
be the number of links among {ua1 , ub1 , . . . , uak

, ubk
}, and define nop(a) to

be the number of pairs k.

Lemma 16. Let a be a leaf of T i
1. Then if ua is a virtual link at stage i

which is not a link, then nop(a) < nol(a). Otherwise, nop(a) ≤ nol(a).

Proof of Lemma 16. We prove it by induction on d, the depth of a.
Base Case: if the depth of a is 0, then a is not contracted and is also a

leaf of T i
1. In this case nop(a) = 0 and nol(a) = 0, and the statement of the

lemma holds.
Induction Step: suppose the lemma holds for nodes of depth ≤ d−1. Let

a be a node of depth d, and suppose a = (a′, b′). We will use the following
facts:

• if a′ and b′ share a component, nop(a′) + nop(b′) = nop(a)
• if a′ and b′ do not share a component, nop(a′)+nop(b′)+1 = nop(a)
• if ua′ and ub′ are links, nol(a′) + nol(b′) + 2 = nol(a).
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• if only one among ua′ and ub′ is a link, then nol(a′) + nol(b′) + 1 =
nol(a).

• if none of ua′ and ub′ are links, then nol(a′) + nol(b′) = nol(a).

Case I: ua is a virtual link that is not a link. Then a′ and b′ do not
share any components, and since there has to be a link from ua to every leaf
contracted into a, ua′ and ub′ have to be virtual links. If ua′ and ub′ are links,
then by the induction hypothesis, nop(a′) ≤ nol(a′) and nop(b′) ≤ nol(b′).
So,

nop(a) = nop(a′) + nop(b′) + 1
< nol(a′) + nol(b′) + 2 = nol(a)

If ua′ is a link and ub′ is a virtual link not link then by the induction
hypothesis, nop(a′) ≤ nol(a′) and nop(b′) < nol(b′). So,

nop(a) = nop(a′) + nop(b′) + 1
< nol(a′) + nol(b′) + 1 = nol(a)

If ua′ and ub′ are virtual links but not links, then by induction hypothesis,
nop(a′) < nol(a′) and nop(b′) < nol(b′). So,

nop(a) = nop(a′) + nop(b′) + 1
< nol(a′) + nol(b′) = nol(a)

Case II: ua is either a link or not a virtual link.
Case II.1: a′ and b′ share a MAFSPRcomponent. Then a′ and b′ are
not virtual links. So by the induction hypothesis, nop(a′) ≤ nol(a′) and
nop(b′) ≤ nol(b′). So

nop(a) = nop(a′) + nop(b′)
≤ nol(a′) + nol(b′) = nol(a)

Case II.2: a′ and b′ do not share any components. Then ua′ or ub′ are
virtual links. Without loss of generality, ua′ is the virtual link. Now, if ua′

is a not a link, then

nop(a) = nop(a′) + nop(b′) + 1
≤ nol(a′) + nol(b′) = nol(a)

Now, if ua′ is a link, then

nop(a) = nop(a′) + nop(b′) + 1
≤ nol(a′) + nol(b′) + 1 = nol(a)

¤
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Lemma 17. Let T1 and T2 be rooted phylogenetic trees on the same leaf
set, and let F be a MAFSPRfor T1 and T2.

i) Suppose a and b are a sibling pair in T i
1, but not in T i

2, and that a and
b do not share a component of F . Then at least one of ua or ub is a virtual
link in T i

1.
ii) Suppose (a1, b1) . . . (ak, bk) are sibling pairs in T i1

1 . . . T ik
1 respectively,

and assume that ai and bi do not share any components of the MAFSPR.
Then the number of different links for the k paths between ai and bi is
greater than or equal to k.

Proof of Lemma 17:
Proof of i): Since a and b do not share any component of F , then for all

a′ contracted into a and all b′ contracted into b, there is a link in the path
between a′ and b′. This implies that at least one of ua or ub is a virtual link
in T i

1.
Proof of ii): We will show by induction on the number of pairs that

correspond to “B” cases, that for each sibling pair (a, b) there is a link in
T1 that is either ua or ub or inside a subtree of T1 contracted into a or b.

Suppose that the statement is true up to < s pairs, and we are dealing
with pair (as, bs). By the i) part of this lemma, then either uas or ubs or
both are virtual links. If uas or ubs is a link, we are done. This link cannot
have been used by one of the prior s − 1 pairs. If say uas is a virtual link,
then by lemma 16, nop(as) < nol(as) and nop(bs) ≤ nol(bs). This means
that inside as there is a link that hasn’t been used by the previous sibling
pairs contracted into as and we assign that link to the pair (as, bs). ¤

Finally, observe that T2 contains the same number of links as T1. So we
can choose some arbitrary matching of the links of T1 with the links of T2,
to assign the charges associated with the “B” cases to links of T2.

4.2. Assigning Charges & Analysis. To be able to analyze the algo-
rithm, we will describe how to charge a cost to the links for each edge that
the algorithm cuts. The overall charges on the links equals the number of
cuts, and we will prove that on each link the charge will be at most 5. To
simplify the accounting, we will keep track of the links in the original tree
T2. To be able to do this, we need to identify a node, say a of T i

2, with
a node of T2 the following way. If a is a leaf in T2 as well as in T i

2, then
we identify the leaves. If a is a contraction of several leaves of T2, then we
identify it with the internal node in T2 that is the least common ancestor
of all the nodes contracted into a.

Next we describe how to assign the charges for the different cases. Sup-
pose, without loss of generality, that we are at stage i of the algorithm, and
that we are processing the sibling pair (a, b) of T i

1.
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Cases 1A and 2A: a and b are in the same MAFSPRcomponent. We
identify the nodes of T2 corresponding to a and b, and a path from a to
b. Say A1, . . . , Ak are the trees that hang directly from this path, and let
e1, . . . , ek be the edges connecting the trees to the path. If we are in Case
1A, at stage i only nodes from one of these trees appears in T i

2 any nodes.
Without loss of generality, say the tree is A1. Then we put a charge of 1
on e1. If we are in Case 2A, then at least two of these trees keeps some
nodes at stage i. Without loss of generality, say they are A1, . . . , As, where
2 ≤ s ≤ k. Then we charge 2/s to each of the s edges e1, . . . , es. Recall that
in this case we detach two nodes, so the cost is 2, and we are distributing it
through s edges. Now, we asigned charges to edges that might not be links.
Now, for each e which is not a link, we pass the charge down to the links
below in the following way: Say e has two child edges, e1, e2 in T 0

2 . If both
are links, or have links below, then we charge each one with half the cost.
If only one is a link or has links below, then we charge it the full cost. Note
that at least one must be a link or have a link below to have a virtual link
at stage i (by Lemma 12). Since our trees are finite in size, this recursive
charging scheme is well-defined.

Cases 1B, 2B and 3B: The cost of a Case 1B operation is 1. The cost
of a Case 2B or Case 3B operation is 2. We charge the cost to the link
assigned to the “B” case.

Case 3A: The cost of this operation is 2. The step in which a and b were
separated into different components was a Case 1B step (Lemma 13). We
charge the cost of the Case 3A operation to the link assigned to the Case
1B step.

Cases 4 and 5: The cost of these operations is zero, since in Case 4 we
cut an edge in T i

1 rather that in T i
2, and in Case 5 we just make contractions.

The following lemma gives extra information on how the charges are
assigned to links.

Lemma 18. i) We can only charge a link once for Cases 1B+2B+3B.
ii) Similarly, we can only charge a link once for Case 3A.
iii) We can only charge 2 on a link for Cases 1A and 2A.

Proof of Lemma 18:
In the following proofs we use the labels on trees and edges for the dif-

ferent cases of the algorithm in Figure 2.
Part i): By Lemma 17, we have at least one link for each application of

a “B” case of the algorithm.
Part ii): By Lemma 13, any Case 3A is created by a Case 1B. If we charge

the same link twice from a Case 3A it must be because both 3A cases have
been created by the same Case 1B step. Suppose the first Case 3A happens
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at step i, and the second at step j. Then, at step i, T i
1 contains a sibling

pair (a, b) with a and b in different T i
2- components, and at step j, T j

1 has a
sibling pair (c, d) with c and d in different T j

2 -components. Without loss of
generality, say a and c are in the subtree cut off by the Case 1B step. Note
that a, b, c, d must all share a component of the MAFSPRF ; the edge cut by
the Case 1B step has to be contained in any component of F shared by a
and b and also in any component of F shared by c and d. Thus, in tree T1,
the lca(a, b) does not have c as a descendant, while in T2 it does. But this
cannot happen by the definition of MAFSPR, giving a contradiction.

Part iii): Say we charge twice a link for two applications of Cases 1A and
2A. Say the first time is at step i, and the second at step j. Let (a, b) be the
sibling pair considered at step i, and (c, d) be the pair considered at step j.
Since we’re considering Cases 1A and 2A, a and b must share a component
of the MAFSPR, and c and d also must share a component of the MAFSPR.
Let e′ be the link that is charged twice. Since e′ is below lca(a, b) and below
lca(c, d), there are three posibilities for the relative positions of a, b, c, d in
T2: c and d are below the lca(a, b), one between c and d is below and the
other is above, and finally, c and d are above lca(a, b).

If c and d are below the lca(a, b), then the least common ancestor of c and
d is in one of the intermediate subtrees Ai (or if it is the same as lca(a, b)
the proof is the same as in the second case). ei is a virtual link, so there is
a link between c and ei, and also between d and ei. But since c and d are in
the same MAFSPR component, the link must be above lca(c, d). Therefore,
the charge of ei as a virtual link will not reach e′. So this case will not
happen.

In the second case, a, b, c, d must all share a MAFSPR component. This
gives a contradiction with the definition of MAFSPR, since in T1, a and b
are more closely related than c and d, but in T2, a and c are more closely
related than b and d. So this second case cannot happen either.

We have to conclude that c and d must be above lca(a, b). This means
that when we charge a link repeatedly for cases “1A” or “2A”, the process
occurs bottom up towards the root of T2. We will discuss now the first two
charges on e′ from the bottom up. We distinguish two cases:

Case I: The lower case is a Case 2A. At step i we process the pair (a, b),
and a and b disappear. To assign a charge of 2 in T 0

2 , we first identify in
T 0

2 the nodes a and b. Let A1 . . . Ak be the trees that hang from the path
from a to b in T2, and e1 . . . ek the connecting edges. Say the first s trees
haven’t completely dessapeared by step i. Say e′ is in A1. Since 2 ≤ s, e′

gets a charge ≤ 1 from this step. When we process the pair (c, d) a charge
≤ 1 will be passed to lca(e1 . . . es). Since s ≥ 2, the charge passed down to
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each one of the ei’s will be divided by two. So at most a 1/2 charge will be
passed to e′.

Case II: The lower case is a Case 1A. So in T i
2 the intermediate subtree

gets dettached, and later a and b get contracted. Looking back at T 0
2 we

assign to e′ a charge ≤ 1 from this step. Later, in step j, we process the
sibling pair (c, d). In T 0

2 we identify the nodes c and d as explained before.
Say from the path between c and d, hang trees A1, . . . Ak, and e1, . . . ek are
the connecting edges. Without loss of generality, e′ is in A1. Now, if at
step j, the whole A1 has dessapeared, then we do not charge e1 and as a
consequence we do not charge e′. So we must conclude that some part of
A1 stays in T j

2 . The connecting edge in T i
2 is a virtual link, and e′ at step

j has dessapeared. So there must be another link in A1. So in the case
the charge gets split among e′ and the other link (or other links), and the
charge on e′ is ≤ 1/2.

If we consider charges on e′ further up on the tree, it is clear that the
charges get halved at each iteration. So, the largest possible charge for the
1A and 2A steps is 1 + 1/2 + 1/4 + · · · < 2. ¤

The following theorem sums up the final accounting for the analysis:

Theorem 19. The Hein variant of the algorithm is a 5-approximation for
rSPR.

Proof: We will show that each link can only be given a total charge of at
most 5. Let l be a link. By Lemma 18i, l can only be charged once for any
of the B cases.

Suppose l is charged by Case 1B. The cost is 1, with a possible additional
cost of 2 by at most one Case 3A (see Lemma 18ii). Also the sum of charges
on an edge by Cases 1A+2A is at most 2 by Lemma 18iii. The total is ≤ 5.

Suppose l is charged by Case 2B. This charge is 2. By Lemma 18i, l
cannot be charged by other 1B, 2B or 3B cases. Also it cannot be charged
by a Case 3A, since then the link would also have a charge for a 1B case.
Also the sum of charges of Cases 1A and 2A is at most 2. So the total is at
most 4.

The equivalent argument holds if l is charged by a Case 3B.
Finally if l does not have any B charges, then the total charge can only

be given by 1A and 2A cases, and the total is at most 2. ¤
A similar analysis can be applied to achieve a 5-approximation of rSPR

for the Rodrigues variant of the algorithm.

Theorem 20. The Rodrigues variant of the algorithm is a 5-approximation
for rSPR.

Proof of Theorem 20: Lemmas 12, 13, 16 and 17 all hold for this version
of the algorithm. There are differences in the way we assign the charges
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only in Cases 1 and 2. Suppose, without loss of generality, that we are at
stage i of the algorithm, and that we are processing the sibling pair (a, b)
of T i

1.
Cases 1A and 2A: a and b are in the same MAFSPRcomponent. We

identify the nodes of T2 corresponding to a and b, and a path from a to
b. Say A1, . . . , Ak are the trees that hang directly from this path, and let
e1, . . . , ek be the edges connecting the trees to the path. If we are in case
1A, in tree T i

2 at most two of these trees will keep any nodes. Then we put
a charge of 1 on the corresponding ei edges. Also we have to mark the edges
ei so that we do not pass down charges through them in the future. If we
are in case 2A, then at least three of these trees keeps some nodes at stage
i. Without loss of generality, say they are A1, . . . , As, where 3 ≤ s ≤ k.
Then we charge 2/s to each of the s edges e1, . . . , es. Recall that in this case
we detach two nodes, so the cost is 2, and we are distributing it through
s edges. Since 3 ≤ s, 2/s ≤ 2/3. Now, we asigned charges to edges that
might not be links. Now, for each e which is not a link, we pass the charge
down as we did for the Hein et al. algorithm to the links below except the
ones that have been marked.

Cases 1B and 2B: The cost of a Case 1B operation is now 1 or 2. The
cost of a Case 2B operation is 2. We charge the cost to the link assigned to
the “B” case.

Parts i and ii of Lemma 18 are the same. Part iii now has to say that the
maximum charge on a link for cases 1A+2A is 1. This is because charges
on links for “1A” cases are now final due to the marking of edges that we
just described. On the other hand cascading down charges for cases “2A”
are at most 2/3 + 2/9 + 2/27 . . ..

As for the previous algorithm, the worst situation for charging a link is
when it gets assigned a Case 1B. Now this can be a charge of 2. In this case
it can also get a charge of 2 by a case 3A. Finally by cases 1A+2A, it can
get a charge of 1. This could be a total of 5.

If the link gets assigned a Case 2B or 3B, then the maximum charge on
that link will be 3. ¤

5. Counterexample for TBR

Hein et al. [13] claim a 3-approximation to TBR. Rodrigues et al. [24]
give a counterexample to that by providing a pair of trees for which the
algorithm gives nearly a 4-approximation. Their counterexample consists
of moves that do not take advantage of the full power of TBR. Instead,
every move is in the proper subset of SPR moves. So, the counterexample
also shows that Hein’s algorithm is at best a 4-approximation for rSPR. A
related counterexample mentioned in Rodigues et al. [24] shows that the
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6 1

23 5 4

6

1 32 4

5

Figure 3. The pair of trees give a counterexample to
Lemma 10 of Hein et al.. Any MAFTBR for the pair of
trees has {2, 3, 5, 6} as a component, but when the algo-
rithm is run, the leaf 5 will be cut by a Case 1.

Rodigues variant is at best a 3-approximation for rSPR. Using TBR moves
that are not SPR moves (i.e. take at least 2 SPR moves to emulate), we
show that the algorithm of Rodrigues et al. [24] is at best a 4-approximation.
The example in Figure 5 is constructed to take full advantage of TBR (and
thus does not work for SPR). In TBR, each cut edge yields an unrooted
tree in the agreement forest (unlike the rooted trees in the SPR agreement
forest). Figure 5 has subtrees (colored red) that are identical by the removal
of an edge under TBR, but for which the algorithm (and rSPR) makes 3
cuts. A similar example shows that the algorithm of Hein et al is not a
4-approximation, as claimed, but at best a 5-approximation.

We have also isolated where the proofs break down in [13, 24]. For Hein
et al., they claim that

Let T1 and T2 be rooted phylogenetic trees on the same leaf
set. Then there is F a MAFSPR for T1 and T2 such that the
edges cut by the algorithm in Case 1 are links. (Lemma 10
of [13]).

However, there are pairs of trees for which no choice of the MAFTBR will
give that the edges cut in Case 1 are links. For example, see Figure 3.

The analysis of Rodrigues et al. [24] also fails in a subtle way. In Lemma
4 of [24], it is claimed, without proof, that if in Case 2 of the algorithm
incorrect cuts are made, that there is always a link connecting the remaining
subtrees that can be charged the cost of the incorrect move. However, if
you have repeated applications of Case 2, you can have remaining subtrees
whose connecting edges are not links, and you will charge an edge that is not
a link. Since only links can be charged, this subtle oversight undercounts
the charges and makes their analysis not hold.

For example, let us run the algorithm on the trees in Figure 4. Assume
you start with the sibling pair (9, 10) in the first tree. In the second tree,
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T2

subtrees between 9 &10:

T

Figure 4. A counterexample to the approximation to TBR
claims of Rodrigues et al.. Note that the trees are con-
structed so that the removal of the red subtrees yields a max-
imum agreement forest. Recall that for TBR, the resulting
MAFTBRconsists of unrooted trees. The algorithm starts by
choosing a sibling pair in T1, say (9, 10). By Case 2, 9 and
10 are cut in both trees, leaving behind the red subtrees in
T1, listed to the left side of the picture. This is repeated for
(11, 12), (13, 14), . . . , (25, 26). Note that all of these are bad
cuts. The same process is repeated for (3, 4), (5, 6), (7, 8) as well
as (1, 2), leaving only the red subtrees. The red subtrees are
then cut apart starting at their sibling pair, using 3 cuts, when
a single cut at the root of the red subtrees would suffice. This
example takes 3×27+26

27
= 3 + 26

27
times the optimal.
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T2, 9 and 10 have 3 subtrees (call them S1, S2, and S3) in between. The
algorithm applies Case 2 which says to cut off the sibling pair nodes in both
trees. The resulting trees after this first set of moves are missing 9 and 10.
Above each of the subtrees, S1, S2, and S3 is a link in the MAFTBR. So,
the edges directly above the subtrees S1, S2, and S3, are now virtual links.
Note that none of these were virtual links when we started, since 9 and 10
do not have links directly above them. But after 9 and 10 are deleted, they
become a virtual link.

Continuing on the trees in Figure 4, the algorithm examines the sibling
pairs: (9, 10), . . . , (25, 26). For each, Case 2 is applied (where you delete
the pair in both trees). This gets repeated up one level with (3, 4), (5, 6),
and (7, 8), and again with (1, 2). In the analysis in [24], it iss assumed
that there is a link above the remaining subtrees between 1 and 2 which
we charge for removing 1 and 2. However, due to the “cascading” of the
Case 2 applications, none of these remaining edges is a link, so, a non-link
is incorrectly charged.

The optimal edges to cut would have been the ones above all the red
subtrees. But instead, the algorithm cuts off 1, 2, . . . , 26, plus three edges
for each of the red subtrees (the three edges are needed due to the way the
red subtrees are arranged in T1 and T2), using a 26 + 3 ∗ 27 when 27 edges
would be enough.

6. Linear Running Time

We can show that all variants of the algorithm can be implemented in
linear time. This is a significant improvement over the stated polynomial
time implementation of Rodrigues et al. [24]. Our data structure for a tree
contains links from the parent to its two children and a link from the child
to the parent. The queue of sibling pairs to be processed is stored a linked
list.

All of the algorithms look at sibling pairs in T1 and find the corresponding
leaves in T2. There are a linear number of sibling pairs examined by the
algorithm (this is bounded above by the number of internal nodes of T1,
which is linear in the number of leaves). We can find the initial sibling pairs
by scanning the tree T1 and placing the sibling pairs in a queue. We process
each sibling pair in the queue according to the case of the algorithm that
applies. The trees are preprocessed in linear time to construct a lookup
table of leaf nodes. This allows leaves to be located in each tree in constant
time.

We need to show that each of the linear number of sibling pairs can be
processed in constant time. Each case is a local operation on the trees
that can be done in constant time, so, we need only show that determing
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the case to be applied can also be done in constant time. The number of
subtrees between those leaves in T2 determines which step of the algorithm
is applied. Note that Cases 2 and 3 of all the variants of the algorithm
perform the same action, so, we do not need to distinguish between them in
our checks. To decide which case to apply, we perform several simple (and
local!) operations. Each check takes constant time:

• if parent(a) does not exist or parent(b) does not exist, then either
a or b is a singleton in T i

2 and we must be in Case 4.
• else if parent(a) = parent(b), then a and b are a sibling pair in T i

2

and we must be in Case 5.
• else if parent(a) = grandparent(b) or grandparent(a) = parent(b),

then there’s a single subtree between a and b and we must be in
Case 1.

• otherwise, the distance between a and b in T i
2 is larger than 2. This

could occur because there’s many subtrees on the path between a
and b (Case 2) or because a and b are in different components (Case
3).

7. Experimental Results

Our initial experiments compare the two variants of the algorithm, Ro-
drigues et al. [24] and Hein et al. [13], applied to rSPR distances on sets
of real data and also on randomly generated trees. The biology trees were
generated by heuristic searches on DNA and RNA sequence data and tend
to be very similar in topology. The random trees were generated for varying
number of taxa under a uniform and Yule-Harding distribution.

We implemented the algorithms in Java, using the code base of TreeJux-
taposer [19] (freely available at //olduvai.sourceforge.net). We chose
both Java and the code base to make inclusion into tree visualization pro-
grams such as TreeJuxtaposer and TreeSet Visualization [19, 3] easier in the
future.

Each dataset consists of 100 trees. We did a pairwise comparison of
all distinct trees in the dataset and report the average distance and stan-
dard deviation for each dataset under the two variants of the algorithms
. We looked at two sets of biological trees: first, trees generated by par-
simony search on animal RNA data (provided by the Hillis laboratory at
UT Austin). Each tree has 128 leaves. For the Hein variant, the average
distance between trees was 14.8 versus 16.1 for the Rodrigues variant. The
second set of trees was also generated by parsimony search on chloroplast
DNA (provided by the Jansen laboratory at UT Austin). each tree has 28
leaves. We did a pairwise comparison of all distinct trees in the dataset.
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For the Hein variant, the average distance between trees was 7.6 versus 8.1
for the Rodrigues variant.

On the biological datasets, the Hein variant algorithm performs better
experimentally. This is somewhat surprising due to the the stronger coun-
terexample for Hein versus Sagot: we have a counterexample for Hein that
take almost 4 times the optimal answer for rSPR versus the best known
counterexample for Sagot that takes only 3 times. Our analysis of the al-
gorithms in Section 4 suggests another possibility. The worst situation for
the Hein variant is many cascading 2A charges. The Rodrigues variant of
the algorithm is designed to minimize the problems with the cascading 2A
charges, and instead performs worst when there are 1B and 3A charges (see
Lemma ?? and its corresponding version in Theorem 20). This suggests that
biological trees (that we analyzed) have less nesting of sibling pairs inside
one another (the cascading 2A cases) and more occurrences of sibling pairs
occurring in different components of the MAFSPR (the 1B and 3A cases).
For trees with a different bias, we could expect to see the Rodrigues variant
doing well.

We then applied both variants of the algorithm to randomly generated
trees under both the uniform and Yule-Hardy distributions. We created
datasets of 100 trees with taxa of 10, 50, 100, and 500. We then ran both
variants of the algorithm on the pairwise comparison of the trees and com-
pared the average distance. In contrast to the biological data sets, we saw
no statistically significant difference between the two variants of the algo-
rithm, except at 10 taxa for the uniform model. For the other 7 datasets of
random trees, the average distances reported were within the standard de-
viations. Interestingly, the average distance for random trees scales linearly
with the number of taxa under both distributions of random trees.

8. Conclusion & Future Work

We have given the first approximation algorithm for the important rSPR
tree distance metric. We hope to improve the algorithm and give a tighter
analysis of the running time, since we currently have a 5-approximation but
have a counterexample that only requires a 4-approximation. We further
plan are larger experimental study focusing on the effects of heuristics on
the bounds achieved.
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