TESTING CAYLEY GRAPH DENSITIES

G. N. ARZHANTSEVA, V. S. GUBA, M. LUSTIG, AND J.-PH. PRAUX

ABSTRACT. We present a computer-assisted analysis of combinatorial proper-
ties of the Cayley graphs of certain finitely generated groups: Given a group
with a finite set of generators, we study the density of the corresponding Cayley
graph, that is, the least upper bound for the average vertex degree (= number of
adjacent edges) of any finite subgraph. It is known thatmeagenerated group

is amenable if and only if the density of the corresponding Cayley graph equals
to 2m. We test amenable and non-amenable groups, and also groups for which
amenability is unknown. In the latter class we focus on Richard Thompson’s
groupF.

1. INTRODUCTION

Let G be a group with a finite set of generatatof cardinalitym. There is an
associate@Cayley graph® = C(G, X) (see§2), which has vertex set in bijection to
G, and at every vertex there are precisehy adjacent edges. The combinatorial
properties of the Cayley graph reflect the algebraic structure of the ggoup
this paper we investigate thiensityof Cayley graphs, introduced first in [5]. This
is a numerical parameteéx(C), defined below, which takes values betw@esnd
twice the number of group generators. It strongly depends on the isoperimetric
properties of the Cayley graph and hence on tho$g @fhich are often expressed
in terms of the graph isoperimetric constanfC) (see§2 for the definition). It
is known thati,.(C) + 6(€) = 2m, see [5]. A group isamenablef and only if
1,.(€) =0, or, equivalentlyd(C) = 2m.

In order to estimate the density of a Cayley graph, one can compute densi-
ties of certain of its finite subgraphs. We propose a simple algorithm to con-
struct an optimized subgraph (i.e. with a greater density) from any given fi-
nite subgraph of the Cayley graph. We apply the algorithm to amenable groups,
non-amenable groups, and to groups for which it is not known whether they are
amenable. More specifically, we investigate finitely generated free abelian groups,
Baumslag-Solitar groups (amenable and non-amenable ones), the restricted wreath
productZ. Z, and Richard Thompson’'s grodp We analyze empirical data ob-
tained by e&C*™t implementation of our algorithm.
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We quote here only one of the numerical results obtained from our algorithm,
which we find particularly interesting:

Sample result: There is a subset of cardinalityp169678n Thompson’s grouy
that has densitp.89577with respect to the classical generating system of cardi-
nality m= 2.

AcknowledgementsPart of this work was conducted while the authors were
visiting the Centre de Recerca Matatica in Barcelona. We would like to ac-
knowledge the warm hospitality and support. Specifically we would like to thank
Jo Burillo and Enric Ventura for their interest in our work, and for useful discus-
sions.

2. AMENABILITY AND F@LNER FAMILIES

Let G be a group generated by a finite 3et Let C = C(G, X) be the corre-
sponding (right) Cayley graph. Recall that the set of vertice8 &fG, and that
the set of oriented edges &x X*. For any edge = (g,x) the initial vertex is
g, and the terminal vertex igx. Theinverseof the edgee, considered here sepa-
rately frome, is the edges™! = (gx,x1). Thelabel of e= (g,x) is defined to be
the generatok € X*1. The groupG acts canonically o® from the left (by left
multiplication of the vertices of). Notice that with the above conventionxiand
x~1 both belong toX, then altogether there are 4 edges (two for each orientation)
with endpointsgy andgx. This holds in particular ik € X has order 2.

Throughout the paper we consider finite graphghich are typically subgraphs
of C. We always require that with any edgalso the inverse edge ! belongs to
A

Thedensityof a non-empty finite graph is defined by

2vev (A) degv)
O0(A) = ————
() WA

wheredeqv) denotes the number of oriented edges with initial vertex(A) is

the set of vertices of, and#V (A) is the cardinality oW/ (A).
We define thelensityof the Cayley grapl® = C(G, X) as supremum

3(€) = supd(A),
A
whereA runs over all non-empty finite subgraphs@f
Similarly, for any subgrapl of € one defines the isoperimetric constant
#OA
1(A) = m,

whered A denotes the set of verticesAthat have an adjacent edgedr- Awhich
has its other endpoint ii — A. One concentrates mostly on the cassatirated
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subgraphsA C €, i.e. subgraphs which contain any edgeCivhich has boths
endpoint inA.

Lemma 1. For every non-empty finite saturated subgrafpbf C one has:
2m(1—1(A)) < 5(A) <2m—1(A).
Proof. Note that for any finite saturated subgraflC C the complement cdA

) . ) : d
in V(A) consists entirely of vertices of degrée. Henced(A) = %&qv) =

zvexggqv) 4 2evW-oaZM Byt o vertex inJA has at least degréand at most de-

WA
; ; Y (A)—#0A #IA VY (A)—#0A
gree2m—1in A, which showSngw)T <O(A)<(2m-1) /(A T2m ;\/)(A)

and hencm-—2mi (A) < 6(A) <2m—1(A).

A variation on the invariant(A) is given by the invariant, (A) which is defined
in precisely the same way except that theer boundarydA is replaced by the
Cheeger boundargf A, i.e. the number of edges ththat have one endpoint iy
and one endpoint i€ — A. The Cheeger boundary behaves a little better than the
inner boundary; for example we derive directly from the definition the inequality
O(A) + 1.(A) < 2m, which becomes an equality X is saturated. Similarly, one
sees directly that:

1(A) < 1,.(A) <2mi(A)
The infimum of the values of,(A), over all non-empty finite subsefsof C, is
called theisoperimetric constanf the graph®, and is denoted by, (C).

Isoperimetric properties of graphs play an important role in the study of
amenable groups. There are many equivalent characterizations of amenability in
the literature, see for example [4] and the references given there. We use the fol-
lowing one.

Theorem 1. A finitely generated grouf is amenable if and only if for some
(or, equivalently, for any) finite generating S€étthe Cayley graplt = C(G, X)
satisfies:

1,(€)=0

A family of non-empty finite subset8, of C is called aFglner family(or a
family of Fglner setsif
r!im 1.(An) =0.
In light of the above discussion this is equivalent to
rI]im O(An) =2m.

Hence, the groufs is amenable if and only if there exists a family of Fglner sets

AnCC.
For certain classes of groups there are well known Fglner families. For example,
if Gis of polynomial (or subexponential) growth, then one knows that with respect
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to any finite generating syster of G the set ofballsB(n), which consists of all
points inC of simplicial distance smaller or equaltidrom the neutral elemenite

G, is a Fglner family [7, Proposition, Ch.VII.C.34]. Here we mean by simplicial
distance the distance in the metric space obtained @dfrane gives to every edge

the length 1. Examples for groups of polynomial growth are free abelian groups
and certain Baumslag-Solitar groups, which will be considered below.

However, Baumslag-Solitar groups (other tHa§1,1) or BS1,—1)) are of
exponential growth, but some of them (not all !) are still amenable. The same
is true for the wreath produ@.Z, also considered below. In this case a Fglner
family exists inC, but the ballsB(n) will not constitute such a family: There is
a uniform upper bound strictly smaller th@m to the density of ever(n). Of
course, this last statement is true alsGiis non-amenable.

3. GROUP PRESENTATIONS AND NORMAL FORMS

In order to compute in a finitely generated gra@pone needs aormal from
for the elements o6: For example, irfZ x Z = (a,b | aba *b~! = 1) the element
(2,1) can be written ag?b, aba, baa, but also asaba 'bab'a or a-®%ba’’. It
is an essential restriction on the class of groGpsonsidered here that we require
the existence of a uniquely determined normal form for the elemen® ahd
that this normal form can be recursively calculated. Notice that the generating set
of G used in the normal form may well differ from the systehwhich is used to
build the Cayley graph; in some cases this discrepancy is a rather convenient from
a computational point of view.

3.1. Free abelian groups. The free abelian group of rank is defined by the
presentation:

(X1,X2,...,%m | XiX; = Xjx forall 1<i<j<m)

A word in the canonical generataxs, Xo, . . ., Xm and their inverses is in normal
form if and only if it is of the form

P1y P2 P
Xl X2 ”'Xrn

3.2. Baumslag-Solitar groups. Let p,q > 1 be integers, and IS p,q) denote
the Baumslag-Solitar group defined by the presentation:
(a,b|abPat = b

A word in a*®, b*! is in normal form whenever it is written in a reduced form (in
the sense of HNN extensions [8]):

pbPogdipPL. .. gdnpPn
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with n> 0 and po, p1,.--,Pn € Z, 01,02,...0n € Z\ {0}, and such that for =
1,2,...,n—1 one hasp; > 0, and p, > 0. Furthermore, ifgj > 0 then one has
pi < |p|, and ifg < Othenp; < |q]-

3.3. The wreath product Z:7Z. We define this group by the non-finite presenta-
tion:
(@,...,X_1,X0,X1, ... | X =Xiy1, XiXj = XX forall i,j € Z)
A word in the generators or their inverses is in normal form whenever it is of the
form
anxiliixil;z . 'Xi':]n ,
wherene Z,i1 <ip <--- <ip, andpy, p2,..., pn € Z\ {0}.
In fact, this group can be generated &wndxg. We will refer to this as the
canonical set of generators.

3.4. Thompson'’s groupF. Thompson’s group [3] is the group of all piecewise-

linear orientation preserving self-homeomorphisms of the unit interval sucti that

singular points are on dyadic numbers, diiglall slopes are integer powers af
The groupF admits the following infinite presentation:

(X0, X1, X2, ... | XjXi = XiXj41 if i < j)
It turns out that it has a finite presentation on two generatgrg. We will use

this canonical set of generators in our computations. The genergtarglx; are
given by the following functions, see also Figure 1.

t 0<t<1/2
t/24+1/4 1/2<t<3/4
t—1/8  3/4<t<7/8
2-1  7/8<t<1

t/2 0<t<1/2
Xo(t) = t—1/4 1/2<t<3/4 x1(t) =
2t—-1 3/4<t<1

We will consider two kinds of normal forms for the Thompson gréupThe
first one is given by words

Xopoxfl . XﬁnX'TQn .. XIleacIO
wheren, po, P1, - - -, Pn, 0,91, - - -, On @re non-negative integers such that

(i) exactly one ofp, or gy is non-zero, and

(ii) if px > 0andgy > 0for some0 < k < n, thenpy1 > 0o0rggy1 > 0.

The left halfxg°xf* - - xi" is called thepositive parbf the word and the right half
o - x; xg © the negative partA word is said to bgositive(or negativgif its
normal form only consists of its positive (or negative) part.

The second normal form is given by the so calteduced forest diagranf2].
Recall that a binary forest is a finite sequence of binary trees, together with a
pointer on one of the trees. The number of leaves in a binary forest is the sum
of the numbers of leaves in its binary trees.fakest diagranis a pair of binary
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FIGURE 1. The canonical generatoxg andx; of F.

forests which have the same number of leaves. We speak dfohen forestis
well as of thetop forest see Figure 2.

l
1 W A4
FIGURE 2. A forest diagram with 8 leaves

A caretin atree is a pair of leaves with the same parent vertex. A forest diagram
is reduced if it has no opposite pairs of (bottom and top) carets (cf. [2]). For
example, the diagram of Figure 2 is reduced.

One associates to an arbitrary reduced forest diagram an elementih
normal formxPxP? - xBrxa & - - x; %x; © as follows:

— Enumerate top and bottom leaves, as well as top and bottom trees, from the left
to the right, starting at 1.

— The top (or bottom) forest gives the positive part (or negative part respectively)
of the normal form.

— The exponent of;, fori > 0, equals to the maximal length of simple paths in the
top forest starting at the" top leaf and following the top-to-right direction (the
exponent is 0 whenever such a leaf does not exist).

— The exponent oXi’l, fori > 0, equals to the maximal length of simple paths in
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the bottom forest starting at thi@ bottom leaf and following the bottom—to-right
direction.

— The exponent afy is n whenever the top pointer is on tiie+ 1) tree.

— The exponent oial is nwhenever the bottom pointer is on the+ 1) tree.

For example, the reduced forest diagram of Figure 2 gives the element
XoxExixex; X g >,

Notice that adding a top and a bottom leaf on the right of a forest diagram does
not change the corresponding elementofUp to this trivial transformation, it
turns out that each element Bf can be represented by a unique reduced forest
diagram (cf. [2]). This is the second normal form we are interested in.

For example, the generatoxg x; and their inverses are represented by the re-
duced forest diagrams given in Figure 3.

l l
.TO : Z, ./\.
T T
-1 l 1 l
" W
I 1

FIGURE 3. Forest diagrams for the generatggsx; and their inverses

Below we use the following definitions: A binary foresttiwvial if each of its
subtrees consists of a single vertex only, and if the pointer is on the first of them.
A forest diagram isnegative(or positive if its top (or bottom) tree is trivial; in
such a case the normal form of the associated elemdnihegative (or positive
respectively). Théeightof a forest is the maximal height of one of its binary trees;
it can take any value between 0 and the number of leaves minus 1 (or equivalently,
the number of carets). For instance, the top forest and the bottom forest of the
forest diagram in Figure 2 have height 2 and 3 respectively.

4. SPECIAL SUBSETS INTHOMPSON S GROUPF

For the first three classes of groups considered in this paper, free abelian groups,
Baumslag-Solitar groups, and the wreath prodix, all of our numerical exper-
iments are performed on balBn) of radiusn in the Cayley grapt®, centered
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around the vertex defined by the neutral elemertG. For the fourth group,
Thompson’s groug-, we will work with balls, but also with other kinds of sets,
which we specify now.

4.1. Left positive balls. Letn > 0. Theleft positive ball of radius, denoted by
LP(n), is defined to be the maximal subgraph in the Cayley graph
C = C(F, {xo0,x1}) which contains only inverses of positive words

X5

as vertices. Notice that far > 6 the left positive ballLP(n) cannot be a tree:
Indeed, our densification algorithm (s&8) deletes subtrees from some of the
LP(n), but it does not deleteP(6) (cf. §9.9). This shows in particular thaP(6)

is not a tree. Furthermore, obvioudl(n) is always a subgraph &fP(n+ 1).

OxPL- o xB with  po+pr+---+pc<n

4.2. Negative forests.A negative forest witm leavesn € N, denoted byNF(n),

is defined to be the maximal subgraph of the Cayley graph which contains only
vertices that are given by group elements which are represented by a negative
reduced forest diagram with at masieaves. Obviously one h&d(n) C NF(n+

1). The negative forest with 3 leavaé$F(3), is given in Figure 4.

G
G (s

FIGURE 4. The negative foretiF(3)

In the graphical representation of a negative forest we only draw the represen-
tative bottom forest. For example, in Figures 4 and 5 below the genergtarsd
X1 are given by simple and double arrows respectively.
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Notice that even thougNF(3) is a treeNF(n) is not a tree fon > 5 (see, for
example§9.10).

4.3. Belk-Brown sets. The Belk-Brown set with leaves and of height at mdst

for n,k € N andk < n, denoted byBB(n, k), is the maximal subgraph of the Cayley
graph € which contains as vertices only elements that have a negative reduced
forest diagram withn leaves and height at mokt[2]. For instance, Figure 5
represents the Belk-Brown $8B(4,1). Note thaBB(4, 1) is not a tree (it contains

the loopxg 2x; 1xgx; 1xg Ixaxoxa).

T

:0

«— «—
‘
—> «— —

FIGURE 5. The Belk-Brown seBB(4,1).

Obviously one haBB(n,k) ¢ BB(n+1,k) andBB(n,k) C BB(n,k+1). In par-
ticular BB(n, k) is not a tree whenever> 4 andk > 1. Since the height of a forest
is at most the number of its leaves minus 1, we HBBén,n— 1) = NF(n). This
shows thafNF(n) is not a tree whenever > 4, as already stated in the previous
section.

5. THE DENSIFICATION ALGORITHM

In this section we describe the algorithm by which we can improve the density
of a given finite graph, through passing over to a subgraph.

Given a finite subgrapA in the Cayley grapi¢ of a finitely generated grou@,
the algorithm applies a finite sequence of reductions (given in detail below), and
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returns a new “densified” subgragh If the initial finite graphA is sufficiently
dense, then the returned graphwill have even higher density. Otherwise, for
example ifAis a cycle or a tree, it is possible that the algorithm will collapde

a single vertex. As our applications concern all Cayley graphs built on 2-element
generating systems, our algorithm is tuned to graphs with vertex degree uniformely
bounded byl. The necessary modifications for higher vertex degree, if needed, are
fairly easy to device.

We first need to introduce some terminology. Kebe a finite graph. Achain
is a maximal simple path iK where all of its vertices, except for the endpoints,
have degree 2 iK. The length of a chain is the number of its vertices of degree
2. A cycleis a simple loop irK where all vertices have degree 2Kn A tripod
is a subgraph oK which consists o8 chains which have preciselyvertexv in
common, and/ is an endpoint in each of the three chains. The length of a tripod
is the sum of the lengths of its three chainsdégenerated tripot$ a subgraph of
K which consists of two chainsandc/, such that the two endpoints oftoincide
with a vertexv, and precisely one of the endpointsobfilso coincides witlv. The
length of a degenerated tripod is the sum of the lengths of the two chaimdc’.

We require that, in case of a tripod or a degenerated tripod, the wentesxdegree
3in K; i.e. there is no other edge adjacentto

We will now define four types of elementary reductions. They correspond to
the removal of chains, cycles, and tripods (degenerated or not)Kronhenever
their length is large enough. Any such transformation will in most cases increases
the density, see Lemma 2.

For a finite graptK with densityd(K) we define the following parameters: If
S(K) # 2, 1etNe(K) = max(0, 538 =), Ne(K) = max(0, 5zt — 1) andNg(K) =
max(0, 5é— —1). If 3(K) = 2, we setNe(K) = N(K) = Ng(K) =0.

(R1) Remove any subtree &f.
(R2). Remove any cycle df.
(R3). Remove all chains of length greater tHeg(K) from K.

(R4). Remove fromK some tripod of length greater thaw(K), or some de-
generated tripod of length greater thdg(K). Repeat this procedure as often as
possible.

Lemma 2. If K is a finite graph with densit§(K) > 2, then any of the above el-
ementary transformationdRl), (R2), (R3) or (R4) transformsK into a subgraph
K’ of strictly larger density oB(K).

Proof. It suffices to check that the number of edges removed in any of the ele-
mentary transformations is strictly smaller thafK) times the number of vertices
removed. This is trivially true for the transformatio(R1) and (R2), since any

tree has one more vertex than unoriented edges, and any cycle has equal number
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of vertices as unoriented edges. Since according to our conventions we have to
count an edge and its inverse separately, this gives directly the desired inequality.
For the reduction{R3) we observe that any chamof lengthn > N¢(K) has
precisely2n+ 2 edges (counting again an edge and its inverse separately) and
n+ 2 vertices, and while all of the edges are removed wijtbnly then interior
vertices ofc are removed. Sinc&(K) > 2 andNe(K) = max(0, 5é—), one has

N> 55— and hence(K) > 2 42 = 272, which precisely what we need.

Any tripod of lengthn consists precisely d®n+ 6 edges and + 4 vertices,
wheren+ 1 of them (as well as all edges) will be removed. A degenerated tripod
of lengthn consists precisely d®n+ 4 edges anch+ 2 vertices, of whiclm+ 1
will be removed. The further calculation foR4) is very similar to the above one

for (R3) and thus left to the reader. O

The algorithm proceeds as follows:

Given a finite graph K
DO WHILE: the graph K is changing:

Apply successively reductions (R1), (R2), (R3), (R1), (R2),
(R4)
END
RETURN \I the densified grapK

Below we will call each successive applications of the reduct{iis, (R2),
(R3), (R1), (R2), (R4) around

6. THE ALGORITHMIC PACKAGE

As mentioned in the introduction, our numerical results were obtained by means
of computer calculations, executed by a program writte@r'ifi. In this section we
give a brief description of the three parts I, Il and Il of our programmed algorith-
mic package, of its software routines and also of the assumptions and limitations
involved. A fourth computational feature, concerning the linear interpolation of
the numerical data obtained by parts | - lll, and in particular calculatingisn-
polated limit densitys performed using/latlab and is described if8 below.

Part | of the algorithmic package consists of subprograms, one for each class
of groupsG considered here, that transform a given product of generators or their
inverses into a word in normal form as introduced®

Part Il calculates, for a given parameterthe finite graph$(n), or, in case
where the group in question is ThompsoR'sthe finite graph&P(n), NF(n), or,
for givenk andn, the graptBB(n, k), as defined ir§4.

Part 11l calculates, for any finite graph (= the graph computed in part 1) a
densified subgraph according to the algorithm presented;i
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It is an important characteristics of our algorithmic package that it is organized
in a strictly modular fashion where the different parts work independently from
each other. This gives the possibility to easily improve specific parts without hav-
ing to change the rest. For example, new classes of groups can be investigated by
adding new subprograms to part | without changing parts Il or lll, new families of
sets for the known groups can be investigated without changing | or Ill, and the
densification algorithm could be embellished and reapplied to the groups and set
families already programmed without ever changing | or II.

6.1. What the program can do. The program works in a console mode. A con-
textual menu allows the user to choose any of the actions. The actions, besides
saving a copy of the outputs into a text file and offering some further options, con-
sists mainly in:

— Choose one of the predefined groups; all further computations will concern this
group.

— Perform direct computations, like writing an element or a product of elements in
normal form.

— Construct one (or a sequence) of the predefined finite graphs as explajded in
and compute their density (or alternatively their isoperimetric constant).

— Apply to such a finite graph (or sequence of finite graphs) the algorithgh.of

The program provides some extra information, like the density at each step, and
further details concerning the application of the elementary reductions (R1)—(R4).

6.2. What the program is made of. The program is written in standa@f " and
can be compiled either doinux or Win32 platforms. It can be easily adapted to
compilation on other platforms.

The program makes intensive use of the object-oriented abilitieS™of
Groups, graphs, vertices are all objectsdlarss ); all the main algorithms cor-
respond to general functions which takes data as input (like a group), and returns
data. The functions which construct balls in the Cayley graph, and implement the
algorithm of§5 are general and can be applied to any implemented group or finite
graph.

Elements are given by strings of characters. This allows more choices when
one encodes an abstract group element. Usually, strings look like words on given
canonical generators and inverses. So they are really close to their mathematical
meaning. However, for example in the case of Thompson's gFaughey don't
represent words on the canonical generators, but encode normal forms.

6.3. Limitations. The graphs are constructed in the physical memory (RAM) of
the computer, and their size is almost proportional to the number of vertices. The
main limitation of our computation is obviously the size of the computed graphs.
This is closely related to the complexity of the group: In groups of polynomial
growth, our computations d8(n) can easily be implemented forgoing up to
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hundreds or thousands, while in groups of exponential grovgibes hardly up to

20. On the other hand, the program can handle free groups of rank at most 128, free
abelian groups of rank at most 128, and words in wreath productd yétthmost

127. For the grouf the program can handle normal forng8 - - - xi"x, - - - x; %

with nup to 127.

7. SUMMARY OF EXPERIMENTAL RESULTS

In this section we give an overview of our experimental results. For each of the
classes of groups consideredkand for each type of the special subsets defined
in §4 our presentation contains the following parts:

(a) — known theoretical results for the group;

(b) — best values of densities calculated by our program;
(c) —analysis of the work of the densification algorithm;
(d) —values of the interpolated limit density;

(e) — comments.

In the next section we give a graphical interpretation of our experimental results,
and in Section 9 we present the numerical data obtained.

7.1. Comparative analysis I: Amenable vs non-amenable.

7.1.1. Free abelian group& x Z andZ x Z x Z.

(a) Both groups are of polynomial growth, and hence Ha(s) are known to be

a family of Fglner sets. The slow growth allows an easy implementation of balls
B(n) for largen (for hundreds or for thousands). Also, theoretical values of the
density of balls and of densified balls are very easy to calculate.

(b) The ball of radius 301 i x Z has density 3.98673 before and 3.98678 after
the densification algorithm is applied. The denisities of the B&l71) and of

B(171) in Z x Z x Z are 5.94752 and 5.94812 respectively.

(c) The densification algorithm does not change the initial density significantly:
the increase of density is less than 1%. It deletes only 4 vertices in c@se B6f

(d) The interpolated values of the limit density coincide with the theoretical values:
4 for Z x Z and 6 forZ x Z x Z respectively. Moreover, this is the case, both in
small scale (fon=1,...,15) and in large scale (fan=1,...,300 calculations,
which numerically confirms that balls constitute a Fglner family.

7.1.2. Baumslag-Solitar groupS(1, —1).

(a) The group is virtually abelian. Hence it is of polynomial growth and amenable,
and ballsB(n) are Fglner sets.
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(b) The ball of radius 301 has density 3.98673. The densified ball of radius 301
has density 3.98678.

(c) The densification algorithm removes only 4 vertices and the increase in density
is negligible.

(d) The interpolated limit density is equal to 4. In particular, one sees numerically
that balls constitute a Falner family.

(e) Balls in the Cayley graph @S1,—1) are isomorphic (as graphs) to balls in
the Cayley graph of. x Z. Hence one expects the same results aZ.fefZ. This

is indeed the case even if implementation8&1, —1) and of Z x Z are rather
different: the former belongs to the class encoding Baumslag-Solitar groups, and
the latter refers to the class encoding abelian groups.

7.1.3. Baumslag-Solitar grouBS1,2).

(a) This is an amenable group of exponential growth. Hence balls do not form a
Foalner family.

(b) The ball of radius 19 has density 3.14771. The densified ball of radius 19 has
density 3.424309.

(c) The densification algorithm yields a 9% increase in density and slightly reduces
the size of balls: approx. 40% of vertices are removed.

(d) Our interpolation gives limit densitg.22 for balls and 3.48 for the densified
balls. They are quite close to the optimal value 4.

(e) This is the first example where the densification algorithm improves the (inter-
polated) limit density substantially. Of course, we know from the amenability of
BS1,2) that there is some family of subgraphs which is Fglner, and our calcula-
tions indicate that, even for large densification of ball8(n) is not sufficiently
strong to build such a family.

7.1.4. Baumslag-Solitar grouBS2,2).

(a) This group containg, x Z as a subgroup (of index 2) and hence it is not
amenable.

(b) The ball of radius 18 has density 2.58585. The densified ball of radius 18 has
density 2.928.

(c) The densification algorithm induces a 14% increase in density and remove
approx. 40% of vertices.

(d) The interpolated values of the limit density of balls and of densified balls are
2.64 and 2.97, respectively.

(e) An interesting point is that the algorithm runs only through one round.
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7.1.5. Baumslag-Solitar groupS 2, 3).

(a) This group is not amenable. Hence the density of balls can not be close to the
optimal value 4.

(b) The ball of radius 14 has density 2.40677. The densified ball of radius 14 has
density 2.79782.

(c) The densification algorithm generates a 16% increase in density and removes
relatively many vertices: approx. 70%.

(d) The interpolated values of the limit density of balls and of densified balls are
2.44 and 2.86, respectively.

7.1.6. Wreath producf.Z.

(a) This is an amenable group of exponential growth. BB{ls) are not a Fglner
family.

(b) The ball of radius 16 has density 2.32838. The densified ball of radius 16 has
density 2.90938.

(c) The densification algorithm produces a 25% increase in density and removes
approx.2/3 of vertices. Thus the algorithm is quite efficient in this case.

(d) The interpolated values of the limit densities of balls and of densified balls are
2.43 and 3 respectively.

7.2. Comparative analysis Il: The Thompson group F. Amenability of F is
unknown, but one knows th&tgrows exponentially [3], so that balls will certainly
not give a Fglner family.

7.2.1.BallsB(n) in F.

(b) The ball of radius 15 has density 2.14905. The densified ball of radius 15 has
density 2.7183.

(c) The densification algorithm induces a 25% increase in density. It removes more
than 80% of vertices.

(d) The interpolated limit densities of balls and of the densified balls are 2.23 and
2.8 respectively.

(e) The results are quite similar to the above case of the wreath prédéctAn
interesting point is that the densification algorithm performs at most three rounds
for n < 15. However it suddenly takes 132 rounds to perform calculations for
n= 15and the density increases a lot. This allows to believe that there may well
exist a subset of much higher density than given by our interpolation.
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7.2.2. Left positive balld.P(n) in F.

(b) The left positive balLP(19) has density 2.15988. The densified left positive
ball LP(19) is of density 2.74349.

(c) The densification algorithm yields an increase in density of approx. 27%. This
is one of the best values obtained. The densified left positive balls are particulary
small: up to 90% of the vertices are removed by the densification algorithm.

(d) The interpolated limit densities of left positive balls and of densified left posi-
tive balls are 2.22 and 2.97 respectively.

(e) The densification algorithm appears to be most efficient in case of these partic-
ular graphs.

7.2.3. Negative forestdlF(n) for F.

(b) The negative forediF(14) has density 2.47619. The densification of this
subgraph gives density 2.79448.

(c) The densification algorithm is rather inefficient: it gives a 13% increase in
density and removes less than 60% of the vertices.

(d) The interpolation of the limit density gives values 2.67 and 3.03 for the negative
forest and for the densified negative forest respectively.

(e) The interpolated values of the limit density are exceptionally close to the cal-
culated ones: the norm of the residues is appi@x>.

7.2.4. Belk-Brown set8B(n) for F.

(a) SinceBB(n,n— 1) = NF(n) both implementations have the same behavior,
even though distinct routines and functions are used.

(b) The Belk-Brown seBB(17, 3) has density 2.82642. The densifiedBB{17, 2)
is of density 2.89577. This is comparable to the cas@if.

(c) The densification algorithm increases density by less than 13% and removes
approx. 60% of vertices.

(d) The interpolation of limit densities gives 3.18, both before and after the densi-
fication. Thus the densification algorithm seems to be inefficient in this case.

(e) Our interpolations do not agree with theoretical values: it has been announced
that the limit of density of Belk-Brown sets tends to 3.5 [2].

Notice that the best value of density BB(n,k(n)) is obtained wheneve((n)
increases, see Figures 40 and 41. At the same time, the best value of densities of
BB(n,k(n)) appear fok(n) = 3 (or for slowly growingk(n)).
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For n fixed andk large enough all th&B(n,k) have the same density and the
same number of vertices. It is an interesting question whether these finite graphs
are isomorphic as subgraphs of the Cayley graph.

8. GRAPHICS AND INTERPOLATION

We give a graphical interpretation of our experimental results. The main nu-
merical results are given i§9. Each subsection below concerns the density of a
family of finite graphs in a given group, and its behavior under application of the
densification algorithm. We study successively:

(8.2) ballsB(n) in Z x Z,

(8.3) ballsB(n) in Z x Z x Z,

(8.4) ballsB(n) in B§(1,-1),

(8.5) ballsB(n) in B1,2),

(8.6) ballsB(n) in BS2,2),

(8.7) ballsB(n) in B§2,3),

(8.8) ballsB(n) in Z Z,

(8.9) ballsB(n) in Thompson'’s groufs,
(8.10) left positive ballsLP(n) in F,
(8.11) negative forest8lF(n) in F,
(8.12) Belk-Brown'’s set8B(n) in F.

Except for Thompson’s group, amenability (or not) of these groups is well
known (se€?2). In order to estimate the limit (or limit superior) of the density of
the families of subgraphs considered, we apply a first order approximation to the
numerical data obtained from our experiments. This interpolation allows us, in a
certain sense, to extrapolate this limit of densities by a value called “interpolated
limit density” of this family of subgraphs. Of course, the reader has to be aware
that for groups with exponential growth this does only estimate a lower bound to
the density of the Cayley graph, compare the discussion at the &2d of

NN N N N N
NanZ2Nan N 2Nan 2 Nan Nl

8.1. Method of interpolation. We consider the densitiég of a sequence of finite
graphs$,, for p+1<n<qg. We approximate thé, by a real-valued function
f(n), specified below, defined on the domgp+ 1, p+2,...,q}. We estimate the
quality of the approximation first by constructing the vectofRifr P whosen'-
component is the residu® — f(n), and later by considering its euclidian norm.
We call this norm, therorm of residueslt is a non-negative number. Clearly, the
smaller it is, the better the approximation will be, with the zero value for the norm
of residues in the case of a perfect correspondendevaith the given values of

on

The approximating functior is set to be of type

an+b
f(n)= X
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There are two main reasons: On one hand, these functions give the best exper-
imental results. On the other hand, assume that the véluase well approxi-
mated by some rational functidiin) = %. Then one easily sees (observing that
limp_o &, is neither zero nor infinite) th& andQ have to be of the same degree,
and thusf (n) may be just as well approximated by a function of the above type
antb
n+ﬁ('he key points for the interpolation procedure now are the following: First, the
interpolation reduces to the consideration of a parametard a linear interpo-
lation dn(n+X) in order to obtaira andb. Here the value ok is chosen such
that on(n+ X) is best distributed close to a line. That is, the corresponding norm
of residues in a linear interpolation is the smallest one among all possibilities for
the value ofx. (In the search for the best usingMatlab, we consider only large
enoughn, and the values fax are only considered up 0 1))

Observe that the limit of (n) for n — o is a, and hence this is the value, called
interpolated limit densitywhich we use as parameter to estimate the limidpf
The latter is, after all, the information we are mainly interested in.

Aside: An interesting experimental result in the above described interpolation pro-
cedure is that the parameteremains essentially unchanged whenesisrslightly
modified. This stability with respect to perturbations seems interesting in light of
the fact thata is related to the approximation of zero order: the §ne ax gives

the asymptotic direction.

8.2. Free abelian group of rank 2. Numerical results are given i§9.1. We

don't state here, although they were computed, large series of numerical data (up
to n=1000: they behave as expected. A first series of computatiod{B(n))
presented below is going from= 1 to 301, by laps of seize 10, and a second
series is given fon=1,2,...,15. This allows us to compare results férx Z

with results for groups of exponential growth, and the “small scale” interpolation
with the “large scale” interpolation as well as with the true behavior.

The “large scale” results fan =1,11,21,...,301 are given in Figure 6. We
restrict ourselves to = 11,21,...,301L The norm of residues for the density of
ballsB(n) is approx.0.007, see Figure 7.

The interpolation gives

4n—-2
n+05"

The interpolated limit density is equal 40
Forn=11,21,...,301 the norm of residues of the interpolation of the density
of densified ball8(n) is less thar0.008 see Figure 8. The interpolation yields

_ 4n+1.61
OBM)~ 71

5(B(n)) ~
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FIGURE 6. Large scale density of balB(n) in Z x Z

The interpolated limit density is equal 40

The “small scale” results and interpolations, foe= 1,2,...,15, are given in
Figure 9. Forn = 2,3,...,15 the norm of residues of the interpolation of the
density of theB(n) is approx.0.018 see Figure 10. One obtains the interpolation

in—-14
B ~ .
SBM)~ o 67
The interpolated limit density is equal 40
Forn=2,3,...,15the densities of the densifid{n), multiplied byx+ 0.67,

give the liney = 4x—0.79. The norm of residues is approximately equad092,
see Figure 11. The interpolation gives

_ 4n—0.79
o(B)~ 67

and the interpolated limit density is equal4o

Now we compare our results with the true valued(B(n)) andd(B(n)). The
ball B(n) has2n? 4- 2n+ 1 vertices andin? edges. Thus,
4 4n
M 4n+1/2 +o n+1

o(B(n))

Our (small and large scale) interpolations are not exactly the same, but they are
not so far off either. The key point is that in all three cases one obtains the limit
density4: The given subsets are a Fglner family.



ARZHANTSEVA, GUBA, LUSTIG, AND PREAUX

20

1200

1000

800

600

400

200

y=4x-2

—&— |nitial density

— linear

(x+0.5)

50

100 150 200

250

300

3.5¢

25

1.5}

T

—e—|nitial density

—y=(4.x2) | (x+0.5)

0

50 100

150 200

FIGURE 7. Large scale interpolation of densities of ba@ig) in Z x Z

250

300



21

TESTING CAYLEY GRAPH DENSITIES

o0oe

7 X 7 Ul (S|jgn palisuap Jo sanisuap jo uoirejodiaiul apeas abie ‘g 3¥nol

05z 002 oSl 0ol 0s 0. 00¢ 0sZ 00z 05t 00l 0% o
leau
L T L+x) 1 (L9 L4+xp)=A —— <0
- (7 L+x) ~ Aususp [euld —e— 002
Ayisusp |euld —e—

000000000000 v . .

ooy

009

008

0001

0ozl



22

ARZHANTSEVA, GUBA, LUSTIG, AND PREAUX

—&— |Initial density

Final density

FIGURE 9. Small scale density of balB(n) in Z x Z

The densities of the reduced balls is easy to deduce. The algorithm removes
only four vertices and four edges (the 4 extremal points of the “square”):

an?—4 4n

o(Bn) = n?+n-—3/2 to N+l

and the same conclusion holds.

8.3. Free abelian group of rank 3. We proceed as above by comparing large
scale and small scale interpolations with the true values. Numerical results are
given in§9.2.

The “large scale” results fdf. x Z x Z appear in Figure 12. Let us restrict to
n=11,21,...,171 The densities of ballB(n), rescaled vix-+ 0.6, are distributed
along the liney = 6.x— 5.4, see Figure 13. The norm of residues is approximately
equal t00.011 The interpolation gives

6n—5.4
o(B(n)) ~ 106"

the interpolated limit density is equal &
The norm of residues of the interpolation of the density of densified Batls
is approx.0.032 see Figure 14. One obtains the interpolation
_6n+43

OB~ 2a

The interpolated limit density is equal 6
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FIGURE 12. Large scale density of balB(n) in Z x Z x Z

The “small scale” results fof x Z x Z, forn=1,2,...,15, are presented in
Figure 15. We restrict ourselves to= 34, ...,15. Multiplying initial densities
by x+ 1 gives the distribution along the line= 6.x— 3.6, Figure 16. The norm of
residues of the density of balin) is less than 0.05, Figure 16. The interpolation
gives:

_6n-36
~ h+1

3(B(n))
The interpolated limit density is equal &

Forn=4,5,...,15 multiplying the density of densified balB&(n) by x+ 1.1
gives distribution along the ling= 6x— 1.1, Figure 17. The norm of residues is
close to 0.061. The interpolation gives

- 6n—1.1
3B~ g
and the interpolated limit density is equal@o
A ball B(n) has4n® + 2n edges and4n® + 6n? 4- 8n+ 3) /3 vertices,

3
5(B(n)) 24n° 4+ 12n 6n

T 431 6n2+8n13 e n+3/2°
The density of densified balB(n) can be computed fon > 4. The algorithm
removes 12 vertices of valency 1 ati?{n— 1) edges. Thus it removd2n vertices
and24n— 12 edges. We deduce that
. 240131+ 72 6n
C 4m346n2—-28n+3 +o n+3/2°

5(B(n))
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FIGURE 15. Small scale density of balB(n) in Z x Z x Z

As was expected, the computations give the same picture as in the caseZof

8.4. Baumslag-Solitar group BS(1,—1). Numerical results are given if9.6.
The Cayley graphs of x Z andBS1,—1) are not isomorphic. However, the
underlying non-labelled graphs (given by the tiling of the plane by squares) are
isomorphic. Thus our results, see Figure 18, are similar to those $af.
The interpolation of initial densities is given by:
4n—-2
B =~
8(Bn) n+0.5
The interpolated limit density is equal 40
The interpolation of final densities is given by:
_ 4n+1.61
OB~ g

The interpolated limit density is equal b The subset8(n)) are to be Falner
sets, as their density is minorized by that of the Faglner faBily).

8.5. Baumslag-Solitar groupBS1,2). Numerical results are given §9.3. For
n=56,...,19, the density of ball8(n), multiplied byx— 1.2, is distributed close
to the liney = 3.22x— 5.11, see Figure 20. The norm of residues is appfR96.
The interpolation is given by:
3.22n-5.11
o(B ~N—
(B(n) 17

The interpolated limit density is equal 822.
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FIGURE 18. Density of ballsB(n) for BS1,—-1)
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FIGURE 19. Density of ballsB(n) in BS1,2)

Forn=5,6,...,19, the density of the densified balgn), rescaled by a factor
x—2.9, is distributed along the ling = 3.48x— 11, see Figure 21. The norm of
residues is close 10.11. The interpolation gives

= 348n-11
5(B(n)) =~ Tho29
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and the interpolated limit density is equal3@l8.

8.6. Baumslag-Solitar groupBS2,2). Graphics are given in Figure 22. Numer-
ical results are found i9.4. Forn=3,4,...,18, the densityd(B(n)), multiplied

3

275

—»—— Initial density

—&—— Final density

TR T H N
7 8 4 85 & T B @ 10 1 12 13 14 15 18 17 18

FIGURE 22. Density of ballsB(n) of BS2,2)

by (x—0.9), is distributed close to the ling= 2.64x — 3.3, Figure 23. The norm
of residues is approx).066. The interpolation gives

2.64n—3.3
B ~N—
5(BM)~ ——45
and the interpolated limit density is equal2®4.

Forn=4,5,...,18, we multiply the density of the densified baB¢n) by x —
1.9. This gives values that can be interpolated by the yire2.97x — 6.29, see
Figure 24. The norm of residues is appr0084. Our approximation gives:

- 297n—-6.29
0B~ ——34—
The interpolated limit density is equal 2097.

8.7. Baumslag-Solitar group BS2,3). Numerical results are given 9.5, see
Figure 25 for a graphical representation. ot 3,4,...,14, the multiplied den-
sities d(B(n)) are distributed close to the line= 2.44x — 4.24, Figure 26. The
norm of residues is less th&0D93 The interpolation gives
244n—-4.24
5(B() ~ ==,
and thus the interpolated limit density is equaPté4.
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FIGURE 25. Density of ballsB(n) in B2, 3)

To interpolate the densities of the densified bBIls), we restrict to values =
3,4,...,14. The norm of residues is close to 0.26, see Figure 27. The interpolation
is given by:

= 2.86n—5.08
oB(n)~ ————
(B(m) n—15

The interpolated limit density is equal 2086.

8.8. Wreath product ZZ. Graphics are given in Figure 28. Numerical results
are given in§9.7. The initial density, multiplied by + 0.9, is distributed close to
the liney = 2.43x+ 0.55, see Figure 29. The norm of residues is approx. equal to
0.25.

The interpolation of densities is given by

2.43n+0.55
B N ——
S(B(m) n+0.9
The interpolated limit density is equal 2043.
We interpolate the densitie¥(B(n)) by using our numerical results for=

4.5,...,16. The norm of residues of our interpolation is apprbxX23, see Figure
30. The density of densified baBn) is interpolated by

_3n-7
“n-19
The interpolated limit density is equal 8

5(B(n))
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FIGURE 28. Density of ballsB(n) in Z1Z

8.9. Balls B(n) in Thompson's group F. We now consider Thompson'’s group
F, for which amenability is unknown. We first investigate the density of (&g
in F. Our results are given in Figure 31. Numerical results are givé.i.

In order to interpolate the densitié$B(n)) we only considen = 3,4,...,15.
Multiplication of the density oB(n) by n+ 2.3 gives values close to the line=
2.23x+ 3.65, see Figure 32. The norm of residues is appfk23

The interpolation gives:

2.230+3.65
SBM~ =73

The interpolated limit density is equal 202.

Now we consider the behavior of densities of balls after the densification algo-
rithm is applied. Fon= 3,4, ..., 14, the density of th&(n), multiplied byn—1.7,
is distributed close to ling = 2.8x— 6.4, see Figure 33. The norm of residues is
0.11395.

The estimation is given by:

28n—6.4
n—1.7

The interpolated limit density is equal 8.

These results are clearly comparable with those of the amenable Gidup

8.10. Left-positive balls LP(n) in F. Numerical results are given 9.9, graph-
ical data are given in Figure 34.
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FIGURE 31. Density of ballsB(n) in Thompson’s groufr

The density of the.P(n), multiplied by n+ 0.343 is distributed close to the
liney=2.22x— 0.427, see Figure 35. The calculated norm of residues is equal to
0.038316

This gives the approximation:

2.22n—0.427
O(LP(M) ~ — 0343

The density of the densified sdt®(n), multiplied by n— 0.7, is distributed
close to the lingy = 2.97x — 6.25, see Figure 36. The norm of residues equals to
0.65841 This provides the approximation

— 2.97n—6.25
O(LP(M) » — —47—

The interpolated limit density is equal

8.11. Negative forestsNF(n) in F. Numerical results are given if9.10. A
graphical interpretation is given in Figure 37.

The best approximation of the density N (n) is obtained by multipling it
by n, see Figure 38. The norm of residues is exceptionally low. It is equal to
6.476910°°. Notice that both our data and the results of the interpolation have
a margin of error ofLl0~2. The density is distributed close to the liB6667% —
2.6667. The densities ofNF(n) are particularily well approximated for
n=2...,14by
2. n-1

S(NF(m) ~ (2+ 5)
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FIGURE 34. Density of left-positive ball&P(n) in F

Forn=5,6,...,14, the density of the densified negative foredts(n), multiplied
byn—1.1, is distributed along ling = 3.03x— 6.28, Figure 39. The approximation
is given by

S 3.03n—6.28

NF(n) = ——>—

S(NF(n)) ]

and the interpolated limit density is equal3®3.

8.12. Belk-Brown setsBB(n,k) in F. Numerical results are given §9.11. The
densities of théBB(n,k) are given in Figure 40. The densities of the densified
Belk-Brown setBB(n, k) are given in Figure 41.

For k large enough all the densifid8B(n,k) have the same density and the
same number of vertices. SinB&(n,k) C BB(n,k+ 1), one should expect that
the sets obtained from our densification algorithm are the same. The best density
we obtain is the density &B(17,3), which is equal t®.89577

We construct new sequences as follows. For easle consider the maximum
of densities ofBB(n,k) as well as the maximum of densities of densified Belk-
Brown setBB(n,k). The sequences are given in Figure 42.

Forn=3,4,...,17 the best initial densities, multiplied with-+ 1.7, is distrib-
uted close toy = 3.18x— 1.19, see Figure 43. The norm of residues is approx.
0.25. This gives as approximation:

3.18x—1.19
o(n) = X+1.7
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FIGURE 37. Density of negative forestdF(n) in F

The interpolated limit density is equal 818.

Forn=15,...,17, the best densities of the densified Belk-Brown &&¢n, k),
multiplied byn+ 0.69, are close to the ling = 3.18x— 2.92, see Figure 44. The
norm of residues is less th&0D96. This gives as approximation:

3.18x—2.92
W= —069
Thus, the interpolated limit density for the Belk-Brown sB&(n, k) before den-
sification and the one for the densified Belk-Brown $&8n, k) agree: they are
both approximately equal t&18.

9. NUMERICAL DATA

In this section we will give some of the numerical data, obtained from our al-
gorithmic package, in the form of tables. Each table corresponds to a fixed group
and to a fixed family of subgraphs of the Cayley graph, as presented and dis-

cussed in the previous sections. For example the table giih3rcorresponds to
the Baumslag-Solitar groupS(1,2) and to the family of ball8(n) in its Cayley
graph. Each table is organised as follows:

A line in the table corresponds to a fixed choice of parameters for the family
of subgraphs, thus specifying a particular subgraph. For example, the 5-th line

of the table 0f§9.3 corresponds to the ba#(4), for the groupBS1,2). The

first column, labelled “Density”, states the name of the subgraph considered. The
second column, labelled “Before”, states the density of this graph before applying

the densification algorithm. The third column, labellgd, “‘states the number of
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FIGURE 40. Densities of Belk-Brown se8B(n, k) in F

rounds performed, i.e. the number of times the algorithm runs once through the
sequence of steps specified at the engbokith at least one edge or vertex deleted

(in which case it tries to repeat the maneuver, rising the valdehyf one). The

fourth column, labelled “After”, states the density of the subgraph obtained as final
result of our densification program. The fifth column, called “Increase”, explicits
the amount of density gained by the densification procedure, as well (in parathesis)
the percentage this increase means with respect to the density before applying the
program. Finally, the last column, labelled “Deleted vertices”, states the number of
vertices deleted in the densification procedure from the originally given subgraph.
In parathesis it states the percentage this amounts to, with respect to the number of
all vertices in the originally given graph.

Remark: If the densification algorithm is applied to a non-empty tree, then the
number# of rounds the algorithm repeats the densification procedure will be equal
to 1, and the final density must be equal to 0. This, however, is not specific for the
case of non-empty trees: It will also happen, for example, if the given subgraph is
a cycle, or any other graph obtained from gluing trees to a cycle.
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9.1. The group Z x Z.

ARZHANTSEVA, GUBA, LUSTIG, AND PREAUX

|

Large scale ballsB(n) in Z x Z

Density | Before | # | After Increase Deleted vertices
B(1) 1.6 1|0 -1.6(-100.00%) 5/5(-100.00%)
B(11) 3.65283| 1 | 3.67816| +0.0253308(+0.69%) | 4/265(-1.51%)
B(21) 3.81405| 1 | 3.82193| +0.00787878(+0.21%) | 4/925(-0.43%)
B(31) 3.87305| 1 | 3.87683| +0.00378203(+0.10%) | 4/1985(-0.20%)
B(41) 3.90363| 1 | 3.90584| +0.002213(+0.06%) 4/3445(-0.12%)
B(51) 3.92234| 1 | 3.92379| +0.00145054(+0.04%)| 4/5305(-0.08%)
B(61) 3.93496| 1 | 3.93599| +0.00102353(+0.03%)| 4/7565(-0.05%)
B(71) 3.94406| 1 | 3.94482| +0.000760794(+0.02%)) 4/10225(-0.04%)
B(81) 3.95092| 1 | 3.95151| +0.000587702(+0.01%) 4/13285(-0.03%)
B(91) 3.95629| 1 | 3.95675| +0.0004673(+0.01%) | 4/16745(-0.02%)
B(101) | 3.96059| 1 | 3.96097| +0.000380754(+0.01%) 4/20605(-0.02%)
B(111) | 3.96413| 1 | 3.96444| +0.000315905(+0.01%) 4/24865(-0.02%)
B(121) | 3.96708| 1 | 3.96735| +0.000266552(+0.01%)) 4/29525(-0.01%)
B(131) | 3.96958| 1 | 3.96981| +0.000227928(+0.01%) 4/34585(-0.01%)
B(141) | 3.97173| 1 | 3.97193| +0.000196934(+0.00%) 4/40045(-0.01%)
B(151) | 3.9736 | 1 | 3.97377| +0.0001719(+0.00%) | 4/45905(-0.01%)
B(161) | 3.97523| 1 | 3.97538| +0.000151634(+0.00%) 4/52165(-0.01%)
B(171) | 3.97668| 1 | 3.97681| +0.000134468(+0.00%) 4/58825(-0.01%)
B(181) | 3.97796| 1 | 3.97808| +0.000120163(+0.00%) 4/65885(-0.01%)
B(191) | 3.97911| 1 | 3.97922| +0.000108004(+0.00%) 4/73345(-0.01%)
B(201) | 3.98015| 1 | 3.98025| +9.75132e-05(+0.00%) 4/81205(-0.00%)
B(211) | 3.98109| 1 | 3.98118| +8.84533e-05(+0.00%) 4/89465(-0.00%)
B(221) | 3.98194| 1 | 3.98202| +8.08239e-05(+0.00%) 4/98125(-0.00%)
B(231) | 3.98272| 1 | 3.9828 | +7.39098e-05(+0.00%) 4/107185(-0.00%)
B(241) | 3.98344| 1 | 3.98351| +6.81877e-05(+0.00%) 4/116645(-0.00%)
B(251) | 3.9841 | 1 | 3.98416| +6.27041e-05(+0.00%) 4/126505(-0.00%)
B(261) | 3.9847 | 1 | 3.98476| +5.79357e-05(+0.00%) 4/136765(-0.00%)
B(271) | 3.98527| 1 | 3.98532| +5.38826e-05(+0.00%) 4/147425(-0.00%)
B(281) | 3.98579| 1 | 3.98584| +5.00679e-05(+0.00%) 4/158485(-0.00%)
B(291) | 3.98628| 1 | 3.98632| +4.673e-05(+0.00%) | 4/169945(-0.00%)
B(301) | 3.98673| 1 | 3.98678| +4.3869e-05(+0.00%) | 4/181805(-0.00%)
| Small scale ballsB(n) in Z x Z

Density | Before | # | After Increase Deleted vertices
B(1) 1.6 110 -1.6(-100.00%) 5/5(-100.00%)
B(2) 2.46154| 1 | 2.66667| +0.205128(+8.33%) 4/13(-30.77%)
B(3) 2.88 1 | 3.04762| +0.167619(+5.82%) 4/25(-16.00%)
B(4) 3.12195| 1 | 3.24324| +0.121292(+3.89%) 4/41(-9.76%)
B(5) 3.27869| 1 | 3.36842| +0.0897326(+2.74%) | 4/61(-6.56%)




B(6)
B(7)
B(8)
B(9)
B(10)
B(11)
B(12)
B(13)
B(14)
B(15)

3.38824
3.46903
3.53103
3.58011
3.61991
3.65283
3.68051
3.70411
3.72447
3.7422
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3.45679
3.52294
3.57447
3.61582
3.64977
3.67816
3.70227
3.72299
3.74101
3.75681

+0.0685549(+2.02%)
+0.0539093(+1.55%)
+0.0434337(+1.23%)
+0.0357087(+1.00%)
+0.02986(+0.82%)
+0.0253308(+0.69%)
+0.021754(+0.59%)
+0.018882(+0.51%)
+0.0165415(+0.44%)

+0.0146098(+0.39%)
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4/85(-4.71%)

4/113(-3.54%)
4/145(-2.76%)
4/181(-2.21%)
4/221(-1.81%)
4/265(-1.51%)
4/313(-1.28%)
4/365(-1.10%)
4/421(-0.95%)
4/481(-0.83%)

9.2. The groupZ x Z x Z.

|

Large scale ballsB(n) in Z x Z x Z

Density | Before | # | After Increase Deleted vertices

B(1) 1714291 | 0 -1.71429(-100.00%) | 7/7(-100.00%)

B(11) 5.22325| 1 | 5.3201 | +0.0968509(+1.85%) | 132/2047(-6.45%)
B(21) 5.5823 | 1 | 5.61473| +0.0324311(+0.58%) | 252/13287(-1.90%)
B(31) |5.71457| 1 | 5.73058| +0.0160031(+0.28%) | 372/41727(-0.89%)
B(41) 5.78326| 1 | 5.79276| +0.0095005(+0.16%) | 492/95367(-0.52%)
B(51) 5.82531| 1 | 5.83159| +0.00628328(+0.11%)| 612/182207(-0.34%)
B(61) |5.8537 | 1 | 5.85816| +0.00446129(+0.08%)| 732/310247(-0.24%)
B(71) | 5.87415| 1 | 5.87748| +0.00333071(+0.06%)| 852/487487(-0.17%)
B(81) 5.88959| 1 | 5.89217| +0.00258064(+0.04%) | 972/721927(-0.13%)
B(91) 5.90165| 1 | 5.90371| +0.00205851(+0.03%)| 1092/1021567(-0.11%)
B(101) | 5.91134| 1 | 5.91302| +0.0016799(+0.03%) | 1212/1394407(-0.09%)
B(111) | 5.91929| 1 | 5.92069| +0.00139713(+0.02%)| 1332/1848447(-0.07%)
B(121) | 5.92593| 1 | 5.92711| +0.00118017(+0.02%) | 1452/2391687(-0.06%)
B(131) | 5.93156| 1 | 5.93257| +0.00100994(+0.02%) | 1572/3032127(-0.05%)
B(141) | 5.9364 | 1 | 5.93727| +0.000874043(+0.01%) 1692/3777767(-0.04%)
B(151) | 5.9406 | 1 | 5.94136| +0.000763893(+0.01%) 1812/4636607(-0.04%)
B(161) | 5.94427| 1 | 5.94495| +0.000673294(+0.01%) 1932/5616647(-0.03%)
B(171) | 5.94752| 1 | 5.94812| +0.000597954(+0.01%) 2052/6725887(-0.03%)
| Small scale ballsB(n) in Z x Z x Z |
Density | Before | # | After Increase Deleted vertices

B(1) 1714291 | 0 -1.71429(-100.00%)| 7/7(-100.00%)

B(2) 2.88 1 | 3.15789| +0.277895(+9.65%)| 6/25(-24.00%)

B(3) 3.61905| 1 | 3.78947| +0.170426(+4.71%)| 6/63(-9.52%)

B(4) 4.09302| 1 | 4.44444| +0.351421(+8.59%)| 48/129(-37.21%)

B(5) 4.41558| 1 | 4.70175| +0.28617(+6.48%) | 60/231(-25.97%)

B(6) 4.64721| 1 | 4.87869| +0.231473(+4.98%)| 72/377(-19.10%)
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B(7)
B(8)
B(9)
B(10)
B(11)
B(12)
B(13)
B(14)
B(15)

4.82087
4.95558
5.06299
5.15054
5.22325
5.28457
5.33697
5.38225
5.42176
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5.01018
5.11262
5.19505
5.26301
5.3201

5.3688

5.41087
5.44759
5.47994

+0.189314(+3.93%)
+0.157037(+3.17%)
+0.132067(+2.61%)
+0.112467(+2.18%)
+0.0968509(+1.85%
+0.0842314(+1.59%
+0.0739012(+1.38%
+0.0653448(+1.21%
+0.0581827(+1.07%

84/575(-14.61%)
96/833(-11.52%)
108/1159(-9.32%)
120/1561(-7.69%)
)132/2047(-6.45%)
)144/2625(-5.49%)
)156/3303(-4.72%)
)168/4089(-4.11%)
)180/4991(-3.61%)

9.3. The Baumslag-Solitar groupBS1, 2).

|

Balls B(n) in B1,2)

Density | Before | # | After Increase Deleted vertices

B(0) 16 1]0 -1.6(-100.00%) 5/5(-100.00%)

B(1) 1.6 110 -1.6(-100.00%) 5/5(-100.00%)

B(2) 2.47059| 1 | 2.53333| +0.0627451(+2.54%)2/17(-11.76%)

B(3) 2.65116| 1 | 2.75676| +0.105594(+3.98%)| 6/43(-13.95%)

B(4) 2.77419| 1 | 2.91139| +0.137199(+4.95%)| 14/93(-15.05%)

B(5) 2.90052| 5 | 3.08889| +0.188365(+6.49%)| 101/191(-52.88%)

B(6) 2.96 5 | 3.18947| +0.229474(+7.75%)| 185/375(-49.33%)

B(7) 2.99578| 8 | 3.25543| +0.259654(+8.67%)| 343/711(-48.24%)

B(8) 3.02961| 16| 3.30172| +0.272111(+8.98%)| 621/1317(-47.15%)
B(9) 3.05868| 16| 3.33898| +0.280306(+9.16%)| 1105/2403(-45.98%)
B(10) | 3.07945| 16| 3.36515| +0.285692(+9.28%)| 1907/4317(-44.17%)
B(11) | 3.09195| 16| 3.37375| +0.281799(+9.11%)| 3263/7667(-42.56%)
B(12) | 3.1056 | 16| 3.38569| +0.280083(+9.02%)| 5605/13513(-41.48%)
B(13) 3.11557| 16| 3.397 | +0.281421(+9.03%)| 9667/23647(-40.88%)
B(14) 3.1239 | 16| 3.40165| +0.277745(+8.89%)| 16395/41153(-39.84%)
B(15) 3.13105| 16| 3.40872| +0.277670(+8.87%)| 28061/71279(-39.37%)
B(16) 3.13618| 16| 3.41389| +0.277709(+8.85%)| 48101/123005(-39.10%)
B(17) 3.14091| 16| 3.41812| +0.277213(+8.83%)| 81957/211603(-38.73%)
B(18) 3.14447| 16| 3.42129| +0.276822(+8.80%)| 139731/363093(-38.48%)
B(19) 3.14771] 16| 3.42439| +0.276685(+8.79%)| 238089/621771(-38.29%)

9.4. The Baumslag-Solitar groupBS2,2).

|

Balls B(n) in BS2,2)

Density | Before | # | After Increase Deleted vertices
B(1) 1.6 1|0 -1.6(-100.00%) 5/5(-100.00%)

B(2) 1.88235/ 1 | 0 -1.88235(-100.00%)| 17/17(-100.00%)
B(3) 2.21277| 1 | 2.47619| +0.263425(+11.90%4) 26/47(-55.32%)
B(4) 2.32479| 1 | 2.64407| +0.319281(+13.73%)58/117(-49.57%)




B(5)
B(6)

B(7)

B(8)

B(9)

B(10)
B(11)
B(12)
B(13)
B(14)
B(15)
B(16)
B(17)
B(18)

2.41455
2.4576
2.49029
2.51032
2.526
2.53755
2.54712
2.55501
2.56183
2.56776
2.57303
2.57774
2.58199
2.58585

PRRPRPRPPRPRPRPRRPREPPRP
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2.76423
2.81388
2.84224
2.85974
2.87281
2.88305
2.89163
2.89894
2.90531
2.91092
2.91591
2.92037
2.92438
2.928

+0.349682(+14.48%
+0.35628(+14.50%)
+0.351948(+14.13%
+0.349421(+13.929%
+0.346812(+13.73%
+0.3455(+13.62%)

+0.344501(+13.53%
+0.343929(+13.46%
+0.343485(+13.41%
+0.343161(+13.36%
+0.342875(+13.33%
+0.342623(+13.29%
+0.342383(+13.26%
+0.342154(+13.23%
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)152/275(-55.27%)
308/625(-49.28%)
)624/1391(-44.86%)
)1292/3053(-42.32%)
) 2696/6635(-40.63%)
5668/14313(-39.60%)
)11936/30695(-38.89%)
) 25148/65509(-38.39%)
)52920/139235(-38.01%)
)111188/294881(-37.71%)
)233168/622559(-37.45%)
)488044/1310685(-37.24%)
)1019624/2752475(-37.049
)2126468/5767129(-36.879

~— —

9.5. The Baumslag-Solitar groupBS 2, 3).

|

Balls B(n) in BS2,3)

Density | Before | # | After Increase Deleted vertices

B(1) 1.6 1[0 -1.6(-100.00%) 5/5(-100.00%)

B(2) 188235/ 1 | 0 -1.88235(-100.00%)| 17/17(-100.00%)

B(3) 2.22642| 1 | 2.41379| +0.187378(+8.42%)| 24/53(-45.28%)

B(4) 2.27211| 1 | 2.53731| +0.265205(+11.67%) 80/147(-54.42%)

B(5) 2.31877| 1 | 2.61376| +0.294991(+12.72%3) 200/389(-51.41%)

B(6) 2.36075| 1 | 2.65291| +0.292155(+12.38%)476/1009(-47.18%)

B(7) 2.37418| 4 | 2.73178| +0.357604(+15.06%) 1942/2587(-75.07%)
B(8) 2.38084| 5 | 2.75669| +0.375856(+15.79%4)4894/6575(-74.43%)
B(9) 2.39074| 5 | 2.77009| +0.379349(+15.87%4)12168/16635(-73.15%)
B(10) 2.39581| 7 | 2.77824| +0.382428(+15.96%4) 30266/41959(-72.13%)
B(11) 2.39818| 8 | 2.78533| +0.387151(+16.14%)75760/105531(-71.79%)
B(12) 2.40157| 12| 2.79096| +0.389394(+16.21%)188738/264843(-71.26%)
B(13) 2.40505| 13| 2.79452| +0.38947(+16.19%)| 468592/663799(-70.59%)
B(14) 2.40677| 13| 2.79782| +0.391054(+16.25%)1168366/1661233(-70.33%)

9.6. The Baumslag-Solitar groupBS1, —1)).

|

Balls B(n) in BS(1,-1)

Density | Before | # | After Increase Deleted vertices
B(1) 1.6 1[0 -1.6(-100.00%) 5/5(-100.00%)
B(11) 3.65283| 1 | 3.67816| +0.0253308(+0.69%) | 4/265(-1.51%)
B(21) | 3.81405| 1 | 3.82193| +0.00787878(+0.21%)| 4/925(-0.43%)
B(31) 3.87305| 1 | 3.87683| +0.00378203(+0.10%)| 4/1985(-0.20%)
B(41) | 3.90363| 1 | 3.90584| +0.002213(+0.06%) | 4/3445(-0.12%)
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B(51)

B(61)

B(71)

B(81)

B(91)

B(101)
B(111)
B(121)
B(131)
B(141)
B(151)
B(161)
B(171)
B(181)
B(191)
B(201)
B(211)
B(221)
B(231)
B(241)
B(251)
B(261)
B(271)
B(281)
B(291)
B(301)

3.92234
3.93496
3.94406
3.95092
3.95629
3.96059
3.96413
3.96708
3.96958
3.97173
3.9736

3.97523
3.97668
3.97796
3.97911
3.98015
3.98109
3.98194
3.98272
3.98344
3.9841

3.9847

3.98527
3.98579
3.98628
3.98673

PFRPRPRPRRPPRPRPRPRPRPRPRPRPRPPEPRPRPRRPEPRPRRERRPRPRRERRER

ARZHANTSEVA, GUBA, LUSTIG, AND PREAUX

3.92379
3.93599
3.94482
3.95151
3.95675
3.96097
3.96444
3.96735
3.96981
3.97193
3.97377
3.97538
3.97681
3.97808
3.97922
3.98025
3.98118
3.98202
3.9828

3.98351
3.98416
3.98476
3.98532
3.98584
3.98632
3.98678

+0.00145054(+0.04%)
+0.00102353(+0.03%)
+0.000760794(+0.02%
+0.000587702(+0.01%
+0.0004673(+0.01%)

+0.000380754(+0.01%
+0.000315905(+0.01%
+0.000266552(+0.01%
+0.000227928(+0.01%
+0.000196934(+0.00%
+0.0001719(+0.00%)

+0.000151634(+0.00%
+0.000134468(+0.00%
+0.000120163(+0.00%
+0.000108004(+0.00%
+9.75132e-05(+0.00%
+8.84533€-05(+0.00%
+8.08239e-05(+0.00%
+7.39098e-05(+0.00%
+6.81877€-05(+0.00%
+6.27041e-05(+0.00%
+5.79357e-05(+0.00%
+5.38826€-05(+0.00%
+5.00679e-05(+0.00%
+4.673e-05(+0.00%)

+4.3869e-05(+0.00%)

4/5305(-0.08%)
4/7565(-0.05%)
)4/10225(-0.04%)
)4/13285(-0.03%)
4/16745(-0.02%)
)4/20605(-0.02%)
)4/24865(-0.02%)
)4/29525(-0.01%)
)4/34585(-0.01%)
)4/40045(-0.01%)
4/45905(-0.01%)
)4/52165(-0.01%)
)4/58825(-0.01%)
) 4/65885(-0.01%)
)4/73345(-0.01%)
4/81205(-0.00%)
4/89465(-0.00%)
4/98125(-0.00%)
4/107185(-0.00%)
4/116645(-0.00%)
4/126505(-0.00%)
4/136765(-0.00%)
4/147425(-0.00%)
4/158485(-0.00%)
4/169945(-0.00%)
4/181805(-0.00%)

9.7. The wreath product Z Z.

|

Balls B(n) in Z1Z

Density| Before | #| After Increase Deleted vertices

B(1) |1.6 1/ 0 -1.6(-100.00%) 5/5(-100.00%)

B(2) 1.88235/ 1| 0 -1.88235(-100.00%)| 17/17(-100.00%)

B(3) 1.96226| 1| 0 -1.96226(-100.00%)| 53/53(-100.00%)

B(4) 2.0915 | 1| 2.4242 | +0.332739(+15.91%) 120/153(-78.43%)

B(5) | 2.14727| 1| 2.56881| +0.421539(+19.63%) 312/421(-74.11%)

B(6) | 2.19022| 1| 2.64264| +0.45242(+20.66%) | 792/1125(-70.40%)
B(7) 2.2254 | 2| 2.74425| +0.518849(+23.31%)] 2198/2937(-74.84%)
B(8) 2.25023| 2| 2.7895 | +0.539267(+23.96%)) 5442/7537(-72.20%)
B(9) 2.26973| 2| 2.82382| +0.554091(+24.41%) 13502/19093(-70.72%)
B(10) | 2.285 2| 2.84949| +0.564495(+24.70%]) 33390/47881(-69.74%)
B(11) | 2.29693| 2| 2.86788| +0.570949(+24.86%) 82190/119133(-68.99%)
B(12) | 2.30638| 2| 2.88159| +0.575211(+24.94%) 201546/294585(-68.42%)




B(13)
B(14)
B(15)
B(16)

2.31387| 2
2.31984| 2
2.32459| 2
2.32838| 2
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2.89178
2.89937
2.90508
2.90938

+0.577903(+24.98%
+0.579533(+24.98%
+0.580484(+24.97%
+0.580996(+24.95%
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492598/724869(-67.96%)
1200726/1776717(-67.58%)
2920614/4341425(-67.27%)
7092194/10582177(-67.02%)

9.8. Balls in Thompson’s groupF.

| Balls B(n) in F

Density Before | # | After Increase Deleted vertices

B(L) |16 110 -1.6(-100.00%) 5/5(-100.00%)

B(2) |1.88235/1 |0 -1.88235(-100.00%) 17/17(-100.00%)

B(3) |1.96226/1 |0 -1.96226(-100.00%) 53/53(-100.00%)

B(4) 198758/ 1 | O -1.98758(-100.00%) 161/161(-100.00%)

B(5) | 2.03789| 1 | 2.31579 +0.277895(+13.64%)418/475(-88.00%)

B(6) 2.05069| 1 | 2.39106 +0.340374(+16.60%)1202/1381(-87.04%)

B(7) | 2.07632| 2 | 2.48073 +0.404413(+19.489%)3412/3957(-86.23%)

B(8) | 2.08597| 2 | 2.53365 +0.44768(+21.46%) 9959/11237(-88.63%)

B(9) | 2.10377| 2 | 2.57062 +0.46685(+22.19%) 26994/31589(-85.45%)
B(10) | 2.11048| 2 | 2.59635 +0.485875(+23.02%)75036/88253(-85.02%)
B(11) | 2.12304| 3 | 2.61761 +0.494578(+23.30%)203765/244823(-83.23%)
B(12) | 2.12823| 3 | 2.63324 +0.505008(+23.73%)558984/676061(-82.68%)
B(13) | 2.13765| 3 | 2.64741 +0.50976(+23.85%) 1512760/1857029(-81.46%)
B(14) | 2.14177| 3 | 2.65825 +0.51648(+24.11%) 4120532/5082969(-81.07%)
B(15) | 2.14905| 132 2.7183 | +0.569249(+26.49%)12420620/13856005(-89.649

b)

9.9. Left-positive balls in Thompson'’s groupF.

|

Left-positive balls LP(n) in F

Density| Before | # After Increase Deleted vertices
LP(1) | 1.333331 0 -1.33333(-100.00%) | 3/3(-100.00%)

LP(2) | 1.71429 1 0 -1.71429(-100.00%)| 7/7(-100.00%)

LP(3) | 1.875 |1 0 -1.875(-100.00%) 16/16(-100.00%)
LP(4) | 1.94444 1 0 -1.94444(-100.00%) | 36/36(-100.00%)
LP(5) |2 1 0 -2(-100.00%) 81/81(-100.00%)
LP(6) | 2.03297 1 2.19355% +0.160581(+7.90%) | 151/182(-82.97%)
LP(7) | 2.05868 1 2.30189 +0.243207(+11.81%) 356/409(-87.04%)
LP(8) | 2.07835 1 2.38571 +0.307368(+14.79%) 779/919(-84.77%)
LP(9) | 2.09395 3 2.45662 +0.362674(+17.32%) 1846/2065(-89.39%)
LP(10) | 2.10647 12 | 2.52926 +0.422796(+20.07%) 4247/4640(-91.53%)
LP(11) | 2.11682 21 | 2.57116 +0.454332(+21.46%) 9379/10426(-89.96%)
LP(12) | 2.1255| 38 | 2.60121 +0.475717(+22.38%) 20789/23427(-88.74%)
LP(13) | 2.13283 71 | 2.62354 +0.490717(+23.01%) 46116/52640(-87.61%)
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LP(14)
LP(15)
LP(16)
LP(17)
LP(18)
LP(19)
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2.1390
2.1444
2.1491
2.1531
2.1567
2.1598

136
265
522
914
793
102

2.6407
2.6542
2.6651
2.7250
2.7353
2.7434

+0.501627(+23.45%
+0.509793(+23.77%
+0.515999(+24.01%
+0.571886(+26.56%
+0.578606(+26.83%
+0.583608(+27.02%

102464/118281(-86.63%)
227988/265775(-85.78%)
507883/597191(-85.05%)
1237673/1341876(-92.23%)
2761427/3015168(-91.58%)
6164348/6775021(-90.99%)

9.10. Negative forests in Thompson's groug=. Note that the following results, for neg-
ative forestNF(n), correspond precisely to the results for Belk-Brown &ftsn— 1), see
below.

| Negative forestsNF(n) in F |

Density | Before | # | After Increase Deleted vertices

NF(2) | 1.33333/1 |0 -1.33333(-100.00%) | 3/3(-100.00%)

NF(@3) |1.77778/1 |0 -1.77778(-100.00%)| 9/9(-100.00%)

NF@4) |2 1|0 -2(-100.00%) 28/28(-100.00%)

NF(5) | 2.13333| 1 | 2.27907| +0.145736(+6.83%) | 47/90(-52.22%)

NF(6) | 2.22222| 2 | 2.42105| +0.19883(+8.95%) | 183/297(-61.62%)

NF(7) | 2.28571| 3 | 2.52717| +0.24146(+10.56%) | 633/1001(-63.24%)

NF(8) | 2.33333| 2 | 2.59580| +0.262469(+11.25%) 1955/3432(-56.96%)

NF(9) 2.37037| 2 | 2.64099| +0.270623(+11.42%]) 6299/11934(-52.78%)
NF(10) | 2.4 6 | 2.70468| +0.304678(+12.69%) 28117/41990(-66.96%)
NF(11) | 2.42424] 5 | 2.73583| +0.311589(+12.85%) 94931/149226(-63.62%)
NF(12) | 2.44444| 5 | 2.75949| +0.315048(+12.89%) 326375/534888(-61.02%)
NF(13) | 2.46154| 5 | 2.77912| +0.317579(+12.90%)]) 1142627/1931540(-59.16%)
NF(14) | 2.47619| 5 | 2.79448| +0.31829(+12.85%) | 4031727/7020405(-57.43%)

9.11. Belk-Brown sets in Thompson'’s groupF.

| Belk-Brown setsBB(n,k) in F

Density | Before | # | After Increase Deleted vertices
BB(2,1) | 1.33333 1|0 -1.33333(-100.00%)| 3/3(-100.00%)
BB(3,1) | 1.71429 1|0 -1.71429(-100.00%)| 7/7(-100.00%)
BB(3,2) | 1.77778 1| 0 -1.77778(-100.00%)| 9/9(-100.00%)
BB(4,1) | 2 1[0 -2(-100.00%) 15/15(-100.00%)
BB(4,2) | 2 1]0 -2(-100.00%) 24/24(-100.00%)
BB(4,3) | 2 1]0 -2(-100.00%) 28/28(-100.00%)
BB(5,1) | 2.13333 1 | 2.17391 +0.0405796(+1.90%) 7/30(-23.33%)
BB(5,2) | 2.2 1 | 2.27907 +0.0790696(+3.59%4) 17/60(-28.33%)
BB(5,3) | 2.14634 1 | 2.27907 +0.132728(+6.18%)| 39/82(-47.56%)
BB(5,4) | 2.13333 1 | 2.27907 +0.145736(+6.83%)| 47/90(-52.22%)
BB(6,1) | 2.24138 1 | 2.29787 +0.056493(+2.52%)| 11/58(-18.97%)
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BB(6,2) | 2.34014 1 | 2.41509 +0.0749583(+3.2094)41/147(-27.89%)
BB(6,3) | 2.28326 2 | 2.42105% +0.137791(+6.03%)| 119/233(-51.07%)
BB(6,4) | 2.23488 2 | 2.4210% +0.186177(+8.33%)| 167/281(-59.43%)
BB(6,5) | 2.22222 2 | 2.42105% +0.19883(+8.95%) | 183/297(-61.62%)
BB(7,1) | 2.31193 1 | 2.37363 +0.0616999(+2.67%) 18/109(-16.51%)
BB(7,2) | 2.42735 1 | 2.50714 +0.0797923(+3.29%) 71/351(-20.23%)
BB(7,3) | 2.39258 2 | 2.52717 +0.134593(+5.63%)| 279/647(-43.12%)
BB(7,4) | 2.33064 3 | 2.52717 +0.196538(+8.43%)| 497/865(-57.46%)
BB(7,5) | 2.29515 3 | 2.52717 +0.232024(+10.1194) 601/969(-62.02%)
BB(7,6) | 2.28571 3 | 2.52717 +0.24146(+10.56%)| 633/1001(-63.24%)
BB(8,1) | 2.36816 1 | 2.43023 +0.0620732(+2.62%) 29/201(-14.43%)
BB(8,2) | 2.49695 1 | 2.57676 +0.0798025(+3.20%4) 124/821(-15.10%)
BB(8,3) | 2.48144 2 | 2.5958] +0.114371(+4.61%)| 489/1778(-27.50%)
BB(8,4) | 2.40847 2 | 2.5958 | +0.18733(+7.78%) | 1167/2644(-44.14%)
BB(8,5) | 2.36387 2 | 2.5958 | +0.231935(+9.81%)| 1667/3144(-53.02%)
BB(8,6) | 2.33967 2 | 2.5958 | +0.256135(+10.95%)1891/3368(-56.15%)
BB(8,7) | 2.33333 2 | 2.5958 | +0.262469(+11.25%) 1955/3432(-56.96%)
BB(9,1) | 2.41006 1 | 2.4717| +0.060739(+2.52%)| 47/365(-12.88%)
BB(9,2) | 2.55485 1 | 2.63139 +0.0765369(+3.00%)233/1896(-12.29%)
BB(9,3) | 2.5493 | 2 | 2.65126 +0.101964(+4.00%)| 977/4828(-20.24%)
BB(9,4) | 2.47602 2 | 2.64423 +0.168205(+6.79%)| 2749/8008(-34.33%)
BB(9,5) | 2.4212 | 2 | 2.64099 +0.219797(+9.08%)| 4555/10190(-44.70%)
BB(9,6) | 2.39025 2 | 2.64099 +0.250741(+10.49%)5691/11326(-50.25%)
BB(9,7) | 2.37439 2 | 2.64099 +0.266608(+11.23%)6171/11806(-52.27%)
BB(9,8) | 2.37037 2 | 2.64099 +0.270623(+11.429%) 6299/11934(-52.78%)
BB(10,1)| 2.4458 | 1 | 2.50432 +0.0585163(+2.39%) 76/655(-11.60%)
BB(10,2)| 2.60032 3 | 2.67492 +0.0745924(+2.87%) 775/4331(-17.89%)
BB(10,3)| 2.60551 4 | 2.70623 +0.100716(+3.87%)| 3422/12994(-26.34%)
BB(10,4)| 2.5348 | 5 | 2.70607 +0.171267(+6.76%)| 10956/24136(-45.39%)
BB(10,5)| 2.47021 6 | 2.70483 +0.234619(+9.50%)| 19145/32998(-58.02%)
BB(10,6)| 2.43355 6 | 2.70468 +0.271126(+11.14%)24277/38150(-63.64%)
BB(10,7)| 2.41258 6 | 2.70468 +0.292101(+12.11%)26837/40710(-65.92%)
BB(10,8)| 2.40245 6 | 2.70468 +0.302224(+12.58%) 27861/41734(-66.76%)
BB(10,9)| 2.4 6 | 2.70468 +0.304678(+12.69%4) 28117/41990(-66.96%)
BB(11,1)| 2.47423 1 | 2.53026 +0.0560327(+2.26%) 123/1164(-10.57%)
BB(11,2)| 2.63755 3 | 2.71078 +0.0732303(+2.78%) 1443/9800(-14.72%)
BB(11,3)| 2.65202 4 | 2.74514 +0.0931263(+3.51%)6978/34680(-20.12%)
BB(11,4)| 2.58441 4 | 2.7420% +0.157632(+6.10%)| 26855/72394(-37.10%)
BB(11,5)| 2.51403 5 | 2.73747 +0.223436(+8.89%)| 53749/106600(-50.42%)
BB(11,6)| 2.47079 5 | 2.7358 | +0.26501(+10.73%)| 74443/128762(-57.81%)
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BB(11,7)| 2.44596 5 | 2.73583 +0.289869(+11.85%)86515/140810(-61.44%)
BB(11,8)| 2.43202 5 | 2.73583 +0.303807(+12.49%) 92243/146538(-62.95%)
BB(11,9)| 2.4257 | 5 | 2.73583 +0.310129(+12.79%) 94419/148714(-63.49%)
BB(11,10) 2.42424 5 | 2.73583 +0.311589(+12.85%) 94931/149226(-63.62%)
BB(12,1)| 2.49805 1 | 2.55154 +0.0534873(+2.14%) 199/2052(-9.70%)
BB(12,2)| 2.66921 3 | 2.7401| +0.0708911(+2.66%)2862/22008(-13.00%)
BB(12,3)| 2.69209 4 | 2.779 | +0.0869138(+3.23%) 14982/91965(-16.29%)
BB(12,4)| 2.62814 4 | 2.77148 +0.143337(+5.45%)| 66315/216154(-30.68%)
BB(12,5)| 2.5533 | 5 | 2.7649 | +0.211606(+8.29%)| 153498/343946(-44.63%)
BB(12,6)| 2.50352 5 | 2.76087 +0.257348(+10.28%) 229951/435268(-52.83%)
BB(12,7)| 2.47504 5 | 2.76001 +0.284971(+11.51%) 280855/488584(-57.48%)
BB(12,8)| 2.45827 5 | 2.76036 +0.302098(+12.29%) 309351/516520(-59.89%)
BB(12,9)| 2.44917 5 | 2.75949 +0.310318(+12.67%)320743/529256(-60.60%)
BB(12,10) 2.4453 | 5 | 2.75949 +0.314195(+12.85%) 325351/533864(-60.94%)
BB(12,11) 2.44444 5 | 2.75949 +0.315048(+12.89%) 326375/534888(-61.02%)
BB(13,1)| 2.51823 1 | 2.56924 +0.0510149(+2.03%) 322/3593(-8.96%)
BB(13,2)| 2.69615 2 | 2.76459 +0.0684388(+2.54%)5845/49110(-11.90%)
BB(13,3)| 2.7264 | 4 | 2.80896 +0.0825596(+3.03%)35904/242478(-14.81%)
BB(13,4)| 2.66664 4 | 2.7976% +0.131004(+4.91%)| 166062/643068(-25.82%)
BB(13,5)| 2.58797 5 | 2.78796 +0.199994(+7.73%)| 442137/1108550(-39.88%)
BB(13,6)| 2.53309 5 | 2.78229 +0.249196(+9.84%)| 717635/1472390(-48.74%)
BB(13,7)| 2.50062 5 | 2.77942 +0.2788(+11.15%) | 914731/1700220(-53.80%)
BB(13,8)| 2.48142 5 | 2.7789 | +0.297486(+11.99%) 1037283/1827316(-56.77%)
BB(13,9)| 2.4702 | 5 | 2.77912 +0.308918(+12.51%) 1102691/1891604(-58.29%)
BB(13,10) 2.46437 5 | 2.77912 +0.314748(+12.77%) 1130851/1919764(-58.91%)
BB(13,11) 2.46203 5 | 2.77912 +0.317089(+12.88%) 1140579/1929492(-59.11%)
BB(13,12) 2.46154 5 | 2.77912 +0.317579(+12.90%) 1142627/1931540(-59.16%)
BB(14,1)| 2.53557 1 | 2.58423 +0.0486629(+1.92%)521/6255(-8.33%)
BB(14,2)| 2.71929 2 | 2.78529 +0.0659952(+2.43%) 12052/108982(-11.06%)
BB(14,3)| 2.75635 4 | 2.83483 +0.0784769(+2.85%) 80539/636264(-12.66%)
BB(14,4)| 2.70065 6 | 2.82311 +0.122467(+4.53%)| 467063/1906645(-24.50%)
BB(14,5)| 2.61918 8 | 2.80987 +0.190696(+7.28%) 1368089/3569029(-38.33%)
BB(14,6)| 2.55993 10 2.8022% +0.242317(+9.47%)| 2361586/4984631(-47.38%)
BB(14,7)| 2.52346 5 | 2.79651 +0.273047(+10.829%)3012087/5931157(-50.78%)
BB(14,8)| 2.50193 5 | 2.79464 +0.292711(+11.70%) 3504047/6486437(-54.02%)
BB(14,9)| 2.48895 5 | 2.79436 +0.305406(+12.27%)3796015/6786933(-55.93%)
BB(14,10) 2.48154 5 | 2.79448 +0.312939(+12.61%)3945199/6933877(-56.90%)
BB(14,11) 2.47786 5 | 2.79448 +0.316618(+12.78%) 4007151/6995829(-57.28%)
BB(14,12) 2.47647 5 | 2.79448 +0.318012(+12.84%)4027631/7016309(-57.40%)
BB(14,13) 2.47619 5 | 2.79448 +0.31829(+12.85%)| 4031727/7020405(-57.43%)
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BB(15,1)[ 2.55062 1 | 2.59708 +0.0464547(+1.829)843/10835(-7.78%)
BB(15,2)| 2.73947 1 | 2.80304 +0.0635667(+2.32%) 24893/240693(-10.34%)
BB(15,3)| 2.78255 4 | 2.85759 +0.0750453(+2.70%) 186351/1662399(-11.21%)
BB(15,4)| 2.73117 6 | 2.84478 +0.113609(+4.16%)| 1193477/5636091(-21.18%)
BB(15,5)| 2.64757 7 | 2.82836 +0.180787(+6.83%)| 3994150/11478205(-34.809
BB(15,6)| 2.58416 8 | 2.81871 +0.234552(+9.08%)| 7483649/16887924(-44.319
BB(15,7)| 2.5442 20730535

BB(16,1)| 2.56381 1 | 2.60821 +0.0443943(+1.73%) 1364/18687(-7.30%)
BB(16,2)| 2.75722 1 | 2.81842 +0.0612032(+2.22%) 51425/529373(-9.71%)
BB(16,3)| 2.80576 4 | 2.87778 +0.072022(+2.57%)| 440405/4327228(-10.18%)
BB(17,1)| 2.57547 1 | 2.6179% +0.0424783(+1.65%)2207/32106(-6.87%)
BB(17,2)| 2.77292 1 | 2.83186 +0.0589356(+2.13%) 106246/1160005(-9.16%)
BB(17,3)| 2.82642 4 | 2.89577 +0.069357 (+2.45%) 1056462/11226140(-9.41%)
BB(18,1)| 2.58584 1 | 2.62654 +0.0406988(+1.57%4)3571/54974(-6.50%)
BB(18,2)| 2.78693 1 | 2.8437 | +0.0567749(+2.04%)219506/2533584(-8.66%)
BB(19,1)| 2.59513 1 | 2.63418 +0.039046 (+1.50%) 5778/93845(-6.16%)
BB(19,2)| 2.7995 | 1 | 2.85423 +0.054727 (+1.95%) 453495/5517456(-8.22%)
BB(20,1)| 2.6035 | 1 | 2.6410] +0.037510 (+1.44%) 9349/159765(-5.85%)
BB(20,2)| 2.81085 1 | 2.86364 +0.052791 (+1.88%) 936918/11983889(-7.82%)
BB(21,1)| 2.61109 1 | 2.64716 +0.036081 (+1.38%) 15127/271321 (-5.58%)
BB(22,1)| 2.61797 1 | 2.65272 +0.034750 (+1.33%) 24476/459743(-5.32%)
BB(23,1)| 2.62427 1 | 2.65778 +0.033508(+1.28%)| 39603/777432(-5.09%)
BB(24,1)| 2.63005 1 | 2.6624 | +0.032347(+1.23%)| 64079/1312200(-4.88%)
BB(25,1)| 2.63537 1 | 2.66663 +0.0312603(+1.19%) 103682/2211025(-4.69%)
BB(26,1)| 2.64028 2 | 2.67104 +0.0307548(+1.16%)585073/3719643(-15.73%)
BB(27,1)| 2.64483 2 | 2.67506 +0.0302331(+1.14%) 946668/6248479(-15.15%)
BB(28,1)| 2.64906 2 | 2.67876 +0.0296998(+1.12%) 1531741/10482351(-14.619

We now consider Belk-Brown seBn, k) with best density, for fixed and anyk, before
(or after, in the subsequent table) applying the densification algorithm.

|

Best density Belk-Brown sets (before densification) |

Density | Before | # | After Increase Deleted vertices
BB(2,1) | 1.33333| 1 | 0 -1.33333(-100.00%) | 3/3(-100.00%)
BB(3,2) | 1.77778[ 1 | 0 -1.77778(-100.00%) | 9/9(-100.00%)
BB(4,2) | 2 11]0 -2(-100.00%) 24/24(-100.00%)
BB(5,2) | 2.2 1 | 2.27907| +0.0790696(+3.59%) 17/60(-28.33%)
BB(6,2) | 2.34014| 1 | 2.41509| +0.0749583(+3.20%) 41/147(-27.89%)
BB(7,2) | 2.42735| 1 | 2.50714| +0.0797923(+3.29%) 71/351(-20.23%)
BB(8,2) | 2.49695| 1 | 2.57676| +0.0798025(+3.20%) 124/821(-15.10%)
BB(9,2) | 2.55485| 1 | 2.63139| +0.0765369(+3.00%) 233/1896(-12.29%)
BB(10,3) 2.60551| 4 | 2.70623| +0.100716(+3.87%) | 3422/12994(-26.34%)
BB(11,3) 2.65202| 4 | 2.74514| +0.0931263(+3.51%) 6978/34680(-20.12%)

~—~ —
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BB(12,3) 2.69209| 4 | 2.779 | +0.0869138(+3.23%) 14982/91965(-16.29%)
BB(13,3) 2.7264 | 4 | 2.80896| +0.0825596(+3.03%)) 35904/242478(-14.81%)
BB(14,3) 2.75635| 4 | 2.83483| +0.0784769(+2.85%)) 80539/636264(-12.66%)
BB(15,3) 2.78255| 4 | 2.85759| +0.0750453(+2.70%) 186351/1662399(-11.21%),
BB(16,3) 2.80576| 4 | 2.87778| +0.072022(+2.57%) | 440405/4327228(-10.18%),
BB(17,3) 2.82642| 4 | 2.89577| +0.069357 (+2.45%) 1056462/11226140(-9.419
| Best density Belk-Brown sets (after densification)

Density | Before | # | After Increase Deleted vertices

BB(2,1) | 1.33333| 1 | O -1.33333(-100.00%) | 3/3(-100.00%)

BB(3,2) | 1.77778/ 1 | O -1.77778(-100.00%) | 9/9(-100.00%)

BB(4,2) | 2 110 -2(-100.00%) 24/24(-100.00%)

BB(5,2) | 2.2 1 | 2.27907| +0.0790696(+3.59%)) 17/60(-28.33%)

BB(6,3) | 2.28326| 2 | 2.42105| +0.137791(+6.03%) | 119/233(-51.07%)
BB(7,3) | 2.39258| 2 | 2.52717| +0.134593(+5.63%) | 279/647(-43.12%)
BB(8,3) | 2.48144| 2 | 2.59581| +0.114371(+4.61%)| 489/1778(-27.50%)
BB(9,3) | 2.5493 | 2 | 2.65126| +0.101964(+4.00%) | 977/4828(-20.24%)
BB(10,3) 2.60551| 4 | 2.70623| +0.100716(+3.87%) | 3422/12994(-26.34%)
BB(11,3) 2.65202| 4 | 2.74514| +0.0931263(+3.51%)) 6978/34680(-20.12%)
BB(12,3) 2.69209| 4 | 2.779 | +0.0869138(+3.23%) 14982/91965(-16.29%)
BB(13,3) 2.7264 | 4 | 2.80896| +0.0825596(+3.03%)) 35904/242478(-14.81%)
BB(14,3) 2.75635| 4 | 2.83483| +0.0784769(+2.85%)) 80539/636264(-12.66%)
BB(15,3) 2.78255| 4 | 2.85759| +0.0750453(+2.70%) 186351/1662399(-11.21%),
BB(16,3) 2.80576| 4 | 2.87778| +0.072022(+2.57%) | 440405/4327228(-10.18%),
BB(17,3) 2.82642| 4 | 2.89577| +0.069357 (+2.45%) 1056462/11226140(-9.419

10. OuTLOOK

Throughout this section we use essentially the same notation as introduced in
the beginning of the paper, and as used in the description of our densification
algorithm §5): A always denotes a (not necessarily connected) finite graph, which
we think of as “virtually” embedded as subgraph into an infinite ambient géaph
The latter is usually the Cayley gragh= C(G, X) of a finitely generated grou@
with respect to a generating system of finite cardinatit¢ N, on whichG acts
on the left. In any case we always assume thdias a uniform boun@m for
the degree of any of its vertices. Note that the ambient graph is “virtual” in that,
contrary to the subgraph, it exists only as theoretical construct, and hence any
finite pieceA* of it (typically with A C A*) has to be algorithmically constructed
before it can be used in the algorithm.

For the purposes of this section it is easier to work with non-oriented edges.
Thus every edge in this section corresponds to a pair of inversely oriented edges
with same endpoints, in the notation of the earlier sections. Below we denote by
V(A) the set of vertices o and byE(A) the set of edges. By(A) ande(A) we
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denote the cardinality of (A) andE(A) respectively. We cak(A) the volumeof

A. The Euler characteristic @ is given byx(A) = v(A) — e(A). For any vertex
x € V(A) the degreeleg,(x) is the number of edge segments adjacem twhich

is consistent with the use afeg A) in the earlier sections in view of the above
transition from oriented to non-oriented edges. A verexV (A) is calledbranch
pointif it has degrealegx) > 3.

For any subseX C A we denote byl(X) the smallest subgraph éfthat con-
tainsX. For any subgrapK of A we define theA-boundarydaK of K to be the
O-dimensional subgraph & which consists of all vertices that bound simultane-
ously an edge fromh and an edge frorl (A— K):

0aK = Ancl(A—K)

Also, intaAK = K — daK denotes theéA-interior of K, which is in general not a
subgraph. A subgrapk of A is calledfull, if it contains all edges of that have
both endpoints iK. The density ofA is given by
sy = § 9eR) _EA
xia) VA V(A)
We extend this notion in the obvious way to “graphs with some vertices missing”
like the above seitita (K), for which one has(inta(K)) = 2y
The comments and improvements proposed below concern the following three
aspects: (A) the algorithmic determination of subgraph& wfith higher density,
(B) the deterministic construction of larger graphisC € which containA and
have higher density, and (C) the non-deterministic construction of Atich

A. Subgraphs with higher density. We observe that the improvements on the
density by passing over to a subgraobf A, as performed by the subroutines (R1)

- (R4) of our algorithm presented Iib, are all based on the following principle:
The computer checks for the existence of subgrdphld A of a certain (fairly
simple) type, and, if it finds any of them, it replacasy A = A—intaK. The
type of subgraph& in question assures that the density increases strictly in this
process. This is ensured by the topologyKofwhich needs to be of low density
itself, and with smalA-boundary. More precisely, one has:

Remark 1. For any subgrapK C A the complementary subgrapgh= A — intaK

satisfiesd(A) > d(A) if and only if one had(A) > d(intaK). Such a subgrapk
is calleddensity increasing

Below we propose 4 further methods how to effectively find a density increasing
subgraptK, in any given finite grapl:

(2) A first improvement of the algorithm used in our work can simply be obtained
by embellishing the list of density increasing subgraghavhich are integrated
as fixed part of the algorithm without ever changing in the process. This is done



68 ARZHANTSEVA, GUBA, LUSTIG, AND PREAUX

by adding to the present list (i.e. trees, cycles, long chains, long tripods and long
degenerated tripods, s&®) further subgraphs with low densities and small bound-
ary. For example, any connected subgraph which is of classK(k,,n), defined

as set of all graphis with v(K) =k, |daK| <l andx (K) > n, is density increasing

if K- < &(A), by Remark 1.

(2) We devise a new subroutine, where the computer searches for #g afedl|
verticesx € V (A) with degy(X) < &(A) (or degy(x) < 6(A) —C for some constant
C > 0), and assembles them into “clusters”, i.e. it builds iteratively full subgraphs
Ki which have a high percentage of low-valence vertices. The subgkagpins de-
fined iteratively out of the connected componefits, of Ki_; by adding vertices
and edges from their neighborhood in order to create larger connected components,
with the goal to decrease the tofsboundary of the union of thi§/ ;.

At any given statd; the computer checks the cardinalitydK;, and stops the
subroutine if this check shows thigt is density decreasing.

(3) A promising method to find interesting candidates for density decreasing sub-
graph C Aseems to be the following: We consider a symmetric random walk on
A where the starting measure on each veréxgiven bypp(x) = 2m—deg ().

We then let the random walk proceed for some integer tirtteus distributing the

measure to give a value pf(x) on anyx € V (A) via the formulau (x) = 5 é‘;;g,; ,
where the sum is taken over all vertigeadjacent tocin A. For anyh > 0 we de-
fine the vertex set¥ (h,t) = {x € V(A) | t(x) > h}, and the subgraphs(h,t)
as the full subgraphs o with vertex seW (h,t). For any integer time¢ > O, if
we leth decrease monotously fromax i (x) | x € V(A)} to 0, the familyK (h,t)
defines a (finite) increasing nested sequence of subgraghsufich we propose
as candidates for density decreasing subgraphs.

A variation of this approach would be to iterate the random walk tiigilarge
enough so that the measyrgx) approximates a stable equilibriuga, (x), for all
verticesx € V(A). But this seems less interesting, as there is only one such limit
distribution, and that is precisely given 99% times the density function.

Another, perhaps more promising variation comes from adding exterior mea-
sure sources or measure sinks, for example sinks for the high-density vertices, or
sources for the low-density vertices, to force an equilibrium state to assemble the
measure in the neighborhood of certain subgraphs considered as possible candi-
dates for density decreasing subgraphs. (Recall that low-density does not imply
density increasing, as one also needs thaftheundary oK is small.)

(4) More generally, improving the density 8fby erasing interiors of subgraphs
can also be viewed az improving the qualityfofis an expander: We look for a
“small” setZ of vertices (corresponding @K in the above approaches) which
cutsA into subgraph& andA (with union A and intersectiorZ) that have rather

different densitie®(A) > d(K). If the difference of these densities is large with
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respect to the cardinality &, for example if5(A) — 6(K) > &, thend(A)
will be strictly bigger thard(A).

There are also some interesting theoretical questions surrounding the algorith-
mic attempts to improve the density by erasing subgraphs:

(i) Is there an algorithm to find the (possibly non-uniquely determined) subgraph
Anmax of highest density among all subgraphsfo?

As A is finite, the answer is of course “yes”, but trying out all subgraphs is
unfortunately not feasable in practise. Hence we rephrase the question as:

(i) What is the minimal complexity of any algorithm that derivAgax from a
given finite graphA. In particular, is there a polynomial-time algorithm ?

(iii) Is there an algorithm for findindAmax that uses only finitely many types of
steps to pass from one intermediate subgrgpb A1 ? Here a “step” consists of
modifying a subgraph o4 of a given graph type into a new graph of given type.
(iv) Is there always a sequence of nested subgrdplod increasing density and
uniformly bounded volume difference(A;) — e(Ai+1) connectingA to Amax ?
What is the minimal value for the volume difference bound needed to answer this
guestion in the positive, in terms of the universal vertex degree bound 2m ?

An important fact the reader should note is the observation that certain “wrong”
initial improvements o (by erasing the interior of some density increasing sub-
graphK) can prevent the algorithm used in this paper, as well as any of the above
proposed improvements (1) - (4), from ever finding any of the really desired sub-
graphsA C A with densityd(A) close t0d(Amax). Indeed, it is not hard to find
examples of graphs (for example built on two disjoint graphs connected by adding
a long chain) which answer the following question in the negative:

Is any subgrapl of A with 5(A) > 6(A), such thatA does not contain a sub-
graph of strictly larger density tha®(A), necessarily equal t8max ?

B. Deterministic methods do increasé\ to a larger graph A* with higher den-
sity. We first notice that for any finite subgraptof the Cayley grapl¢ of G, and
for anyg € G with sufficiently large translation length i@, the subgraplgA of C
is a disjoint isomorphic copy oA, and hence their union has the same density as
A. On the other hand, if one finds an elemgrit G such thatA andgA intersect
in a single vertex, then the density of the unidn Agis strictly larger than that
of A. Of course, as the special case of a subtfesbhows, there are rather strict
limits to this method in its crude form, but nevertheless it gives the right idea why
the following is promising.

SinceA is finite, the subseBa C G defined by

Ga = {g€ G| AngAnon-empty
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is also finite, so that at least in principle one can calculate, for all suBsetSa,
the density of the union
AB—U{gA|geB}.

It seems quite realistic that among t#A® one finds new graphs with substantially
higher density thaA, and that an iteration of this procedure leads to a very promis-
ing family of density test graphs f@.

On the other hand, the calculation of the uni#fids tedious and requires much
computing time. Hence the following suggestion may prove to be helpful:

DenotegA by A, and letk = AN A’ be the intersection subgraph. The(AU
A') is calculated by the formula

4e(A) — 2e(K)
2v(A) — v(K)
and henc®(AUA') > 4(A) if and only if 5(A) > d(K).
We may thus start out with a large= gq = Xg...X1 € G, so thatgAis disjoint
from A and then pass successivelygp 1A, to gq_2A, etc, forgy = X...xg, until
A andgiA meet. As small graphs have (a forteriori) small density, the first non-

empty intersection graph$§ = AN g;A seem to be interesting candidates for the
above procedure.

O(AUA) =

A very different deterministic approach to construct familfef increasing
volumee(A;) and increasing densiy(A;) consists of systematic “local” improve-
ments implemented as follows:

A first computer program compiles a complete list= L, for some integer
n> 1, of all pairs of subgraphi; C L; contained in the baB,(1) in € of radiusn
around the trivial elemertt € G, which satisfyd(L;i) > d(K;). A second program
then verifies, for any € A;, whetherB,(x) N A = xK;, and if so, replaces the
subgraphxK; of A; by xL; to obtain the new graph_.;.

Of course, if one can increase the indewf the list L, in the first computer
program, then procedure performed by the second program will lead to better val-
ues. In principle one can also imagine an interactive procedure, where all pairs
of graphsA; C A1 produced by the second program are automatically added to
the list of test pairK; C L; from £. The problem with this theoretically most
promising approach is of course the hugh amount of memory needed to store the
list L.

C. Non-deterministic methods for enlarging the test graphA. A different con-

cept for finding high-density subgraphs @fcomes from the observation that a
random walk in a graph has the tendency to accumulate large amounts of measure
(= “heat”) in parts of the graph which are “heat preserving”. There are several
methods how to mimick random walks in more or less efficient ways on a com-
puter:
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(1) For any non-negative functigm : € — R which is equal td outside a finite
setA C € we defineut1: € — Rvia tri1(X) =y dg’gy&,) , where the sum is taken
over all verticesy adjacent tax in €. We then define, for fixetl and increasing
h, a decreasing family of finite level sefgn = {x € C | t(x) > h} with empty
intersection, which hence can be computed for any valueaofl any value of.
Of course, the computation is very time consuming.

(2) An approximation of the previous method is the following: At any timene
only distributes the weight; (y) among all of its neighbors (including possibly
y itself) if (y) is maximal or close to the maximum value pf(z) among all
ze A=A

The idea here is that vertices with small measure will have to be ignored any-
way, as their totality grows too much like balls and will hence have low density, in
general.

(3) We can exploit the fact that our grajghin question is not just any graph,

but actually the Cayley graph of a gro@ by denoting a (finite support) mea-
sure onC as element in the group ringG. It is easy to see that convolution

of (finite support) measures is nothing else than simply multiplying the corre-
sponding elements iRG. In particular, the classical nearest neighbor symmet-
ric random walk or¢(G, X) is directly given by the powerg* for t — oo, where

U= 5 Sxux-1X € RG.

(4) An interesting variation of the previous three approaches seems to be the fol-
lowing “discretization”: One decides ahead of time on a finite integer scale, (say,
from 0 to N,) and rescale the heat functippat any time so that its maximal value

on C equalsN. Furthermore, for every vertexthe valuep;(x) is decreased to

U (X) = [ (X)], i.e. to the largest integer smaller or equalg¢x). This reduces

on one hand the computational effort, and at the same time it cuts off the undesired
very-low-heat vertices added by the pure random walk as described above in (1).
Of course, if one choses the scale too coarsely by pidkitgp small, we may get
nowhere, by cutting off at every “rescaling second half-step” precisely what has
been gained right before by the “neighbor-heat-distribution” in the first half-step,
throughout any step of our discretized random walk procedure.
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