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Abstract. We introduce the notion of variational (semi-) strict qua-
simonotonicity for a multivalued operator T : X ⇒ X∗ relative to a
nonempty subset A of X which is not necessarily included in the do-
main of T . We use this notion to characterize the subdifferentials of
continuous (semi-) strictly quasiconvex functions. The proposed defi-
nition is a relaxation of the standard definition of (semi-) strict qua-
simonotonicity, the latter being appropriate only for operators with
nonempty values. Thus, the derived results are extensions to the con-
tinuous case of corresponding results for locally Lipschitz functions.

1. Introduction

The notion of quasiconvexity, referring to a function whose sublevel
sets are convex, is probably the most natural generalization of convexity.
Its simple definition makes it the starting point for further investigations
(see [22], [4], [20], [9], for example).

Comparing with the convex case, a quasiconvex function might have lo-
cal minima which are not global (typical failure in almost all deterministic
global optimization methods), or critical points which are not local minimiz-
ers (typical failure in all Newton type minimization methods). In this work
we are interested in the important subclasses of semistrictly (respectively,
strictly) quasiconvex functions, for which at least the first inconvenience is
overcome. These classes meet a large domain of applications in microeco-
nomics (see [4] and references therein) and recently regained attention due
to its applications to the multicriteria (Pareto) optimization problem (see
recent developments in [5], [6]).

After the developments in the area of non-smooth analysis [8], there has
been an effort to characterize the generalized convexity of functions in terms
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of generalized monotonicity of their subdifferential (see for instance [19],
[21], [1], [10]). As an outcome, a natural correspondence between notions of
generalized convexity and of generalized monotonicity arises, reflecting the
known duality between utility functions (typically being semistrictly qua-
siconvex) and demand correspondences (typically being semistrictly quasi-
monotone multifunctions) in the consumer’s theory (see [4], [14], for exam-
ple).

The aforementioned correspondence has been progressively extended
from the differentiable case to the case of continuous or sometimes even
lower semicontinuous functions. The main tool for these extensions is a
nonsmooth version of the mean value theorem, which is known to be valid
for every reasonable choice of subdifferential (see [2] for details). However,
besides the importance of the classes of semistrict (respectively, strict) qua-
siconvexity, their dual characterization in terms of the semistrict (respec-
tively, strict) quasimonotonicity of their subdifferentials cannot be extended
beyond the class of locally Lipschitz functions, due to the restrictions the
aforementioned definitions impose on the domain of the operator.

In this work we propose a variational modification of the definitions of
semistrict (respectively, strict) quasimonotonicity to make them operational
to the continuous case. These definitions enter naturally to the aforemen-
tioned duality scheme, and entail no change in case of subdifferentials of
locally Lipschitz functions.

The paper is organized as follows: in Section 2 we fix our notation and
recall definitions and basic results. In Section 3 we introduce the varia-
tional definitions of the semistrict and the strict quasimonotonicity (Defi-
nition 2), we use them to establish the subdifferential characterizations of
the semistrict quasiconvexity (Theorem 5) and the strict quasiconvexity
(Theorem7). In the last part we discuss the compatibility of the introduced
notions for operators that are subdifferentials of locally Lipschitz functions.

2. Notation and basic definitions

Throughout this work X will denote a Banach space, X∗ its topolog-
ical dual and 〈x∗, x〉 the value of the functional x∗ ∈ X∗ at x ∈ X. For any
x, y ∈ X we set

[x, y] := { tx + (1− t)y : 0 ≤ t ≤ 1 }
and define the segments ]x, y], [x, y[ and ]x, y[ analogously. We denote by
B(x, r) the open ball of center x ∈ X and radius r > 0 and for any nonempty
subset S of X we denote by co S its convex envelope.
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Given a lower semicontinuous function f : X → R∪{+∞} we denote by

dom f := {x ∈ X : f(x) < +∞}
its domain (which we always assume nonempty) and given x ∈ dom f we
denote by

f↑(x, u) = sup
δ>0

lim sup
y→f x
t↘0+

inf
v∈B(u,δ)

f(y + tv)− f(y)
t

its Clarke-Rockafellar generalized derivative, where t ↘ 0+ indicates the
fact that t > 0 and t → 0, and y →f x means that both y → x and
f(y) → f(x) (this is superfluous, if f is assumed continuous). Then the
Clarke-Rockafellar subdifferential ∂f(x) of the function f at the point x is
defined as follows ([8]):

∂f(x) = {x∗ ∈ X : f↑(x, u) ≥ 〈x∗, u〉, for all u ∈ X}.
Let us recall (see [4] or [9] for example) that the function f is called:
• quasiconvex, if for all x, y ∈ dom (f)

f(z) ≤ max{f(x), f(y)}, ∀z ∈ [x, y] ; (1)

• semistrictly quasiconvex, if for all x, y ∈ dom(f) the following im-
plication holds:

f(x) < f(y) ⇒ f(z) < f(y), ∀z ∈ ]x, y[ ; (2)

• strictly quasiconvex, if for all x, y ∈ dom (f)

f(z) < max{f(x), f(y)}, ∀z ∈ ]x, y[. (3)

Let further T : X ⇒ X∗ denote a multivalued operator with domain

dom (T ) := {x ∈ X : T (x) 6= ∅}
and graph

Gr (T ) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)} .

Let A be a nonempty subset of X. The operator T is called:
• quasimonotone on A, if for all x1, x2 ∈ A, all x∗1 ∈ T (x1) and all

x∗2 ∈ T (x2) the following implication holds:

〈x∗1, x2 − x1〉 > 0 ⇒ 〈x∗2, x2 − x1〉 ≥ 0.

• semistrictly quasimonotone on A, if it is quasimonotone on A and
for all x1, x2 ∈ A and x∗1 ∈ T (x1) we have

〈x∗1, x2 − x1〉 > 0 =⇒ ∃z ∈ ]
x1 + x2

2
, x2 [, ∃ z∗ ∈ T (z) : 〈z∗, x2 − x1〉 > 0.

(4)
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• strictly quasimonotone on A, if it is quasimonotone on A and for
every x1, x2 ∈ A we have

x1 6= x2 =⇒ ∃z ∈]x1, x2[, ∃z∗ ∈ T (z) : 〈z∗, x2 − x1〉 6= 0. (5)

The definition of quasimonotonicity is classical (see [17], [4], [12], [9], for
example) and is associated with the following result, which is a cornerstone
of quasiconvex analysis (see [19], [21], [1] or [11, Theorem2.1], for example).

Theorem 1. Let f : X −→ R∪{+∞} be a lower semicontinuous function.
The following assertions are equivalent:

(a) f is quasiconvex ;
(b) ∂f is quasimonotone ;
(c) for all x, y ∈ dom(f) :

∃x∗ ∈ ∂f(x) : 〈x∗, y − x〉 > 0 ⇒ f(z) ≤ f(y), for all z ∈ [x, y].

The notions of semistrict/strict quasimonotonicity were first introduced
in [18] as extensions of corresponding notions for functions (that is, single-
valued operators) considered in [16]. In this latter work ([16]) it is es-
tablished that a differentiable semistrictly (respectively, strictly) quasicon-
vex functions is characterized by the semistrict (respectively, strict) qua-
simonotonicity of its derivatives. In [11] the aforementioned result is ex-
tended to the class of locally Lipschitz functions f , where (4) (respectively,
(5)) is used to define the semistrict (respectively, strict) quasimonotonicity
for the (multivalued) Clarke subdifferential ∂f . The proof, heavily based
on the Lebourg Mean Value theorem (see [8], for example), leaves no hope
for further extensions: indeed, in contrast to the classical definitions of
monotonicity or quasimonotonicity, the considered definitions yield implic-
itly the nonemptiness of the operator T on a dense subset of every segment
[x1, x2]. Concurrently, outside the class of locally Lipschitz functions, the
domain of the Clarke-Rockafellar subdifferential ∂f can easily be empty on
whole lines.

To establish a duality between semistrict quasiconvexity and semistrict
quasimonotonicity beyond the Lipschitzian case, a different approach is
adapted in [3]. That approach, inspired from a previous work of Borde
and Crouzeix [7], consisted in replacing the subdifferential ∂f of f by the
operator “normal cone to the sublevel sets” (denoted by Nf ). In doing so, an
application of the Hahn-Banach theorem recompenses the need of using an
approximate Mean Value Theorem. As a result, the aforementioned duality
is extended to the class of continuous functions in this new framework.

The aim of this work is to show that an analogous duality scheme based
on the notion of subdifferential is plausible, provided a variational adapta-
tion of the notions defined by (4) and (5) to make them compatible with
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the approximate Mean Value theorem. In the last part of this work (cf.
Corollary 8 and Proposition 9) we show how these new definitions relate to
other notions of generalized monotonicity.

3. Main result

The following notation will be used in the sequel. For every x1, x2 ∈ X
we set

DT (x1, x2) := (6)
= {z ∈]x1, x2[: ∃(zn, z∗n)n≥1 ⊂ Gr(T ), limn zn = z & 〈z∗n, x2 − zn〉 > 0} .

The following notions will play a central role in this work.

Definition 2. Let A be a nonempty convex subset of X. An operator
T : X ⇒ X∗ is called

(i) variationally semistrictly quasimonotone on A, if it is quasimonotone
on A and for every x1, x2 ∈ A and x∗1 ∈ T (x1) we have

〈x∗1, x2 − x1〉 > 0 =⇒ DT (x1, x2) ∩ ]
x1 + x2

2
, x2 ] 6= ∅ ; (7)

(ii) variationally strictly quasimonotone on A, if it is quasimonotone on
A and for every x1, x2 ∈ A there exist z ∈]x1, x2[ and δ > 0 such that for
some i0 ∈ {1, 2} and all z′ ∈ B(z, δ) we have

DT (z′, xi 0) 6= ∅ . (8)

Remark 3. (i) Assuming (4) and taking zn := z for all n ≥ 1 we see that
(7) holds. Thus every semistrictly quasimonotone operator is variationally
semistrictly quasimonotone. On the other hand, properties (5) and (8) are
not directly comparable. Nevertheless, as we show in Corollary 8, strict
(respectively, semistrict) quasimonotonicity and variational strict (respec-
tively, semistrict) quasimonotonicity coincide for subdifferentials of locally
Lipschitz functions.
(ii) Variational strict quasimonotonicity implies variational semistrict qua-
simonotonicity. Indeed, let us assume 〈x∗1, x2 − x1〉 > 0 for some x1, x2 ∈ A
and x∗1 ∈ T (x1). Setting w = x1+x2

2 and applying (8) on the segment [w, x2]
we deduce that for some z ∈ ]w, x2[ and δ > 0 and for all z′ ∈ B(z, δ)
we either have DT (z′, x2) 6= ∅ (thus in particular, DT (z, x2) 6= ∅, yielding
DT (x1, x2) ∩ ]w, x2] 6= ∅ and we are done) or DT (z′, w) 6= ∅. In the second
case we obtain a sequence {zn} −→ z with z∗n ∈ T (zn) and 〈z∗n, w−zn〉 > 0.
On the other hand, by quasimonotonicity we infer that 〈z∗n, zn − x1〉 ≥ 0.
Multiplying the first inequality by 2 and adding to the second one we obtain
〈z∗n, x2 − zn〉 > 0. Thus DT (w, x2) 6= ∅, which yields (7).
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We now show that the above variational definitions characterize the subd-
ifferentials of the continuous semistrictly (respectively, strictly) quasiconvex
functions. We shall need the following result concerning the class of con-
tinuous quasiconvex functions (see [4]). We include a short proof for the
reader’s convenience.

Proposition 4. Let f : X → R ∪ {+∞} be a continuous quasiconvex
function. Then f is semistrictly quasiconvex if, and only if, the set of local
and global minimizers of f coincide.

Proof For the needs of this proof we denote by L - min f (respectively,
G - min f) the set of local (respectively, global) minimizers of f .

Let us first assume f is semistrictly quasiconvex and let us show that
L - min f = G -min f (continuity is not needed for this implication). Let
us assume, towards a contradiction, that there exists y ∈ L - min f and
x ∈ X with f(y) > f(x). Then by quasiconvexity, the restriction of f to the
segment [x, y] should be increasing near y. Since y is local minimum, this
implies f is constant on [z, y] for some z ∈ ]x, y[, which clearly contradicts
(2).

Let us now assume f is quasiconvex and continuous and L - min f =
G- min f . If f were not semistrictly quasiconvex, then we would have
f(x) < f(z) = f(y), for some x, y ∈ dom f and z ∈ ]x, y[. Since y can-
not be a local minimum of f , there exists (yn) → y with f(yn) < f(y). Let
t = ‖x−y‖−1‖z−y‖ and set xn = yn + 1

t (z−yn). Using the quasiconvexity
of f , we deduce from the relation f(z) = f(y) > f(yn) that f(xn) ≥ f(y).
Since (xn) → x and f(x) < f(y) we obtain a contradiction to the continuity
of f at x. ¤

The following result relates variational semistrict quasimonotonicity to
semistrict convexity in the continuous case.

Theorem 5. Let f : X → R∪{+∞} be a continuous function with a convex
domain dom f .
The following assertions are equivalent :

(i) f is semistrictly quasiconvex ;
(ii) for all x, y ∈ dom f and x∗ ∈ ∂f(x) we have

〈x∗, y − x〉 > 0 ⇒ f(z) < f(y), for all z ∈ [x, y[ ;

(iii) ∂f is variationally semistrictly quasimonotone on dom f .

Proof Throughout the proof we set K = dom f and T = ∂f .
(i)=⇒(ii). Let x, y ∈ K and x∗ ∈ ∂f(x) with 〈x∗, y − x〉 > 0. In view

of (2), it is sufficient to show that f(x) < f(y). Assuming this is not the
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case, then by quasiconvexity, f has to be constant on the segment [x, y] (cf.
Theorem 1(c)). Applying [11, Lemma 2.1] we obtain that every z ∈ ]x, y] is
a local minimum of f while x is not a local minimum. Since f(x) = f(z),
we obtain a contradiction to Proposition 4.

(ii)=⇒(iii). Let us assume (ii) holds. Evoking again Theorem 1 [(c)→(b)]
we obtain that ∂f is quasimonotone. Let us now assume x, y ∈ K and
x∗ ∈ ∂f(x) be such that 〈x∗, y−x〉 > 0. Then f(z) < f(y), for all z ∈ [x, y[.
Taking z near y such that ‖z−y‖ < 1

2‖x−y‖, and applying the approximate
mean value theorem on the segment [z, y] (see [2, Corollary 4.3], for example)
we obtain directly that DT (z, y) 6= ∅, thus DT (x, y) 6= ∅. This shows that
∂f is variationally semistrictly quasimonotone on K.

(iii)=⇒(i). Let us assume (iii) holds. Then ∂f is in particular quasi-
monotone, thus f is quasiconvex. Let us assume, towards a contradiction,
that f is not semistrictly quasimonotone. Then by Proposition 4, there ex-
ist x, y ∈ K with f(x) < f(y) and y is a local minimum of f . Using this
information and the continuity of f, we deduce that there exists δ, δ1 > 0
such that

f(y′) ≥ f(y) > f(x′), for all x′ ∈ B(x, δ) and y′ ∈ B(y, δ1). (9)

Set C = co(B(x, δ)∪ {y}) \ {y}. Then (9) together with the quasiconvexity
of f yield that f is constant on C ∩ B(y, δ1). Since the latter set is open,
we deduce

∂f(y′) = {0}, for all y′ ∈ C ∩B(y, δ1). (10)
We may also assume δ1 > 0 to be maximal with respect to the above
property. Taking now any x1 ∈ C \ B(y, δ1) such that ‖x1 − y‖ < 2δ1

we have f(x1) < f(y). Applying the approximate mean value theorem ([2,
Corollary 4.3]) to the segment [x1, y] we obtain a sequence (zn) −→ z ∈
[x1, y[ with 〈z∗n, y − zn〉 > 0. Taking n sufficiently large, we ensure that
zn ∈ C and ‖zn − y‖ < 2δ1. Applying now the definition of semistrict
quasimonotonicity (cf. relation (7)) to the segment [zn, y], we infer that

DT (zn, y) ∩ B(y, δ1) 6= ∅ .

This clearly contradicts (10). ¤

Remark 6. As already mentioned, replacing variational semistrict qua-
simonotonicity by semistrict quasimonotonicity (cf. relation ((4)) in the
statement of Theorem 5, does not lead to a full equivalence in the continu-
ous case. The best partial result in this direction was recently established
in [15, Theorem 7] (namely, (iii)=⇒(ii)⇐⇒(i)).

We are now ready to state the second main result of this work, relating
variational strict quasimonotonicity to strict convexity.
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Theorem 7. Let f : X → R∪{+∞} be a continuous function with a convex
domain dom f .
The following assertions are equivalent :

(i) f is strictly quasiconvex ;
(ii) ∂f is variationally strictly quasimonotone on dom f .

Proof We set again K = dom f and T = ∂f .
(i)=⇒(ii). Since by Theorem 1 (b) we have that ∂f is quasimonotone, we

need only show that (8) holds. To this end, let x1, x2 ∈ K and pick any
z ∈ ]x1, x2[. Using (3) we deduce that f(z) < f(xi0) for some i0 ∈ {1, 2}.
Since f is continuous, there exists δ > 0 such that for all z′ ∈ B(z, δ) we
have f(z′) < f(xi0). Applying the approximate mean value theorem ([2,
Corollary 4.3]) on each segment [z′, xi0 ]we obtain directly that DT (z′, xi0) 6=
∅.

(ii)=⇒(i). Assume ∂f is variationally strictly quasimonotone on dom f .
Then by Remark 3 and Theorem5 [(iii)→(i)] we deduce that f is semistrictly
quasiconvex. Let us assume, towards a contradiction, that f is constant
in a non-trivial segment [x1, x2] of K taking the value a ∈ R there. We
deduce from (8) that there exist i0 ∈ {1, 2} and (u, u∗) ∈ Gr ∂f such that
〈u∗, xi0 − u〉 > 0. In view of Theorem 5 (ii) this yields

a = f(xi0) > f(u) ≥ inf f.

Thus f does not attain its global minimum on the segment [x1, x2]. Let us
denote by

Sf (a) := {x ∈ X : f(x) ≤ a}
the (closed convex) sublevel set of f . The above inequality together with
Proposition 4 show that the interior of Sf (a) is nonempty and coincides
with the strict sublevel set S−f (a) = {x ∈ X : f(x) < a}. It follows that
the segment [x1, x2] is in the boundary of the open convex set S−f (a) and
[x1, x2] ∩ S−f (a) = ∅. By the Hahn-Banach separation theorem we obtain
a linear functional p ∈ X∗ and β ∈ R such that 〈p, z〉 = β > 〈p, y〉 for
all z ∈ [x1, x2] and y ∈ S−f (a). Set U = {x ∈ X : 〈p, x〉 > β}. Then U is
an open subset of X \ Sf (a) containing the segment [x1, x2] in its closure.
Let now z ∈ ]x1, x2[, δ > 0 and i0 ∈ {1, 2} be given by (8) applied to the
segment [x1, x2] and let us define

C = co [(B(z, δ) ∩ U) ∪ {xi0} ] .

For any z′ ∈ B(z, δ) ∩ U , we infer from (8) that DT (z′, xi0) 6= ∅, which in
view of (7) yields the existence of some u ∈ C\{xi0} and u∗ ∈ ∂f(u) satisfy-
ing 〈u∗, xi0 − u〉 > 0. It follows from Theorem5(ii) that a =
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f(xi0) > f(u). On the other hand, it is easily seen that C \ {xi0} ⊂ U,
thus f(u) > a, which is a contradiction. ¤

A direct consequence of the above characterizations is the following re-
sult.

Corollary 8. Let T = ∂f for some locally Lipschitz function f (defined on
a nonempty convex subset A of X). Then

(i) T is semistrictly quasimonotone (on the set A) if and only if it is
variationally semistrictly quasimonotone (on the set A).;

(ii) T is strictly quasimonotone (on the set A) if and only if it is varia-
tionally strictly quasimonotone (on the set A).

Proof (i) It follows from the observation that both notions of semistrict
quasimonotonicity and of variational semistrict quasimonotonicity charac-
terize the semistrict quasiconvexity of f in the locally Lipschitz case (cf.
Theorem 5 and [11, Theorem 3.2]).

(ii) Similarly, if f is locally Lipschitz, then both notions of strict and of
variational strict quasimonotonicity characterize the strict quasiconvexity
of the function (cf. Theorem 7 and [11, Theorem 4.1]). ¤

Let us finally see how the variational semistrict quasimonotonicity relates
to the concept of proper quasimonotonicity. We recall from [10, Definition
4.2] that an operator T : X ⇒ X∗ is called

• properly quasimonotone on a convex subset A of X, if for every
{x1, x2, ..., xk} ⊂ A and every y ∈ co{xj}j∈Nk

, there exists i ∈ Nk

such that
∀x∗i ∈ T (xi), 〈x∗i , y − xi〉 ≤ 0. (11)

It is sufficient to take k = 2 and y = x1+x2
2 to see that every prop-

erly quasimonotone operator is quasimonotone. The converse implication
(being in general false) is true if either X = R or T = ∂f for some contin-
uous function f which has to be quasiconvex (see [10] for details). In [11,
Proposition 5.1] it is shown that any semistrictly quasimonotone operator
is properly quasimonotone. Let us now show that the same happens for any
variationally semistrictly quasimonotone operator.

Proposition 9. Let A be a nonempty convex subset of X and T : X ⇒ X∗.
If T is variationally semistrictly quasimonotone on A then it is also properly
quasimonotone on A.

Proof Let as assume that T is variationally semistrictly quasimonotone on
A and not properly quasimonotone there. Then there exist {x1, x2, ...xk} ⊂
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A and y ∈ co{xj}j∈Nk
such that for every i ∈ Nk there exists x∗i ∈ T (xi)

satisfying
〈x∗i , y − xi〉 > 0.

By continuity, the strict inequality above remains true if we replace y by
any w ∈ B(y, δ) (for δ > 0 sufficiently small). Thus, by quasimonotonicity
of T we obtain 〈w∗, w− xi〉 ≥ 0, for all w∗ ∈ T (w). Since this is true for all
i ∈ Nk we conclude that for all w ∈ B(y, δ) and all w∗ ∈ T (w)

〈w∗, w − y〉 ≥ 0. (12)

We may assume with no loss of generality that r := ‖y−x1‖ ≤ ‖y−xi‖, for
all i ∈ Nk. Since 〈x∗1, y − x1〉 > 0 we have by Definition 2 that DT (x1, y) ∩
B(y, r

2 ) 6= ∅. This yields the existence of z ∈ B(y, r
2 ) and z∗ ∈ T (z) such

that 〈z∗, y−z〉 > 0. Repeating the same argument (on the segment [z, y]) we
see that we can get arbitrarily close to y. In particular there exist w̄ ∈ B(y, δ)
and w̄∗ ∈ T (w̄) such that 〈w̄∗, y − w̄〉 > 0. This clearly contradicts (12). ¤

We recall (see [13], for example) that a point x0 ∈ A is said to be
a solution for the Minty Variational Inequality problem of the operator
T : X ⇒ X∗ with respect to the (nonempty) subset A of X, provided that
for every (y, y∗) ∈ GrT with y ∈ A we have 〈y∗, y − x〉 ≥ 0. Combining
Proposition 9 with [11, Theorem 5.1] (see also [13]) we obtain the following

Corollary 10. If T is variationally semistrictly quasimonotone, then the
Minty variational inequality has nonempty solutions on every nonempty con-
vex and weakly compact subset A of X.
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