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Abstract. Some existence results are obtained for periodic solutions
of nonautonomous second-order differential inclusions systems with
p–Laplacian.

1. Introduction

Consider the second order system
ü(t) = ∇F (t, u(t)) a.e. t ∈ [0, T ]

u(0)− u(T ) = u̇(0)− u̇(T ) = 0
(1)

where T > 0 and F : [0, T ]× Rn → R satisfies the following assumption:

(A) F (t, x) is measurable in t for each x ∈ Rn and continuously dif-
ferentiable in x for a.e. t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈
L1(0, T ;R+) such that

|F (t, x)| ≤ a(‖x‖)b(t), ‖∇F (t, x)‖ ≤ a(‖x‖)b(t)
for all x ∈ Rn and a.e. t ∈ [0, T ].

In the last years many authors starting with Mawhin and Willem (see [2])
proved the existence of solutions for problem (1) under suitable conditions
on the potential F (see [6]-[17]). Also in a series of papers (see [3]-[5]) we
have generalized some of these results for the case when the potential F is
just locally Lipschitz in the second variable x not continuously differentiable.

The aim of this paper is to consider the problem (1) in a more general
sense. More exactly our results represent the extensions to systems with p–
Laplacian and also with discontinuity (we consider the generalized gradients
unlike continuously gradient in classical results).
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Consider the second order differential inclusions system
d

dt

(‖u̇(t)‖p−2u̇(t)
) ∈ ∂F (t, u(t)) a.e. t ∈ [0, T ],

u(0) = u(T ), u̇(0) = u̇(T ),
(2)

where p > 1, T > 0, F : [0, T ] × Rn → R and ∂ denotes the Clarke
subdifferential.

We suppose that F = F1+F2 and F1, F2 satisfy the following assumption:
(A’) F1, F2 are measurable in t for each x ∈ Rn, at least F1 or F2 are

strictly differentiable in x and there exist k1, k2 ∈ Lq(0, T ;R) such that

|F1(t, x1)− F1(t, x2)| ≤ k1(t)||x1 − x2||,
|F2(t, x1)− F2(t, x2)| ≤ k2(t)||x1 − x2||,

for all x1, x2 ∈ Rn and all t ∈ [0, T ].

The corresponding functional ϕ : W 1,p
T → R is given by

ϕ(u) =
1
p

∫ T

0

‖u̇(t)‖pdt +
∫ T

0

F (t, u(t))dt.

Definition 1. A function G : Rn → R is called to be (λ, µ)–subconvex if

G(λ(x + y)) ≤ µ(G(x) + G(y))

for some λ, µ > 0 and all x, y ∈ Rn.

Remark 1. When λ = µ = 1
2 , a function ( 1

2 , 1
2 )–subconvex is called convex.

When λ = µ = 1, a function (1, 1)–subconvex is called subadditive.
When λ = 1, µ > 0, a function (1, µ)–subconvex is called µ–subadditive.

2. Main results

Theorem 1. Assume that F = F1 + F2, where F1, F2 satisfy assumption
(A’) and the following conditions:

(i) F1(t, ·) is (λ, µ)–subconvex with λ > 1/2 and 0 < µ < 2p−1λp for
a.e. t ∈ [0, T ];

(ii) there exist c1, c2 > 0 and α ∈ [0, p− 1) such that

ζ ∈ ∂F2(t, x) ⇒ ‖ζ‖ ≤ c1‖x‖α + c2

for all x ∈ Rn and a.e. t ∈ [0, T ];
(iii) for q = p

p−1 ,

1
‖x‖qα

[ 1
µ

∫ T

0

F1(t, λx)dt +
∫ T

0

F2(t, x)dt
]
→∞, as ‖x‖ → ∞.
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Then the problem (2) has at least one solution which minimizes ϕ on W 1,p
T .

Theorem 2. Assume that F = F1 + F2, where F1, F2 satisfy assumption
(A’) and the following conditions:

(iv) F1(t, ·) is (λ, µ)-subconvex for a.e. t ∈ [0, T ], and there exists γ ∈
L1(0, T ;R), h ∈ L1(0, T ;Rn) with

∫ T

0
h(t)dt = 0 such that

F1(t, x) ≥ 〈h(t), x〉+ γ(t)

for all x ∈ Rn and a.e. t ∈ [0, T ];
(v) there exist c1 > 0, c0 ∈ R such that

ζ ∈ ∂F2(t, x) ⇒ ‖ζ‖ ≤ c1

for all x ∈ Rn and all t ∈ [0, T ], and
∫ T

0

F2(t, x)dt ≥ c0

for all x ∈ Rn;
(vi)

1
µ

∫ T

0

F1(t, λx)dt +
∫ T

0

F2(t, x)dt →∞, as ‖x‖ → ∞.

Then the problem (2) has at least one solution which minimizes ϕ on W 1,p
T .

Theorem 3. Assume that F = F1 + F2, where F1, F2 satisfy assumption
(A’) and the following conditions:

(vii) F1(t, ·) is (λ, µ)-subconvex for a.e. t ∈ [0, T ], and there exists γ ∈
L1(0, T ;R), h ∈ L1(0, T ;Rn) with

∫ T

0
h(t)dt = 0 such that

F1(t, x) ≥ 〈h(t), x〉+ γ(t)

for all x ∈ Rn and a.e. t ∈ [0, T ];
(viii) there exist c1, c2 > 0 and α ∈ [0, p− 1) such that

ζ ∈ ∂F2(t, x) ⇒ ‖ζ‖ ≤ c1‖x‖α + c2

for all x ∈ Rn and a.e. t ∈ [0, T ];
(ix) for q = p

p−1 ,

1
‖x‖qα

∫ T

0

F2(t, x)dt →∞, as ‖x‖ → ∞.

Then the problem (2) has at least one solution which minimizes ϕ on W 1,p
T .

Remark 2. Theorems 1, 2 and 3, generalizes the corresponding Theorems
2.1, 2.3 and 2.4 of [5]. In fact, it follows from these theorems letting p = 2.



4 DANIEL PAŞCA

3. The preliminary results

We introduce some functional spaces. Let [0, T ] be a fixed real interval
(0 < T < ∞) and 1 < p < ∞. We denote by W 1,p

T the Sobolev space of
functions u ∈ Lp(0, T ;Rn) having a weak derivative u̇ ∈ Lp(0, T ;Rn). The
norm over W 1,p

T is defined by

‖u‖W 1,p
T

=
(∫ T

0

‖u(t)‖pdt +
∫ T

0

‖u̇(t)‖pdt
) 1

p

.

We recall that

‖u‖Lp =
(∫ T

0

‖u(t)‖pdt
) 1

p

and ‖u‖∞ = max
t∈[0,T ]

‖u(t)‖.

For our aims it is necessary to recall some very well know results (for proof
and details see [2]).

Proposition 4. If u ∈ W 1,p
T then

‖u‖∞ ≤ c‖u‖W 1,p
T

.

If u ∈ W 1,p
T and

∫ T

0
u(t)dt = 0 then

‖u‖∞ ≤ c‖u̇‖Lp .

Proposition 5. If the sequence (uk)k converges weakly to u in W 1,p
T , then

(uk)k converges uniformly to u on [0, T ].

Let X be a Banach space. Now follows [1], for each x, v ∈ X, we define
the generalized directional derivative at x in the direction v of a given f ∈
Liploc(X,R) as

f0(x; v) = lim sup
y→x,λ↘0

f(y + λv)− f(y)
λ

and we denote by

∂f(x) = {x∗ ∈ X∗ : f0(x; v) ≥ 〈x∗, v〉, for all v ∈ X}
the generalized gradient of f at x (the Clarke subdifferential).

We recall the Lebourg’s mean value theorem (see [1], Theorem 2.3.7).

Theorem 6. Let x and y be points in X, and suppose that f is Lipschitz on
open set containing the line segment [x,y]. Then there exists a point u in
(x,y) such that

f(y)− f(x) ∈ 〈∂f(u), y − x〉.
Clarke consider in [1] the following abstract framework:
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• let (T ,T , µ) be a positive complete measure space with µ(T ) < ∞,
and let Y be a separable Banach space;

• let Z be a closed subspace of Lp(T ; Y ) (for some p in [1,∞)), where
Lp(T ; Y ) is the space of p- integrable functions from T to Y ;

• define a functional f on Z via

f(x) =
∫

T

ft(x(t))µ(dt),

where ft : Y → R, (t ∈ T ) is a given family of functions;
• suppose that for each y in Y the function t → ft(y) is measurable,

and that x is a point at which f(x) is defined (finitely).

Hypothesis 1: There is a function k in Lq(T,R),
(

1
p + 1

q = 1
)

such that, for
all t ∈ T ,

|ft(y1)− ft(y2)| ≤ k(t)‖y1 − y2‖Y for all y1, y2 ∈ Y

Hypothesis 2: Each function ft is Lipschitz (of some rank) near each point
of Y , and for some constant c, for all t ∈ T , y ∈ Y , one has

ζ ∈ ∂ft(y) ⇒ ‖ζ‖Y ∗ ≤ c{1 + ‖y‖p−1
Y }.

Under this conditions described above Clarke prove (see [1], Theorem 2.7.5):

Theorem 7. Under the conditions described above, under either of Hy-
pothesis 1 or 2, f is uniformly Lipschitz on bounded subsets of Z, and one
has

∂f(x) ⊂
∫

T

∂ft(x(t))µ(dt).

Further, if each ft is regular at x(t) then f is regular at x and equality holds.

Remark 3. f is globally Lipschitz on Z when Hypothesis 1 hold.

Now we can prove the following result.

Theorem 8. Let F : [0, T ] × Rn → R such that F = F1 + F2 where F1,
F2 are measurable in t for each x ∈ Rn, and there exist k1 ∈ Lq(0, T ;R),
a ∈ C(R+,R+), b ∈ L1(0, T ;R+), c1, c2 > 0 and α ∈ [0, p− 1) such that

|F1(t, x1)− F1(t, x2)| ≤ k1(t)‖x1 − x2‖

|F2(t, x)| ≤ a(‖x‖)b(t)

ζ ∈ ∂F2(t, x) ⇒ ‖ζ‖ ≤ c1‖x‖α + c2(3)
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for all t ∈ [0, T ] and all x, x1, x2 ∈ Rn. We suppose that L : [0, T ]× Rn ×
Rn → R, is given by L(t, x, y) = 1

p‖y‖p + F (t, x).
Then, the functional f : Z ∈ R, where

Z =
{

(u, v) ∈ Lp(0, T ;Y ) : u(t) =
∫ t

0

v(s)ds + c, c ∈ Rn
}

given by f(u, v) =
∫ T

0
L(t, u(t), v(t))dt, is uniformly Lipschitz on bounded

subsets of Z and one has

∂f(u, v) ⊂
∫ T

0

{∂F1(t, u(t)) + ∂F2(t, u(t))} × {‖v(t)‖p−2v(t)}dt.

Proof. Let L1(t, x, y) = F1(t, x), L2(t, x, y) = 1
p‖y‖p + F2(t, x) and

f1,f2 : Z → R given by f1(u, v) =
∫ T

0
L1(t, u(t), v(t))dt, f2(u, v) =∫ T

0
L2(t, u(t), v(t))dt. For f1 we can apply Theorem 7 under Hypothesis

1, with the following cast of characters:
• (T ,T , µ)=[0,T] with Lebesgue measure, Y = Rn × Rn be the

Hilbert product space (hence is separable);
• p > 1 and

Z =
{

(u, v) ∈ Lp(0, T ;Y ) : u(t) =
∫ t

0

v(s)ds + c, c ∈ Rn
}

be a closed subspace of Lp(0, T ; Y );
• ft(x, y) = L1(t, x, y) = F1(t, x); in our assumptions it results that

the integrand L1(t, x, y) is measurable in t for a given element (x, y)
of Y and there exists k ∈ Lq(0, T ;R) such that

|L1(t, x1, y1)− L1(t, x2, y2)| = |F1(t, x1)− F1(t, x2)| ≤
≤ k1(t)‖x1 − x2‖ ≤ k1(t)

(‖x1 − x2‖+ ‖y1 − y2‖
)

=

= k1(t)‖(x1, y1)− (x2, y2)‖Y

(4)

for all t ∈ [0, T ] and all (x1, y1), (x2, y2) ∈ Y . Hence f1 is uniformly
Lipschitz on bounded subsets of Z and one has

∂f1(u, v) ⊂
∫ T

0

∂L1(t, u(t), v(t))dt.

For f2 we can apply Theorem 7 under Hypothesis 2 with the same cast
of characters, but now ft(x, y) = L2(t, x, y) = 1

p‖y‖p + F2(t, x). In our
assumptions it results that the integrand L2(t, x, y) is measurable in t for a
given element (x, y) of Y and locally Lipschitz in (x, y) for each t ∈ [0, T ].

Proposition 2.3.15 from [1] implies

∂L2(t, x, y) ⊂ ∂xL2(t, x, y)× ∂yL2(t, x, y) = ∂F2(t, x)× {‖y‖p−2y}.
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Using (3) and (4), if ζ = (ζ1, ζ2) ∈ ∂L2(t, x, y) it results ζ1 ∈ ∂F2(t, x) and
ζ2 = ‖y‖p−2y, and hence

‖ζ‖ = ‖ζ1‖+ ‖ζ2‖ ≤ c1‖x‖α + c2 + ‖y‖p−1 ≤ c̃{1 + ‖(x, y)‖p−1}
for each t ∈ [0, T ], since α < p−1 and p > 1. Hence f2 is uniformly Lipschitz
on bounded subsets of Z and one has

∂f2(u, v) ⊂
∫ T

0

∂L2(t, u(t), v(t))dt.

It follows that f = f1 + f2 is uniformly Lipschitz on the bounded subsets of
Z.

Proposition 2.3.3 and Proposition 2.3.15 from [1] implies

∂f(u, v) ⊂ ∂f1(u, v) + ∂f2(u, v) ⊂

⊂
∫ T

0

[
∂L1(t, u(t), v(t)) + ∂L2(t, u(t), v(t))

]
dt ⊂

⊂
∫ T

0

[(
∂xL1(t, u(t), v(t))× ∂yL1(t, u(t), v(t))

)
+

+
(
∂xL2(t, u(t), v(t))× ∂yL2(t, u(t), v(t))

)]
dt ⊂

⊂
∫ T

0

[(
∂xL1(t, u(t), v(t)) + ∂xL2(t, u(t), v(t))

)
×

×
(
∂yL1(t, u(t), v(t)) + ∂yL2(t, u(t), v(t))

)]
dt =

=
∫ T

0

(
∂F1(t, u(t)) + ∂F2(t, u(t))

)
× {‖v(t)‖p−2v(t)}dt.

Moreover, Corollary 1 of Proposition 2.3.3 from from [1] imply that, if at
least of the functions F1, F2 is strictly differentiable in x for all t ∈ [0, T ]
then

∂f(u, v) ⊂
∫ T

0

∂F (t, u(t))× {‖v(t)‖p−2v(t)}dt.(5)

¤

Remark 4. The interpretation of expression (5) is as follows: if (u0, v0)
is an element of Z (so that v0 = u̇0) and if ζ ∈ ∂f(u0, v0), we deduce the
existence of a measurable function (q(t), p(t)) such that

q(t) ∈ ∂F (t, u0(t)) and p(t) = ‖v0(t)‖p−2v0(t) a.e. on [0, T ](6)
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and for any (u, v) in Z, one has

〈ζ, (u, v)〉 =
∫ T

0

{〈q(t), u(t)〉+ 〈p(t), v(t)〉}dt.

In particular, if ζ = 0 (so that u0 is critical point for ϕ(u) =
∫ T

0

[
1
p‖u̇(t)‖p+

F (t, u(t))
]
dt), it then follows easily that q(t) = ṗ(t) a.e., or taking into

account (6)
d

dt

(‖u̇0(t)‖p−2u̇0(t)
) ∈ ∂F (t, u0(t)) a.e. on [0, T ],

so that u0 satisfies the inclusions system (2).

Remark 5. Of course if p = 2 and F is continuously differentiable in x,
then the system (2) becomes system (1).

4. Proofs of the Theorems

Proof of Theorem 1. From (A’) it follows immediately there exist
a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such that

|F1(t, x)| ≤ a(‖x‖)b(t),
for all x ∈ Rn and all t ∈ [0, T ]. Like in [11] we obtain

F1(t, x) ≤ (2µ‖x‖β + 1)a0b(t)

for all x ∈ Rn and all t ∈ [0, T ], where β < p and a0 = max0≤s≤1 a(s).
For u ∈ W 1,p

T , let ū = 1
T

∫ T

0
u(t)dt and ũ = u − ū. From Lebourg’s mean

value theorem it follows that for each t ∈ [0, T ] there exist z(t) in (ū, u(t))
and ζ ∈ ∂F2(t, z(t)) such that F2(t, u(t)) − F2(t, ū) = 〈ζ, ũ(t)〉. It follows
from (ii) and Hölder’s inequality that


∫ T

0

[F2(t, u(t))− F2(t, ū)]dt
 ≤

∫ T

0

|F2(t, u(t))− F2(t, ū)|dt ≤

≤
∫ T

0

‖ζ‖‖ũ(t)‖dt ≤
∫ T

0

[
2c1(‖ū‖α + ‖ũ(t)‖α) + c2

]
‖ũ(t)‖dt ≤

≤ C1‖ũ‖α+1
∞ + C2‖ũ‖∞‖ū‖α + C3‖ũ‖∞ ≤

≤ C4‖u̇‖α+1
Lp +

1
2p
‖u̇‖p

Lp + C5‖u̇‖Lp + C6‖ū‖qα

for all u ∈ W 1,p
T and some positive constants C4, C5 and C6. Hence we have

ϕ(u) ≥ 1
p

∫ T

0

‖u̇(t)‖pdt +
1
µ

∫ T

0

F1(t, λū)dt−
∫ T

0

F1(t,−ũ(t))dt+
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+
∫ T

0

F2(t, ū)dt +
∫ T

0

[F2(t, u(t))− F2(t, ū)]dt ≥

≥ 1
2p
‖u̇‖p

Lp−C4‖u̇‖α+1
Lp −C5‖u̇‖Lp−C6‖ū‖qα−(2µ‖ũ‖β

∞ + 1)
∫ T

0

a0b(t)dt+

+
1
µ

∫ T

0

F1(t, λū)dt +
∫ T

0

F2(t, ū)dt ≥ 1
2p
‖u̇‖p

Lp − C4‖u̇‖α+1
Lp − C5‖u̇‖Lp−

−C7‖u̇‖β
Lp − C8 + ‖ū‖qα

{ 1
‖ū‖qα

[ 1
µ

∫ T

0

F1(t, λū)dt +
∫ T

0

F2(t, ū)dt
]
− C6

}

for all u ∈ W 1,p
T , which implies that ϕ(u) →∞ as ‖u‖ → ∞ by (iii) because

α < p − 1, β < p, and the norm ‖u‖ = (‖ū‖p + ‖u̇‖p
Lp)

1
p is an equivalent

norm on W 1,p
T . Now we write ϕ(u) = ϕ1(u) + ϕ2(u) where

ϕ1(u) =
1
p

∫ T

0

‖u̇(t)‖pdt and ϕ2(u) =
∫ T

0

F (t, u(t))dt.

The function ϕ1 is weakly lower semi-continuous (w.l.s.c.) on W 1,p
T . From

(i), (ii) and Theorem 7, taking to account Remark 3 and Proposition 5, it
follows that ϕ2 is w.l.s.c. on W 1,p

T . By Theorem 1.1 in [2] it follows that
ϕ has a minimum u0 on W 1,p

T . Evidently Z ' W 1,p
T and ϕ(u) = f(u, v)

for all (u, v) ∈ Z. From Theorem 8, it results that f is uniformly Lipschitz
on bounded subsets of Z, and therefore ϕ possesses the same properties
relative to W 1,p

T . Proposition 2.3.2 in [1] implies that 0 ∈ ∂ϕ(u0) (so that
u0 is critical point for ϕ). Now from Theorem 8 and Remark 4 it follows
that the problem (2) has at least one solution u ∈ W 1,p

T .

Proof of Theorem 2. Let (uk) be a minimizing sequence of ϕ. It
follows from (iv), (v), Lebourg’s mean value theorem and Proposition 4
that

ϕ(uk) ≥ 1
p
‖u̇k‖p

Lp +
∫ T

0

〈h(t), uk(t)〉dt +
∫ T

0

γ(t)dt+

+
∫ T

0

F2(t, ūk)dt−
∫ T

0

‖ζ‖‖ũk(t)‖dt ≥ 1
p
‖u̇k‖p

Lp−

−‖ũk‖∞
∫ T

0

‖h(t)‖dt +
∫ T

0

γ(t)dt− c1‖ũk‖∞ + c0 ≥

≥ 1
p
‖u̇k‖p

Lp − c2‖u̇k‖Lp − c3
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for all k and some constants c2, c3, which implies that (ũk) is bounded. On
the other hand, in a way similar to the proof of Theorem 1, one has

∣∣∣
∫ T

0

[F2(t, u(t))− F2(t, ū)]dt
∣∣∣ ≤ 1

2p
‖u̇‖p

Lp + C1‖u̇‖Lp

for all k and some positive constant C1, which implies that

ϕ(uk) ≥ 1
p
‖u̇k‖p

Lp +
1
µ

∫ T

0

F1(t, λūk)dt−
∫ T

0

F1(t,−ũk(t))dt+

+
∫ T

0

F2(t, ūk)dt +
∫ T

0

[F2(t, u(t))− F2(t, ūk)]dt ≥

≥ 1
2p
‖u̇k‖p

Lp − a(‖ũk‖∞)
∫ T

0

b(t)dt− C1‖u̇k‖Lp+

+
1
µ

∫ T

0

F1(t, λūk)dt +
∫ T

0

F2(t, ūk)dt

for all k and some positive constant C1. It follows from (vi) and the bound-
edness of (ũk) that (ūk) is bounded. Hence ϕ has a bounded minimizing
sequence (uk). Now Theorem 2 follows like Theorem 1.

Proof of Theorem 3. From (vii), (viii) and Proposition 4 it follows
that

ϕ(u) ≥ 1
p
‖u̇‖p

Lp +
∫ T

0

〈h(t), u(t)〉dt+

+
∫ T

0

γ(t)dt +
∫ T

0

F2(t, ū)dt +
∫ T

0

[F2(t, u(t))− F2(t, ū)]dt ≥

≥ 1
2p
‖u̇‖p

Lp − ‖ũ‖∞
∫ T

0

‖h(t)‖dt+

+
∫ T

0

γ(t)dt− C1‖u̇‖α+1
Lp − C2‖u̇‖Lp +

∫ T

0

F2(t, ū)dt− C3‖ū‖qα ≥

≥ 1
2p
‖u̇‖p

Lp−C1‖u̇‖α+1
Lp −C4(‖u̇‖Lp +1)+‖ū‖qα

[ 1
‖ū‖qα

∫ T

0

F2(t, ū)dt− C3

]

for all u ∈ W 1,p
T and some positive constants C1, C3 and C4. Now follows

like in the proof of Theorem 1 that ϕ is coercive by (ix), which completes
the proof.
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