PERIODIC SOLUTIONS FOR NONAUTONOMOUS SECOND ORDER DIFFERENTIAL INCLUSIONS SYSTEMS WITH p-LAPLACIAN

DANIEL PAŞCA

Abstract

Using the nonsmooth variant of minimax point theorems, some existence results are obtained for periodic solutions of nonautonomous secondorder differential inclusions systems with p-Laplacian.

1. Introduction

Consider the second order system

$$
\begin{gather*}
\ddot{u}(t)=\nabla F(t, u(t)) \text { a.e. } t \in[0, T], \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 \tag{1}
\end{gather*}
$$

where $T>0, F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies the following assumption:
(A) $F(t, x)$ is measurable in t for each $x \in \mathbb{R}^{n}$ and continuously differentiable in x for a.e. $t \in[0, T]$, and there exist $a \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), b \in L^{1}\left(0, T ; \mathbb{R}_{+}\right)$such that

$$
|F(t, x)|+\|\nabla F(t, x)\| \leq a(\|x\|) b(t)
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$.
Suppose that the nonlinearity $\nabla F(t, x)$ is bounded, that is, there exists $g \in$ $L^{1}\left(0, T ; \mathbb{R}_{+}\right)$such that

$$
\|\nabla F(t, x)\| \leq g(t)
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$. In [3] the authors proved the existence of solutions for problem (1) under the condition that

$$
\int_{0}^{T} F(t, x) d t \rightarrow+\infty \text { as }\|x\| \rightarrow \infty
$$

or that

$$
\int_{0}^{T} F(t, x) d t \rightarrow-\infty \text { as }\|x\| \rightarrow \infty
$$

Tang in [5] proved the existence of solutions for problem (1) under more general conditions. He supposes that assumption (A) holds, that

$$
\|\nabla F(t, x)\| \leq f(t)\|x\|^{\alpha}+g(t)
$$

[^0]for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$, where $f, g \in L^{1}\left(0, T ; \mathbb{R}_{+}\right), \alpha \in[0,1)$ and
$$
\|x\|^{-2 \alpha} \int_{0}^{T} F(t, x) d t \rightarrow+\infty \text { as }\|x\| \rightarrow \infty
$$
or that
$$
\|x\|^{-2 \alpha} \int_{0}^{T} F(t, x) d t \rightarrow-\infty \text { as }\|x\| \rightarrow \infty
$$

In order to prove the above results, Mawhin-Willem and Tang apply the classical (smooth) variant of minimax methods. In [4] we have considered the following problem which is a generalization of problem (1)

$$
\begin{gather*}
\ddot{u}(t) \in \partial F(t, u(t)) \text { a.e. } t \in[0, T], \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 \tag{2}
\end{gather*}
$$

where $T>0, F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}, \partial$ denotes the Clarke subdifferential (see [2]) and $F(t, x)$ is measurable in t for each $x \in \mathbb{R}^{n}$, and locally Lipschitz and regular (see [2]) in x for each $t \in[0, T]$. Under some additional assumptions (see [4]) on F and ∂F we proved the existence of solutions for problem (2).

The aim of this paper is to consider the problem (2) in a more general sense. More exactly our results represent the extensions to systems with p-Laplacian.

Consider the second order differential inclusions system

$$
\begin{gather*}
\frac{d}{d t}\left(|\dot{u}(t)|^{p-2} \dot{u}(t)\right) \in \partial F(t, u(t)) \text { a.e. } t \in[0, T] \tag{3}\\
u(0)=u(T), \dot{u}(0)=\dot{u}(T)
\end{gather*}
$$

where $p>1, T>0, F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, and ∂ denotes the Clarke subdifferential.
The corresponding functional $\varphi(u): W_{T}^{1, p} \rightarrow \mathbb{R}$ is given by

$$
\varphi(u)=\frac{1}{p} \int_{0}^{T}|\dot{u}(t)|^{p} d t+\int_{0}^{T} F(t, u(t)) d t
$$

2. Main Results

Theorem 1. Let $F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F(t, x)$ is measurable in t for each $x \in \mathbb{R}^{n}$ and regular in x for each $t \in[0, T]$. We suppose that exist $k \in L^{q}(0, T ; \mathbb{R})$ such that

$$
\begin{equation*}
\left|F\left(t, x_{1}\right)-F\left(t, x_{2}\right)\right| \leq k(t)\left\|x_{1}-x_{2}\right\| \tag{4}
\end{equation*}
$$

for all $t \in[0, T]$ and all $x_{1}, x_{2} \in \mathbb{R}^{n}$. If there exist $c_{1}, c_{2}>0$ and $\alpha \in[0,1)$ such that

$$
\begin{equation*}
\zeta_{1} \in \partial F(t, x) \Rightarrow\left\|\zeta_{1}\right\| \leq c_{1}\|x\|^{\alpha}+c_{2} \tag{5}
\end{equation*}
$$

for all $t \in[0, T]$ and all $x \in \mathbb{R}^{n}$, and if for $q=\frac{p}{p-1}$

$$
\begin{equation*}
\|x\|^{-q \alpha} \int_{0}^{T} F(t, x) d t \rightarrow+\infty \text { as }\|x\| \rightarrow \infty \tag{6}
\end{equation*}
$$

then problem (3) has at least one solution which minimizes the functional φ on $W_{T}^{1, p}$.

Theorem 2. Let $F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F(t, x)$ is measurable in t for each $x \in \mathbb{R}^{n}$ and locally Lipschitz and regular in x for each $t \in[0, T]$. We suppose that exist $a \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$and $b \in L^{1}\left(0, T ; \mathbb{R}_{+}\right)$such that

$$
\begin{equation*}
\|F(t, x)\| \leq a(\|x\|) b(t) \tag{7}
\end{equation*}
$$

for all $t \in[0, T]$ and all $x \in \mathbb{R}^{n}$. If there exist $c_{1}, c_{2}>0$ and $\alpha \in[0,1)$ such that

$$
\zeta_{1} \in \partial F(t, x) \Rightarrow\left\|\zeta_{1}\right\| \leq c_{1}\|x\|^{\alpha}+c_{2}
$$

for all $t \in[0, T]$ and all $x \in \mathbb{R}^{n}$, and if for $q=\frac{p}{p-1}$

$$
\begin{equation*}
\|x\|^{-q \alpha} \int_{0}^{T} F(t, x) d t \rightarrow-\infty \text { as }\|x\| \rightarrow \infty \tag{8}
\end{equation*}
$$

then problem (3) has at least one solution on $W_{T}^{1, p}$.
Remark 1. Theorems 1 and 2 generalizes the corresponding Theorems 1 and 2 of [4]. In fact, it follows from these theorems letting $p=2$.

3. The preliminary Results

We introduce some functional spaces. Let T a positive real number and $1<$ $p<\infty$. We denote by $W_{T}^{1, p}$ the Sobolev space of functions $u \in L^{p}\left(0, T ; \mathbb{R}^{n}\right)$ having a weak derivative $\dot{u} \in L^{p}\left(0, T ; \mathbb{R}^{n}\right)$. The norm over X is defined by

$$
\|u\|_{W_{T}^{1, p}}=\left(\int_{0}^{T}\|u(t)\|^{p} d t+\int_{0}^{T}\|\dot{u}(t)\|^{p} d t\right)^{\frac{1}{p}}
$$

We recall that

$$
\|u\|_{L^{p}}=\left(\int_{0}^{T}\|u(t)\|^{p} d t\right)^{\frac{1}{p}} \text { and }\|u\|_{\infty}=\max _{t \in[0, T]}\|u(t)\|
$$

For our aims it is necessary to recall some very well know results (for proof and details see [3]).

Proposition 3. If $u \in W_{T}^{1, p}$ then

$$
\|u\|_{\infty} \leq c\|u\|_{W_{T}^{1, p}}
$$

If $u \in W_{T}^{1, p}$ and $\int_{0}^{T} u(t) d t=0$ then

$$
\begin{gathered}
\|u\|_{\infty} \leq c\|\dot{u}\|_{L^{p}} \quad \text { (Sobolev inequality) } \\
\|u\|_{L^{p}} \leq c\|\dot{u}\|_{L^{p}} \quad \text { (Wirtinger's inequality) }
\end{gathered}
$$

Proposition 4. If the sequence $\left(u_{k}\right)_{k}$ converges weakly to u in $W_{T}^{1, p}$, then $\left(u_{k}\right)_{k}$ converges uniformly to u on $[0, T]$.

Let X be a Banach space. Now follows [2], for each $x, v \in X$, we define the generalized directional derivative at x in the direction v of a given $f \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ as

$$
f^{0}(x ; v)=\limsup _{y \rightarrow x, \lambda \searrow 0} \frac{f(y+\lambda v)-f(y)}{\lambda}
$$

and we denote by

$$
\partial f(x)=\left\{x^{*} \in X^{*}: f^{0}(x ; v) \geq\left\langle x^{*}, v\right\rangle, \text { for all } v \in X\right\}
$$

the generalized gradient of f at x (the Clarke subdifferential).
We recall the Lebourg's mean value theorem (see [2], Theorem 2.3.7).
Theorem 5. Let x and y be points in X, and suppose that f is Lipschitz on open set containing the line segment $[x, y]$. Then there exists a point u in (x, y) such that

$$
f(y)-f(x) \in\langle\partial f(u), y-x\rangle .
$$

Clarke consider in [2] the following abstract framework:

- let (T, \mathcal{T}, μ) be a positive complete measure space with $\mu(T)<\infty$, and let Y be a separable Banach space;
- let Z be a closed subspace of $L^{p}(T ; Y)$ (for some p in $[1, \infty)$), where $L^{p}(T ; Y)$ is the space of p - integrable functions from T to Y;
- define a functional f on Z via

$$
f(x)=\int_{T} f_{t}(x(t)) \mu(d t)
$$

where $f_{t}: Y \rightarrow \mathbb{R},(t \in T)$ is a given family of functions;

- suppose that for each y in Y the function $t \rightarrow f_{t}(y)$ is measurable, and that x is a point at which $f(x)$ is defined (finitely).
Hypothesis 1: There is a function k in $L^{q}(T, \mathbb{R}),\left(\frac{1}{p}+\frac{1}{q}=1\right)$ such that, for all $t \in T$,

$$
\left|f_{t}\left(y_{1}\right)-f_{t}\left(y_{2}\right)\right| \leq k(t)\left\|y_{1}-y_{2}\right\|_{Y} \text { for all } y_{1}, y_{2} \in Y
$$

Hypothesis 2: Each function f_{t} is Lipschitz (of some rank) near each point of Y, and for some constant c, for all $t \in T, y \in Y$, one has

$$
\zeta \in \partial f_{t}(y) \Rightarrow\|\zeta\|_{Y^{*}} \leq c\left\{1+\|y\|_{Y}^{p-1}\right\} .
$$

Under this conditions described above Clarke prove (see [2], Theorem 2.7.5):
Theorem 6. Under the conditions described above, under either of Hypothesis 1 or 2, f is uniformly Lipschitz on bounded subsets of Z, and one has

$$
\partial f(x) \subset \int_{T} \partial f_{t}(x(t)) \mu(d t)
$$

Further, if each f_{t} is regular at $x(t)$ then f is regular at x and equality holds.
Remark 2. f is globally Lipschitz on Z when Hypothesis 1 hold.
Now we can prove the following result.
Theorem 7. Let $F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F(t, x)$ is measurable in t for each $x \in \mathbb{R}^{n}$, and locally Lipschitz and regular in x for each $t \in[0, T]$, and there exist $a \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), b \in L^{1}\left(0, T ; \mathbb{R}_{+}\right), c_{1}, c_{2}>0$ and $\alpha \in[0, p-1)$ such that

$$
\begin{equation*}
|F(t, x)| \leq a(\|x\|) b(t) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\zeta_{1} \in \partial F(t, x) \Rightarrow\left\|\zeta_{1}\right\| \leq c_{1}\|x\|^{\alpha}+c_{2} \tag{10}
\end{equation*}
$$

for all $t \in[0, T]$ and all $x \in \mathbb{R}^{n}$. We suppose that $L:[0, T] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, is given by $L(t, x, y)=\frac{1}{p}\|y\|^{p}-F(t, x)$.
Then, the functional $f: Z \in \mathbb{R}$, where

$$
Z=\left\{(u, v) \in L^{p}(0, T ; Y): u(t)=\int_{0}^{t} v(s) d s+c, c \in \mathbb{R}^{n}\right\}
$$

given by $f(u, v)=\int_{0}^{T} L(t, u(t), v(t)) d t$, is uniformly Lipschitz on bounded subsets of Z and one has

$$
\begin{equation*}
\partial f(u, v) \subset \int_{0}^{T} \partial L(t, u(t), v(t)) d t \tag{11}
\end{equation*}
$$

Proof. We can apply Theorem 6 under Hypothesis 2, with the following cast of characters:

- $(T, \mathcal{T}, \mu)=[0, T]$ with Lebesgue measure, $Y=\mathbb{R}^{n} \times \mathbb{R}^{n}$ be the Hilbert product space (hence is separable);
- $p>1$ and

$$
Z=\left\{(u, v) \in L^{p}(0, T ; Y): u(t)=\int_{0}^{t} v(s) d s+c, c \in \mathbb{R}^{n}\right\}
$$

be a closed subspace of $L^{p}(0, T ; Y)$;

- $f_{t}(x, y)=L(t, x, y)=\frac{1}{p}\|y\|^{p}+F(t, x)$; in our assumptions it results that the integrand $L(t, x, y)$ is measurable in t for a given element (x, y) of Y, locally Lipschitz in (x, y) for each $t \in[0, T]$.
Proposition 2.3.15 from [2] implies

$$
\partial L(t, x, y) \subset \partial_{x} L(t, x, y) \times \partial_{y} L(t, x, y)=\partial\{F(t, x)\} \times\left\{\|y\|^{p-2} y\right\}
$$

Using (3) and (4), if $\zeta=\left(\zeta_{1}, \zeta_{2}\right) \in \partial L(t, x, y)$ it results $\zeta_{1} \in \partial\{F(t, x)\}$ and $\zeta_{2}=\|y\|^{p-2} y$, and hence

$$
\|\zeta\|=\left\|\zeta_{1}\right\|+\left\|\zeta_{2}\right\| \leq c_{1}\|x\|^{\alpha}+c_{2}+\|y\|^{p-1} \leq \tilde{c}\left\{1+\|(x, y)\|^{p-1}\right\}
$$

for each $t \in[0, T]$, since $\alpha<p-1$ and $p>1$. The hypotheses of Theorem 6 are satisfied, therefore f is uniformly Lipschitz on the bounded subsets of Z and one has (11).

Remark 3. The interpretation of expression (11) is as follows: if (u_{0}, v_{0}) is an element of Z (so that $v_{0}=\dot{u}_{0}$) and if $\zeta \in \partial f\left(u_{0}, v_{0}\right)$, we deduce the existence of a measurable function $(q(t), p(t))$ such that

$$
\begin{equation*}
q(t) \in \partial\left\{F\left(t, u_{0}(t)\right)\right\} \text { and } p(t)=\left\|v_{0}(t)\right\|^{p-2} v_{0}(t) \text { a.e. on }[0, T] \tag{12}
\end{equation*}
$$

and for any (u, v) in Z, one has

$$
\langle\zeta,(u, v)\rangle=\int_{0}^{T}\{\langle q(t), u(t)\rangle+\langle p(t), v(t)\rangle\} d t
$$

In particular, if $\zeta=0$ (so that u_{0} is critical point for $\varphi(u)=\int_{0}^{T}\left[\frac{1}{p}\|\dot{u}(t)\|^{p}+\right.$
$F(t, u(t))] d t)$, it then follows easily that $q(t)=\dot{p}(t)$ a.e., or taking into account (12)

$$
\frac{d}{d t}\left(\left\|i_{0}(t)\right\|^{p-2} \dot{u}_{0}(t)\right) \in \partial F\left(t, u_{0}(t)\right) \text { a.e. on }[0, T]
$$

so that u_{0} satisfies the inclusions system (3).
Remark 4. If $p=2$ then the system (3) becomes system (2). If in addition F is continuously differentiable in x, then the system (3) becomes system (1).

In proving Theorem 2 we will invoke the following nonsmooth variant of the Rabinowitz's saddle point theorem (see [1], Theorem 3.3):
Theorem 8. Let X be a real Banach space, and let f be a locally Lipschitz function defined on X satisfies (PS) condition. Suppose $X=X_{1} \oplus X_{2}$ with a finite-dimensional subspace X_{1}, and there exist constants $b_{1}<b_{2}$ and a bounded neighborhood N of θ in X_{1} such that

$$
\left.f\right|_{X_{2}} \geq b_{2},\left.\quad f\right|_{\partial N} \leq b_{1},
$$

then f has a critical point.
The definitions of a critical point and the Palais-Smale condition are now recalled.

Definition 1. A point $u \in X$ is said to be a critical point of $f \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ if $\theta \in \partial f(u)$, namely $f^{0}(u, v) \geq 0$ for every $v \in X$. A real number c is called a critical value of f if there is a critical point $u \in X$ such that $f(u)=c$.
Definition 2. If $f \in \operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$, we say that f satisfies the Palais-Smale condition (in short (PS)) if each sequence $\left(x_{n}\right)$ in X such that $\left(f\left(x_{n}\right)\right)$ is bounded and $\lim _{n \rightarrow \infty} \lambda\left(x_{n}\right)=0$ has a convergent subsequence. We denote $\lambda(x)=\min _{x^{*} \in \partial f(x)}\left\|x^{*}\right\|$.

4. Proof of the Theorems

4.1. Proof of Theorem 1. For $u \in W_{T}^{1, p}$, let $\bar{u}=\frac{1}{T} \int_{0}^{T} u(t) d t$ and $\tilde{u}=u-\bar{u}$. From Lebourg's mean value theorem it follows that for each $t \in[0, T]$ there exist $z(t)$ in $(\bar{u}, u(t))$ and $\zeta \in \partial F(t, z(t))$ such that $F(t, u(t))-F(t, \bar{u})=\langle\zeta, \tilde{u}(t)\rangle$. It follows from (5) and Hölder's inequality that

$$
\begin{gathered}
\left|\int_{0}^{T}[F(t, u(t))-F(t, \bar{u})] d t\right| \leq \int_{0}^{T}|F(t, u(t))-F(t, \bar{u})| d t \leq \\
\leq \int_{0}^{T}|\zeta \| \tilde{u}(t)| d t \leq \int_{0}^{T}\left[2 c_{1}\left(|\bar{u}|^{\alpha}+|\tilde{u}(t)|^{\alpha}\right)+c_{2}\right]|\tilde{u}(t)| d t \leq \\
\leq C_{1}\|\tilde{u}\|_{\infty}^{\alpha+1}+C_{2}\|\tilde{u}\|_{\infty}\|\bar{u}\|^{\alpha}+C_{3}\|\tilde{u}\|_{\infty} \leq \\
\quad \leq C_{4}\|\dot{u}\|_{L^{p}}^{\alpha+1}+\frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}+C_{5}\|\dot{u}\|_{L^{p}}+C_{6}\|\bar{u}\|^{q \alpha}
\end{gathered}
$$

for all $u \in W_{T}^{1, p}$ and some positive constants C_{4}, C_{5} and C_{6}. Hence we have

$$
\varphi(u) \geq \frac{1}{p} \int_{0}^{T}|\dot{u}(t)|^{p} d t+\int_{0}^{T} F(t, \bar{u}) d t+\int_{0}^{T}[F(t, u(t))-F(t, \bar{u})] d t \geq
$$

$$
\begin{aligned}
& \geq \frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}-C_{4}\|\dot{u}\|_{L^{p}}^{\alpha+1}-C_{5}\|\dot{u}\|_{L^{p}}-C_{6}\|\bar{u}\|^{q \alpha}+\int_{0}^{T} F(t, \bar{u}) d t \geq \\
\geq & \frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}-C_{4}\|\dot{u}\|_{L^{p}}^{\alpha+1}-C_{5}\|\dot{u}\|_{L^{p}}+\|\bar{u}\|^{q \alpha}\left\{\frac{1}{\|\bar{u}\|^{q \alpha}} \int_{0}^{T} F(t, \bar{u}) d t-C_{6}\right\}
\end{aligned}
$$

for all $u \in W_{T}^{1, p}$, which implies that $\varphi(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$ by (6) because $\alpha<p-1$, and the norm $\|u\|=\left(\|\bar{u}\|^{p}+\|\dot{u}\|_{L^{p}}^{p}\right)^{\frac{1}{p}}$ is an equivalent norm on $W_{T}^{1, p}$. Now we write $\varphi(u)=\varphi_{1}(u)+\varphi_{2}(u)$ where

$$
\varphi_{1}(u)=\frac{1}{p} \int_{0}^{T}|\dot{u}(t)|^{p} d t \text { and } \varphi_{2}(u)=\int_{0}^{T} F(t, u(t)) d t
$$

The function φ_{1} is weakly lower semi-continuous (w.l.s.c.) on $W_{T}^{1, p}$. From (4), (5) and Theorem 7, taking to account Remark 2 and Proposition 4, it follows that φ_{2} is w.l.s.c. on $W_{T}^{1, p}$. By Theorem 1.1 in [3] it follows that φ has a minimum u_{0} on $W_{T}^{1, p}$. Evidently $Z \simeq W_{T}^{1, p}$ and $\varphi(u)=f(u, v)$ for all $(u, v) \in Z$. From Theorem 7, it results that f is uniformly Lipschitz on bounded subsets of Z, and therefore φ possesses the same properties relative to $W_{T}^{1, p}$. Proposition 2.3.2 in [2] implies that $0 \in \partial \varphi\left(u_{0}\right)$ (so that u_{0} is critical point for φ). Now from Theorem 7 and Remark 3 it follows that the problem (3) has at least one solution $u \in W_{T}^{1, p}$.

Remark 5. Evidently if $p=2$ then we obtain the existence of solutions of problem (2). If in addition F is continuously differentiable in x, then we obtain the existence of solutions of problem (2).

4.2. Proof of Theorem 2. We will see that the functional

$$
\varphi(u): W_{T}^{1, p} \rightarrow \mathbb{R}, \quad \varphi(u)=\frac{1}{p} \int_{0}^{T}|\dot{u}(t)|^{p} d t+\int_{0}^{T} F(t, u(t)) d t .
$$

verify the assumptions of Theorem 8. Evidently $Z \simeq W_{T}^{1, p}$ and $\varphi(u)=f(u, v)$ for all $(u, v) \in Z$. From Theorem 7, it results that f is uniformly Lipschitz on bounded subsets of Z and regular at each $(u, v) \in Z$, and therefore φ possesses the same properties relative to $W_{T}^{1, p}$. The functional φ is neither bounded from below, nor from above. Indeed, if $w \in W_{T}^{1, p}$ is a constant function, then

$$
\varphi(w)=\int_{0}^{T} F(t, w) d t=\|w\|^{q \alpha}\left(\|w\|^{-q \alpha} \int_{0}^{T} F(t, w) d t\right) \rightarrow-\infty \text { as }\|w\| \rightarrow \infty
$$

and, if $v \in W_{T}^{1, p}$ has mean zero, by the proof of Theorem 1 one has

$$
\begin{aligned}
\varphi(v)= & \frac{1}{p} \int_{0}^{T}|\dot{v}(t)|^{p} d t+\int_{0}^{T} F(t, 0) d t+\int_{0}^{T}[F(t, v(t))-F(t, 0)] d t= \\
& =\frac{1}{p} \int_{0}^{T}|\dot{v}(t)|^{p} d t+\int_{0}^{T} F(t, 0) d t+\int_{0}^{T}\left\langle\zeta_{1}, v(t)\right\rangle d t \geq \\
& \geq \frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}-C_{4}\|\dot{u}\|_{L^{p}}^{\alpha+1}-C_{5}\|\dot{u}\|_{L^{p}}+\int_{0}^{T} F(t, 0) d t
\end{aligned}
$$

where we applied the Lebourg's mean value theorem and Sobolev inequality, and where C_{1} and C_{2} are positive constants, so that φ is not bounded from above. We denote

$$
X_{1}=\left\{w \in W_{T}^{1, p}: w=\text { constant }\right\}
$$

and

$$
X_{2}=\left\{v \in W_{T}^{1, p}: \int_{0}^{T} v(t)=0\right\}
$$

Evidently $W_{T}^{1, p}=X_{1} \oplus X_{2}$ with $\operatorname{dim} X_{1}<\infty$. From the above observations, we see that there exists $R>0$ such that

$$
\sup _{S_{R}} \varphi<\inf _{X_{2}} \varphi
$$

where $S_{R}=\left\{w \in X_{1}:\|w\|_{W_{T}^{1, p}}=R\right\}$.
We shall show that φ satisfies the $(P S)$ condition. Let $\left(u_{k}\right)$ be a sequence in $W_{T}^{1, p}$ such that $\varphi\left(u_{k}\right)$ is bounded and $\lambda\left(u_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. Writing $u_{k}(t)=$ $\tilde{u}_{k}(t)+\bar{u}_{k}$ with $\bar{u}_{k}=\frac{1}{T} \int_{0}^{T} u_{k}(t) d t$, and using the definition of $\lambda\left(u_{k}\right)$ it results that there is some k_{0} such that for each $k \geq k_{0}$ there exist $u_{k}^{*} \in \partial \varphi\left(u_{k}\right)$ with

$$
\left|\left\langle u_{k}^{*}, h\right\rangle\right| \leq\|h\|_{W_{T}^{1, p}}, \quad \text { for all } h \in W_{T}^{1, p} .
$$

From Theorem 7, if $u_{k}^{*} \in \partial \varphi\left(u_{k}\right)$ it results that there exist $q_{k}(t) \in \partial F\left(t, u_{k}(t)\right)$ such that

$$
\left|\left\langle u_{k}^{*}, \tilde{u}_{k}\right\rangle\right|=\left|\int_{0}^{T}\left[\left\|\dot{u}_{k}(t)\right\|^{p}+\left\langle q_{k}(t), \tilde{u}_{k}(t)\right\rangle\right] d t\right| \leq\left\|\tilde{u}_{k}\right\|_{W_{T}^{1, p}}, \quad \text { for all } k \geq k_{0}
$$

In similar way to the proof of Theorem 1, we have

$$
\left|\int_{0}^{T}\left\langle q_{k}(t), \tilde{u}_{k}(t)\right\rangle d t\right| \leq \frac{1}{2 p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}+C_{4}\left\|\dot{u}_{k}\right\|_{L^{p}}^{\alpha+1}+C_{5}\left\|\dot{u}_{k}\right\|_{L^{p}}+C_{6}\left\|\bar{u}_{k}\right\|^{q \alpha}
$$

for all k. Hence one has

$$
\begin{aligned}
& \left\|\tilde{u}_{k}\right\|_{W_{T}^{1, p}} \geq\left\langle u_{k}^{*}, \tilde{u}_{k}\right\rangle=\int_{0}^{T}\left[\left\|\dot{u}_{k}(t)\right\|^{p}+\left\langle q_{k}(t), \tilde{u}_{k}(t)\right\rangle\right] d t \geq \\
& \geq \frac{2 p-1}{2 p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}-C_{4}\left\|\dot{u}_{k}\right\|_{L^{p}}^{\alpha+1}-C_{5}\left\|\dot{u}_{k}\right\|_{L^{p}}-C_{6}\left\|\bar{u}_{k}\right\|^{q \alpha}
\end{aligned}
$$

for $k \geq k_{0}$. It follows from Wirtinger's inequality that

$$
\left\|\tilde{u}_{k}\right\|_{W_{T}^{1, p}} \leq(1+c)^{\frac{1}{p}}\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}}
$$

for all k. Hence we obtain

$$
(1+c)^{\frac{1}{p}}\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}} \geq \frac{2 p-1}{2 p}\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}}^{p}-C_{4}\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}}^{\alpha+1}-C_{5}\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}}-C_{6}\left\|\bar{u}_{k}\right\|^{q \alpha}
$$

for $k \geq k_{0}$, and it follows that

$$
C_{6}\left\|\bar{u}_{k}\right\|^{q \alpha} \geq \frac{2 p-1}{2 p}\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}}^{p}-C_{4}\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}}^{\alpha+1}-\left[(1+c)^{\frac{1}{p}}+C_{5}\right]\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}}
$$

or

$$
\begin{equation*}
C_{7}\left\|\bar{u}_{k}\right\|^{q \alpha} \geq\left\|\dot{\tilde{u}}_{k}\right\|_{L^{p}}^{p} \tag{13}
\end{equation*}
$$

for some $C_{7}>0$ and for $k \geq k_{0}$. By the proof of Theorem 1 we have

$$
\left|\int_{0}^{T}\left[F\left(t, u_{k}(t)\right)-F\left(t, \bar{u}_{k}\right)\right] d t\right| \leq \frac{1}{2 p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}+C_{4}\left\|\dot{u}_{k}\right\|_{L^{p}}^{\alpha+1}+C_{5}\left\|\dot{u}_{k}\right\|_{L^{p}}+C_{6}\left\|\bar{u}_{k}\right\|^{q \alpha}
$$

for all k. It follows from the boundedness of $\left(\varphi\left(u_{k}\right)\right)$, (13) and the above inequality that

$$
\begin{gathered}
C_{8} \leq \varphi\left(u_{k}\right)=\frac{1}{p} \int_{0}^{T}\left|\dot{u}_{k}(t)\right|^{p} d t+\int_{0}^{T}\left[F\left(t, u_{k}(t)\right)-F\left(t, \bar{u}_{k}\right)\right] d t+\int_{0}^{T} F\left(t, \bar{u}_{k}\right) d t \leq \\
\leq \frac{2 p-1}{2 p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}+C_{4}\left\|\dot{u}_{k}\right\|_{L^{p}}^{\alpha+1}+C_{5}\left\|\dot{u}_{k}\right\|_{L^{p}}+C_{6}\left\|\bar{u}_{k}\right\|^{q \alpha}+\int_{0}^{T} F\left(t, \bar{u}_{k}\right) d t \leq \\
\leq\left\|\bar{u}_{k}\right\|^{q \alpha}\left(\left\|\bar{u}_{k}\right\|^{-q \alpha} \int_{0}^{T} F\left(t, \bar{u}_{k}\right) d t+C_{9}\right)
\end{gathered}
$$

for $k \geq k_{0}$ and some positive constants C_{8} and C_{9}. The above inequality and (8) implies that $\left(\left\|\bar{u}_{k}\right\|\right)$ is bounded. Hence $\left(u_{k}\right)$ is bounded by (13). Thus (u_{k}) is bounded in $W_{T}^{1, p}$ and hence contains a subsequence, relabeled $\left(u_{k}\right)$, which converge to some $u \in W_{T}^{1, p}$, weakly in $W_{T}^{1, p}$ and strongly in $C\left([0, T] ; \mathbb{R}^{n}\right)$ (see Proposition 4). Therefore we have for $u_{k}^{*} \in \partial \varphi\left(u_{k}\right)$ and $u^{*} \in \partial \varphi(u)$

$$
\left\langle u_{k}^{*}-u^{*}, u_{k}-u\right\rangle \rightarrow 0 \text { as } k \rightarrow \infty
$$

But

$$
\begin{gathered}
\left\langle u_{k}^{*}-u^{*}, u_{k}-u\right\rangle=\int_{0}^{T}\left[\left\langle q_{k}(t)-q(t), u_{k}(t)-u(t)\right\rangle+\left\|\dot{u}_{k}(t)-\dot{u}(t)\right\|^{p}\right] d t= \\
=\left\|\dot{u}_{k}-\dot{u}\right\|_{L^{p}}^{p}+\int_{0}^{T}\left\langle q_{k}(t)-q(t), u_{k}(t)-u(t)\right\rangle d t
\end{gathered}
$$

where $q_{k}(t) \in \partial F\left(t, u_{k}(t)\right)$ and $q(t) \in \partial F(t, u(t))$. It is easy to verify, that $\left\|\dot{u}_{k}-\dot{u}\right\|_{L^{p}} \rightarrow 0$ as $k \rightarrow \infty$, and hence $u_{k} \rightarrow u$ in $W_{T}^{1, p}$. We conclude that $(P S)$ is satisfied and from Theorem $8, \varphi$ admits a critical point. Now from Theorem 7 and Remark 3 it follows that the problem (3) has at least one solution $u \in W_{T}^{1, p}$.

Remark 6. Evidently if $p=2$ then we obtain the existence of solutions of problem (2). If in addition F is continuously differentiable in x, then we obtain the existence of solutions of problem (2).

ACKNOWLEDGEMENTS

The author thanks Centre de Recerca Matemàtica for the hospitality and facilities for doing this work.

References

[1] Kung-Ching Chang - Variational Methods for Non-Differentiable Functionals and Their Applications to Partial Differential Equations, J. Math. Anal. Appl. 80 (1981), 102-129.
[2] F.H. Clarke - Optimization and Nonsmooth Analysis, SIAM, Classics in Applied Mathematics vol.5, Philadelphia, 1990.
[3] J. Mawhin and M. Willem - Critical Point Theory and Hamiltonian Systems, SpringerVerlag, Berlin/New York, 1989.
[4] Daniel Paşca - Periodic Solutions for Second Order Differential Inclusions with Sublinear Nonlinearity, PanAmerican Mathematical Journal, vol. 10, nr. 4 (2000) 35-45.
[5] Chun-Lei Tang - Periodic Solutions for Nonautonomous Second Order Systems with Sublinear Nonlinearity, Proc. AMS, vol. 126, nr. 11 (1998), 3263-3270.

Permanent address: Department of Mathematics and Informatics, University of Oradea, University Street 1, 410087 Oradea, Romania

E-mail address: dpasca@uoradea.ro
Current address: Centre de Recerca Matemàtica, 08193 Bellaterra, Barcelona, Spain

E-mail address: dpasca@crm.es

[^0]: 1991 Mathematics Subject Classification. 34C25, 49J24.
 Key words and phrases. p-Laplacian, differential inclusions, the ($P S$) condition, periodic solutions, Rabinowitz's saddle point theorem.
 \dagger The author was supported by Ministerio de Educacioń y Ciencia, grant number SB20030337.

