PERIODIC SOLUTIONS OF SECOND-ORDER DIFFERENTIAL INCLUSIONS SYSTEMS WITH p-LAPLACIAN

DANIEL PAŞCA

Abstract

Some existence results are obtained for periodic solutions of nonautonomous second-order differential inclusions systems with p-Laplacian.

1. Introduction

Consider the second order system

$$
\begin{gather*}
\ddot{u}(t)=\nabla F(t, u(t)) \text { a.e. } t \in[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0 \tag{1}
\end{gather*}
$$

where $T>0$ and $F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies the following assumption:
(A) $F(t, x)$ is measurable in t for each $x \in \mathbb{R}^{n}$ and continuously differentiable in x for a.e. $t \in[0, T]$, and there exist $a \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), b \in$ $L^{1}\left(0, T ; \mathbb{R}_{+}\right)$such that

$$
|F(t, x)| \leq a(\|x\|) b(t), \quad\|\nabla F(t, x)\| \leq a(\|x\|) b(t)
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$.
In the last years many authors starting with Mawhin and Willem (see [2]) proved the existence of solutions for problem (1) under suitable conditions on the potential F (see [6]-[17]). Also in a series of papers (see [3]-[5]) we have generalized some of these results for the case when the potential F is just locally Lipschitz in the second variable x not continuously differentiable.

The aim of this paper is to consider the problem (1) in a more general sense. More exactly our results represent the extensions to systems with $p-$ Laplacian and also with discontinuity (we consider the generalized gradients unlike continuously gradient in classical results).

[^0]Consider the second order differential inclusions system

$$
\begin{gather*}
\frac{d}{d t}\left(\|\dot{u}(t)\|^{p-2} \dot{u}(t)\right) \in \partial F(t, u(t)) \text { a.e. } t \in[0, T] \tag{2}\\
u(0)=u(T), \dot{u}(0)=\dot{u}(T)
\end{gather*}
$$

where $p>1, T>0, F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and ∂ denotes the Clarke subdifferential.

We suppose that $F=F_{1}+F_{2}$ and F_{1}, F_{2} satisfy the following assumption:
(A') F_{1}, F_{2} are measurable in t for each $x \in \mathbb{R}^{n}$, at least F_{1} or F_{2} are strictly differentiable in x and there exist $k_{1}, k_{2} \in L^{q}(0, T ; \mathbb{R})$ such that

$$
\begin{aligned}
& \left|F_{1}\left(t, x_{1}\right)-F_{1}\left(t, x_{2}\right)\right| \leq k_{1}(t)\left\|x_{1}-x_{2}\right\|, \\
& \left|F_{2}\left(t, x_{1}\right)-F_{2}\left(t, x_{2}\right)\right| \leq k_{2}(t)\left\|x_{1}-x_{2}\right\|,
\end{aligned}
$$

for all $x_{1}, x_{2} \in \mathbb{R}^{n}$ and all $t \in[0, T]$.
The corresponding functional $\varphi: W_{T}^{1, p} \rightarrow \mathbb{R}$ is given by

$$
\varphi(u)=\frac{1}{p} \int_{0}^{T}\|\dot{u}(t)\|^{p} d t+\int_{0}^{T} F(t, u(t)) d t
$$

Definition 1. A function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called to be (λ, μ)-subconvex if

$$
G(\lambda(x+y)) \leq \mu(G(x)+G(y))
$$

for some $\lambda, \mu>0$ and all $x, y \in \mathbb{R}^{n}$.
Remark 1. When $\lambda=\mu=\frac{1}{2}$, a function $\left(\frac{1}{2}, \frac{1}{2}\right)$-subconvex is called convex. When $\lambda=\mu=1$, a function (1,1)-subconvex is called subadditive.
When $\lambda=1, \mu>0$, a function $(1, \mu)$-subconvex is called μ-subadditive.

2. Main results

Theorem 1. Assume that $F=F_{1}+F_{2}$, where F_{1}, F_{2} satisfy assumption (A^{\prime}) and the following conditions:
(i) $F_{1}(t, \cdot)$ is (λ, μ)-subconvex with $\lambda>1 / 2$ and $0<\mu<2^{p-1} \lambda^{p}$ for a.e. $t \in[0, T]$;
(ii) there exist $c_{1}, c_{2}>0$ and $\alpha \in[0, p-1)$ such that

$$
\zeta \in \partial F_{2}(t, x) \Rightarrow\|\zeta\| \leq c_{1}\|x\|^{\alpha}+c_{2}
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$;
(iii) for $q=\frac{p}{p-1}$,

$$
\frac{1}{\|x\|^{q \alpha}}\left[\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda x) d t+\int_{0}^{T} F_{2}(t, x) d t\right] \rightarrow \infty, \text { as }\|x\| \rightarrow \infty
$$

Then the problem (2) has at least one solution which minimizes φ on $W_{T}^{1, p}$.
Theorem 2. Assume that $F=F_{1}+F_{2}$, where F_{1}, F_{2} satisfy assumption (A^{\prime}) and the following conditions:
(iv) $F_{1}(t, \cdot)$ is (λ, μ)-subconvex for a.e. $t \in[0, T]$, and there exists $\gamma \in$ $L^{1}(0, T ; \mathbb{R}), h \in L^{1}\left(0, T ; \mathbb{R}^{n}\right)$ with $\int_{0}^{T} h(t) d t=0$ such that

$$
F_{1}(t, x) \geq\langle h(t), x\rangle+\gamma(t)
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$;
(v) there exist $c_{1}>0, c_{0} \in \mathbb{R}$ such that

$$
\zeta \in \partial F_{2}(t, x) \Rightarrow\|\zeta\| \leq c_{1}
$$

for all $x \in \mathbb{R}^{n}$ and all $t \in[0, T]$, and

$$
\int_{0}^{T} F_{2}(t, x) d t \geq c_{0}
$$

for all $x \in \mathbb{R}^{n}$;
(vi)
$\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda x) d t+\int_{0}^{T} F_{2}(t, x) d t \rightarrow \infty$, as $\|x\| \rightarrow \infty$.
Then the problem (2) has at least one solution which minimizes φ on $W_{T}^{1, p}$.
Theorem 3. Assume that $F=F_{1}+F_{2}$, where F_{1}, F_{2} satisfy assumption (A^{\prime}) and the following conditions:
(vii) $F_{1}(t, \cdot)$ is (λ, μ)-subconvex for a.e. $t \in[0, T]$, and there exists $\gamma \in$ $L^{1}(0, T ; \mathbb{R}), h \in L^{1}\left(0, T ; \mathbb{R}^{n}\right)$ with $\int_{0}^{T} h(t) d t=0$ such that

$$
F_{1}(t, x) \geq\langle h(t), x\rangle+\gamma(t)
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$;
(viii) there exist $c_{1}, c_{2}>0$ and $\alpha \in[0, p-1)$ such that

$$
\zeta \in \partial F_{2}(t, x) \Rightarrow\|\zeta\| \leq c_{1}\|x\|^{\alpha}+c_{2}
$$

for all $x \in \mathbb{R}^{n}$ and a.e. $t \in[0, T]$;
(ix) for $q=\frac{p}{p-1}$,

$$
\frac{1}{\|x\|^{q \alpha}} \int_{0}^{T} F_{2}(t, x) d t \rightarrow \infty, \text { as }\|x\| \rightarrow \infty
$$

Then the problem (2) has at least one solution which minimizes φ on $W_{T}^{1, p}$.
Remark 2. Theorems 1, 2 and 3, generalizes the corresponding Theorems 2.1, 2.3 and 2.4 of [5]. In fact, it follows from these theorems letting $p=2$.

3. The preliminary results

We introduce some functional spaces. Let $[0, T]$ be a fixed real interval $(0<T<\infty)$ and $1<p<\infty$. We denote by $W_{T}^{1, p}$ the Sobolev space of functions $u \in L^{p}\left(0, T ; \mathbb{R}^{n}\right)$ having a weak derivative $\dot{u} \in L^{p}\left(0, T ; \mathbb{R}^{n}\right)$. The norm over $W_{T}^{1, p}$ is defined by

$$
\|u\|_{W_{T}^{1, p}}=\left(\int_{0}^{T}\|u(t)\|^{p} d t+\int_{0}^{T}\|\dot{u}(t)\|^{p} d t\right)^{\frac{1}{p}}
$$

We recall that

$$
\|u\|_{L^{p}}=\left(\int_{0}^{T}\|u(t)\|^{p} d t\right)^{\frac{1}{p}} \text { and }\|u\|_{\infty}=\max _{t \in[0, T]}\|u(t)\|
$$

For our aims it is necessary to recall some very well know results (for proof and details see [2]).

Proposition 4. If $u \in W_{T}^{1, p}$ then

$$
\|u\|_{\infty} \leq c\|u\|_{W_{T}^{1, p}}^{1,} .
$$

If $u \in W_{T}^{1, p}$ and $\int_{0}^{T} u(t) d t=0$ then

$$
\|u\|_{\infty} \leq c\|\dot{u}\|_{L^{p}}
$$

Proposition 5. If the sequence $\left(u_{k}\right)_{k}$ converges weakly to u in $W_{T}^{1, p}$, then $\left(u_{k}\right)_{k}$ converges uniformly to u on $[0, T]$.

Let X be a Banach space. Now follows [1], for each $x, v \in X$, we define the generalized directional derivative at x in the direction v of a given $f \in$ $\operatorname{Lip}_{\text {loc }}(X, \mathbb{R})$ as

$$
f^{0}(x ; v)=\limsup _{y \rightarrow x, \lambda \backslash 0} \frac{f(y+\lambda v)-f(y)}{\lambda}
$$

and we denote by

$$
\partial f(x)=\left\{x^{*} \in X^{*}: f^{0}(x ; v) \geq\left\langle x^{*}, v\right\rangle, \text { for all } v \in X\right\}
$$

the generalized gradient of f at x (the Clarke subdifferential).
We recall the Lebourg's mean value theorem (see [1], Theorem 2.3.7).
Theorem 6. Let x and y be points in X, and suppose that f is Lipschitz on open set containing the line segment $[x, y]$. Then there exists a point u in (x, y) such that

$$
f(y)-f(x) \in\langle\partial f(u), y-x\rangle
$$

Clarke consider in [1] the following abstract framework:

- let (T, \mathcal{T}, μ) be a positive complete measure space with $\mu(T)<\infty$, and let Y be a separable Banach space;
- let Z be a closed subspace of $L^{p}(T ; Y)$ (for some p in $[1, \infty)$), where $L^{p}(T ; Y)$ is the space of p - integrable functions from T to Y;
- define a functional f on Z via

$$
f(x)=\int_{T} f_{t}(x(t)) \mu(d t)
$$

where $f_{t}: Y \rightarrow \mathbb{R},(t \in T)$ is a given family of functions;

- suppose that for each y in Y the function $t \rightarrow f_{t}(y)$ is measurable, and that x is a point at which $f(x)$ is defined (finitely).
Hypothesis 1: There is a function k in $L^{q}(T, \mathbb{R}),\left(\frac{1}{p}+\frac{1}{q}=1\right)$ such that, for all $t \in T$,

$$
\left|f_{t}\left(y_{1}\right)-f_{t}\left(y_{2}\right)\right| \leq k(t)\left\|y_{1}-y_{2}\right\|_{Y} \text { for all } y_{1}, y_{2} \in Y
$$

Hypothesis 2: Each function f_{t} is Lipschitz (of some rank) near each point of Y, and for some constant c, for all $t \in T, y \in Y$, one has

$$
\zeta \in \partial f_{t}(y) \Rightarrow\|\zeta\|_{Y^{*}} \leq c\left\{1+\|y\|_{Y}^{p-1}\right\} .
$$

Under this conditions described above Clarke prove (see [1], Theorem 2.7.5):
Theorem 7. Under the conditions described above, under either of Hypothesis 1 or $2, f$ is uniformly Lipschitz on bounded subsets of Z, and one has

$$
\partial f(x) \subset \int_{T} \partial f_{t}(x(t)) \mu(d t)
$$

Further, if each f_{t} is regular at $x(t)$ then f is regular at x and equality holds.
Remark 3. f is globally Lipschitz on Z when Hypothesis 1 hold.
Now we can prove the following result.
Theorem 8. Let $F:[0, T] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F=F_{1}+F_{2}$ where F_{1}, F_{2} are measurable in t for each $x \in \mathbb{R}^{n}$, and there exist $k_{1} \in L^{q}(0, T ; \mathbb{R})$, $a \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right), b \in L^{1}\left(0, T ; \mathbb{R}^{+}\right), c_{1}, c_{2}>0$ and $\alpha \in[0, p-1)$ such that

$$
\begin{gather*}
\left|F_{1}\left(t, x_{1}\right)-F_{1}\left(t, x_{2}\right)\right| \leq k_{1}(t)\left\|x_{1}-x_{2}\right\| \\
\left|F_{2}(t, x)\right| \leq a(\|x\|) b(t) \\
\zeta \in \partial F_{2}(t, x) \Rightarrow\|\zeta\| \leq c_{1}\|x\|^{\alpha}+c_{2} \tag{3}
\end{gather*}
$$

for all $t \in[0, T]$ and all $x, x_{1}, x_{2} \in \mathbb{R}^{n}$. We suppose that $L:[0, T] \times \mathbb{R}^{n} \times$ $\mathbb{R}^{n} \rightarrow \mathbb{R}$, is given by $L(t, x, y)=\frac{1}{p}\|y\|^{p}+F(t, x)$.
Then, the functional $f: Z \in \mathbb{R}$, where

$$
Z=\left\{(u, v) \in L^{p}(0, T ; Y): u(t)=\int_{0}^{t} v(s) d s+c, c \in \mathbb{R}^{n}\right\}
$$

given by $f(u, v)=\int_{0}^{T} L(t, u(t), v(t)) d t$, is uniformly Lipschitz on bounded subsets of Z and one has

$$
\partial f(u, v) \subset \int_{0}^{T}\left\{\partial F_{1}(t, u(t))+\partial F_{2}(t, u(t))\right\} \times\left\{\|v(t)\|^{p-2} v(t)\right\} d t
$$

Proof. Let $L_{1}(t, x, y)=F_{1}(t, x), L_{2}(t, x, y)=\frac{1}{p}\|y\|^{p}+F_{2}(t, x)$ and $f_{1}, f_{2}: Z \rightarrow \mathbb{R}$ given by $f_{1}(u, v)=\int_{0}^{T} L_{1}(t, u(t), v(t)) d t, f_{2}(u, v)=$ $\int_{0}^{T} L_{2}(t, u(t), v(t)) d t$. For f_{1} we can apply Theorem 7 under Hypothesis 1, with the following cast of characters:

- $(T, \mathcal{T}, \mu)=[0, T]$ with Lebesgue measure, $Y=\mathbb{R}^{n} \times \mathbb{R}^{n}$ be the Hilbert product space (hence is separable);
- $p>1$ and

$$
Z=\left\{(u, v) \in L^{p}(0, T ; Y): u(t)=\int_{0}^{t} v(s) d s+c, c \in \mathbb{R}^{n}\right\}
$$

be a closed subspace of $L^{p}(0, T ; Y)$;

- $f_{t}(x, y)=L_{1}(t, x, y)=F_{1}(t, x)$; in our assumptions it results that the integrand $L_{1}(t, x, y)$ is measurable in t for a given element (x, y) of Y and there exists $k \in L^{q}(0, T ; \mathbb{R})$ such that

$$
\begin{array}{r}
\left|L_{1}\left(t, x_{1}, y_{1}\right)-L_{1}\left(t, x_{2}, y_{2}\right)\right|=\left|F_{1}\left(t, x_{1}\right)-F_{1}\left(t, x_{2}\right)\right| \leq \\
\leq k_{1}(t)\left\|x_{1}-x_{2}\right\| \leq k_{1}(t)\left(\left\|x_{1}-x_{2}\right\|+\left\|y_{1}-y_{2}\right\|\right)= \\
=k_{1}(t)\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|_{Y}
\end{array}
$$

for all $t \in[0, T]$ and all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in Y$. Hence f_{1} is uniformly Lipschitz on bounded subsets of Z and one has

$$
\partial f_{1}(u, v) \subset \int_{0}^{T} \partial L_{1}(t, u(t), v(t)) d t
$$

For f_{2} we can apply Theorem 7 under Hypothesis 2 with the same cast of characters, but now $f_{t}(x, y)=L_{2}(t, x, y)=\frac{1}{p}\|y\|^{p}+F_{2}(t, x)$. In our assumptions it results that the integrand $L_{2}(t, x, y)$ is measurable in t for a given element (x, y) of Y and locally Lipschitz in (x, y) for each $t \in[0, T]$.

Proposition 2.3.15 from [1] implies

$$
\partial L_{2}(t, x, y) \subset \partial_{x} L_{2}(t, x, y) \times \partial_{y} L_{2}(t, x, y)=\partial F_{2}(t, x) \times\left\{\|y\|^{p-2} y\right\}
$$

Using (3) and (4), if $\zeta=\left(\zeta_{1}, \zeta_{2}\right) \in \partial L_{2}(t, x, y)$ it results $\zeta_{1} \in \partial F_{2}(t, x)$ and $\zeta_{2}=\|y\|^{p-2} y$, and hence

$$
\|\zeta\|=\left\|\zeta_{1}\right\|+\left\|\zeta_{2}\right\| \leq c_{1}\|x\|^{\alpha}+c_{2}+\|y\|^{p-1} \leq \tilde{c}\left\{1+\|(x, y)\|^{p-1}\right\}
$$

for each $t \in[0, T]$, since $\alpha<p-1$ and $p>1$. Hence f_{2} is uniformly Lipschitz on bounded subsets of Z and one has

$$
\partial f_{2}(u, v) \subset \int_{0}^{T} \partial L_{2}(t, u(t), v(t)) d t
$$

It follows that $f=f_{1}+f_{2}$ is uniformly Lipschitz on the bounded subsets of Z.

Proposition 2.3.3 and Proposition 2.3.15 from [1] implies

$$
\begin{gathered}
\partial f(u, v) \subset \partial f_{1}(u, v)+\partial f_{2}(u, v) \subset \\
\subset \int_{0}^{T}\left[\partial L_{1}(t, u(t), v(t))+\partial L_{2}(t, u(t), v(t))\right] d t \subset \\
\subset \int_{0}^{T}\left[\left(\partial_{x} L_{1}(t, u(t), v(t)) \times \partial_{y} L_{1}(t, u(t), v(t))\right)+\right. \\
\left.+\left(\partial_{x} L_{2}(t, u(t), v(t)) \times \partial_{y} L_{2}(t, u(t), v(t))\right)\right] d t \subset \\
\subset \int_{0}^{T}\left[\left(\partial_{x} L_{1}(t, u(t), v(t))+\partial_{x} L_{2}(t, u(t), v(t))\right) \times\right. \\
\left.\quad \times\left(\partial_{y} L_{1}(t, u(t), v(t))+\partial_{y} L_{2}(t, u(t), v(t))\right)\right] d t= \\
=\int_{0}^{T}\left(\partial F_{1}(t, u(t))+\partial F_{2}(t, u(t))\right) \times\left\{\|v(t)\|^{p-2} v(t)\right\} d t .
\end{gathered}
$$

Moreover, Corollary 1 of Proposition 2.3 .3 from from [1] imply that, if at least of the functions F_{1}, F_{2} is strictly differentiable in x for all $t \in[0, T]$ then

$$
\begin{equation*}
\partial f(u, v) \subset \int_{0}^{T} \partial F(t, u(t)) \times\left\{\|v(t)\|^{p-2} v(t)\right\} d t \tag{5}
\end{equation*}
$$

Remark 4. The interpretation of expression (5) is as follows: if $\left(u_{0}, v_{0}\right)$ is an element of Z (so that $v_{0}=\dot{u}_{0}$) and if $\zeta \in \partial f\left(u_{0}, v_{0}\right)$, we deduce the existence of a measurable function $(q(t), p(t))$ such that
(6) $\quad q(t) \in \partial F\left(t, u_{0}(t)\right)$ and $p(t)=\left\|v_{0}(t)\right\|^{p-2} v_{0}(t)$ a.e. on $[0, T]$
and for any (u, v) in Z, one has

$$
\langle\zeta,(u, v)\rangle=\int_{0}^{T}\{\langle q(t), u(t)\rangle+\langle p(t), v(t)\rangle\} d t
$$

In particular, if $\zeta=0$ (so that u_{0} is critical point for $\varphi(u)=\int_{0}^{T}\left[\frac{1}{p}\|\dot{u}(t)\|^{p}+\right.$ $F(t, u(t))] d t)$, it then follows easily that $q(t)=\dot{p}(t)$ a.e., or taking into account (6)

$$
\frac{d}{d t}\left(\left\|\dot{u}_{0}(t)\right\|^{p-2} \dot{u}_{0}(t)\right) \in \partial F\left(t, u_{0}(t)\right) \text { a.e. on }[0, T]
$$

so that u_{0} satisfies the inclusions system (2).
Remark 5. Of course if $p=2$ and F is continuously differentiable in x, then the system (2) becomes system (1).

4. Proofs of the Theorems

Proof of Theorem 1. From (A') it follows immediately there exist $a \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), b \in L^{1}\left(0, T ; \mathbb{R}_{+}\right)$such that

$$
\left|F_{1}(t, x)\right| \leq a(\|x\|) b(t)
$$

for all $x \in \mathbb{R}^{n}$ and all $t \in[0, T]$. Like in [11] we obtain

$$
F_{1}(t, x) \leq\left(2 \mu\|x\|^{\beta}+1\right) a_{0} b(t)
$$

for all $x \in \mathbb{R}^{n}$ and all $t \in[0, T]$, where $\beta<p$ and $a_{0}=\max _{0 \leq s \leq 1} a(s)$.
For $u \in W_{T}^{1, p}$, let $\bar{u}=\frac{1}{T} \int_{0}^{T} u(t) d t$ and $\tilde{u}=u-\bar{u}$. From Lebourg's mean value theorem it follows that for each $t \in[0, T]$ there exist $z(t)$ in $(\bar{u}, u(t))$ and $\zeta \in \partial F_{2}(t, z(t))$ such that $F_{2}(t, u(t))-F_{2}(t, \bar{u})=\langle\zeta, \tilde{u}(t)\rangle$. It follows from (ii) and Hölder's inequality that

$$
\begin{aligned}
& \left|\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t\right| \leq \int_{0}^{T}\left|F_{2}(t, u(t))-F_{2}(t, \bar{u})\right| d t \leq \\
& \leq \int_{0}^{T}\|\zeta\|\|\tilde{u}(t)\| d t \leq \int_{0}^{T}\left[2 c_{1}\left(\|\bar{u}\|^{\alpha}+\|\tilde{u}(t)\|^{\alpha}\right)+c_{2}\right]\|\tilde{u}(t)\| d t \leq \\
& \leq C_{1}\|\tilde{u}\|_{\infty}^{\alpha+1}+C_{2}\|\tilde{u}\|_{\infty}\|\bar{u}\|^{\alpha}+C_{3}\|\tilde{u}\|_{\infty} \leq \\
& \leq C_{4}\|\dot{u}\|_{L^{p}}^{\alpha+1}+\frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}+C_{5}\|\dot{u}\|_{L^{p}}+C_{6}\|\bar{u}\|^{q \alpha}
\end{aligned}
$$

for all $u \in W_{T}^{1, p}$ and some positive constants C_{4}, C_{5} and C_{6}. Hence we have

$$
\varphi(u) \geq \frac{1}{p} \int_{0}^{T}\|\dot{u}(t)\|^{p} d t+\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda \bar{u}) d t-\int_{0}^{T} F_{1}(t,-\tilde{u}(t)) d t+
$$

$$
\begin{gathered}
\quad+\int_{0}^{T} F_{2}(t, \bar{u}) d t+\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t \geq \\
\geq \frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}-C_{4}\|\dot{u}\|_{L^{p}}^{\alpha+1}-C_{5}\|\dot{u}\|_{L^{p}}-C_{6}\|\bar{u}\|^{q \alpha}-\left(2 \mu\|\tilde{u}\|_{\infty}^{\beta}+1\right) \int_{0}^{T} a_{0} b(t) d t+ \\
+\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda \bar{u}) d t+\int_{0}^{T} F_{2}(t, \bar{u}) d t \geq \frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}-C_{4}\|\dot{u}\|_{L^{p}}^{\alpha+1}-C_{5}\|\dot{u}\|_{L^{p}}- \\
-C_{7}\|\dot{u}\|_{L^{p}}^{\beta}-C_{8}+\|\bar{u}\|^{q \alpha}\left\{\frac{1}{\|\bar{u}\|^{q \alpha}}\left[\frac{1}{\mu} \int_{0}^{T} F_{1}(t, \lambda \bar{u}) d t+\int_{0}^{T} F_{2}(t, \bar{u}) d t\right]-C_{6}\right\}
\end{gathered}
$$

for all $u \in W_{T}^{1, p}$, which implies that $\varphi(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$ by (iii) because $\alpha<p-1, \beta<p$, and the norm $\|u\|=\left(\|\bar{u}\|^{p}+\|\dot{u}\|_{L^{p}}^{p}\right)^{\frac{1}{p}}$ is an equivalent norm on $W_{T}^{1, p}$. Now we write $\varphi(u)=\varphi_{1}(u)+\varphi_{2}(u)$ where

$$
\varphi_{1}(u)=\frac{1}{p} \int_{0}^{T}\|\dot{u}(t)\|^{p} d t \text { and } \varphi_{2}(u)=\int_{0}^{T} F(t, u(t)) d t
$$

The function φ_{1} is weakly lower semi-continuous (w.l.s.c.) on $W_{T}^{1, p}$. From (i), (ii) and Theorem 7, taking to account Remark 3 and Proposition 5, it follows that φ_{2} is w.l.s.c. on $W_{T}^{1, p}$. By Theorem 1.1 in [2] it follows that φ has a minimum u_{0} on $W_{T}^{1, p}$. Evidently $Z \simeq W_{T}^{1, p}$ and $\varphi(u)=f(u, v)$ for all $(u, v) \in Z$. From Theorem 8, it results that f is uniformly Lipschitz on bounded subsets of Z, and therefore φ possesses the same properties relative to $W_{T}^{1, p}$. Proposition 2.3.2 in [1] implies that $0 \in \partial \varphi\left(u_{0}\right)$ (so that u_{0} is critical point for φ). Now from Theorem 8 and Remark 4 it follows that the problem (2) has at least one solution $u \in W_{T}^{1, p}$.

Proof of Theorem 2. Let $\left(u_{k}\right)$ be a minimizing sequence of φ. It follows from (iv), (v), Lebourg's mean value theorem and Proposition 4 that

$$
\begin{gathered}
\varphi\left(u_{k}\right) \geq \frac{1}{p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}+\int_{0}^{T}\left\langle h(t), u_{k}(t)\right\rangle d t+\int_{0}^{T} \gamma(t) d t+ \\
+\int_{0}^{T} F_{2}\left(t, \bar{u}_{k}\right) d t-\int_{0}^{T}\|\zeta\|\left\|\tilde{u}_{k}(t)\right\| d t \geq \frac{1}{p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}- \\
-\left\|\tilde{u}_{k}\right\|_{\infty} \int_{0}^{T}\|h(t)\| d t+\int_{0}^{T} \gamma(t) d t-c_{1}\left\|\tilde{u}_{k}\right\|_{\infty}+c_{0} \geq \\
\geq \frac{1}{p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}-c_{2}\left\|\dot{u}_{k}\right\|_{L^{p}}-c_{3}
\end{gathered}
$$

for all k and some constants c_{2}, c_{3}, which implies that $\left(\tilde{u}_{k}\right)$ is bounded. On the other hand, in a way similar to the proof of Theorem 1 , one has

$$
\left|\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t\right| \leq \frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}+C_{1}\|\dot{u}\|_{L^{p}}
$$

for all k and some positive constant C_{1}, which implies that

$$
\begin{aligned}
\varphi\left(u_{k}\right) & \geq \frac{1}{p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}+\frac{1}{\mu} \int_{0}^{T} F_{1}\left(t, \lambda \bar{u}_{k}\right) d t-\int_{0}^{T} F_{1}\left(t,-\tilde{u}_{k}(t)\right) d t+ \\
& +\int_{0}^{T} F_{2}\left(t, \bar{u}_{k}\right) d t+\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}\left(t, \bar{u}_{k}\right)\right] d t \geq \\
\geq & \frac{1}{2 p}\left\|\dot{u}_{k}\right\|_{L^{p}}^{p}-a\left(\left\|\tilde{u}_{k}\right\|_{\infty}\right) \int_{0}^{T} b(t) d t-C_{1}\left\|\dot{u}_{k}\right\|_{L^{p}}+ \\
& +\frac{1}{\mu} \int_{0}^{T} F_{1}\left(t, \lambda \bar{u}_{k}\right) d t+\int_{0}^{T} F_{2}\left(t, \bar{u}_{k}\right) d t
\end{aligned}
$$

for all k and some positive constant C_{1}. It follows from (vi) and the boundedness of $\left(\tilde{u}_{k}\right)$ that $\left(\bar{u}_{k}\right)$ is bounded. Hence φ has a bounded minimizing sequence (u_{k}). Now Theorem 2 follows like Theorem 1.

Proof of Theorem 3. From (vii), (viii) and Proposition 4 it follows that

$$
\begin{gathered}
\varphi(u) \geq \frac{1}{p}\|\dot{u}\|_{L^{p}}^{p}+\int_{0}^{T}\langle h(t), u(t)\rangle d t+ \\
+\int_{0}^{T} \gamma(t) d t+\int_{0}^{T} F_{2}(t, \bar{u}) d t+\int_{0}^{T}\left[F_{2}(t, u(t))-F_{2}(t, \bar{u})\right] d t \geq \\
\geq \frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}-\|\tilde{u}\|_{\infty} \int_{0}^{T}\|h(t)\| d t+ \\
+\int_{0}^{T} \gamma(t) d t-C_{1}\|\dot{u}\|_{L^{p}}^{\alpha+1}-C_{2}\|\dot{u}\|_{L^{p}}+\int_{0}^{T} F_{2}(t, \bar{u}) d t-C_{3}\|\bar{u}\|^{q \alpha} \geq \\
\geq \frac{1}{2 p}\|\dot{u}\|_{L^{p}}^{p}-C_{1}\|\dot{u}\|_{L^{p}}^{\alpha+1}-C_{4}\left(\|\dot{u}\|_{L^{p}}+1\right)+\|\bar{u}\|^{q \alpha}\left[\frac{1}{\|\bar{u}\|^{q \alpha}} \int_{0}^{T} F_{2}(t, \bar{u}) d t-C_{3}\right]
\end{gathered}
$$

for all $u \in W_{T}^{1, p}$ and some positive constants C_{1}, C_{3} and C_{4}. Now follows like in the proof of Theorem 1 that φ is coercive by (ix), which completes the proof.

The author thanks Centre de Recerca Matemàtica for the hospitality and facilities for doing this work.

References

[1] F.H. Clarke, Optimization and Nonsmooth Analysis, SIAM, Classics in Applied Mathematics vol.5, Philadelphia, 1990.
[2] J. Mawhin and M. Willem - Critical Point Theory and Hamiltonian Systems, Springer-Verlag, Berlin/New York, 1989.
[3] Daniel Paşca - Periodic Solutions for Second Order Differential Inclusions, Communications on Applied Nonlinear Analysis, vol. 6, nr. 4 (1999) 91-98.
[4] Daniel Paşca - Periodic Solutions for Second Order Differential Inclusions with Sublinear Nonlinearity, PanAmerican Mathematical Journal, vol. 10, nr. 4 (2000) 35-45.
[5] Daniel Paşca - Periodic Solutions of a Class of Non-autonomous Second Order Differential Inclusions Systems, Abstract and Applied Analysis, vol. 6, nr. 3 (2001) 151-161.
[6] Chun-Lei Tang - Periodic Solutions of Non-autonomous Second-Order Systems with $\gamma-$ Quasisubadditive Potential, J. Math. Anal. Appl., 189 (1995), 671-675.
[7] Chun-Lei Tang - Periodic Solutions of Non-autonomous Second Order Systems, J. Math. Anal. Appl., 202 (1996), 465-469.
[8] Chun-Lei Tang - Periodic Solutions for Nonautonomous Second Order Systems with Sublinear Nonlinearity, Proc. AMS, vol. 126, nr. 11 (1998), 3263-3270.
[9] Chun-Lei Tang - Existence and Multiplicity of Periodic Solutions of Nonautonomous Second Order Systems, Nonlinear Analysis, vol. 32, nr. 3 (1998), 299-304.
[10] Xing-Ping Wu - Periodic Solutions for Nonautonomous Second-Order Systems with Bounded Nonlinearity, J. Math. Anal. Appl. 230 (1999), 135-141.
[11] Xing-Ping Wu and Chun-Lei Tang - Periodic Solutions of a Class of Nonautonomous Second-Order Systems, J. Math. Anal. Appl. 236 (1999), 227-235.
[12] Chun-Lei Tang and Xing-Ping Wu - Periodic Solutions for Second Order Systems with Not Uniformly Coercive Potential, J. Math. Anal. Appl. 259 (2001), 386-397.
[13] Jian Ma and Chun-Lei Tang - Periodic Solutions for Some Nonautonomous SecondOrder Systems, J. Math. Anal. Appl. 275 (2002), 482-494.
[14] Chun-Lei Tang and Xing-Ping Wu - Notes on Periodic Solutions of Subquadratic Second Order Systems, J. Math. Anal. Appl. 285 (2003), 8-16.
[15] Xing-Ping Wu, Chun-Lei Tang - Periodic Solutions of Nonautonomous SecondOrder Hamiltonian Systems with Even-Typed Potentials, Nonlinear Analysis 55 (2003), 759-769.
[16] Fukun Zhao and Xian Wu - Saddle Point Reduction Method for Some Nonautonomous Second Order Systems, J. Math. Anal. Appl. 291 (2004), 653-665.
[17] Chun-Lei Tang, Xing-Ping Wu - Subharmonic Solutions for Nonautonomous Second Order Hamiltonian Systems, J. Math. Anal. Appl. 304 (2005), 383-393.

Permanent address: Department of Mathematics and Informatics, University
of Oradea, University Street 1, 410087 Oradea, Romania
E-mail address: dpasca@uoradea.ro

Current address: Centre de Recerca Matemàtica, 08193 Bellaterra, Barcelona,
Spain
E-mail address: dpasca@crm.es

[^0]: 1991 Mathematics Subject Classification. 34C25, 49J24
 Key words and phrases. p-Laplacian, inclusions systems, periodic solutions.
 \dagger The author was supported by Ministerio de Educacioń y Ciencia, grant number SB2003-0337.

