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Abstract. Using the nonsmooth variant of minimax point theorems, some
existence results are obtained for periodic solutions of nonautonomous second-
order differential inclusions systems with p–Laplacian.

1. Introduction

Consider the second order system

ü(t) = ∇F (t, u(t)) a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0
(1)

where T > 0, F : [0, T ]× Rn → R satisfies the following assumption:

(A) F (t, x) is measurable in t for each x ∈ Rn and continuously differentiable
in x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such that

|F (t, x)|+ ‖∇F (t, x)‖ ≤ a(‖x‖)b(t),
for all x ∈ Rn and a.e. t ∈ [0, T ].

Suppose that the nonlinearity ∇F (t, x) is bounded, that is, there exists g ∈
L1(0, T ;R+) such that

‖∇F (t, x)‖ ≤ g(t),

for all x ∈ Rn and a.e. t ∈ [0, T ]. In [3] the authors proved the existence of
solutions for problem (1) under the condition that

∫ T

0
F (t, x)dt → +∞ as ‖x‖ → ∞,

or that ∫ T

0
F (t, x)dt → −∞ as ‖x‖ → ∞.

Tang in [5] proved the existence of solutions for problem (1) under more general
conditions. He supposes that assumption (A) holds, that

‖∇F (t, x)‖ ≤ f(t)‖x‖α + g(t),
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for all x ∈ Rn and a.e. t ∈ [0, T ], where f, g ∈ L1(0, T ;R+), α ∈ [0, 1) and

‖x‖−2α
∫ T

0
F (t, x)dt → +∞ as ‖x‖ → ∞,

or that

‖x‖−2α
∫ T

0
F (t, x)dt → −∞ as ‖x‖ → ∞.

In order to prove the above results, Mawhin-Willem and Tang apply the classical
(smooth) variant of minimax methods. In [4] we have considered the following
problem which is a generalization of problem (1)

ü(t) ∈ ∂F (t, u(t)) a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0
(2)

where T > 0, F : [0, T ] × Rn → R, ∂ denotes the Clarke subdifferential (see [2])
and F (t, x) is measurable in t for each x ∈ Rn, and locally Lipschitz and regular
(see [2]) in x for each t ∈ [0, T ]. Under some additional assumptions (see [4]) on
F and ∂F we proved the existence of solutions for problem (2).

The aim of this paper is to consider the problem (2) in a more general sense.
More exactly our results represent the extensions to systems with p–Laplacian.

Consider the second order differential inclusions system

d

dt

(
|u̇(t)|p−2u̇(t)

)
∈ ∂F (t, u(t)) a.e. t ∈ [0, T ],

u(0) = u(T ), u̇(0) = u̇(T ),
(3)

where p > 1, T > 0, F : [0, T ]×Rn → R, and ∂ denotes the Clarke subdifferential.
The corresponding functional ϕ(u) : W 1,p

T → R is given by

ϕ(u) =
1

p

∫ T

0
|u̇(t)|pdt +

∫ T

0
F (t, u(t))dt.

2. Main results

Theorem 1. Let F : [0, T ]×Rn → R such that F (t, x) is measurable in t for each
x ∈ Rn and regular in x for each t ∈ [0, T ]. We suppose that exist k ∈ Lq(0, T ;R)
such that

(4) |F (t, x1)− F (t, x2)| ≤ k(t)‖x1 − x2‖
for all t ∈ [0, T ] and all x1, x2 ∈ Rn. If there exist c1, c2 > 0 and α ∈ [0, 1) such
that

(5) ζ1 ∈ ∂F (t, x) ⇒ ‖ζ1‖ ≤ c1‖x‖α + c2

for all t ∈ [0, T ] and all x ∈ Rn, and if for q = p
p−1

(6) ‖x‖−qα
∫ T

0
F (t, x)dt → +∞ as ‖x‖ → ∞

then problem (3) has at least one solution which minimizes the functional ϕ on
W 1,p

T .
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Theorem 2. Let F : [0, T ] × Rn → R such that F (t, x) is measurable in t for
each x ∈ Rn and locally Lipschitz and regular in x for each t ∈ [0, T ]. We suppose
that exist a ∈ C(R+,R+) and b ∈ L1(0, T ;R+) such that

(7) ‖F (t, x)‖ ≤ a(‖x‖)b(t)
for all t ∈ [0, T ] and all x ∈ Rn. If there exist c1, c2 > 0 and α ∈ [0, 1) such that

ζ1 ∈ ∂F (t, x) ⇒ ‖ζ1‖ ≤ c1‖x‖α + c2

for all t ∈ [0, T ] and all x ∈ Rn, and if for q = p
p−1

(8) ‖x‖−qα
∫ T

0
F (t, x)dt → −∞ as ‖x‖ → ∞

then problem (3) has at least one solution on W 1,p
T .

Remark 1. Theorems 1 and 2 generalizes the corresponding Theorems 1 and 2
of [4]. In fact, it follows from these theorems letting p = 2.

3. The preliminary results

We introduce some functional spaces. Let T a positive real number and 1 <
p < ∞. We denote by W 1,p

T the Sobolev space of functions u ∈ Lp(0, T ;Rn)
having a weak derivative u̇ ∈ Lp(0, T ;Rn). The norm over X is defined by

‖u‖W 1,p
T

=
( ∫ T

0
‖u(t)‖pdt +

∫ T

0
‖u̇(t)‖pdt

) 1
p

.

We recall that

‖u‖Lp =
( ∫ T

0
‖u(t)‖pdt

) 1
p

and ‖u‖∞ = max
t∈[0,T ]

‖u(t)‖.

For our aims it is necessary to recall some very well know results (for proof and
details see [3]).

Proposition 3. If u ∈ W 1,p
T then

‖u‖∞ ≤ c‖u‖W 1,p
T

.

If u ∈ W 1,p
T and

∫ T
0 u(t)dt = 0 then

‖u‖∞ ≤ c‖u̇‖Lp (Sobolev inequality),

‖u‖Lp ≤ c‖u̇‖Lp (Wirtinger’s inequality).

Proposition 4. If the sequence (uk)k converges weakly to u in W 1,p
T , then (uk)k

converges uniformly to u on [0, T ].

Let X be a Banach space. Now follows [2], for each x, v ∈ X, we define the
generalized directional derivative at x in the direction v of a given f ∈ Liploc(X,R)
as

f 0(x; v) = lim sup
y→x,λ↘0

f(y + λv)− f(y)

λ



4 DANIEL PAŞCA

and we denote by

∂f(x) = {x∗ ∈ X∗ : f 0(x; v) ≥ 〈x∗, v〉, for all v ∈ X}
the generalized gradient of f at x (the Clarke subdifferential).

We recall the Lebourg’s mean value theorem (see [2], Theorem 2.3.7).

Theorem 5. Let x and y be points in X, and suppose that f is Lipschitz on open
set containing the line segment [x,y]. Then there exists a point u in (x,y) such
that

f(y)− f(x) ∈ 〈∂f(u), y − x〉.
Clarke consider in [2] the following abstract framework:

• let (T ,T , µ) be a positive complete measure space with µ(T ) < ∞, and
let Y be a separable Banach space;

• let Z be a closed subspace of Lp(T ; Y ) (for some p in [1,∞)), where
Lp(T ; Y ) is the space of p- integrable functions from T to Y ;

• define a functional f on Z via

f(x) =
∫

T
ft(x(t))µ(dt),

where ft : Y → R, (t ∈ T ) is a given family of functions;
• suppose that for each y in Y the function t → ft(y) is measurable, and

that x is a point at which f(x) is defined (finitely).

Hypothesis 1: There is a function k in Lq(T,R),
(

1
p

+ 1
q

= 1
)

such that, for all

t ∈ T ,
|ft(y1)− ft(y2)| ≤ k(t)‖y1 − y2‖Y for all y1, y2 ∈ Y

Hypothesis 2: Each function ft is Lipschitz (of some rank) near each point of Y ,
and for some constant c, for all t ∈ T , y ∈ Y , one has

ζ ∈ ∂ft(y) ⇒ ‖ζ‖Y ∗ ≤ c{1 + ‖y‖p−1
Y }.

Under this conditions described above Clarke prove (see [2], Theorem 2.7.5):

Theorem 6. Under the conditions described above, under either of Hypothesis 1
or 2, f is uniformly Lipschitz on bounded subsets of Z, and one has

∂f(x) ⊂
∫

T
∂ft(x(t))µ(dt).

Further, if each ft is regular at x(t) then f is regular at x and equality holds.

Remark 2. f is globally Lipschitz on Z when Hypothesis 1 hold.

Now we can prove the following result.

Theorem 7. Let F : [0, T ] × Rn → R such that F (t, x) is measurable in t for
each x ∈ Rn, and locally Lipschitz and regular in x for each t ∈ [0, T ], and there
exist a ∈ C(R+,R+), b ∈ L1(0, T ;R+), c1, c2 > 0 and α ∈ [0, p− 1) such that

|F (t, x)| ≤ a(‖x‖)b(t),(9)

ζ1 ∈ ∂F (t, x) ⇒ ‖ζ1‖ ≤ c1‖x‖α + c2,(10)
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for all t ∈ [0, T ] and all x ∈ Rn. We suppose that L : [0, T ] × Rn × Rn → R, is
given by L(t, x, y) = 1

p
‖y‖p − F (t, x).

Then, the functional f : Z ∈ R, where

Z =
{
(u, v) ∈ Lp(0, T ; Y ) : u(t) =

∫ t

0
v(s)ds + c, c ∈ Rn

}

given by f(u, v) =
∫ T
0 L(t, u(t), v(t))dt, is uniformly Lipschitz on bounded subsets

of Z and one has

∂f(u, v) ⊂
∫ T

0
∂L(t, u(t), v(t))dt.(11)

Proof. We can apply Theorem 6 under Hypothesis 2, with the following cast of
characters:

• (T, T , µ) = [0, T ] with Lebesgue measure, Y = Rn × Rn be the Hilbert
product space (hence is separable);

• p > 1 and

Z =
{
(u, v) ∈ Lp(0, T ; Y ) : u(t) =

∫ t

0
v(s)ds + c, c ∈ Rn

}

be a closed subspace of Lp(0, T ; Y );
• ft(x, y) = L(t, x, y) = 1

p
‖y‖p + F (t, x); in our assumptions it results that

the integrand L(t, x, y) is measurable in t for a given element (x, y) of Y ,
locally Lipschitz in (x, y) for each t ∈ [0, T ].

Proposition 2.3.15 from [2] implies

∂L(t, x, y) ⊂ ∂xL(t, x, y)× ∂yL(t, x, y) = ∂{F (t, x)} × {‖y‖p−2y}.
Using (3) and (4), if ζ = (ζ1, ζ2) ∈ ∂L(t, x, y) it results ζ1 ∈ ∂{F (t, x)} and
ζ2 = ‖y‖p−2y, and hence

‖ζ‖ = ‖ζ1‖+ ‖ζ2‖ ≤ c1‖x‖α + c2 + ‖y‖p−1 ≤ c̃{1 + ‖(x, y)‖p−1}
for each t ∈ [0, T ], since α < p− 1 and p > 1. The hypotheses of Theorem 6 are
satisfied, therefore f is uniformly Lipschitz on the bounded subsets of Z and one
has (11). ¤

Remark 3. The interpretation of expression (11) is as follows: if (u0, v0) is an
element of Z (so that v0 = u̇0) and if ζ ∈ ∂f(u0, v0), we deduce the existence of
a measurable function (q(t), p(t)) such that

q(t) ∈ ∂{F (t, u0(t))} and p(t) = ‖v0(t)‖p−2v0(t) a.e. on [0, T ](12)

and for any (u, v) in Z, one has

〈ζ, (u, v)〉 =
∫ T

0
{〈q(t), u(t)〉+ 〈p(t), v(t)〉}dt.

In particular, if ζ = 0 (so that u0 is critical point for ϕ(u) =
∫ T
0

[
1
p
‖u̇(t)‖p +
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F (t, u(t))
]
dt), it then follows easily that q(t) = ṗ(t) a.e., or taking into account

(12)
d

dt

(
‖u̇0(t)‖p−2u̇0(t)

)
∈ ∂F (t, u0(t)) a.e. on [0, T ],

so that u0 satisfies the inclusions system (3).

Remark 4. If p = 2 then the system (3) becomes system (2). If in addition F is
continuously differentiable in x, then the system (3) becomes system (1).

In proving Theorem 2 we will invoke the following nonsmooth variant of the
Rabinowitz’s saddle point theorem (see [1], Theorem 3.3):

Theorem 8. Let X be a real Banach space, and let f be a locally Lipschitz
function defined on X satisfies (PS) condition. Suppose X = X1 ⊕ X2 with a
finite-dimensional subspace X1, and there exist constants b1 < b2 and a bounded
neighborhood N of θ in X1 such that

f |X2≥ b2, f |∂N≤ b1,

then f has a critical point.

The definitions of a critical point and the Palais-Smale condition are now re-
called.

Definition 1. A point u ∈ X is said to be a critical point of f ∈ Liploc(X,R)
if θ ∈ ∂f(u), namely f 0(u, v) ≥ 0 for every v ∈ X. A real number c is called a
critical value of f if there is a critical point u ∈ X such that f(u) = c.

Definition 2. If f ∈ Liploc(X,R), we say that f satisfies the Palais-Smale con-
dition (in short (PS)) if each sequence (xn) in X such that (f(xn)) is bounded and
limn→∞ λ(xn) = 0 has a convergent subsequence. We denote λ(x) = minx∗∈∂f(x) ‖x∗‖.

4. Proof of the Theorems

4.1. Proof of Theorem 1. For u ∈ W 1,p
T , let ū = 1

T

∫ T
0 u(t)dt and ũ = u − ū.

From Lebourg’s mean value theorem it follows that for each t ∈ [0, T ] there exist
z(t) in (ū, u(t)) and ζ ∈ ∂F (t, z(t)) such that F (t, u(t)) − F (t, ū) = 〈ζ, ũ(t)〉. It
follows from (5) and Hölder’s inequality that


∫ T

0
[F (t, u(t))− F (t, ū)]dt

 ≤
∫ T

0
|F (t, u(t))− F (t, ū)|dt ≤

≤
∫ T

0
|ζ||ũ(t)|dt ≤

∫ T

0

[
2c1(|ū|α + |ũ(t)|α) + c2

]
|ũ(t)|dt ≤

≤ C1‖ũ‖α+1
∞ + C2‖ũ‖∞‖ū‖α + C3‖ũ‖∞ ≤

≤ C4‖u̇‖α+1
Lp +

1

2p
‖u̇‖p

Lp + C5‖u̇‖Lp + C6‖ū‖qα

for all u ∈ W 1,p
T and some positive constants C4, C5 and C6. Hence we have

ϕ(u) ≥ 1

p

∫ T

0
|u̇(t)|pdt +

∫ T

0
F (t, ū)dt +

∫ T

0
[F (t, u(t))− F (t, ū)]dt ≥
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≥ 1

2p
‖u̇‖p

Lp − C4‖u̇‖α+1
Lp − C5‖u̇‖Lp − C6‖ū‖qα +

∫ T

0
F (t, ū)dt ≥

≥ 1

2p
‖u̇‖p

Lp − C4‖u̇‖α+1
Lp − C5‖u̇‖Lp + ‖ū‖qα

{
1

‖ū‖qα

∫ T

0
F (t, ū)dt− C6

}

for all u ∈ W 1,p
T , which implies that ϕ(u) → ∞ as ‖u‖ → ∞ by (6) because

α < p− 1, and the norm ‖u‖ = (‖ū‖p + ‖u̇‖p
Lp)

1
p is an equivalent norm on W 1,p

T .
Now we write ϕ(u) = ϕ1(u) + ϕ2(u) where

ϕ1(u) =
1

p

∫ T

0
|u̇(t)|pdt and ϕ2(u) =

∫ T

0
F (t, u(t))dt.

The function ϕ1 is weakly lower semi-continuous (w.l.s.c.) on W 1,p
T . From (4), (5)

and Theorem 7, taking to account Remark 2 and Proposition 4, it follows that ϕ2

is w.l.s.c. on W 1,p
T . By Theorem 1.1 in [3] it follows that ϕ has a minimum u0 on

W 1,p
T . Evidently Z ' W 1,p

T and ϕ(u) = f(u, v) for all (u, v) ∈ Z. From Theorem
7, it results that f is uniformly Lipschitz on bounded subsets of Z, and therefore
ϕ possesses the same properties relative to W 1,p

T . Proposition 2.3.2 in [2] implies
that 0 ∈ ∂ϕ(u0) (so that u0 is critical point for ϕ). Now from Theorem 7 and
Remark 3 it follows that the problem (3) has at least one solution u ∈ W 1,p

T .

Remark 5. Evidently if p = 2 then we obtain the existence of solutions of prob-
lem (2). If in addition F is continuously differentiable in x, then we obtain the
existence of solutions of problem (2).

4.2. Proof of Theorem 2. We will see that the functional

ϕ(u) : W 1,p
T → R, ϕ(u) =

1

p

∫ T

0
|u̇(t)|pdt +

∫ T

0
F (t, u(t))dt.

verify the assumptions of Theorem 8. Evidently Z ' W 1,p
T and ϕ(u) = f(u, v)

for all (u, v) ∈ Z. From Theorem 7, it results that f is uniformly Lipschitz on
bounded subsets of Z and regular at each (u, v) ∈ Z, and therefore ϕ possesses
the same properties relative to W 1,p

T . The functional ϕ is neither bounded from
below, nor from above. Indeed, if w ∈ W 1,p

T is a constant function, then

ϕ(w) =
∫ T

0
F (t, w)dt = ‖w‖qα

(
‖w‖−qα

∫ T

0
F (t, w)dt

)
→ −∞ as ‖w‖ → ∞

and, if v ∈ W 1,p
T has mean zero, by the proof of Theorem 1 one has

ϕ(v) =
1

p

∫ T

0
|v̇(t)|pdt +

∫ T

0
F (t, 0)dt +

∫ T

0
[F (t, v(t))− F (t, 0)]dt =

=
1

p

∫ T

0
|v̇(t)|pdt +

∫ T

0
F (t, 0)dt +

∫ T

0
〈ζ1, v(t)〉dt ≥

≥ 1

2p
‖u̇‖p

Lp − C4‖u̇‖α+1
Lp − C5‖u̇‖Lp +

∫ T

0
F (t, 0)dt



8 DANIEL PAŞCA

where we applied the Lebourg’s mean value theorem and Sobolev inequality, and
where C1 and C2 are positive constants, so that ϕ is not bounded from above.
We denote

X1 = {w ∈ W 1,p
T : w = constant}

and

X2 =
{
v ∈ W 1,p

T :
∫ T

0
v(t) = 0

}
.

Evidently W 1,p
T = X1 ⊕X2 with dimX1 < ∞. From the above observations, we

see that there exists R > 0 such that

sup
SR

ϕ < inf
X2

ϕ

where SR = {w ∈ X1 : ‖w‖W 1,p
T

= R}.
We shall show that ϕ satisfies the (PS) condition. Let (uk) be a sequence in

W 1,p
T such that ϕ(uk) is bounded and λ(uk) → 0 as k → ∞. Writing uk(t) =

ũk(t)+ ūk with ūk = 1
T

∫ T
0 uk(t)dt, and using the definition of λ(uk) it results that

there is some k0 such that for each k ≥ k0 there exist u∗k ∈ ∂ϕ(uk) with

|〈u∗k, h〉| ≤ ‖h‖W 1,p
T

, for all h ∈ W 1,p
T .

From Theorem 7, if u∗k ∈ ∂ϕ(uk) it results that there exist qk(t) ∈ ∂F (t, uk(t))
such that

|〈u∗k, ũk〉| =
∣∣∣∣
∫ T

0

[
‖u̇k(t)‖p + 〈qk(t), ũk(t)〉

]
dt

∣∣∣∣ ≤ ‖ũk‖W 1,p
T

, for all k ≥ k0.

In similar way to the proof of Theorem 1, we have
∣∣∣∣
∫ T

0
〈qk(t), ũk(t)〉dt

∣∣∣∣ ≤
1

2p
‖u̇k‖p

Lp + C4‖u̇k‖α+1
Lp + C5‖u̇k‖Lp + C6‖ūk‖qα

for all k. Hence one has

‖ũk‖W 1,p
T
≥ 〈u∗k, ũk〉 =

∫ T

0

[
‖u̇k(t)‖p + 〈qk(t), ũk(t)〉

]
dt ≥

≥ 2p− 1

2p
‖u̇k‖p

Lp − C4‖u̇k‖α+1
Lp − C5‖u̇k‖Lp − C6‖ūk‖qα

for k ≥ k0. It follows from Wirtinger’s inequality that

‖ũk‖W 1,p
T
≤ (1 + c)

1
p‖ ˙̃uk‖Lp

for all k. Hence we obtain

(1 + c)
1
p‖ ˙̃uk‖Lp ≥ 2p− 1

2p
‖ ˙̃uk‖p

Lp − C4‖ ˙̃uk‖α+1
Lp − C5‖ ˙̃uk‖Lp − C6‖ūk‖qα

for k ≥ k0, and it follows that

C6‖ūk‖qα ≥ 2p− 1

2p
‖ ˙̃uk‖p

Lp − C4‖ ˙̃uk‖α+1
Lp −

[
(1 + c)

1
p + C5

]
‖ ˙̃uk‖Lp

or

C7‖ūk‖qα ≥ ‖ ˙̃uk‖p
Lp(13)
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for some C7 > 0 and for k ≥ k0. By the proof of Theorem 1 we have


∫ T

0
[F (t, uk(t))− F (t, ūk)]dt

 ≤
1

2p
‖u̇k‖p

Lp + C4‖u̇k‖α+1
Lp + C5‖u̇k‖Lp + C6‖ūk‖qα

for all k. It follows from the boundedness of
(
ϕ(uk)

)
, (13) and the above inequal-

ity that

C8 ≤ ϕ(uk) =
1

p

∫ T

0
|u̇k(t)|pdt +

∫ T

0
[F (t, uk(t))− F (t, ūk)]dt +

∫ T

0
F (t, ūk)dt ≤

≤ 2p− 1

2p
‖u̇k‖p

Lp + C4‖u̇k‖α+1
Lp + C5‖u̇k‖Lp + C6‖ūk‖qα +

∫ T

0
F (t, ūk)dt ≤

≤ ‖ūk‖qα
(
‖ūk‖−qα

∫ T

0
F (t, ūk)dt + C9

)

for k ≥ k0 and some positive constants C8 and C9. The above inequality and
(8) implies that (‖ūk‖) is bounded. Hence (uk) is bounded by (13). Thus (uk)
is bounded in W 1,p

T and hence contains a subsequence, relabeled (uk), which
converge to some u ∈ W 1,p

T , weakly in W 1,p
T and strongly in C([0, T ];Rn) (see

Proposition 4). Therefore we have for u∗k ∈ ∂ϕ(uk) and u∗ ∈ ∂ϕ(u)

〈u∗k − u∗, uk − u〉 → 0 as k →∞.

But

〈u∗k − u∗, uk − u〉 =
∫ T

0

[
〈qk(t)− q(t), uk(t)− u(t)〉+ ‖u̇k(t)− u̇(t)‖p

]
dt =

= ‖u̇k − u̇‖p
Lp +

∫ T

0
〈qk(t)− q(t), uk(t)− u(t)〉dt

where qk(t) ∈ ∂F (t, uk(t)) and q(t) ∈ ∂F (t, u(t)). It is easy to verify, that
‖u̇k − u̇‖Lp → 0 as k → ∞, and hence uk → u in W 1,p

T . We conclude that (PS)
is satisfied and from Theorem 8, ϕ admits a critical point. Now from Theorem 7
and Remark 3 it follows that the problem (3) has at least one solution u ∈ W 1,p

T .

Remark 6. Evidently if p = 2 then we obtain the existence of solutions of prob-
lem (2). If in addition F is continuously differentiable in x, then we obtain the
existence of solutions of problem (2).
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