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ABSTRACT. Maximal-length binary sequences have been known for
a long time. They have many interesting properties, one of them
is that when taken in blocks of n consecutive positions they form
2™ — 1 different codes in a closed circular sequence. This property
can be used for measuring absolute angular positions as the circle
can be divided in as many parts as different codes can be retrieved.
This paper describes how can a closed binary sequence with arbitrary
length be effectively designed with the minimal possible block-length,
using linear feedback shift registers (LFSR). Such sequences can be
used for measuring a specified exact number of angular positions,
using the minimal possible number of sensors that linear methods
allow.

1. INTRODUCTION

Angular absolute position measurement is carried out by transducers that
expand a different n-bit code word for each of a finite number of angular
positions. One of the common components of such transducers is a marked
disk with as many sectors as different angular positions are to be sensed.

Traditional disks use a radial bit sensing method that consists in an
arrangement of blacks and whites (“1” and “0”) distributed in concentric
coronas. Most commercial transducers use the Gray coding bit distribution
to reduce the different scanning errors. But such coding has two drawbacks:
as the resolution (and so the number of bits) increases, the disk diameter
must also increase; and secondly, the number of sectors has to be exactly a
power of 2.

For the first drawback, there is a method that uses only one bit code
track, based on the window property of pseudo-random binary sequences.
Such property states that in a pseudo-random cyclic code expansion, all the
n-bit elements that can be successively taken are different to each other.
The result is that once the pseudo-random binary sequence is expanded in
the circular corona, there are as many different measurements as the length
of the cyclic code expansion. In this case, the sensing elements are not
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radially but tangentially distributed. There are several papers stating such
configuration, see [1], [8], [9] and [10].

Next question is about the number of sectors. We need to produce a
pseudo-random cyclic code expansion, all of whose n-bit subwords are dif-
ferent to each other, and having a prescribed length e > 2. An obvious
restriction is 2 < e < 2™. In [4] and using graph theory, A. Lempel proved
that such sequences always exist, only under the hypothesis 2 < e < 27.
The problem is how to explicitly construct them with a fast algorithm (not
essentially based on a full search among all exponentially many possibili-
ties).

It is well known that, with a window of n sensing bits and using linear
feedback shift registers with connection polynomial of degree n, the maximal
length can be obtained, that is, one can produce cyclic binary sequences of
length 2™ —1 such that all windows of n consecutive bits are different to each
other (see [6] and [2]). In [8] the author introduces a truncation of these
maximal length sequences in order to obtain the desired exact number of
sectors (not necessarily being a power of 2). To detect the truncation point
it was proposed to include an additional corona where an additional bit
shows the discontinuity and allows the correct recovery of the measure in
the area of such discontinuity.

Another approach to solve this problem is to try to generate
(non-maximal) feedback shift registers expanding circular sequences of a
previously given length e (from an appropriate initial seed). Although less
studied in the literature, this is also possible i.e., there always exist such
(non-necessarily linear) feedback shift registers (see [2] and [12] for the bi-
nary case, and [4] for a generalization to m-ary sequences).

In this paper, we consider again this problem and we provide another
solution having the following two additional advantages. We present an
algorithm such that, given a natural number e > 2, it produces a linear
feedback shift register with connection polynomial of the smallest possible
degree, and a seed, expanding a circular sequence of length exactly e. In
general, the fact of being linear makes it easier to implement in hardware.
And the fact that the output is a circular sequence of length e expanded by a
linear feedback shift register of the smallest possible degree ensures us that
we are going to use the smallest possible number of sensors. Finally, the
algorithm is fast for the typical values of e that can be useful in particular
applications. The techniques and arguments used here are inspired on those
contained in [11].

We point out that, with the techniques in this paper, we minimize the
number of sensors needed, among all possible linear feedback shift registers
expanding circular sequences of a prefixed length. It is not clear how to
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systematically achieve the absolute minimum among non necessarily linear
ones. In Section 5 we show an example where these two minimums do not
agree.

The structure of the paper is as follows. Section 2 contains the prelimi-
naries needed about linear feedback shift registers, and about polynomials
over finite fields, stating the notation that will be used along the paper.
Section 3 is the central part of the article, where we discuss the cyclic struc-
ture of polynomials, and we construct and justify the algorithm. Then, in
Section 4, we make the algorithm explicit and particularized to the binary
case. Finally, we develop an example and write down the conclusions.

We point out to the reader that (although for the engineering applications
one will only make use of the results here particularized to the binary case),
we do all the discussions in an arbitrary finite field Fy, (with ¢ = p™, and p
being a prime number). The reason for working with more generality than
the one strictly needed for the applications, is that the arguments given are
general and work exactly in the same manner for the binary field Fy than
for an arbitrary F,. At any time the reader can particularize any result to
the binary case by just declaring everywhere p = ¢ = 2 and m = 1.

2. PRELIMINARIES

2.1. Focusing the problem. Linear feedback shift registers are well known
electronic digital circuits used to expand periodic sequences over finite fields
(over Fy for binary sequences). See [2] or [7] for generalities about them.

For the rest of the paper, let p be a prime number, ¢ = p™, and F, be
the field with ¢ elements (which has characteristic p). As pointed out in
the introduction, read p = ¢ = 2 (and m = 1) for a binary version of this
article.

Let n > 1 be a natural number and let a(z) = —(ag + a1z + -+ +
ap—12""1) + 2" € Fy[X] be a monic polynomial of degree n over F, with
a(0) = —ag # 0. Consider the n x n invertible matrix

00 --- 0 a

10 -+ 0 a

M=|o0 1 " = € GL,(F,),

0 Ap—2

0 0 -+ 1 an
usually called the companion matrix of a(z). It is well known that the
characteristic polynomial of M is a(z); in particular, a(M) = 0. Take
now an arbitrary column vector, u = (ug,u1,...,u, 1)’ € Fg, let u? be

the same vector but written as a row, and let us consider the sequences of
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FIGURE 1. LFSR with Fibonacci architecture

vectors M*u and T M?, i =0,1,2,.... First of all, since the set 7 is finite,
there must be eventual repetitions, say M'u = M’u for i < j. And, since
M is invertible, we have u = M7 7%y, meaning that the first repetition is
always against the very first vector u. In other words, the sequence M'u
(and similarly uT M?), i = 0,1,2,..., is periodic.

Note that, by the special shape of M, the vector u M*+! is the same
as the vector u” M* with all the coordinates shifted one position to the left
(so, loosing the first coordinate), and with the last coordinate computed
according to the last column of M. Thus, out of M and u, we can clockwise
produce a circular sequence of e elements of Fy in such a way that the e
consecutive n-tuples readable from it are pairwise different, where e is the
period of the sequence u” M. The generation of such circular sequence is
typically carried out by the standard electronic device called linear feedback
shift register (LFSR for short) with connection polynomial a(x), with seed
u, and with the so-called Fibonacci architecture, see Fig. 1 (where “linear”
stands for the linearity of the computation of the last coordinate in terms
of the n previous ones). In this terms, the problem addressed in the present
paper is the following.

Problem 2.1. Given a natural number e > 2, construct a LFSR (i.e. a
monic a(x) € F,[X]) with connection polynomial of the smallest possible
degree, say n, and a seed u € F' such that the sequence uTM? has period
precisely e.

Let us reinterpret the problem in terms of the sequence M®u, typically
the one expanded by the same LFSR with the same seed, but now with the
Galois architecture, see Fig. 2. Identifying u = (ug, u1,...,u,_1)7 with the
polynomial u(x) = ug +u1x +- - +u,—12" " € F [X], it is straightforward
to verify that Mu is the polynomial u(z)z mod a(x). So, the sequence
M'u is the reduction of the sequence of polynomials u(x)z?, modulo a(z).
Thus, the period of M®u is the minimum j > 1 such that u(z)z? = u(x)
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mod a(z). This number will be called the cyclic length of u(z) modulo a(x),
and will be closely studied below.

The relation between Problem 2.1 and cyclic lengths modulo polynomi-
als is not immediately obvious since, in general, the sequences u” M* and
My do not always have the same period. For example, in the binary case
consider a(z) = 1+x+ 22+ 2%+ 2* + 25 and u = (0,1,1,0,1)T; uT M? has
period 3 while Mu has period 6. However, the following lemma (applied
to companion matrices) allows us to restate Problem 2.1 in terms of cyclic
lengths.

Lemma 2.2. Let M be a n x n matriz over F,. Then, the set of periods of
ul' M? coincides with that of M*u, while u ranges over all column vectors
in . Furthermore, for every P € GLy(F,) such that PMP~" = MT,
the map v — Pu is a bijection of F;' preserving the period (i.e., M*u and
(Pu)T M have the same period).

Proof. The first assertion is clearly a consequence of the second one, since
it is well-known that M and M7 are always similar matrices (i.e. there
does exist P € GL,(F,) such that PMP~! = MT). For every such matrix
P and every integer r we have PM" = (M7T)"P. Now, for every column
vector u, the equation u = M"u is equivalent to Pu = PM"™u = (M*)" Pu
and so, to (Pu)” = (Pu)TM". Hence, the periods of the sequences M‘u
and (Pu)TM? do coincide.

For later use, let us find an easy way of computing such a matrix P, in
the case where M is the companion matrix of a monic polynomial a(z) =
—(aptarz+- - +ay—12" 1) +z" € Fy[X]. We shall built a matrix P with the
upper left triangle full of zeroes, with the contra-diagonal full of ones (and so,
invertible) and with each one of the consecutive sub-contra-diagonals having
constant values (so, P will be symmetric). One can recursively fill the entries
of such a P if we impose the additional condition that PM is also symmetric
(note that PM coincides with P removing its first column and adding a last
column equal to Pa, where a is the last column of M). This way, we have
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an invertible matrix P such that both P and PM are symmetric. This P is
good enough for our purposes, since PM = (PM)T = MTPT = MTP. O

In view of Lemma 2.2, solving Problem 2.1 reduces to finding a monic
polynomial a(z) € Fy[X] of the smallest possible degree, and a column
vector u € F', with prescribed cyclic length for u(z) modulo a(z). In
fact, Lemma 2.2 tells that, the same a(x) and an easily computable vector
v = Pu solves Problem 2.1. This way, our main goal reduces to solving the
following problem, which is completely stated in the language of polynomials
over finite fields.

Problem 2.3. Given a natural number e > 2, construct a monic polynomial
a(z) € Fy[X] of the smallest possible degree, say n, and a seed u(z) € Fy[X]
(being a polynomial of degree smaller than n), such that the cyclic length of
u(x) modulo a(x) is precisely e.

2.2. Polynomials over finite fields. Let us dedicate this section to sum-
marize the elementary facts about polynomials over finite fields that will be
needed later.

Let a(x) € Fy[X] be a polynomial of degree n and satisfying a(0) # 0.
The ring F,[X]/a(x)F,[X] contains ¢" — 1 non-zero elements and so there
must be two integers 0 < 51 < s2 < ¢" — 1 such that z°' = 2% modulo
a(x). That is, a(z) divides z°2 — z°* = (2751 — 1). The fact a(0) # 0
implies that a(z) also divides 2275 — 1. It is standard to define the order of
a(z), denoted ord(a(x)), as the minimum positive integer e such that a(x)
divides ¢ — 1. In general, ord(a(z)) < ¢" — 1. In other words, the order
of a given polynomial a(z) € F,[X] is the minimum positive integer e such
that 1-z° = 1 modulo a(x). This is, precisely, the cyclic length of 1 modulo
a(z).

The following are well-known facts concerning polynomials over finite
fields:

(I) (3.41in [5]) The order of an irreducible polynomial a(z) € F,[X] with
a(0) # 0 and degree n is always a divisor of ¢" — 1. In particular,
it is not multiple of p.

(IT) (3.6 in [5]) ged(z” — 1, 2° — 1) = 28°d™s) — 1 Furthermore, an
arbitrary polynomial a(z) € F,[X] with a(0) # 0, divides z® — 1 if
and only if ord(a(z)) divides s.

We also quote the following well known result in finite field theory. Recall
that, given two coprime integers a,b > 2, one is invertible modulo the other
and so it makes sense to define the order of a modulo b, denoted ord,(a),
being the smallest i > 1 such that a’ =1 mod b.
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Theorem 2.4 (3.5 in [5]). Let e > 2 be an integer. Then, there exist
irreducible polynomials in Fy[X] having order e. Furthermore, all of them
have the same degree, namely orde(q). O

A possible method for finding such a polynomial is the following. It has to
be a divisor of x¢ — 1, but not a divisor of ¢ — 1 for every d e, d # e. So,
computing (z¢—1)/lemge, die{xd —1} and finding an irreducible factor will
be enough (note that, by Theorem 2.4, all such irreducible factors have the
same degree, ord.(q)).

Now, we need the following two lemmas for better understanding of the
order of polynomials. We introduce the following notation. Given the prime
number p and a positive integer s, we define [s], to be the smallest positive
integer h such that p" is not less that s (we will write [s] if there is no risk
of confusion). That is, [1] = 0 and p/*1=! < s < pl*! for s > 2.

Lemma 2.5 (3.8 in [5]). Let a(x) € F,[X] be an irreducible polynomial with
a(0) # 0 and order e. Then, ord(a(x)®) = ep*l. O

Lemma 2.6 (3.9 in [5]). Let ai(z),...,a,(x) € Fy[X] be pairwise coprime
polynomials such that a;(0) # 0, and let e; = ord(a;(x)), i =1,...,r. Then,
ord(ai(x)---ar(x)) =lem{ey, ... e }. O

Finally, the following technical lemma will also be used.

Lemma 2.7. Let a, b, ¢ > 2 be three integers, a and b coprime with q.
Then,
Ordlcm{a,b} (q) = ICIH{OI'da(q), Ordb(q)}‘
In particular,
(i) if a divides b then ord,(q) divides ordy(q),
(ii) if a and b are coprime then orda,(q) = lem{ord,(q), ordy(q)}.

Proof. Let us denote by e,, e, and e, the orders of ¢ modulo a, b and
lem{a, b}, respectively. By definition, a divides ¢°* —1, and b divides ¢® —1.
So, lem{a, b} divides lem{g® — 1, ¢® — 1} = g'™{ea-eo} — 1 and thus, e,
divides lem{ey, ep} (here, we use fact (II) above). On the other hand, a
divides lem{a, b}, which divides ¢°** — 1. So, e, divides eq . Similarly,
ep divides e, and hence lem{e,, ey} also divides eqp. This shows that
ordiem{a,51(q) = €ap = lem{eq,ep} = lem{orda(q),ordy(q)}. The state-
ments (i) and (ii) are particular cases. O

3. THE CONSTRUCTION

As stated in the previous section, our main goal is to solve Problem 2.3.
For this purpose, given a polynomial a(x) € F4[X], we have to understand
which numbers occur as cyclic length of some seed u(z) modulo a(x). The
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finite set of all those possible numbers is named cyclic structure of a(x),
and denoted CS(a(x)). In other words, CS(a(x)) is the finite set of positive
integers whose members are precisely the cyclic lengths of all polynomials
u(z) (of degree less than that of a(z)) modulo a(z). We describe this set in
the following two propositions.

Proposition 3.1. Let a(z) € Fy[X], a(z) # x, be a monic irreducible
polynomial of order e. Then, the cycle structure of a(x)® is CS(a(x)®) =

{1, e, ep, ..., epl*I1.

Proof. Taking u(x) = 0 we see that 1 € CS(a(z)®). Let 0 # u(x) € Fy[X]
be a polynomial of degree less than that of a(z)®, and denote by k > 1 its
cyclic length modulo a(x)®. That is, k is the smallest positive integer such
that u(x)z® = u(x) modulo a(z)® or, in other words, the smallest positive
integer such that a(x)® divides u(z)(z* — 1). Write u(z) = «'(z)a(x)? for
some 0 < d < s and some u/(z) € F,[X] coprime to a(z). The previous
assertion is now equivalent to say that k is the smallest positive integer
such that a(z)*~? divides ¥ — 1, that is, k is the order of a(x)*~?. Using

Lemma 2.5, this proves that k = ord(a(z)?) = ep’ for some i = 1,...,s
and some j = 0,...,[s]. Furthermore, it is clear that every number of the
form ep? for j = 0,...,[s] occur in CS(a(x)®), for example as the cyclic

length of u(z) = a(m)s_(pjfl“‘U (which makes sense because j < [s] implies
P14+ 1 < pll=1 +1 < s; here, we understand p~! = 0).

O

Proposition 3.2. Let a(z) € Fy[X], be a monic polynomial with a(0) #
0, and consider its decomposition into different irreducible factors, a(z) =
a1(x)* az(x)®2 - - - ap(x)®, with increasing exponents, s1 < s < +++ < Sp.
Let e; = ord(a;(x)), fori € I = {1, ..., r}. Then, the cycle structure of
a(x) is given by

CS(a(z)) ={1}U {(lcmiej{ei})pt |0 #£JCI,
0<t< [s5], j=maxJ}.

Proof. Taking u(x) = 0 we see that 1 € CS(a(x)). Let u(z) € Fy[X] be a
polynomial of degree less than that of a(x) and cyclic length k > 2 modulo
a(z). Denote by k; the cyclic length of u(x) modulo a;(x)%, i € I. That
is, k is the smallest positive integer such that a(z) divides u(z)(x* — 1)
and, for every ¢ € I, k; is the smallest positive integer such that a;(x)%
divides u(x)(z* — 1). In this situation, it is straightforward to verify that
k = lem;er{k;}. Note that, by Proposition 3.1, either k; = 1 or k; = e;p’
for some j =0,...,[s;], and observe also that, by assumption, J = {i € I |
ki # 1} # 0. Then, k = lem;es{k;} = (lemies{e;})p’, where 0 <t < [s;]
and j = max J. Conversely, any positive number of the form (1cmi€ J{@i}) pt
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with 0 # J CI,0<t< [s;] and j = max J, appears in CS(a(z)). In fact,
it does as the cyclic length of u(x) = (HieJ\{j} ai(z)¥1) ~aj(;1:)sj*(1’f'71+1).
(Hi(ﬁ ai(z)*) modulo a(z) (which makes sense because ¢ < [s;] implies
P14+ 1 < plil=1 41 < 555 here, we understand p~! = 0). O

As an immediate corollary of Proposition 3.2, one can already say that
every positive integer occurs as the cyclic length of some polynomial modulo
some other. That is, given an exact length, there always exists a linear
feedback shift register that expands, with an appropriate seed, a circular
sequence of the given required length. The problem now is how to construct
one of them (LFSR and seed, i.e. a(z) and u(z)) with the minimal possible
degree for a(z).

Corollary 3.3. For every integer ¢ > 1 there exist two polynomials
a(x), u(z) € Fy[X] such that the cyclic length of u(x) modulo a(x) is pre-
cisely e. O

In order to attack Problem 2.3, we shall make several reductions to sim-
pler ones. Let a(x) € F,[X] be a polynomial with a(0) # 0, and consider
its factorization into different irreducible factors, a(z) = a1 (z)* az(x)®2 - - -
a,(x)*r, with increasing exponents s; < s2 < -+ < s,.. Let e; = ord(a;(x)),
forielI={1,...,r}

Lemma 3.4. With the previous notation, assume s, > 2 and consider the
polynomial a’ (x) = lem{ai(z) - - - a,(z), (x—1)%+1}, where 5,41 = pl*r 1~ 14
1 is the smallest integer such that [s,41] = [s.] (thatis, a1(x)---a.(z)(x—
1)s~+1 4f x —1 was not present in the decomposition of a(x), and a(x) chang-
ing all the exponents to 1 except that of x — 1 to s,41, otherwise). Then,
CS(a'(x)) = CS(a(x)) and deg(a’'(x)) < deg(a(x)).

Proof. By Proposition 3.2, we have CS(a(z)) = {1} U {(lem;es{e;})p" |
0 #JCI, 0<t<](s;], j=maxJ}. Also, since the order of x — 1 is
ert+1 =1 and [s,41] = [s.], we have CS(d/(z)) = CS(a(x)). The inequality
between degrees follows straightforward from the construction of a'(x) and
the hypothesis s, > 2. (I

So, in order to solve Problem 2.3, it is enough to consider polynomials
whose decomposition into irreducible factors have all the exponents being 1
except, maybe, that of x — 1.

Consider now such a polynomial, a(x) = a.(z)(x—1)*+, where s,41 > 0,
asx(xz) = ai(x) - a.(x), and a1 (z), ..., a-(z), (x — 1), x are pairwise different
irreducible polynomials. Since a,(x) has no multiplicities and, by fact (I) in
the previous section, e; = ord(a;(z)) is not divisible by p, Proposition 3.2
above tells us that the members of CS(a.(z)) are also not divisible by p.
Again by Proposition 3.2, the unique contribution of the factor z — 1 to the
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cyclic structure of a(z) is to add some bounded powers of p as extra factors
at the numbers in CS(a.(x)), which were coprime to p. Hence, Problem 2.3
reduces to the case where e is not multiple of p, and searching only among
polynomials without multiplicities and not being multiples of 2 — 1 (by then
adding the factor (z—1)?" *! to gain a possible extra p* in the factorization
ofe, s > 1).

With the following obvious lemma, we can do a further reduction.

Lemma 3.5. Let a(x) = ai(z) - a.(x), where a1(x),...,a.(x),z — L,z
are pairwise different irreducible polynomials. Let e; = ord(a;(x)), i € I =
{1, ..., r} and, for every subset O # J C I, consider ' (z) = Il;cja;(x).
Then, lem;ej{e;} € CS(a'(x)) and deg(a’(x)) < deg(a(z)). O

So, according to the description given in Proposition 3.2, we can also
think that the unique relevant contribution of a polynomial a(z) = a1 (z) - - -
ar(z) to the set CS(a(x)) is given by the maximal set of indices J = I (being
the other ones also obtainable in cyclic structures of polynomials of smaller
degree). In this case, since the a;(x)’s are coprime to each other, Lemma 2.6
tells us that

lem;er{e;} = lem;er{ord(a;(z))} = ord(M;cr a;(x))
= ord(a(z)).

In other words, for solving Problem 2.3, the unique relevant entry in
CS(a(x)) is the number ord(a(x)). And, having computed a polynomial
a(z) € Fy[X] with a given order ord(a(z)) = e > 2, we have by definition
that e is the smallest exponent i > 1 such that 2 = 1 mod a(x). Hence,
the seed u(z) = 1 has cyclic length modulo a(x) precisely equal to e, and
degree less than that of a(x). So, problem 2.3 reduces to

Problem 3.6. Given a natural number e > 2 not multiple of p, construct
a polynomial a(x) € Fy[X] with a(0) # 0 and of the smallest possible degree
(and so, without multiplicities and not being multiple of © — 1) such that
ord(a(z)) =e.

This is now a problem completely formulated in the area of finite fields.
In general, given a natural number e > 2, there are several polynomials of
order e, with several degrees. Theorem 2.4 tells us explicitly which is the
degree of those being irreducible. However, irreducible polynomials are not
always the ones having the smallest possible degree among those of a given
order (at the example worked out in Section 5, a binary polynomial of order
45 and degree 10 is shown, while the irreducible polynomials of order 45 all
have degree ordys(2) = 12). So, a more detailed search among polynomials
of a given order is needed.
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Let e > 2 be a natural number not multiple of p, and consider the
irreducible factorization, a(z) = ai(x) - - - a,(x), of a possible solution a(x) €
F,[X] to the Problem 3.6, a;(x) # z. Writing e¢; = ord(a;(x)) and n; =
deg(a;(z)), i € I = {1,...,r}, and using Lemma 2.6 and Theorem 2.4, we
have

e =ord(a(z)) = ord(ai(x) - - ar(x)) = lem{ey, ..., e},

n =deg(a(z)) =ni +---+n, = orde, (q) + - - - + orde, (q).

So, we can find a(z) by listing all the expressions of the form
e =lem{ey,...,e.}, e; = 2, and for each of them computing ord,, (q)+-- -+
ord,, (¢). When the minimal possible value of this sum is obtained, we make
use of the constructive comment after Theorem 2.4 to obtain irreducible
polynomials ay(z),...,a.(x) of orders ey, ..., e,, respectively. Finally, we
put a(z) = ay(x)---a-(x). This is clearly doable, but let us simplify and
shorten the procedure.

Let e = pi* -+ - p"* be the prime decomposition of e (p; being primes all
different to each other, and different from p). Note that, generically, there

are infinitely many expressions of the form e = lem{ey,...,e .}, r > 1, ¢; >
2. But, obviously, the minimality of the sum of orders will be achieved over
an irredundant one, i.e. an expression such thatlem{ey,...,e;—1,€;41,..., €}

< e, for every i € I. It is clear that, for every such expression and every
j=1,...,t, p?"ﬂ divides no e;, but p;? divides at least one ;. Choose
one such e; for every j. The irredundancy of the expression implies that
we are exhausting all e;’s. So, r < t. In particular, there are finitely many
irredundant expressions for e.

Now, using Lemma 2.7, we can simplify even more. Let e=lcm{ey,..., e, }
be an irredundant expression for e corresponding to a solution of the Prob-
lem 3.6. As noted above, pj-‘j divides, say, e;. Suppose that p§ also divides
ey for some 7’ # i and 0 < a < ;. Then, we can replace e; by e;//p§ in the
above irredundant expression for e, and still have an irredundant expression
for e. But, by Lemma 2.7 (i), the new expression has sum of orders less than
or equal to the original one. Repeating this operation several times, we have
proved that there always exists a solution to Problem 3.6 corresponding to
an irredundant expression, e = lem{ey, ..., e, }, where each p; (and hence
p;’) divides exactly one e;.

Thus, we only need to consider all expressions of the form e =
lem{ey,...,e.} where each e; is a product of some of the p?j, in such a
way that every p}lj appears exactly once. In other words, {ey,...,e,} rep-
resents a partition of the set {p{"*,...,p;*}. We have to visit all these
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possible partitions and choose one, say {ej,...,e,}, that has the small-
est possible value for n = orde, (¢) + --- + orde,(¢). Then, compute ir-
reducible polynomials a1 (x),...,ar(z) € F,[X] with orders ey, ...,e,, re-
spectively (following, for example, the comment after Theorem 2.4). And
finally, a(z) = a1(x) - - - a,(x) is a polynomial of the smallest possible degree
(namely n) among those of order e. This completely solves Problem 3.6 and
so achieves our goal.

Theorem 3.7. There exists an algorithm such that, given an integer e > 2,
it constructs a connection polynomial a(z) € F,[X] of the smallest possi-
ble degree (say n), and a seed v € Fg', for a linear feedback shift register
expanding a circular sequence of length precisely e.

Proof. According to the previous discussion, let us first factorize e = p®oe,,
where e, = pi*---pyt and a9 > 0, ¢ > 0, o; > 0 for ¢ = 1,...,¢, and
D, D1, - ., Pt are pairwise different primes. If e, > 2 (or equivalently ¢ # 0),
follow the above solution to Problem 3.6 for computing a polynomial, say
a.(z) € Fy[X], with order e, a.(0) # 0, and the smallest possible degree;
otherwise, put a,(z) = 1. Now, take a(z) = (z — )P ' Tla,(2) if ag >
0 and a(x) = a«(z) otherwise. By Lemmas 2.5 and 2.6, a(x) has order
ord(a(x)) = lem(p®, e,) = p®©e, = e. Thus, the cyclic length of u(z) =1
modulo a(x) is precisely e. And, by construction, a(z) has the smallest
possible degree among all such polynomials.

So, we have algorithmically constructed a monic polynomial a(z) € F,[X]
(and its companion matrix M) of the smallest possible degree, and a column
vector u € F' such that the sequence M ‘u has period exactly e. Finally,
use Lemma 2.2 to realize the same period on the left side of M. That is,
compute the matrix P referred to in the proof of Lemma 2.2, and consider
v = Pu. By Lemma 2.2, v M’ has period exactly e. Hence, the LFSR
with connection polynomial a(z) and seed v expands a circular sequence of
length precisely e and have the minimal possible size. O

We have no detailed analysis of the complexity of this algorithm, but it
seems to be polynomial on e. The relevant part is the computation of a.(x)
from e, (apart from the factorization of e itself, that we assume is easy or
given as an input). For doing this, one has to run over all possible partitions
of a set of ¢ elements. There are, at most, exponentially many on ¢2, but ¢
is at most logarithmic on e. So, in terms of e, the amount of work to do is
polynomial.

4. THE ALGORITHM

In the present section, let us make explicit the given algorithm. As seen
in the previous section, it works in an arbitrary finite field F,. However,
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since all the engineering applications involve the binary case, we shall give
a particularization to this case taking p = ¢ = 2 everywhere (the interested
reader can casily follow the algorithm in any other finite field F).

The input of the algorithm is an integer e > 2. The output will be the
connection polynomial, a(z) € Fy[X], and the seed v € FJ of the desired
linear feedback shift register.

Input: an integer e > 2.
Outputs: a polynomial a(z) € Fo[X] of degree n, and a vector v € F2.
Begin

(1) Factorize e. Decompose e as a product of prime numbers e =
200pMt . ptt with ag > 0, ¢t 2 0, ay > 0 for i = 1,...,¢, and
2,p1,...,p: pairwise different primes.

(2) If t =0, put a.(x) =1 and go to step (8).

(3) Set e, :=p7*---pi* > 3 and nmin := co.

(4) Enumerate the set of all partitions Py, ..., P; of the set of integers
{7, ... 0"} Let Pj = {Pj1,..., P, } be the pairwise disjoint
classes of the j-th partition, Pj; U---UP;, = {p{",...,p{"}.

(5) For j from 1 to [ do:

(5.1) For i from 1 to r; compute n; := lemgep, , {ordq(2)} (which
equals ordeGPj . 4(2) by Lemma 2.7).

(5.2) Compute n :=ny + -+ n;;.

(5.3) If n < nmin then let nmin :=n, r:=r;, and e; =lem P, ; =
HdePN d for every i=1,...,r. We then have e = lcm{ey,. .., e}
=€y €.

(6) Compute irreducible polynomials a1(x),...,a,(z) € Fa[X] of or-
ders ey, ..., e,, respectively (follow the comment after Theorem 2.4).

(7) Set a.(x) :=ai(x)- - a(x).

(8) Set a(z) := (z — 1)%as(z) for the connection polynomial, where
s=2%"141if oy >0, and s = 0 otherwise.

(9) Set u(z) =1 (or, alternatively, any polynomial coprime with a(z))
thought of as a vector u.

(10) Compute the companion matrix M of a(z), and the matrix P
referred to in the proof of Lemma 2.2. Then, compute v = Pu € FJ'.

End.
For step (4), a possible way of enumerating all partitions of the set
{p{*,...,p{"} is doing it recursively on ¢. Once we have all partitions of
{p, ..., p*7"}, it only remains to determine the position of p*, which

can join one of the already existing classes, or form a new class alone. The
advantage of this method is that one can simultaneously and easily calcu-
late the n;’s of the new partition in terms of the old ones: they are all the
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same except the one corresponding to the class where p{* belongs. And
computing this is as easy as doing the least common multiple between the
existing one and ord,,e: (2).

5. EXAMPLE: A BINARY SEQUENCE OF LENGTH 360

Let us find a 360 bits binary sequence expanded by a LFSR with connec-
tion polynomial of the minimum possible degree. This sequence can then
be used to build an angular position encoder with a resolution of exactly
one degree, minimizing the number of sensors in use. We will follow the
algorithm given above. The desired order is e = 360 = 23325 so, g = 3,
t =2 and e, = 325 = 45.

In step (4) we find that the set of integers {32, 51} has only two partitions,
namely P; = {{32,5'}} and Py = {{32},{5'}}.

When running step (5) for P; (11 = 1), we have n = n; = lem{ordg(2),
ords(2)} = lem{6,4} = 12. For Py (r2 = 2), we have n; = ordg(2) = 6,
ng = ords(2) = 4 and so, n = 6 + 4 = 10. So, the second partition is the
best one and we end up with nmin = 10, r = 2, e; = 9 and e; = 5 (of
course, 45 =9 - 5).

In step (6) we have to compute irreducible polynomials a;(x),az(z) €
F5[X] of orders 9 and 5 respectively. Following the comment in the first
paragraph after Theorem 2.4, aq(x) must be an irreducible factor of

9 —1 9 —1

6 3
= = ].
lem{z3 -1,z -1} a3-1 e+l

which is itself irreducible. Hence, a;(z) = 2° + 2® + 1. Similarly,

51
ag(x):xm_l =zt+ 2+ 41

Thus, in step (7) we have a.(z) = 21+ 2% + 28 + 25 + 22 + v + 1, a
polynomial of the minimal possible degree among those of order 45. We
point out here that, in this particular example, a1(z) and aq(x) are unique
because there exist only one irreducible polynomial of order 9, and only one
of order 5; in general, there are several and any choice will give raise to
different connection polynomials a(x), all of them valid for our purposes.

In step (8), we put s = 2371 + 1 = 5 and compute the desired connec-
tion polynomial a(z) = (z — 1)%a.(z) = 2 + 2'2 + 211 + 219 + 29 +
2+ 2" + 2% + 2% + 2t + 23 + 1. In step (9) we consider the vector
u=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

Finally, in step (10) we compute the matrix P of Lemma 2.2: it is the
symmetric 15 x 15 invertible binary matrix P = (p; ;) such that p;, ; = 1
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if i +j € {16,19,20,21,23,26,27,28,29}, and p; ; = 0 otherwise. Then,
v = Pu=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1)T.

This means that the LFSR with connection polynomial a(z) and seed v
expands a circular sequence of length e = 360, as desired:

000000000000001001110100111100100101111001
110011101110111010100000011100001010010100
100000100110011001101111101101011010111100
011111101010001000100011000110000101101100
001101000110111111111111110110001011000011
011010000110001100010001000101011111100011
110101101011011111011001100110010000010010
100101000011100000010101110111011100111001
111010010011110010111001.

That is, the given list of bits, considered circularly, has length 360 and
the property that all subwords of 15 consecutive bits are different to each
other. Of course, there are 360 such 15-tuples hence, this sequence can be
used to measure positions of a circular device with precision exactly equal
to one degree, and using 15 sensors. Furthermore, 15 is the smallest possible
degree realizing this i.e., no connection polynomial of degree less than 15
has any possible seed expanding a circular sequence of length 360. So, 15
is the minimum number of sensors needed among all linear feedback shift
registers expanding such sequences.

A totally different question (and out of the scope of the present paper) is
how to improve even more, using non-linear methods. An obvious thing to
do first, is to check if the obtained sequence works with fewer sensors. As
it was constructed, all the 360 consecutive 15-tuples are different to each
other, but it turns out that the same is true with the 360 consecutive 14-
tuples (and fails for 13-tuples). This way, we can use the same sequence
saving one sensor for free. But this phenomenon depends, in a strongly com-
binatorial way, on the particular sequence analyzed (i.e. on the seed chosen
in step (9) of the algorithm). The following table contains the number of
initial seeds expanding sequences of length 360, but in such a way that all
the 360 consecutive 15-tuples, 14-tuples, 13-tuples, 12-tuples and 11-tuples,
respectively, are pairwise different:

#ofseeds | - |16 12| 6 | 8 | - | -

min # of sensors | 15 | 14 | 13 |12 | 11| 10| 9
sensorssaved | O | 1 [ 2 | 3 | 4|5 1|6

Clearly, an absolute lower bound for the number of sensors needed in this
example is 9 (since 2% < 360 < 2°). And, according to [4], there does exist a
circular sequence of length 360 such that all 9-tuples of consecutive bits are
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pairwise different. However, the method given in [4] to find such a sequence
is not effective (it is comparable to brute force searching among all possible
2360 sequences), while our method is fast. For completeness, we carried out
this brute force search and found the following sequence of 360 bits

111110100000000100000010100000100100000110
000000110100001000100001010100001100100001
110000001110100010010100010100100010110000
010110100011000100011010100011100100011110
000011110100100100110000100110100101010100
101100100101110000101110100110010100110110
000110110100111000100111010100111100100111
110000111110101010110001010110101011100101
011110001011110101100111,

allowing to measure exact degrees in a rotating disk making use of only 9
sensors, the absolute minimum.

6. CONCLUSIONS

This paper presents an extension to previous works in absolute angular
position measurement systems. It starts by focusing the problem of search-
ing for linear feedback shift registers being able to expand closed binary
sequences of prescribed length. First problem was to demonstrate the ex-
istence of solutions for any arbitrary cyclic length. And secondly, to find
the smallest size of a LFSR expanding such a sequence. These two prob-
lems were already solved in [4], but for arbitrary sequences (not just those
linearly generated) and not giving any insights on the way of constructing
such cycles (apart from brute force). In the present paper, we show that all
lengths are also realizable using linear feedback shift registers, and provide
an efficient algorithm to construct one of the smallest possible size.

For going through the solution, the paper starts by addressing well known
facts about finite fields and polynomials over them, which are closely related
to cyclic code expansion using linear methods. Then the technical part
(results from 3.1 to 3.5) comes, where we analyze the lengths obtainable
by a given LFSR when moving the seed. Out of this analysis, we produce
an algorithm for constructing a LFSR of the smallest possible size, and a
seed expanding a sequence of the prescribed length (Theorem 3.7). The
algorithm is explicitly written in section 4, particularized to the binary
case. Finally, the paper develops a classical example, namely the design of
a connection polynomial and a seed for a LFSR expanding a cyclic sequence
of exactly 360 positions in length, and using the minimum possible number
of reading sensors. This minimum number is discussed in case of dropping
the linearity of the shift register.
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