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Abstract. We are interested in coupled microscopic/macroscopic
models describing the evolution of particles dispersed in a fluid. The
system consists in a Vlasov-Fokker-Planck equation to describe the
microscopic motion of the particles coupled to the Euler equations for
a compressible fluid. We investigate dissipative quantities, equilibria
and their stability properties and the role of external forces. We also
study some asymptotic problems, their equilibria and stability and
the derivation of macroscopic two-phase models.

1. Introduction

Fluid-particle interaction is of primarily importance in sedimentation
analysis of disperse suspensions of particles in fluids, one of the issues being
the separation of the solid grains from the fluid by external forces: gravity
settling processes or centrifugal forces. These procedures find their applica-
tions in biotechnology, medicine, waste-water recycling and mineral process-
ing [11]. On the other hand, aerosols and sprays can be also modelled by
fluid-particle type interactions in which bubbles of suspended substances are
seen as solid particles [5, 6]. Eventually, such problems also arises in com-
bustion theory, when modelling Diesel engines or rocket propulsors [45, 46].

In what follows, we describe a single specie of disperse particles by a
density function f(t, x, ξ): f(t, x, ξ) dξ dx gives the number of particles en-
closed at time t ≥ 0 in the infinitesimal domain of the phase space centered
on (x, ξ) ∈ R3 × R3, with volume dξ dx. A macroscopic description of
the dispersed phase is obtained by looking at averages with respect to the
ξ variable like the macroscopic density

∫
R3 f dξ, the macroscopic momen-

tum
∫
R3 ξf dξ and so on. The surrounding fluid is described by its density

n(t, x) ≥ 0 and its velocity field u(t, x) ∈ R3. In this work, we will consider
the fluid as compressible and we will describe it by the compressible Euler
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equations. The coupled system of the kinetic transport equation for the
particles and the compressible Euler equation for the fluid will be referred
as the Vlasov-Euler system.

Throughout the paper, particles are assumed spherically shaped with
constant radius a > 0, so that the mass of a particle is given by mP =
4
3 ρPπa3, ρP being the particle mass per unit volume. The evolution of the
two phases is coupled through friction force terms. Indeed, the surrounding
fluid produces a friction force on the particle, which is proportional to the
relative velocity

F (t, x, ξ) = 6πµa
(
u(t, x)− ξ

)
,

with µ > 0 being the (dynamic) viscosity of the fluid. Accordingly, the force
exerted by the particles on the fluid is given by the sum

6πµa

∫

R3

(
ξ − u(t, x)

)
f dξ.

Furthermore, both phases are affected by the external forces, which are sup-
posed to derive from a time independent potential Φ(x). Precisely, we de-
note by −mP∇xΦ the force exerted on the particles, and αρF∇xΦ the force
exerted per unit volume on the fluid, where ρF is the fluid mass per unit
volume and α ∈ R is a dimensionless parameter (which measures the ratio
of the strength of the external force on each phase). External forces can be
produced by a great deal of relevant physical mechanisms: gravity, centrifu-
gal, electric or magnetic forces on charged particles/fluid... Throughout the
paper, we assume that the potential Φ does not depend on the unknowns
f, n, u. It is worthwhile to have in mind the simplest example of settling
gravity processes. Here, the force exerted on each particle is the sum of the
weight and the buoyancy force:

−4
3

ρPπa3 g
(
1− ρF

ρP

)
e3,

where g is the gravity acceleration and e3 the upwards unit vector. There-
fore, in such a case we have

Φ(x) = (1− ρF/ρP)gx3 α =
1

1− ρF/ρP

.

Note in particular that the sign of Φ depends on the ratio of the densities
. Another example is given by considering a centrifugal force: Φ(x) =∫∞
|x| ϕ(z) dz ≥ 0, for some function ϕ : R+ → R+ which tends to 0 at

infinity.
Finally, the particles are also subject to Brownian motion, which trans-

lates into diffusion in the variable ξ, the diffusion coefficient being defined
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by the Einstein formula [25]

kθ0

mP

6πµa

mP

=
kθ0

mP

9µ

2a2ρP

.

Here k stands for the Boltzmann constant, and θ0 > 0 denotes the tempera-
ture of the surrounding fluid, assumed to be constant. Therefore, we arrive
at the following PDEs system

∂tf + ξ · ∇xf −∇xΦ · ∇ξf =
9µ

2a2ρP

divξ

(
(ξ − u)f +

kθ0

mP

∇ξf
)
,(1.1)

∂tn + divx(nu) = 0,(1.2)

(1.3)

ρF

(
∂t(nu)+Divx(nu⊗ u)+αn∇xΦ

)
+∇xp(n)=6πµa

∫

R3
(ξ−u)f dξ.

In (1.3), p(n) is a general pressure law, for instance p(n) = Cγ nγ , γ ≥ 1,
Cγ > 0. The system is completed by the initial condition

f0 ≥ 0, n0 ≥ 0, u0 ∈ R3.

Besides, if fluid and particles evolve in a domain Ω ⊂ R3, we should also add
boundary conditions. Boundary conditions will be considered in such a way
that the total number of particles and mass of the fluid remain constant on
the evolution. The precise boundary conditions are discussed in Section 3.

Although the fluid has been described by the compressible Euler equa-
tions, the fluid viscosity plays a major role in the definition of the friction
forces. This is completely coherent since in a lot of practical situations
viscosity effects are negligible on the fluid evolution. For instance, such
a Vlasov-Euler description was introduced for reacting flows of sprays in
[45, 46] and it is used in Los Alamos National Laboratory by O’Rourke and
collaborators [41, 1, 2] to derive the code KIVA-II, as well as in the French
Atomic Commission, [5]. This remark will be completely clarified once we
choose relevant dimensionless parameters.

Coupled kinetic-fluid model have been introduced in [13]. Derivation of
such coupled micro/macro systems are discussed with various viewpoints in
[26, 33, 36]. Mathematical analysis of a system coupling the Vlasov equation
(1.1) to the constant density incompressible Navier-Stokes equation can be
found in [31], while hydrodynamic limits for this model are considered in [28,
29], following the preliminary work [32]. Similar singular perturbations
problems are dealt with in [10, 22, 23, 24, 27, 35]. Existence of a smooth
solution to the Cauchy problem (1.1), (1.2), (1.3) on a small enough interval
of time, is discussed in [5].
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We wish to address some stability and asymptotic limit questions for
the problem (1.1)-(1.3). To this end, it is more convenient to work on the
dimensionless version of (1.1)-(1.3). This is discussed in Section 2. The
cornerstone of our analysis relies on a dissipation property of the system
(1.1)-(1.3), which is presented in Section 3. In turn, this leads to the defini-
tion of (non trivial) equilibrium states which can be shown to be nonlinearly
stable. Then, we can also guess on formal grounds the asymptotic behavior
of the system with respect to the evolution of the physical parameters of the
problem. In the spirit of hydrodynamic limits, we obtain coupled two-phase
macroscopic equations. This is explained in Section 4. However a complete
and rigorous proof of convergence for this problem is far beyond the scope of
this paper. Instead, we refer to the progresses obtained in [40]. In Section 5
we explore the limiting two-phase systems and we show the dissipation of a
quantity that implies again the nonlinear stability of non trivial equilibrium
states. In the gravity settling case these equilibrium states correspond to
sedimentation profiles. Despite of the lack of a rigorous proof of convergence
in the studied asymptotic limits, we bring out the relevancy of our analysis
by studying rigorously the linearized version of (1.1)-(1.3) in the Section 6.

2. Modelling Issues

2.1. Dimensionless System. Let us first remark that

TS =
mP

6πµa
=

2ρPa2

9µ

is the natural relaxation time for the kinetic equation (1.1), usually referred
in these applications as the Stokes settling time. We consider as usual

Vth =

√
kθ0

mP

as the measure of the fluctuation of particles velocity, called their thermal
speed.

Let us introduce time and length units T and L respectively, which define
the time and length units of the observation. We associate a velocity unit
U = L/T. Then, we can define dimensionless variables. Adopting the
convention that primed quantities are dimensionless, we set

t = T t′, x = L x′, ξ = Vthξ′

n(Tt′, Lx′) = n′(t′, x′) u(Tt′,Lx′) = U u′(t′, x′)
p(Tt′,Lx′) = P p′(t′, x′),

where P is a pressure unit, and

f ′(t′, x′, ξ′) =
4
3
πa3 V3

th f(Tt′,Lx′,Vthξ′).
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Note that ρFndx gives the mass of fluid enclosed in a domain with volume
dx, so that n is already dimensionless. We eventually associate to the
external potential a velocity VS by setting

Φ(Tt′,Lx′) =
VSL
TS

Phi′(t′, x′).

Therefore, (1.1) can be recast as

1
T

∂t′f
′ +

Vth

L
ξ′ · ∇x′f

′ − VS

TSVth
∇x′Φ′ · ∇ξ′f

′ =

= 1
TSVth

divξ′
((Vthξ′ −Uu′

)
f ′ + Vth∇ξ′f

′) ,

while (1.2) and (1.3) become

1
T

∂t′n
′ +

U
L

divx′(n′u′) = 0,

U
T

∂t′(n′u′) +
U2

L
Divx′(n′u′ ⊗ u′) +

P
ρFL

∇x′p
′(n′) + α

VS

TS
n′∇x′Φ′

=
1
TS

ρP

ρF

∫

R3

(Vthξ′ −Uu′
)

f ′ dξ′.

Let us define the following dimensionless quantities

(2.1)





β =
T
L
Vth =

Vth

U
,

1
ε

=
T
TS

,

η =
VST
VthTS

, χ =
PT

ρFLU
= fracPρFU2.

Hence, dropping the primes we are led to
(2.2)




∂tf + βξ · ∇xf − η∇xΦ · ∇ξf =
1
ε
divξ

((
ξ − 1

β
u
)
f +∇ξf

)
,

∂tn + divx(nu) = 0,

∂t(nu) + Divx(nu⊗ u) + χ∇xp(n) + αβη n∇xΦ =
1
ε

ρP

ρF

(J − ρu),

where we use the notation

ρ(t, x) =
∫

R3
f(t, x, ξ) dξ, J(t, x) = β

∫

R3
ξ f(t, x, ξ) dξ.

For further purposes, it is also convenient to define the kinetic pressure

P(t, x) =
∫

R3
ξ ⊗ ξ f(t, x, ξ) dξ.
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Remark 1. Let us go back to the example of the gravity to explain in this
particular case the meaning of VS. Consider a particle with radius a and
mass per unit volume ρP . The particle is dropped in a fluid at rest, having
viscosity µ and mass per unit volume ρF . Hence, the motion of the particle
is simply described by the ODE

4
3

πρPa3 d2

dt2
X(t) = −6πµa

d
dt

X(t)− 4
3

πρPa3g
(
1− ρF

ρP

)
.

Then, as time becomes large, the velocity of the particle d
dtX(t) has a limit,

the modulus of which is

VS = TS g
∣∣1− ρF

ρP

∣∣.

This is referred as the Stokes settling velocity.

Remark 2. Still for the example of gravity, the dimensionless coefficient
αβη is nothing but the inverse of the Froude number of the flow. Accord-
ingly, 1/η can be seen as the (reduced) Froude number of the dispersed phase.

Remark 3. We have mentioned in the Introduction that it could be strange
to neglect the viscosity term µ∆xu in the fluid equation, while viscosity plays
a crucial role in the definition of the friction force. However, when writing
the equation in dimensionless form, the corresponding diffusion coefficient
reads

2
9

( a

L

)2 T
TS

ρP

ρF

.

Hence, we realize that this term is negligible under the natural modelling
assumption a ¿ L, whatever will be our scaling assumptions on ρP/ρF and
T/TS.

2.2. Boundary Conditions. From now on, we consider the problem (2.2)
with the space variable x ∈ Ω ⊂ R3, with either Ω = R3 itself or a bounded
domain with smooth boundary. In such a case we denote by ν(x) the out-
ward unit vector at x ∈ ∂Ω. Then, the problem has to be completed with
boundary conditions. For the fluid, it is natural to require

(2.3) u · ν(x) = 0, for x ∈ ∂Ω

for solid boundaries. For the particles, we consider a general boundary
condition which describes how particles are reflected by the boundary. Let
us denote by f±(t, x, ξ) the trace of f on the set

Σ± = {(t, x, ξ) ∈ R+ × ∂Ω× R3, ±ξ · ν(x) ≥ 0}.
Details on the theory of traces for transport equations can be found in e.g.
to [8, 16, 17, 19]. The boundary condition relates the incoming trace to the
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outgoing one as follows

|ξ · ν(x)|f−(t, x, ξ) =
∫

ξ′·ν(x)>0

K(x, ξ, ξ′) f+(t, x, ξ′) ξ′ · ν(x) dξ′

for (t, x, ξ) ∈ Σ−

where the kernel K is required to satisfy the following properties

• Non negativeness:

(2.4) K(x, ξ, ξ′) ≥ 0.

• Normalization:

(2.5)
∫

ξ·ν(x)<0

K(x, ξ, ξ′) dξ = 1.

• Preservation of equilibrium:

(2.6) |ξ · ν(x)|e−|ξ|2/2 =
∫

ξ′·ν(x)>0

K(x, ξ, ξ′) e−|ξ
′|2/2 ξ′ · ν(x) dξ′.

The first condition preserves non negativeness of the solution; the second
condition implies the mass conservation: boundaries are neither a source
nor a sink of particles and we always have

d
dt

∫

Ω

∫

R3
f dξ dx = 0.

The simplest example is given by the total accomodation reflexion law

|ξ · ν(x)|f−(t, x, ξ) = |ξ · ν(x)| e−|ξ|
2/2 1

2π

∫

ξ′·ν(x)>0

f+(t, x, ξ′)ξ′ · ν(x) dξ′,

which means that particles are re-emitted by the wall according to a Gauss-
ian law with a temperature coinciding with the temperature of the sur-
rounding fluid (here 1 in dimensionless variables.)

In some particular cases, periodic boundary conditions are more physi-
cally reasonable in certain variables. For instance, in the gravity settling
case we might consider the simplest situation of a box Ω = [0, L]2× [0, L3] in
which periodic boundary conditions are considered for both x1, x2-directions
and no-flux boundary conditions of the type described above are imposed in
the boundaries on the vertical direction x3 since our given potential depends
only on the x3-variable. Again, with these boundary conditions, particles
and fluid total masses are preserved and global boundary fluxes of inter-
est are zero over the variables in which periodic boundary conditions are
imposed.
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3. Entropy Dissipation and Stability

As mentioned in the Introduction, the system enjoys a remarkable dissi-
pation property. This needs a crucial relation between the scaling parame-
ters, and in turn, it leads to stability properties.

3.1. H-Theorem. Let us assume the following hypotheses on the pressure
function p:
(HP1) p : R+ → R+ is continuous, strictly increasing, satisfies p(0) = 0

and is of class C2 on (0, +∞).
(HP2) The enthalpy function h, defined by

h(n) :=
∫ n

1

p′(s)
s

ds, n ∈ (0,∞),

belongs to L1
loc(0,∞).

These hypotheses allow us to introduce the internal energy function Π as-
sociated to the pressure function p by

Π : [0,∞) → R, Π(n) =
∫ n

0

h(s) ds.

It is well-defined due to (HP2), with Π′(n) = h(n) and nΠ′′(n) = p′(n) for
all n ∈ R+ and with Π(0) = Π′(1) = 0.

Remark 4.
• Considering a power pressure law p(n) = nγ , γ > 0, we have Π(n) =

(nγ − γn)/(γ − 1) for γ 6= 1 and Π(n) = n ln(n)− n for γ = 1.
• Standard physical assumptions give pressure-laws functions with ex-

ponents γ > 1, and therefore they give rise to degenerate pressure
functions at zero in the sense that p′(0) = 0. Nevertheless, we in-
clude here the most general case allowing atypical pressure func-
tions. Let us mention that compressible Euler equations with a
pressure function like p(n) = nγ , 0 < γ < 1, were considered in
hydrodynamic limits of granular media [9].

Proposition 1. Assuming the scaling

(3.1)
ρP

ρF

=
1
β2

, η = β,

let us define the free energies associated respectively to the particles and the
fluid as follows:

FP(f) =
∫

Ω

∫

R3

(
f ln(f) +

ξ2

2
f + Φf

)
dξ dx,

FF(n, u) =
∫

Ω

(
n
|u|2
2

+ χΠ(n) + αβηΦn
)

dx.



FLUID-PARTICLE INTERACTION MODELS 9

Then the total free energy functional, F(f, n, u) = FP(f) + FF(n, u), is
dissipated along the flow, precisely
(3.2)

d
dt

(
F(f(t), n(t), u(t))

)
+

1
ε

∫

Ω

∫

R3

∣∣(v − β−1u)
√

f + 2∇ξ

√
f
∣∣2 dξ dx ≤ 0.

Proof. In the proof below, we perform integration by parts reasoning in
the whole space. The slight modifications when dealing with boundaries are
detailed at the end. We compute successively the following time derivatives:

• Entropy and kinetic energy of the particles

d
dt

∫

R3

∫

R3

(
f ln(f) +

ξ2

2
f
)

d xidx

= −1
ε

∫

R3

∫

R3

(
(ξ − β−1u)f +∇ξf

)
·
(∇ξf

f
+ ξ

)
dξ dx

−η

∫

R3

∫

R3
∇xΦ · ξf dξ dx.

• Potential energy of the particles
d
dt

∫

R3

∫

R3
Φf dξ dx = β

∫

R3

∫

R3
∇xΦ · ξf dξ dx.

• Kinetic energy of the fluid

d
dt

∫

R3
n
|u|2
2

dx = −χ

∫

R3
up′(n) · ∇xn dx− αβη

∫

R3
nu · ∇xΦdx

+
β

ε

ρP

ρF

∫

R3

∫

R3
(ξ − β−1u)f · udξ dx.

• Entropy of the fluid
d
dt

∫

R3
Π(n) dx = −

∫

R3
Π′(n)divx(nu) dx =

∫

R3
Π′′(n)∇xn · nu dx.

• Potential energy of the fluid
d
dt

∫

R3
nΦdx =

∫

R3
nu · ∇xΦdx.

Now, we sum these relations. Taking into account (3.1) and using the fact
that

∫
R3 u · ∇ξf dξ = 0, we arrive at

d
dt

(
F(f(t), n(t), u(t))

)
=

= −1
ε

∫

R3

∫

R3

(
(ξ − β−1u)2f +

|∇ξf |2
f

+(ξ − β−1u)f · ∇ξf

f
+ ξ · ∇ξf − β−1u · ∇ξf

)
dξ dx,
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which ends the proof in the whole space.
When considering boundary conditions, integration by parts yields an

additional boundary term, which reads
∫

∂Ω

∫

R3

(
f ln(f) +

ξ2

2
+ Φf

)
ξ · ν(x) dξ dσ(x)

with dσ(x) the Lebesgue measure on ∂Ω. All boundary terms from the
fluid equation vanish, by using the physical boundary condition (2.3). The
mass conservation property (2.5) satisfied by the kernel K implies that

∫

∂Ω

Φ(x)
(∫

R3
fξ · ν(x) dξ

)
dσ(x) = 0.

Then, by combining the conditions (2.4), (2.5) and (2.6), we can check that
the remainder term

∫

R3

(
f ln(f) +

ξ2

2

)
ξ · ν(x) dξ =

∫

R3
f ln

( f

e−ξ2/2

)
ξ · ν(x) dξ

is non positive, as a consequence of the Jensen inequality, a property known
as the Darrozès-Guiraud inequality [18, 16].

3.2. Relative Entropy. The remarkable fact is that the dissipated quan-
tity can be seen as a relative entropy, which evaluates how far the solution
is from an equilibrium state. We refer to [21] for related problems in which
similar properties were found. Indeed, let us start with the dispersed phase
and set

(3.3) fS(x, ξ) = ZMP e−Φ(x) M(ξ)

with

M(ξ) =
e−ξ2/2

(2π)3/2
,

and the normalization condition

ZMP =
MP∫

Ω

e−Φ(x) dx

.

Such a definition makes sense provided Φ fulfils the confinement condition:

(HC1) x 7→ e−Φ(x) ∈ L1(Ω).

Then, fS is a (non homogeneous) stationary solution of the kinetic equa-
tion in (2.2) with u = 0, since (ξ · ∇x − ∇xΦ · ∇ξ)fS = 0 as well as
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divξ(ξfS + ∇ξfS) = 0. When taking into account no-flux boundary con-
ditions, condition (2.6) ensures that fS is still a stationary solution. Since
the kinetic equation preserves the total number of particles

d
dt

∫

Ω

∫

R3
f dξ dx = 0,

we select the equilibrium state fS which has the same total particles mass
as the solution of the evolution problem

MP =
∫

Ω

∫

R3
f dξ dx =

∫

Ω

∫

R3
f0 dξ dx =

∫

Ω

∫

R3
fS dξ dx.

Of course, our equilibrium should be of finite free energy and therefore,
we further assume that FP(fS) < ∞, which is equivalent to the following
confinement condition:
(HC2) x 7→ Φ(x)e−Φ(x) ∈ L1(Ω).
Finally, we remark that

FP(f) =
∫

Ω

∫

R3

(
f ln

(
f

fS

)
− f + fS

)
dξ dx + ln

(
ZMP

(2π)3/2

)
MP ,

and the first term is nonnegative and vanishes if and only if f = fS .
More precisely, let us define the relative entropy functional with respect

to fS for the particles: REP(·|fS) : L1
+(Ω× R3) → R ∪ {∞} is given by

REP(f |fS)=





∫

Ω

∫

R3

(
f ln

(
f

fS

)
− f + fS

)
dξ dx if f ln−f ∈L1(Ω× R3),

∞ else,

where L1
+(Ω × R3) = {f ∈ L1(Ω × R3) : f ≥ 0}. Here, we follow the

notation g−(x) = −g(x) whenever g(x) ≤ 0 and zero otherwise, analogously
for g+.

Thus, the free energy of the particles is nothing but the relative entropy
with respect to the equilibrium state fS up to a constant, i.e.,

FP(f) = REP(f |fS) + ln
(

ZMP

(2π)3/2

)
MP .

Regarding the fluid part of the free energy, we define the functional EF :
L1

+(Ω) → R ∪ {∞}
(3.4)

EF(n)=





∫

Ω

(
αβη

χ
nΦ + Π+(n)

)
dx−

∫

Ω

Π−(n) dx if Π−(n) ∈ L1(Ω)

∞ else,



12 JOSÉ A. CARRILLO, THIERRY GOUDON

where L1
+(Ω) = {n ∈ L1(Ω) : n ≥ 0}. Restricting this functional to the set

of L1
+(Ω) functions with total fluid mass

MF =
∫

Ω

n dx =
∫

Ω

n0 dx,

and including this restriction as a Lagrange multiplier for (3.4), we obtain
the formal Euler-Lagrange condition, whenever nS > 0:

(3.5) Π′(nS(x)) +
αβη

χ
Φ(x) = ZMF ∈ R

to be satisfied for a minimizer nS of (3.4) in this set, where ZMF is a
normalization constant.

The assumptions (HP1)-(HP2) on the pressure function p allow us to
define rigorously a stationary state out of the implicit definition (3.5). In
fact, h = Π′ is a diffeomorphism from (0,∞) onto its range (h(0+), h(∞))
and thus, one has to give sense to nS outside the range of h. This is done
using the generalized inverse σ of h defined as

σ : R→ [0,∞], σ(s) =





0 for s ≤ h(0+),

h−1(s) for h(0+) < s < h(∞),

∞ for h(∞) ≤ s.

Now, we can define our candidates to be minimizers of the functional
EF(n) on the set of L1

+(Ω) functions with total fluid mass MF by

nS(x) = σ

(
ZMF −

αβη

χ
Φ(x)

)
,

where ZMF is fixed by imposing the conservation of fluid mass, i.e., ZMF is
implicitly defined by

MF =
∫

Ω

n dx =
∫

Ω

n0 dx =
∫

Ω

nS dx.

Under the generality of the pressure function (HP1)-(HP2), the fact
that the candidate nS is integrable and that there exists a normalization
constant ZMF achieving the total fluid mass MF is not trivial. Therefore,
additional confinement assumptions on the potential have to be done in
order nS to become a suitable candidate for being a minimizer for EF(n).
These assumptions, the rigorous proof of the fact that nS is a minimizer
and the connection of the functional EF(n) to a suitable notion of relative
entropy towards the steady state nS have already been analyzed in complete
detail in [14, Subsection 3.1] for general nonlinear diffusions based on ideas
developed for the power-law pressure functions in [15]. We will summarize
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the main relevant results. One needs at least a basic regularity assumption
on the potential:

(HP3) Φ ∈ W1,1(Ω) if Ω is bounded, or Φ ∈ W1,1
loc(Ω) otherwise.

Further additional confinement conditions on the potential are:

(HC3) αΦ is a bounded below function on Ω, i.e., there exists a constant
C ∈ R such that αΦ(x) ≥ C a.e. x ∈ Ω.

(HC4) αΦ is coercive on Ω, i.e., ∀A ∈ R: {x ∈ Ω|αΦ(x) ≤ A} is bounded.

Due to (HC3) we can assume without loss of generality that the poten-
tial αΦ(x) has zero infimum over Ω by adding a suitable constant to the
potential, which is anyhow defined up to a constant.

Let us consider the one parameter family of functions

nZ(x) = σ

(
Z − αβη

χ
Φ(x)

)
,

with Z ∈ R and be Z∗ = sup{Z ∈ R|nZ ∈ L1(Ω)} which is well defined by
assuming the additional confinement assumption:

(HC5) There exists Z ∈ R such that nZ ∈ L1
+(Ω).
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Let us denote by TM(Z) the total mass of nZ in Ω defined on (−∞, Z∗). It
is obvious that TM(Z) is strictly increasing, and thus, its limit as Z ↗ Z∗ is
denoted byM∗. We will assume that the total fluid mass is in the integrable
range:
(HC6) MF ∈ (0,M∗),
or in other words, that there exists a unique normalization constant ZMF

such that nS is well defined. Finally, our candidate nS has to have finite
free energy and thus, we further assume:
(HC7) EF(nZ) < ∞ and Π−(nZ) ∈ L1(Ω) for Z ∈ (−∞, Z∗).

Remark 5.
• If h(0+) > −∞ and h(∞) = ∞, which is the case if p(n) = nγ ,

γ > 1, then hypotheses (HC5)-(HC7) are trivially satisfied with
M∗ = ∞. Note also that for p(n) = nγ , we have

σ(s) =
[(γ − 1

γ
s + 1

)+]1/(γ−1)

.

• If h(0+) = −∞ and h(∞) = ∞, which is the case if p(n) = n,
then M∗ = ∞. In case p(n) = n, hypotheses (HC5)-(HC7) are
equivalent to hypotheses (HC1)-(HC2) and σ(s) = es.

• In case Ω is bounded and Φ is bounded the conditions (HC3)-
(HC7) are trivially satisfied.

The following result is proven in [14, Proposition 5, Lemma 6]:

Theorem 1. Assuming the conditions (HP1)-(HP3) on the pressure and
the potential and the confinement conditions (HC1)-(HC7), then the func-
tional EF(n) has a unique minimizer given by

(3.6) nS(x) = σ

(
ZMF −

αβη

χ
Φ(x)

)
,

in the set of L1
+(Ω) functions with total fluid mass MF . Moreover:

(3.7) EF(n)− EF(nS) ≥
∫

Ω

[Π(n)−Π(nS)−Π′(nS) (n− nS)] (x) dx

with equality if and only if
αβη

χ
Φ(x) + h(nS(x)) = ZMF , for almost all x ∈ Ω.

Let us remark that the right-hand side of (3.7) is positive and equal to
zero if and only if n = nS . Thus, previous theorem allows us to rewrite the
fluid free energy functional as

FF(n(t), u(t)) =
∫

Ω

n
|u|2
2

dx + χ (EF(n)− EF(nS)) + χEF(nS)
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and we observe due to (3.7) that again

REF((n, u)|(nS , uS)) =
∫

Ω

n
|u|2
2

dx + χ (EF(n)− EF(nS))

is a functional that controls the distance from the pair (n(t), u(t)) to the
equilibrium solution (nS , uS = 0).

Therefore, the whole free energy functional F(f, n, u) can be considered,
up to a constant, a relative entropy functional towards the equilibrium so-
lution (fS , nS , uS = 0), i.e., defining the relative entropy functional from
(f, n, u) to (fS , nS , uS = 0) as

(3.8) RE((f, n, u)|(fS , nS , uS)) = REP(f |fS) + REF((n, u)|(nS , uS)).

Thus, we have

RE((f, n, u)|(fS , nS , uS)) = F(f, n, u)− ln
(

ZMP

(2π)3/2

)
MP − χEF(nS) ≥ 0,

and this quantity vanishes if and only if f = fS , n = nS and u = uS = 0.

Remark 6.
• In the gravity settling case and as we discussed before, the physical

boundary conditions of interest are periodic boundary conditions in
the x1,x2 directions and no-flux boundary conditions as (2.3)-(2.6)
for the x3-direction. All boundary terms in the periodic boundary
conditions disappear while boundary terms in the x3-direction are
treated as above. All conclusions of the last subsections apply equally
well to this case.

• For the gravity settling case, in the particular case of α > 0, which
means that gravity dominates over buoyancy force, fS and nS repre-
sent the typical sedimentation profiles of particles and fluid respec-
tively. It is interesting to remark that the steady density of dispersed
particles will be always positive according to (3.3) while the steady
fluid density given by (3.6) might be compactly supported for pres-
sure functions of the form p(n) = nγ , γ > 1.

• Let us remark that (fS , nS , uS = 0) is a stationary classical solution
of (2.2) wherever nS is regular.

3.3. Nonlinear Stability. It is now standard to obtain stability results
from the non increasing character of the relative entropy as was done in
[12, 21, 42] and references therein. In fact, everything is reduced to use the
relative entropy functionals to control the distance in L1 or in Lp between
the solution (f(t), n(t), u(t)) of the system (2.2) and the equilibrium solution
(fS , nS , uS). These inequalities called in the literature Csiszár-Kullback-
Pinsker type inequalities are well-known in the linear case [4] and they are
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already available in the literature [14, Section 4] for the nonlinear case. As
a consequence, we obtain directly the following non-linear stability result
for the equilibrium solution (fS , nS , uS).

Theorem 2. Given (f(t), n(t), u(t)) a solution to the Cauchy problem for
the system (2.2) and (fS , nS , uS = 0) with fS and nS given respectively by
(3.3) and (3.6), such that

∫

Ω

∫

R3
f0 dξ dx =

∫

Ω

∫

R3
fS dξ dx and

∫

Ω

n0 dx =
∫

Ω

nS dx,

then for any ε > 0, there exists δ > 0 such that if

RE((f0, n0, u0)|(fS , nS , uS)) ≤ δ,

we conclude the solution satisfies

‖f(t)− fS‖L1(Ω×R3) ≤ ε, ‖n(t)− nS‖L1(Ω) ≤ ε and
∫

Ω

n(t)
|u(t)|2

2
dx ≤ ε

for all t ≥ 0.

4. Asymptotic Analysis

4.1. A priori Estimates and Moments. We are interested in hydrody-
namic limits for the problem (2.2), which means that the relaxation time
TS is small compared to the observation time scale T, i.e., we deal with
the singular perturbation problem ε → 0. We expect that the limit can be
described by macroscopic equations, with unknowns that do not depend on
the variable ξ. Indeed, coming back to the entropy dissipation (3.2), we
realize that the system then relaxes to

(4.1) f(t, x, ξ) ' ρ(t, x)
(2π)3/2

exp
(
− |ξ − β−1u(t, x)|2

2

)
.

Hence, of course, the limiting behavior highly depends on the behavior of
the other scaling parameters.

Since we are interested in hydrodynamic limits, it is convenient to write
the macroscopic equations satisfied by the moments of f . Integrating the
kinetic equation in (2.2) with respect to ξ leads to

(4.2)

{
∂tρ + divxJ = 0,

∂tJ + β2DivxP+ ηβρ∇xΦ = −1
ε

(J − ρu).

Before we specify the behavior of the parameters with respect to ε, let us
emphasize the main features of the problem. First, the entropy dissipation
can be used to establish useful a priori estimates.
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Proposition 2. Assume that (3.1) holds and that the conditions (HP1)-
(HP3) on the pressure and the potential and the confinement conditions
(HC1)-(HC7) are satisfied. Moreover, we assume further confinement
conditions:

(HC8) Φ is a bounded below function on Ω, i.e., there exists a constant
C ∈ R such that Φ(x) ≥ C a.e. x ∈ Ω.

(HC9) (1 + Φ) exp(−νΦ(x)) ∈ L1(Ω), for some positive constants C > 0,
and 0 < ν < 1.

(HC10) If h(0+) = −∞ we assume there exists 0 < s1 < 1 such that

sup
{

Π(n)
nh(n)

, 0 < n < s1

}
< +∞.

We suppose that the initial data (f0, n0, u0) satisfies f0 ≥ 0, n0 ≥ 0 and
that the quantities

∫

Ω

∫

R3
f0

(
1 + | ln(f0)|+ ξ2

2
+ |Φ|)dξ dx

∫

Ω

(
n0 + n0|u0|2 + |Π(n0)|+ n0βη|αΦ|)dx

are finite and bounded uniformly with respect to all the parameters
ε, β, η, α, ρP/ρF . Then, we have

(i) f(1 + ξ2 + |Φ|+ | ln(f)|) is bounded in L∞(R+; L1(Ω× R3)).
(ii) n, |Π(n)| and βη|αΦ|n are bounded in L∞(R+; L1(Ω)).
(iii)

√
n u is bounded in L∞(R+; L2(Ω)).

(iv) 1√
ε

(
(ξ− β−1u)

√
f + 2∇ξ

√
f
)

= D√
ε

is bounded in L2(R+×Ω×R3).

In this statement “bounded” means “bounded uniformly with respect to all
the parameters ε, β, η, α, ρP/ρF”.

Deducing these estimates from the relative entropy is somehow classical.
We will give some details of the proof. To this end, we need the following
claim.

Lemma 1. Let Ω be a subset of RD, possibly RD itself. Let U : Ω → R+

such that (1+U)e−νU ∈ L1(Ω) for some 0 < ν < 1. Let g : Ω → R+. Then,
we have

0 ≤
∫

Ω

g ln−(g) dy ≤ ν

∫
Ug dy +

∫

Ω

(1 + νU)e−νU dy.
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Proof. We follow arguments in [20]. We split
∫

0≤g≤1

g(− ln(g)) dy =

=
∫

0≤g≤e−νU

g(− ln(g)) dy +
∫

e−νU≤g≤1

g(− ln(g)) dy

≤ e

∫

0≤g≤e−νU

g

e

(
− ln

(g

e

))
dy −

∫

0≤g≤e−νU

g ln(e) dy

+ν

∫

νU≥− ln(g)≥0

Ug dy.

Then, since s 7→ s(− ln(s)) is non decreasing on (0, 1/e), we can dominate

e

∫

0≤g≤e−νU

g

e

(
− ln

(g

e

))
dy ≤

∫

0≤g≤e−νU

e−νU
(− ln

(
e−νU

)
+ ln(e)

)
dy.

Hence, since g ≥ 0, we obtain
∫

0≤g≤1

g(− ln(g)) dy ≤
∫

Ω

e−νU
(
νU + 1

)
dy + ν

∫

Ω

Ug dy.

Proof of Proposition 2. Integration of (3.2) yields

FP(f(t)) + FF(n(t), u(t)) +
∫ t

0

∫

Ω

∫

R3

D2

ε
dξ dx ds ≤ C0,

where C0 depends on the initial data. In order to obtain all the conclusions
of the claim it suffices to control the negative terms in the free energy func-
tional by the positive terms and prove that all positive terms are uniformly
bounded.

By hypotheses (HC3) and (HC8) we can replace Φ (resp. αβηΦ) by
Φ + C1 (resp. αβηΦ + C2) and thus, we can assume that the contribution
of the potential energies is non negative.

To control the negative term coming from the particles free energy func-
tional, we apply Lemma 1 using (HC9) with y = (x, v), g(y) = f(x, v) and
U(y) = ξ2/2 + Φ(x). We obtain

∫

Ω

∫

R3
f ln+(f) dξ dx + (1− ν)

∫

Ω

∫

R3
f(ξ2/2 + Φ) dξ dx + FF(n(t), u(t))

≤ C0 +
∫

Ω

∫

R3

(
νξ2/2 + νΦ(x) + 1

)
e−ν(ξ2/2+Φ(x)) dξ dx.
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Now, we need to control from below the negative term coming from the
fluid free energy functional, i.e.,

−
∫

Ω

Π−(n) dx.

This control is quite similar to what it has already been done for the particles
free energy. Let us distinguish three cases:

• If h(0+) > −∞, then Π(n) = Π̃(n) − h(0+)n with Π̃(n) ≥ 0 and
thus, ∫

Ω

Π−(n) dx ≤ h(0+)MF .

• If p(n) = n, one can use exactly the same argument as for the
particles. In fact, Lemma 1 using (HC9) with y = x, g(y) = n(x)
and U(y) = Φ(x) gives

∫

Ω

n ln+(n) dx + (1− ν)
∫

Ω

nΦdx +
∫

Ω

n
|u|2
2

dx

≤ FF(n(t), u(t)) +
∫

Ω

(
νΦ(x) + 1

)
e−νΦ(x) dx.

• In the general case when h(0+) = −∞, one proceeds in a similar way
to the above arguments using assumptions (HC7) and (HC10).
These arguments correspond exactly to [14, Theorem 18, Step 7]
and we refer to it for details. As a conclusion, assumptions (HC7)
and (HC10) gives us again an estimate of the type

∫

Ω

Π−(n) dx ≤ B + ν

∫

Ω

nΦdx

with B ∈ R.
As a consequence of the estimates in each case, one is always able to prove
that∫

Ω

Π+(n) dx + (1− ν)
∫

Ω

nΦdx +
∫

Ω

n
|u|2
2

dx ≤ FF(n(t), u(t)) + C1

with C1 ∈ R.
Putting together the estimates for the particle and the fluid free energies,

one deduces that the positive integrals
∫

Ω

∫

R3
f ln+(f) dξ dx,

∫

Ω

∫

R3
f(ξ2/2 + Φ) dξ dx,

∫ t

0

∫

Ω

∫

R3

D2

ε
dξ dx ds

∫

Ω

n
|u|2
2

dx,

∫

Ω

Π+(n) dx and
∫

Ω

nΦdx
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are uniformly bounded. Coming back to the estimate given by Lemma 1
yields the bound on f ln−(f).Analogously for the estimate on Π−(n) coming
back to the estimate listed in each of the above cases.

Let us turn to macroscopic quantities.

Corollary 1. We have the following expansions

J = ρu + β
√

εK, P = ρII +
1
β2

J ⊗ u +
√

εK

where the components of the vector K and of the matrix K are bounded in
L2(R+; L1(Ω)).

Proof. We write J and P by introducing the entropy dissipation as follows

J =
∫

R3
uf dξ + β

√
ε

∫

R3

D√
ε

√
f dξ,

and

P =
√

ε

∫

R3
ξ
√

f⊗ D√
ε

dξ+
1
β2

∫

R3
βξ

√
f⊗u

√
f dξ−

∫

R3
ξ
√

f⊗2∇ξ

√
f dξ.

Then, the conclusion follows from an application of the Cauchy-Schwarz
inequality, and remarking that

∫
R3 ξ

√
f ⊗ 2∇ξ

√
f dξ = − ∫

R3 fII dξ, by in-
tegrating by parts.

In what follows, we distinguish two different scalings.

4.2. Flowing Regime. We suppose
ρP

ρF

=
1
β2

, η = β a fixed positive constant,

(i.e., β does not depend on the small parameter ε; actually this can be
slightly relaxed, assuming that β tends to some 0 < β∞ < ∞). Coming
back to the physical quantities, this scaling assumption means

VS ¿ U = Vth,

while ρP and ρF have the same order. We suppose that α is also a fixed
quantity. Note that the ratio ρP/ρF as well as α can take any fixed value;
we only suppose that they remain large compared to ε → 0. Therefore, we
are concerned with the behavior as ε → 0 of
(4.3)



∂tfε + β
(
ξ · ∇xfε −∇xΦ · ∇ξfε

)
=

1
ε

divξ

((
ξ − 1

β
uε

)
f +∇ξfε

)
,

∂t(nε) + divx(nεuε) = 0,

∂t(nεuε)+Divx(nεuε ⊗ uε)+χ∇xp(nε)+αβ2 nε∇xΦ=
1

εβ2
(Jε−ρεuε),
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with 


ρε

Jε

Pε


 (t, x) =

∫

R3




1
βξ
ξ ⊗ ξ


 fε(t, x, xi) dξ.

The macroscopic quantities satisfy the following moment system

(4.4)





∂tρε + divxJε = 0,

1
β2

∂tJε + DivxPε + ρε∇xΦ = − 1
εβ2

(Jε − ρεuε).

Using the fluid momentum equation, we are led to
(4.5)
∂t(nεuε+β−2Jε)+Divx(nεuε⊗uε+Pε)+χ∇xp(nε)+(αβ2nε+ρε)∇xΦ = 0.

Now, coming back to (4.1), it is tempting to infer

Jε ' ρεuε, Pε ' ρεII + β−2 ρεuε ⊗ uε,

which is made more precise in Corollary 1.

Theorem 3. Let fε, nε, uε be a family of solutions of (4.3). Let us suppose
that, as ε → 0,

ρε → ρ, nε → n, uε → u

in the sense of distributions. Suppose also that the non linear terms pass to
the limit

ρεuε → ρu, ρεuε ⊗ uε → ρu⊗ u, nεuε ⊗ uε → nu⊗ u, p(nε) → p(n)

in D′(R+ × Ω). Then, (ρ, n, u) satisfy the following system

(4.6)





∂tρ + divx(ρu) = 0,

∂tn + divx(nu) = 0,

∂t

(
(n + β−2ρ)u

)
+ Divx

(
(n + β−2ρ)u⊗ u

)
+∇x

(
ρ + χp(n)

)
+ (αβ2n + ρ)∇xΦ = 0.

4.3. Bubbling Regime. In this case, we assume

ρP

ρF

=
1
β2

, η = β, β =
1√
ε
,

and thus, according to (3.1), we also have

ρP

ρF

= ε, η =
1√
ε
.
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(This can be slightly modified to β − β∞/
√

ε → 0 with 0 < β∞ < ∞.)
Coming back to the physical quantities, it means that

VS = U ¿ Vth.

Finally, we assume that α = sign(α) ε with sign(α) = ±1. Therefore, we
are concerned with the behavior as ε → 0 of
(4.7)



∂tfε +
1√
ε

(
ξ · ∇xfε −∇xΦ · ∇ξfε

)
=

1
ε

divξ

((
ξ −√εuε

)
f +∇ξfε

)
,

∂tnε + divx(nεuε) = 0,

∂t(nεuε)+Divx(nεuε ⊗ uε)+χ∇xp(nε)+sign(α)nε∇xΦ=(Jε − ρεuε),

with

ρε(t, x) =
∫

R3
fε(t, x, ξ) dξ, Jε(t, x) =

∫

R3

1√
ε

ξ fε(t, x, ξ) dξ.

We still denote

Pε(t, x) =
∫

R3
ξ ⊗ ξ fε(t, x, ξ) dξ.

Then, we obtain the following moment equations

(4.8)





∂tρε + divxJε = 0,

ε∂tJε + DivxPε + ρε∇xΦ = −(Jε − ρεuε).

Using the formal ansatz (4.1), and Corollary 1, the distribution function
can be approximated as fε ' ρε

(2π)3/2 e−ξ2/2, and Pε ' ρεII, but it remains
to describe the behavior of Jε. Letting ε go to 0 in the first order moment
equation yields

∇xρ + ρ∇xΦ = −J + ρu.

Inserting this result in the continuity equation, and passing to the limit in
the fluid equation, we are led to the following claim.

Theorem 4. Let fε, nε, uε be a family of solutions of (4.7). Let us suppose
that

ρε → ρ, Jε → J, nε → n, uε → u

in the sense of distributions. Suppose also that the non linear terms pass to
the limit

ρεuε → ρu,
√

ε Jε⊗uε → 0, nεuε⊗uε → nu⊗u, p(nε) → p(n)
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in D′(R+ × Ω). Then, J = ρ(u − ∇xΦ) − ∇xρ, and (ρ, n, u) satisfy the
following system
(4.9)




∂tρ + divx

(
ρ(u−∇xΦ)−∇xρ

)
= 0,

∂tn + divx(nu) = 0,

∂t(nu) + Divx(nu⊗ u) +∇x(χp(n) + ρ) + (sign(α)n + ρ)∇xΦ = 0.

Remark 7. The continuity equation for the particle density ρ in (4.9) is
often referred as the Smoluchowski equation. Note that in the limit equations
(4.9), the behavior of the fluid remains dependent on the evolution of the
particles, even in absence of external forces, through the ∇xρ. It is worth
pointing out the difference with incompressible models, as studied in [28],
where this term disappears due to the incompressibility constraint.

Remark 8. For both the flowing and the bubbling regimes, the scaling as-
sumption on the parameter α, which measures the ratio of the effect of the
external force on the fluid and on the particles, is particularly clear when
looking at the example of gravity force. Indeed, we have seen that α is a
simple function of ρP/ρF which then imposes the scaling behavior.

Remark 9. For both regimes, the available bounds, provided by the entropy
dissipation, leads to some weak compactness properties on the sequences fε,
ρε, nε and

√
nε uε. However, we do not have any estimate on the product

ρεuε, and thus on Jε. Therefore, this is certainly a great mathematical
difficulty when dealing with a rigorous proof of convergence. When Navier-
Stokes equation is considered, one obtains an additional H1 estimate. Then,
in dimension two, this combines with the L ln L estimate on ρ, so that ρεuε is
a bounded sequence of integrable functions which passes to the limit, see [28].
We refer to [40] for an attempt dealing with a relative entropy approach.

Remark 10. When considering the problem in a bounded domain, boundary
conditions have also to be discussed for the limit equations. For the flowing
regime the physical boundary condition u · ν(x) = 0 on ∂Ω, preserved by the
asymptotic procedure, is enough since ρ and n satisfy the same transport
equation with velocity u. For the bubbling regime, the limit equation for
the particles density is a convection-diffusion equation. While the boundary
condition for the equation in n is still the physical boundary condition u ·
ν(x) = 0 on ∂Ω, the boundary condition for the equation in ρ, which comes
from the asymptotic analysis, is the no-flux boundary condition

ρ(∇xΦ− u) · ν(x) + ∂νρ = ρ∇xΦ · ν(x) + ∂νρ = 0
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on ∂Ω. We refer to [39, 7] for similar considerations and rigorous proofs in
a different physical context.

5. Properties of the Limit Systems

We will show that both limit systems (4.6) and (4.9) have first order terms
with a hyperbolic structure while keeping the main qualitative property of
the original Vlasov-Euler system, that is, the nonlinear stability of steady
states.

5.1. Hyperbolicity. Consider the equivalent flowing regime system to
(4.6) given by

(5.1)





∂tρ + divx(ρu) = 0,

∂tr + divx(ru) = 0,

∂t

(
ru

)
+ Divx

(
ru⊗ u

)
+∇x

(
ρ + χp(n)

)
+ αβ2r∇xΦ = 0,

with r = n + β−2ρ. Therefore, the first order term has a flux function
Ffr : R5 −→ M5×3(R) given by:

Ffr(U) =
(

jρ

r
, j,

j ⊗ j

r
+ (χp(r − β−2ρ) + ρ) II

)

with U = (ρ, r, j) and j = ru. Taking the component in the x1-direction
given by

F 1
fr(U) =

(
j1ρ

r
, j1,

j2
1

r
+ χp(r − β−2ρ) + ρ,

j1j2
r

,
j1j3
r

)
,

it is easy to check that its jacobian matrix has real eigenvalues given by
j1
r (triple) and two simple eigenvalues j1

r ±
√

ρ
r + χp′(n)n

r . Therefore, the
system (5.1) is hyperbolic.

Regarding the bubbling regime system (4.9), we see that this system
consists in a drift-diffusion equation for the particle density ρ coupled with
a system on (n, j = nu) which is clearly hyperbolic. Alternatively, one
can write an equivalent system to (4.9) by the standard change of variable
r = ρeΦ obtaining:



∂tr + divx(ru) = r(u · ∇xΦ) + eΦdivx

(
e−Φ∇xr

)
,

∂tn + divx(nu) = 0,

∂t(nu)+Divx(nu⊗ u)+∇x(χp(n)+re−Φ)+(sign(α)n+re−Φ)∇xΦ=0,

for which the first order term gives a hyperbolic system.
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5.2. Nonlinear Stability. Both limit systems: the flowing and the bub-
bling regime systems keep the remarkable property of the original Vlasov-
Euler system. Both systems have a natural entropy which implies the non-
linear stability of the corresponding steady states.

Following the ideas of Section 3, it is easy to guess the following free
energy functional:

(5.2) Ffr(ρ, n, u) =
∫

Ω

[
(n+β−2ρ)

|u|2
2

+χΠ(n)+ρ ln ρ+(αβ2n+ρ)Φ
]
dx,

for the flowing regime system (4.6). It can be checked easily that:

(5.3)
d
dt
Ffr(ρ(t), n(t), u(t)) = 0

since we have the following identities:
• Entropy of the particles

d
dt

∫

Ω

ρ ln ρ dx =
∫

Ω

u · ∇xρ dx.

• Entropy of the fluid
d
dt

∫

Ω

Π(n) dx =
∫

Ω

u · ∇xp(n) dx.

• Potential energy of the particles and fluid
d
dt

∫

Ω

(αβ2n + ρ)Φdx =
∫

Ω

(αβ2n + ρ)u · ∇xΦdx.

• Kinetic energy of the particles and fluid

d
dt

∫

Ω

(n + β−2ρ)
|u|2
2

dx = −
∫

Ω

u · ∇x(χp(n) + ρ) dx

−
∫

Ω

(αβ2n + ρ)u · ∇xΦ dx.

Therefore, analogously to Section 3, one considers the free energy func-
tional Ffr(ρ, n, u) that has a unique minimizer in L1

+(Ω)×L1
+(Ω)×L2(Ω,R3)

with total particles and fluid masses equal toMP andMF respectively. This
minimizer by Theorem 1 is given by (ρS , nS , uS = 0) where ρS is given by

(5.4) ρS(x) =
∫

R3
fS dξ = MP

e−Φ(x)

∫

Ω

e−Φ(x) dx

= Zρ
MP

e−Φ(x)

and nS given by (3.6) where η = β. We can define the relative entropy in
the flowing regime case as

REfr((ρ, n, u)|(ρS , nS , uS)) = Ffr(ρ, n, u)− ln
(
Zρ
MP

)
MP −χEF(nS) ≥ 0,
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and again, this relative entropy functional

REfr((ρ, n, u)|(ρS , nS , uS)) =
∫

Ω

(
ρ ln

(
ρ

ρS

)
− ρ + ρS

)
dx

+
∫

Ω

n
|u|2
2

dx + χ (EF(n)− EF(nS))

vanishes if and only if ρ = ρS , n = nS and u = uS = 0. Moreover, we easily
obtain the following non-linear stability result.

Theorem 5. Given (ρ(t), n(t), u(t)) a solution to the Cauchy problem for
the system (4.6) and (ρS , nS , uS = 0) as above, such that∫

Ω

ρ0 dx =
∫

Ω

ρS dx and
∫

Ω

n0 dx =
∫

Ω

nS dx,

then for any ε > 0, there exists δ > 0 such that if

REfr((ρ0, n0, u0)|(ρS , nS , uS)) ≤ δ,

we conclude the solution satisfies

‖ρ(t)− ρS‖L1(Ω×R3) ≤ ε, ‖n(t)− nS‖L1(Ω) ≤ ε and
∫

Ω

n(t)
|u(t)|2

2
dx ≤ ε

for all t ≥ 0.

For the bubbling regime system (4.9), we can proceed analogously, and
find the following free energy functional

Fbr(ρ, n, u) =
∫

Ω

[
n
|u|2
2

+ χΠ(n) + ρ ln ρ + (sign(α)n + ρ)Φ
]
dx,

which in this case is dissipated along the flow, i.e.,
d
dt
Fbr(ρ(t), n(t), u(t)) = −

∫

Ω

ρ|∇xΦ +∇x ln ρ|2 dx ≤ 0.

A completely analogous non-linear stability result to Theorem 5 can be
written in the bubbling regime case, being the stationary state (ρS , nS , uS =
0) with ρS given by (5.4) and nS given by (3.6) where the constant αβη is
substituted by sign(α).

6. Asymptotic Analysis of the Linearized Problem

It is certainly difficult to rigorously justify the asymptotics described in
Section 4. However, we can validate our approach by the analysis of the
linearized version of the problem. To this end, let us go back to (2.2), and
expand the solution as follows{

f(t, x, ξ) = M(ξ) + σP f̃(t, x, ξ),
n(t, x) = n + σF ñ(t, x), u(t, x) = σF ũ(t, x),
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where M(ξ) = (2π)−3/2 e−ξ2/2 and n is a given positive constant. We shall
discuss the choice of the parameters σP,F by means of the other dimensionless
coefficients. Inserting the ansatz in (2.2) and dropping all terms with high
power of the σP,F ’s, we get
(6.1)



∂tf̃ + βξ · ∇xf̃ − η∇xΦ · ∇ξ f̃

=
1
ε

divξ

(
ξf̃ +∇ξ f̃

)
+

( η

σP

∇xΦ− σF

εβσP

ũ
)
· ∇ξM,

∂tñ + ndivxũ = 0,

n∂tũ + p′(n)∇xñ + α
βη

σF

n∇xΦ =
1
ε

ρP

ρF

(
σP

σF

J̃ − ũ

)
,

where

ρ̃(t, x) =
∫

R3
f̃(t, x, ξ) dξ, J̃(t, x) = β

∫

R3
ξ f̃(t, x, ξ) dξ.

We expect that the Fokker-Planck operator is the leading term in the equa-
tion, and that both force terms associated with the Maxwellian have the
same order, a step higher than ∇xΦ · ∇ξ f̃ :

η

σP

=
σF

εβσP

=
1√
ε
, η = 1.

Furthermore, the moment equations now read

∂tρ̃ + divxJ̃ = 0,

∂tJ̃ + β2Divx

(∫
ξ ⊗ ξ f̃ dξ

)
+ βηρ̃∇xΦ = −1

ε
J̃ +

β√
ε

(ũ−∇xΦ).

We require that the terms in the right hand side contribute at the same
order, which gives β = 1/

√
ε. In turn, we get σP = σF =

√
ε. Eventually,

we assume that all force terms in the fluid momentum equation are of order
O(1); which motivates ρP/ρF = ε, and α = sign(α)ε. This still agrees with
the formula of α for the gravity force.

Coming back to the physical interpretation, we linearize around a con-
stant state, with zero bulk velocity, at order

√
ε and we assume

VS ¿ U ¿ Vth, ρP ¿ ρF , α ¿ 1.
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Summarizing, we wish to investigate the asymptotic behavior ε → 0 of the
following problem
(6.2)



∂tfε +
1√
ε
ξ · ∇xfε −∇xΦ · ∇ξfε

=
1
ε
divξ

(
ξfε +∇ξfε

)
+

1√
ε
(uε −∇xΦ) · ξM(ξ),

∂tnε + ndivxuε = 0,

n∂tuε + p′(n)∇xnε + sign(α)n∇xΦ =
1√
ε

∫

R3
ξfε dξ − uε = Jε − uε,

with Jε(t, x) = 1√
ε

∫
R3 ξfε dξ.

Some straightforward manipulations leads to the following entropy rela-
tion

d
dt

(
1
2

∫

R3

∫

R3

∣∣fε

∣∣2
M(ξ)

dξ dx +
∫

R3

∫

R3
fε Φdξ dx

+n

∫

R3

∣∣uε

∣∣2
2

dx + p′(n)
∫

R3

∣∣nε

∣∣2
2

dx + sign(α)
∫

R3
nεΦdx

)

+
1
ε

∫

R3

∫

R3

∣∣ξfε −
√

ε uεM(ξ) +∇ξfε

∣∣2
M(ξ)

dξ dx

= −
∫

R3

∫

R3
∇xΦf · ∇ξ

( f

M

)
dξ dx.

(6.3)

Using Cauchy-Schwarz and Young inequalities, the right hand side can be
evaluated by

1
2ε

∫

R3

∫

R3

∣∣ξfε −
√

ε uεM(ξ) +∇ξfε

∣∣2
M(ξ)

dξ dx

+
(1

2
+

ε

2
‖∇xΦ‖2L∞(R3)

) ∫

R3

∫

R3

∣∣fε

∣∣2
M(ξ)

dξ dx +
1
2

∫

R3

∣∣uε

∣∣2 dx.

Using the Gronwall lemma, we deduce the following a priori estimates.

Lemma 2. Let fε, nε, uε be a family of solutions of (6.2) associated to
initial data fε,0 ≥ 0, nε,0 ≥ 0, uε,0 such that

sup
ε>0

{∫

R3

∫

R3

(
fε,0 +

∣∣fε,0

∣∣2
M(ξ)

+ fε,0 |Φ|
)

dξ dx

+
∫

R3

(
nε,0 +

∣∣nε,0

∣∣2
2

+

∣∣uε,0

∣∣2
2

+ nε,0|Φ|
)

dx

}
< ∞.
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We also suppose that ∇xΦ ∈ L∞(R3) and

(6.4)
either sign(α) = 1 and Φ(x) ≥ C a.e. x ∈ Ω,
or sign(α) = −1 and Φ ∈ L∞(R3).

Let 0 < T < ∞, 0 < ε < 1. Then, the following properties hold:
(i)

(
fε)ε>0 is bounded in L∞(R+; L1(R3 × R3)),

(
Φfε)ε>0 is bounded

in L∞(0, T ; L1(R3×R3)), and moreover
(
fε/

√
M(ξ))ε>0 is bounded

in L∞(0, T ; L2(R3 × R3)).
(ii)

(
1√

εM(ξ)
|ξfε −

√
uεM(ξ) + ∇ξfε| = 1√

ε
Dε)ε>0 is bounded in

L2((0, T )× R3 × R3).
(iii)

(
ρε)ε>0 is bounded in L∞(0, T ; L2(R3)) ∩ L∞(R+; L1(R3)),

(iv)
(
Jε)ε>0 is bounded in L2((0, T )× R3).

(v) Pε = ρεII +
√

εRε, with
(
Rε)ε>0 bounded in L2((0, T )× R3).

(vi)
(
nε)ε>0 and

(
uε)ε>0 are bounded in L∞(0, T ; L2(R3)).

Proof. Obviously, the mass conservation

d
dt

∫

R3

∫

R3
fε dξ dx = 0,

∫

R3
nε dξ dx = 0

hold. Then, by using (6.4), the potential energy contribution is bounded
from below. Thus, we deduce readily (i), (ii) and (vi) from (6.3). Next, the
Cauchy-Schwarz inequality implies the following estimates

|ρε(t, x)|2 ≤
∫

R3
M dξ

∫

R3

|fε|2
M

dξ,

and

|Jε(t, x)|2 =
∣∣∣∣
∫

R3

Dε√
ε

√
M dξ + uε

∫

R3
M dξ

∣∣∣∣
2

≤ 2
(∫

R3

|Dε|2
ε

dξ + |uε|2
)

,

which proves (iii) and (iv). Finally, we write

Pε(t, x) =
√

ε

∫

R3
ξ
√

M ⊗ Dε√
ε

dξ +
∫

R3

(√
εξ ⊗ uεM − ξ ⊗∇ξfε

)
dξ.

The last integral is equal to ρεI, by using an integration by parts. An
application of the Cauchy-Schwarz inequality proves that the first integral
reads

√
εRε(t, x), with Rε bounded in L2((0, T )× R3).

Hence, for any 0 < T < ∞, we can assume that ρε, Jε, nε and uε

converge weakly in L2((0, T )×R3) to ρ, J, n and u respectively. The moment
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equations read

(6.5)





∂tρε + divxJε = 0,
ε∂tJε + DivxPε +

√
ερε∇xΦ = −Jε + uε −∇xΦ

=
√

ε
(√

ε∂tJε + DivxRε + ρε∇xΦ
)

+∇xρε.

Hence, letting ε → 0 yields

−J + u−∇xΦ = ∇xρ.

Accordingly, we deduce that the limit satisfies ∇xρ+∇xΦ ∈ L2((0, T )×R3).
Furthermore, the equations for ∂tρε, ∂tnε and ∂tuε provide compactness in
Cw([0, T ],L2(R3)).

Theorem 6. Let the assumptions of Lemma 2 be fulfilled. Then, up to a
subsequence, ρε, nε, uε converge in Cw([0, T ], L2(R3)) to ρ, n, u respectively,
where the limits satisfy

(6.6)





∂tρ + divx(u−∇xΦ)−∆xρ = 0,
∂tn + ndivxu = 0,
n∂tu + p′(n)∇xn + (1 + α′n)∇xΦ +∇xρ = 0,

with initial data (ρ, n, u)t=0 = limε→0(ρε,0, nε,0, uε,0) weakly in L2(R3).

Corollary 2. Under the same assumptions, ρε converges to ρ strongly in
L2

loc(R+ × R3). When sign(α) = +1, assuming that

(6.7) lim
|x|→∞

Φ(x) = +∞,

then ρε converges to ρ strongly in Lp((0, T )× R3), for 1 ≤ p < 2. Further-
more, we have

lim
ε→0

∫ T

0

∫

ω

∫

R3

∣∣fε − ρM(ξ)
∣∣ dξ dxdt = 0,

where ω is any bounded set or ω = R3 when sign(α) = +1 and (6.7) holds.

Proof. We obtain the strong convergence of the macroscopic density by
using a compensated compactness argument. This argument first appeared
for diffusion asymptotics of hyperbolic problems in [38]; then, it has been
applied in the framework of kinetic equations [37, 30]. First, we write (6.5)
as divt,x(ρε, Jε) = 0, and

∇xρε =
√

ε
(−√ε∂tJε −DivxRε

)
+ uε − Jε,

respectively. Therefore, the curl (with respect to (t, x) variables) of the vec-
tor field (ρε, 0, 0, 0) ∈ R4 belongs to a compact set of H−1((0, T )×B(0, R))
for any 0 < T, R < ∞. Then a direct application of the Div-Curl lemma
[44] tells us that (ρε, Jε) · (ρε, 0) = ρ2

ε ⇀ (ρ, J) · (ρ, 0) = ρ2 in D′(R+ ×R3).
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This proves the strong convergence of ρε to ρ in L2
loc(R+×R3). When (6.7)

holds, we have furthermore

lim
A→∞

(
sup

ε>0, t∈(0,T )

{∫

|x|≥R

ρε(t, x) dx +
∫

|x|≥A

ρ(t, x) dx

})
= 0.

This allows to obtain the strong convergence globally in L1((0, T ) × R3),
and then in Lp((0, T )× R3), 1 ≤ p < 2.

Eventually, we split as follows
∫ T

0

∫

ω

∫

R3

∣∣fε − ρM(ξ)
∣∣ dξ dxdt

≤
∫ T

0

∫

ω

∫

R3

∣∣fε − ρεM(ξ)
∣∣ dξ dx dt +

∫ T

0

∫

ω

∣∣ρ− ρε

∣∣ dxdt.

We have just shown that the second integral in the right hand side tends to
0 as ε → 0. Then, in the case ω = R3, (6.7) together with Lemma 2 imply
that

lim
A→∞

(
sup
ε>0

∫ T

0

∫

|x|>A

∫

R3

(
fε + ρεM(ξ)

)
dξ dxdt

)
= 0.

Therefore, it only remains to study the integral over the bounded set ω =
B(0, A). By using the Sobolev inequality [3, Corollary 2.18] we obtain for
some Λ > 0

∫

R3

∣∣fε − ρεM(ξ)
∣∣ dξ ≤

(∫

R3

∣∣fε − ρεM(ξ)
∣∣2 1

M(ξ)
dξ

)1/2

≤ ρε

(∫

R3

∣∣∣ fε

ρεM(ξ)
− 1

∣∣∣
2

M(ξ) dξ

)1/2

≤ ρε Λ
(∫

R3

∣∣∣∇ξ

( fε

ρεM(ξ)
)∣∣∣

2

M(ξ) dξ

)1/2

≤ Λ
(∫

R3

∣∣∣∇ξ

( fε

M(ξ)
)∣∣∣

2

M(ξ) dξ

)1/2

.

The integral of the right hand side over (0, T )× ω is dominated by

√
T |ω|

(∫ T

0

∫

R3

∫

R3

∣∣∣∇ξ

( fε

M(ξ)
)∣∣∣

2

M(ξ) dξ dxdt

)1/2

≤
√

2T |ω|
(∫ T

0

∫

R3

∫

R3

(|Dε|2 + ε|uε|2M(ξ)
)
dξ dxdt

)1/2

≤ C
√

ε.

This ends the proof.
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Remark 11. By uniqueness of the solution of the limit system, if the initial
data converge, then, the statement holds for the entire sequence.
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