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Abstract. Generalized multiresolution analyses are increasing se-
quences of subspaces of a Hilbert space H that fail to be multiresolu-

tion analyses in the sense of wavelet theory because the core subspace

does not have an orthonormal basis generated by a fixed scaling func-
tion. Previous authors have studied a multiplicity function m which,

loosely speaking, measures the failure of the GMRA to be an MRA.

When the Hilbert space H is L2(Rn), the possible multiplicity func-
tions have been characterized by Baggett and Merrill. Here we start

with a function m satisfying a consistency condition which is known

to be necessary, and build a GMRA in an abstract Hilbert space with
multiplicity function m.

Introduction

Classically, a multiresolution analysis (MRA) for L2(R) is an increas-
ing sequence of closed subspaces Vn of L2(R) such that the complements
Wn := Vn+1	Vn give a direct sum decomposition L2(R) =

⊕
n∈Z Wn, such

that Wn+1 is the dilation of Wn, and such that there is a scaling function
φ whose integer translates form an orthonormal basis for V0. MRAs have
been extensively used in signal processing, where the spaces Wn are used
inductively to add detail to an approximation of a signal f ∈ L2(R), and in
other parts of mathematics, including analysis on fractals and probability
(as discussed in the recent book [13], for example). From our point of view,
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the importance of MRAs lies in their fundamental role in the construction
of wavelets (see [16]). The idea is that if there is also a function ψ whose
translates form an orthonormal basis for W0, then the dilates of this basis
form an orthonormal basis for L2(R) — in other words, ψ is a wavelet.
However, not all MRAs give rise to wavelets, and not all wavelets are asso-
ciated to MRAs; a famous example of a wavelet which does not arise from
an MRA is the Journé wavelet.

Generalized multiresolution analyses were introduced by Baggett, Med-
ina and Merrill in [4], where they were used to construct many examples of
wavelet sets, including the one whose characteristic function is the Fourier
transform of the Journè wavelet. A generalized multiresolution analysis
(GMRA) for a Hilbert space H consists of an increasing sequence of closed
subspaces Vn such that the complements Wn := Vn+1 	 Vn give a direct-
sum decomposition H =

⊕
n∈Z Wn in which the Wn for n ≥ 0 are invariant

under a representation π of an abelian group Γ on H, and in which Wn+1 is
the dilation of Wn. The representation theory of abelian groups associates
to the representations π|V0 and π|W0 integer-valued multiplicity functions
m and m̃ on the dual group Γ̂. In this paper, we consider the question of
which functions m and m̃ can arise as multiplicity functions of GMRAs.

Previous work on this question has focused on the case H = L2(Rn), with
the group Zn acting by translation and the dilation implemented by an inte-
ger matrix A whose eigenvalues λ satisfy |λ| > 1. In this case, Baggett and
Merrill showed that m is associated to a GMRA if and only if m satisfies a
consistency condition, described in detail below, and a technical condition
on the translates of the support of m [5], which was discovered indepen-
dently by Bownik, Rzeszotnik and Speegle [6] in their characterization of
the dimension function of a wavelet. When a GMRA in L2(Rn) has an
associated (multi-) wavelet, one or more functions ψk such that the trans-
lates πn(ψk) form an orthonormal basis for W0 (so that m̃ is constant), the
characterizations in [5] and [6] coincide.

Here we show that the second technical condition from [5] and [6] is par-
ticular to L2(Rn): provided one is willing to consider GMRAs in abstract
Hilbert spaces, there are surprisingly few restrictions on m and m̃ apart
from the consistency condition of [5]. Our new results include a general
construction of filters for multiplicity functions (Proposition 7), and a cri-
terion for the purity of an associated isometry which improves a key result
in [3] (Theorem 8).

We begin in §1 by discussing GMRAs and multiplicity functions, and
stating our main theorem. We work in an abstract Hilbert space, with a
countable abelian group Γ of translations and a dilation operator which is
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compatible with an endomorphism α of Γ. In §2, we revisit the direct-limit
construction from [14] to see what extra input we need to ensure that the
direct limit carries the necessary translation group and dilation operator
(Theorem 5). Then in §3 we prove our main theorem. We first show that
our multiplicity function m admits a low-pass filter, which is a matrix H

of functions on Γ̂ satisfying relations, introduced in [3], which generalize
those of quadrature mirror filters. From H we build an isometry SH on
a Hilbert space K, following an idea which goes back at least to [7], and
Theorem 8 says that when the filter is low-pass, SH is a pure isometry.
Then, when we apply the construction of Theorem 5 to this isometry, we
obtain a direct-limit Hilbert space which has the required GMRA.

Since we think Theorem 8 and its proof are likely to be of independent
interest, we have made them the focus of a separate section. Our proof
follows the general strategy suggested in [3, Lemma 3.3], but here we have
been able to replace some of the grittier estimates with exact calculations,
and those which remain are much sharper. The crux of the argument is
the almost everywhere pointwise convergence of a sequence of averages,
which we achieve by applying the reverse martingale convergence theorem.
(We thank Dan Stroock for suggesting to us that we were dealing with a
reverse martingale; in retrospect, we could also have learned this from [11].)
In the final section we discuss some examples which show that our results
have broader scope than those of [5] and [6].

Notation and standing assumptions. Throughout this paper, Γ is a
countable abelian group with compact dual Γ̂, and λ denotes normalised
Haar measure on Γ̂. We fix an injective endomorphism α of Γ such that
α(Γ) has finite index N in Γ, and we write α∗ for the endomorphism of Γ̂
onto itself defined by α∗(ω) = ω◦α, and note that | kerα∗| = N . We assume
that

⋃
n≥1 kerα∗n is dense in Γ̂ (or equivalently, that

⋂
n≥1 α

n(Γ) = {0}).
If σ is a subset of Γ̂, then χσ denotes the characteristic function χσ : Γ̂→ C
which is 1 on σ and 0 elsewhere.

All Hilbert spaces in the paper are separable.

1. Multiplicity functions and the main theorem

Let π : Γ → U(H) be a unitary representation, and let δ be a unitary
operator on H such that

δ−1πγδ = πα(γ) for all γ ∈ Γ.

A generalized multiresolution analysis (or GMRA) relative to π and δ is a
sequence {Vn : n ∈ Z} of closed subspaces ofH with the following properties:
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(a) Vn ⊂ Vn+1 for all n,

(b) Vn+1 = δ(Vn) for all n,

(c)
⋃∞
n=0 Vn is dense in H and

⋂0
n=−∞ Vn = {0}, and

(d) V0 is invariant under π.

GMRAs were introduced in [4], and have since been studied in [5] and [3];
other authors had previously observed that much of the theory still works
when we use Γ in place of the classical translation group Zn (see [1] and [9],
for example).

Property (d) of a GMRA implies that ρ := π|V0 is a unitary representa-
tion of Γ, and Stone’s theorem on unitary representations of abelian groups
together with the multiplicity theory for projection valued measures [15]
gives a Borel measure µ on Γ̂, unique Borel subsets σ1 ⊇ σ2 ⊇ . . . of Γ̂, and
a unitary operator J : V0 →

⊕
i L

2(σi, µ) satisfying

[J(ργ(v))]i(ω) = ω(γ)[J(v)]i(ω)

for v ∈ V0, γ ∈ Γ and µ-almost all ω ∈ Γ̂ (see [4, Proposition 1]).

When H = L2(Rd), Γ is the lattice Zd, α(k) = Ak and π is the rep-
resentation determined by translation, the measure µ is necessarily abso-
lutely continuous with respect to the Haar measure on the torus Td ≡ Ẑd
(see [4, Propositions 2 and 3]). This absolute continuity does not neces-
sarily hold in general, but here we are interested in the converse, and we
assume that our measures µ are absolutely continuous with respect to the
Haar measure λ on Γ̂.

With the above conventions, the function m =
∑
χσi is called the multi-

plicity function of the GMRA. Properties (a), (b) and (d) in the definition
of a GMRA imply that the subspace W0 = V1 	 V0 also is invariant under
π, and hence determines a unitary representation ρ̃ of Γ on W0. As above,
Stone’s theorem gives a measure µ̃ on Γ̂, subsets σ̃1 ⊇ σ̃2 ⊇ . . . of Γ̂, and a
unitary map J̃ : W0 →

⊕
k L

2(σ̃k, µ̃) such that

[J̃(ρ̃γ(v))]k(ω) = ω(γ)[J̃(v)]k(ω)

for v ∈W0, γ ∈ Γ and µ̃-almost all ω ∈ Γ̂. We write m̃ for the corresponding
complementary multiplicity function given by

m̃(ω) =
∑
k

χeσk(ω).

We now prove that the multiplicity functions m and m̃ of the GMRA
{Vn : n ∈ Z} satisfy the following consistency equation for (µ + µ̃)-almost
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all ω ∈ Γ̂:

(1) m(ω) + m̃(ω) =
∑

α∗(ζ)=ω

m(ζ).

This will follow immediately from Lemma 1 below, which gives the con-
sistency equation under slightly more general assumptions reflecting the
dependency between (1) and the properties (a), (b) and (d) alone in the
definition of a GMRA.

Lemma 1. Let ρ and ρ̃ be representations of Γ on closed subspaces V and
W of a Hilbert space H such that there is a unitary δ on H satisfying the
following conditions:

(i) δ(V ) = V ⊕W , and

(ii) δ−1(ρ⊕ ρ̃)γδ|V = ρα(γ) for all γ ∈ Γ.

Let m, µ and m̃, µ̃ be the multiplicity functions and the associated Borel
measures given by Stone’s theorem for ρ and respectively ρ̃. Then m(ω) +
m̃(ω) =

∑
α∗(ζ)=ωm(ζ) for (µ+ µ̃)-almost all ω ∈ Γ̂.

Proof. We begin by recalling an additional consequence of Stone’s theorem.
Suppose that π is a representation of the abelian group Γ acting in a Hilbert
space V, and let a Borel measure ν and Borel subsets {τi} be as in the
statement of Stone’s theorem. Suppose {τ ′l} is another collection of (not
necessarily nested) Borel subsets of Γ̂, and suppose J1 is a unitary operator
from V onto

⊕
l L

2(τ ′l ) satisfying

[J1(πγ(f))](ω) = ω(γ)[J1(f)](ω)

for all f ∈ V, all γ ∈ Γ, and ν-almost all ω ∈ Γ̂. Then∑
χτi(ω) =

∑
l

χτ ′l (ω)

for ν-almost all ω ∈ Γ̂. (This is really part of the proof of Stone’s theorem. In
fact, Stone’s theorem is essentially the same as the canonical decomposition
theorem for projection-valued measures; see [15].)

Let σi, J and σ̃k, J̃ be the nested Borel subsets and unitaries given by
Stone’s theorem applied to ρ and respectively ρ̃. Let m′ be the multiplicity
function associated to ρ⊕ ρ̃ on V ⊕W . Define a unitary J1 from V ⊕W to⊕

i L
2(σi)⊕

⊕
k L

2(σ̃k) by

[J1(f ⊕ g)](ω) = [J(f)](ω)⊕ [J̃(g)](ω).
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The additional consequence of Stone’s theorem described above implies that
for almost all ω, we have

m′(ω) =
∑
i

χσi(ω) +
∑
k

χeσk(ω) = m(ω) + m̃(ω).

Thus to verify the equation claimed in the lemma, it suffices to prove that

(2) m′(ω) =
∑

α∗(ζ)=ω

m(ζ).

Let s be a Borel cross-section for the quotient map of Γ̂ onto Γ̂/ ker(α∗).
For each i and each η in the kernel of α∗, define

τi,η = {ω ∈ Γ̂ : s(ω)η ∈ σi},
and using (i) define J ′ : V ⊕W →

⊕
i,η L

2(τi,η) by

[J ′(f ⊕ g)]i,η(ω) = [J(δ−1(f ⊕ g))]i(s(ω)η).

For f ∈ V and g ∈W we then have

[J ′((ρ⊕ ρ̃)γ(f ⊕ g))]i,η(ω) = [J(δ−1((ρ⊕ ρ̃)γ(f ⊕ g)))]i(s(ω)η)

= [J(ρα(γ)(δ−1(f ⊕ g)))]i(s(ω)η) by (ii)

= [s(ω)η](α(γ))[J(δ−1(f ⊕ g))]i(s(ω)η)

= [α∗(s(ω)η)](γ)[J ′(f ⊕ g)]i,η(ω)

= ω(γ)[J ′(f ⊕ g)]i,η(ω).

Therefore, again by the additional consequence of Stone’s theorem described
above, the multiplicity function m′ is given by

m′(ω) =
∑
i,η

χτi,η (ω) =
∑
i,η

χσi(s(ω)η)

=
∑
η

∑
i

χσi(s(ω)η) =
∑
η

m(s(ω)η)

=
∑

α∗(ζ)=ω

m(ζ),

as was sought in (2). �

Remark 2. We look at the above definitions in the familiar setting of L2(R).
Suppose that π is the representation of Γ = Z by translations on L2(R) and
δ is a dilation operator. When W0 is generated by a wavelet ψ, so that the
translates {πnψ} form an orthonormal basis for W0, the representation π|W0

is equivalent to the representation by multiplication operators on L2(T) and
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the complementary multiplicity function m̃ is identically 1. When there is
a scaling function φ such that {πnφ} is an orthonormal basis for V0, so that
the GMRA is an MRA, we also have m identically equal to 1. However, the
Journé wavelet provides an example of a wavelet such that the corresponding
GMRA is not an MRA, and the multiplicity function m is not constant. The
function m for the Journé wavelet is explicitly worked out in [8] (and see
also Example 13 below).

In this paper, we ask what functions can arise as multiplicity functions,
and our main result is the following theorem.

Theorem 3. Suppose c ∈ N and m : Γ̂ → {0, 1, · · · , c} is a Borel function
which satisfies the consistency inequality

(3) m(ω) ≤
∑

α∗(ζ)=ω

m(ζ),

and define m̃ : Γ̂→ {0, 1, · · · , c} by

(4) m̃(ω) =
∑

α∗(ζ)=ω

m(ζ)−m(ω).

Suppose that there is a positive integer a satisfying m(ω) − m̃(ω) ≤ a ≤
m(ω) for all ω near 1. Then there is a GMRA which has m and m̃ as the
associated multiplicity and complementary multiplicity functions.

Remark 4. In many examples (such as Examples 13 and 14 below), the mul-
tiplicity function m attains its maximum value c throughout a neighborhood
of 1, and then a = c satisfies the hypothesis of the theorem.

2. Construction of a GMRA from a pure isometry

Our construction is based on the direct-limit construction of multiresolu-
tion analyses in [14]. Similar constructions have been used elsewhere, often
described as dilations (in [12], for example); the key point of our approach
is the emphasis on universal properties of the construction. In this paper
our emphasis is on the construction of GMRAs, and in a sequel we plan
to discuss further applications of this circle of ideas to the construction of
frames and wavelets.

We begin by extending the construction of [14] to accommodate the ac-
tion of the abstract translation group Γ.

Theorem 5. Suppose S is an isometry on a Hilbert space K, and let
(K∞, Un) be the direct limit of the direct system (Hn, Tn) in which each
Hilbert space Hn = K and each Tn = S:
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K K
S

// K
S

// · · ·
S

// K∞

U0

""

U1

(( ,,

(a) There is a unitary operator S∞ on K∞ such that

S∞(Unh) = Un(Sh) = Un−1h for every h ∈ Hn := K.

(b) The subspaces Vn := UnK of K∞ satisfy
(i) Vn ⊂ Vn+1;

(ii)
⋃∞
n=0 Vn is dense in K∞;

(iii) S∞ is a unitary isomorphism of Vn+1 onto Vn.

(c) For n < 0, define Vn := S
|n|
∞ (V0). Then

⋂
n∈Z Vn = {0} if and only if

S is a pure isometry (in the sense that
⋂∞
n=1 S

nK = {0}).
(d) If ρ is a unitary representation of Γ on K such that

(5) Sργ = ρα(γ)S for γ ∈ Γ,

then there exists a unitary representation π of Γ on K∞ such that all the
subspaces Vn, for n ≥ 0, are invariant under π and

(6) S∞πγ = πα(γ)S∞ for γ ∈ Γ.

Proof. The construction of S∞ is described on page 37 of [14], and it is
proved there that S∞ is unitary. Since UnK = Un+1SK, we have Vn ⊂ Vn+1;
that the union of the subspaces Vn = UnK is dense is a standard property
of the direct limit. The equation

S∞(Un+1h) = Un+1(Sh) = Unh

shows that S∞ is an isomorphism of Vn+1 onto Vn.
For (c), we notice that for n < 0,

Vn = S|n|∞ V0 = S|n|∞ U0K = U0S
|n|K,

so ⋂
n∈Z Vn = {0} ⇐⇒

⋂∞
k=1 V−k = {0}

⇐⇒
⋂∞
k=1 U0S

kK = {0}
⇐⇒

⋂∞
k=1 S

kK = {0}.

Since
⋂∞
k=1 S

kK is the largest subspace of K on which S is unitary, this
proves (c).
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The intertwining relation (5) implies that

K KS // KS // · · ·S // · · · K∞//

K

ργ

��
KS // KS // · · ·S // · · · K∞,//

ρα(γ)

��

ρα2(γ)

��

πγ

���
�
�
�
�
�

is a commutative diagram of isometries, and hence the universal property
of the direct limit gives the existence of a unique isometry πγ such that
πγ ◦Un = Un◦ραn(γ), which implies immediately that Vn = UnK is invariant
under πγ . Uniqueness implies that π−γ is an inverse for πγ and that πγτ =
πγπτ , so π is a unitary representation of Γ. Finally, we have

S∞πγUn = S∞Unραn(γ) = UnSραn(γ)

= Unραn+1(γ)S = πα(γ)UnS

= πα(γ)S∞Un,

which establishes (6). �

Corollary 6. If S is a pure isometry on K, then the subspaces Vn of K∞
form a generalized multiresolution analysis with respect to π : Γ → U(K∞)
and δ := S−1

∞ .

3. Proof of the main theorem

Let m : Γ̂→ Z be a Borel function such that 0 ≤ m(ω) ≤ c for all ω, and
for 0 ≤ i ≤ c write σi := {ω ∈ Γ̂ : m(ω) ≥ i}. A filter relative to m and
α∗ is a matrix-valued Borel function H = [hi,j ] : Γ̂→Mc(C) such that hi,j
vanishes outside σj and

(7)
∑

α∗(ζ)=ω

H(ζ)H∗(ζ) = NΣ(ω) for almost all ω ∈ Γ̂,

where Σ(ω) is the diagonal matrix with entries χσi(ω). Such a filter is
low-pass of rank a if H is continuous near 1 and H(1) has block form

H(1) =
(
N1/21a 0

0 0

)
,

where 1a denotes the 1× 1 identity matrix.
Crucial for our argument is that, when m satisfies the hypotheses of

Theorem 3, there are always compatible low-pass filters.
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Proposition 7. Suppose that the positive integer a satisfies

(8) m(ω)− m̃(ω) ≤ a ≤ m(ω) for all ω near 1 in Γ̂.

Then there is a filter H relative to m and α∗ which is low-pass of rank a.

Proof. We begin by writing the filter equations (7) in the form

(9)
∑
j

∑
ζ∈kerα∗

hi,j(ωζ)hi′,j(ωζ) = Nδi,i′χσi(α
∗(ω)).

We choose a Borel cross-section s for α∗, and write C = s(Γ̂); then every
element in Γ̂ can be written in a unique way as ωζ for some ω ∈ C and
ζ ∈ kerα∗, and to build a filter it suffices to construct c functions

hi(ω) = {hi,j(ωζ) : 1 ≤ j ≤ m(ω), ζ ∈ kerα∗}

from C to CcN such that the hi,j(ωζ) vanish unless ωζ ∈ σj and (9) holds for
every ω ∈ C. Equation (9) is equivalent to asking that the vectors (hi(ω))
in CcNare orthogonal of norm N1/2χσi(α

∗(ω)).
Let U be a neighborhood of 1 such that (8) holds for ω ∈ U , and shrink

U to ensure that the sets {Uζ : ζ ∈ kerα∗} are pairwise disjoint.
From the continuity of α∗, there exist neighborhoods V and W of the

identity, both contained in U , such that α∗ maps W onto V , and since
U ∩ Uζ = ∅ for ζ 6= 1, α∗ is a homeomorphism of W onto V . We may
suppose without loss of generality that W ⊂ C.

For ω ∈W and i ≤ a, we define hi(ω) by

hi,j(ωζ) =

{√
N if i = j ≤ a and ζ = 1

0 otherwise.

This will ensure that our filter is continuous at 1 and is low-pass of rank a.
For i > m(α∗(ω)), we must set hi(ω) = 0 for all ω. For a < i ≤ m(α∗(ω)),
the entries hi,j(ω) must be 0 for ω ∈W . We also need to take hi,j(wζ) = 0
unless wζ ∈ σj , which is equivalent to m(ωζ) ≥ j. Thus for each ζ, there
are m(ωζ) js for which hi,j(wζ) can be non-zero, and hence

∑
ζ 6=1m(ωζ)

potentially non-zero elements.
Since ω ∈W implies α∗(ω) ∈ V , and since V is contained in U , we have

m(α∗(ω))− a ≤ m̃(α∗(ω)) =
∑

ζ∈kerα∗

m(ωζ)−m(ω) =
∑

ζ∈kerα∗, ζ 6=1

m(ωζ).

Thus the number of components in hi(ω) which can be non-zero is greater
than or equal to the required number m(α∗(ω)) − a of orthogonal vectors
hi(ω), and it is possible to find such vectors. Since there are only finitely
many possible sets of values of m(α∗(ω)) and m(ωζ), and we can use the
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same vectors for hi(ω) when these values are all the same, we can find simple
functions hi with the required properties.

Defining the vectors hi(ω) for ω ∈ C\W is easier, since now we just need
to define hi(ω) for i ≤ m(α∗(ω)), and we have

∑
ζ∈kerα∗ m(ωζ) ≥ m(α∗(ω))

non-zero entries to play with. �

Our main technical result shows that low-pass filters give rise to pure
isometries. In an attempt to clarify our overall strategy, we will postpone
the proof of this result till the next section.

Theorem 8. Suppose that m : Γ̂ → {0, 1, · · · , c} is Borel, and that H is a
filter relative to m and α∗. Let K be the Hilbert space defined by

(10) K =
⊕
i

L2(σi),

and define an operator SH on K by

(11) (SHf)(ω) = Ht(ω)f(α∗(ω)).

Then SH is an isometry on K. If the filter H is low-pass of some rank a
between 1 and c, then SH is a pure isometry.

We now have all the ingredients to prove our main theorem.

Proof of Theorem 3. Proposition 7 gives us a low-pass filter H of rank a.
Let SH be the pure isometry on K =

⊕
i L

2(σi) discussed in Theorem 8.
Define a representation ρ of Γ on K by

ργ(f)(ω) = ω(γ)f(ω).

Then

SH(ργ(f))(ω) = Ht(ω)ργ(f)(α∗(ω))

= Ht(ω)α∗(ω)(γ)f(α∗(ω))

= Ht(ω)ω(α(γ))f(α∗(ω))

= ρα(γ)(SHf)(ω).

Now applying Theorem 5 gives us a direct limit Hilbert space (K∞, Un), a
representation π : Γ→ U(K∞), and a dilation operator δ = S−1

∞ , such that
{Vn} := {UnK} is a GMRA relative to π and δ.

The canonical embedding U0 is an isomorphism of K =
⊕

i L
2(σi) onto

V0 which intertwines ρ and π|V0 , so this GMRA has multiplicity function m.
It follows from equation (1) that m̃ must be the complementary multiplicity
function. �

This completes the proof of Theorem 3, modulo our obligation to provide
a proof of Theorem 8.
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4. Low-pass filters and pure isometries

In this section, we pay our debts by proving Theorem 8.

Since Ht(ω)ij = hj,i(ω) has support in σi, SHf belongs to K. A compu-
tation shows that the adjoint of SH is given by

(S∗Hf)(ω) =
1
N

∑
α∗(ζ)=ω

H(ζ)f(ζ),

and it is then easy to check that S∗HSHf = f when f belongs to K. So SH
is an isometry.

From here we assume that H is low-pass, and aim to prove that SH is a
pure isometry, or in other words that

⋂∞
n=0 S

n
HK = {0}. We assume that

this is not true, and look for a contradiction. Since every non-zero Hilbert
space contains a unit vector, we can find a unit vector f in

⋂∞
n=0 S

n
HK. To

arrive at our contradiction, we consider the sequence fn := S∗nH f ; since SH
is unitary on

⋂∞
n=0 S

n
HK with inverse S∗H , {fn} is a sequence of unit vectors

in
⋂∞
n=0 S

n
HK.

We will need to deal with the powers of SH and S∗H , and simple induction
arguments yield the following explicit formulas:

(SnHf)(ω) =
( n−1∏
k=0

Ht(α∗k(ω))
)
f(α∗n(ω)), and

(S∗nH f)(ω) =
1
Nn

∑
α∗n(ζ)=ω

( 0∏
k=n−1

H(α∗k(ζ))
)
f(ζ).

We view elements g ∈ K as functions from Γ̂ to Cc whose ith coordinate
gi has support in σi, and write ‖g(ζ)‖ for the norm of the vector g(ζ) ∈ Cc.
Then for each g ∈ K, the function ζ 7→ ‖g(ζ)‖2 is integrable on Γ̂. We
want to identify the integrable functions associated to our sequence fn =
S∗nH f . A crucial step in the calculation is the following extension of the filter
identity (7). In the following formula (12) it is crucial that the products
are interpreted in the correct order: the middle terms, for example, are the
ones for which k = 0 and l = 0.

Lemma 9. For every n ≥ 1, we have∑
α∗n(ζ)=ω

( 0∏
k=n−1

H(α∗k(ζ))
)( n−1∏

l=0

H∗(α∗l(ζ))
)

= NnΣ(ω) for almost all ω.

(12)
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Proof. For n = 1 we recover the usual filter identity (7). Suppose (12) is
true for n ≥ 1.Then

∑
α∗(n+1)(ζ)=ω

( 0∏
k=n

H(α∗k(ζ))
)( n∏

l=0

H∗(α∗l(ζ))
)

=
∑

α∗n(η)=ω

∑
α∗(ζ)=η

( 1∏
k=n

H(α∗k(ζ))
)

H(ζ)H∗(ζ)
( n∏
l=1

H∗(α∗l(ζ))
)

=
∑

α∗n(η)=ω

( 0∏
k=n−1

H(α∗k(η))
)

( ∑
α∗(ζ)=η

H(ζ)H∗(ζ)
)( n−1∏

l=0

H∗(α∗l(η))
)

=
∑

α∗n(η)=ω

( 0∏
k=n−1

H(α∗k(η))
)
NΣ(η)

( n−1∏
l=0

H∗(α∗l(η))
)
.

Now notice that for each i, both the (i, j) entry hi,j(η) in H(η) and the
(j, i) entry in H∗(η) vanish unless η ∈ σj , in which case the (j, j) entry in
Σ(η) is 1. So the Σ(η) in the middle has no effect, and we deduce from
the inductive hypothesis that the last expression reduces to N(NnΣ(ω)) =
Nn+1Σ(ω). �

Lemma 10. For almost all ω we have

(13) ‖fn(ω)‖2 =
1
Nn

∑
α∗n(ζ)=ω

‖f(ζ)‖2.

Proof. We write (v |w) for the usual inner product on Cc. Then since
f ∈ SnHK = SnHS

∗n
H K, we have

1
Nn

∑
α∗n(ζ)=ω

‖f(ζ)‖2 =
1
Nn

∑
α∗n(ζ)=ω

(f(ζ) | f(ζ))(14)

=
1
Nn

∑
α∗n(ζ)=ω

(SnHS
∗n
H f(ζ) |SnHS∗nH f(ζ))
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=
1
Nn

∑
α∗n(ζ)=ω

(SnHfn(ζ) |SnHfn(ζ))

=
1
Nn

∑
α∗n(ζ)=ω

( n−1∏
l=0

Ht(α∗l(ζ))fn(α∗nζ)
∣∣∣

n−1∏
k=0

Ht(α∗k(ζ))fn(α∗nζ)
)

=
1
Nn

∑
α∗n(ζ)=ω

(( 0∏
k=n−1

H(α∗k(ζ))
)

( n−1∏
l=0

Ht(α∗l(ζ))
)
fn(ω)

∣∣∣ fn(ω)
)

= (Σ(ω)fn(ω) | fn(ω)),

where at the last step we used the conjugate of (12). Now we deduce from
the original filter equation (7) that

hi,j(ζ) 6= 0 =⇒ α∗(ζ) ∈ σi.

Then the ith entry [fn(ω)]i satisfies

[fn(ω)]i =
1
Nn

∑
α∗n(ζ)=ω

c∑
j=i

hi,j(α∗(n−1)(ζ))
[( 0∏

k=n−2

H(α∗k(ζ))
)
f(ζ)

]
j
,

and hence vanishes unless α∗(α∗(n−1)(ζ)) = ω is in σi. Thus Σ(ω)fn(ω) =
fn(ω), and the calculation (14) gives the result. �

We can rewrite the formula (13) as

(15) ‖fn(α∗n(ω))‖2 =
1
Nn

∑
η ∈ kerα∗n

‖f(ωη)‖2,

and we claim that the right-hand side Xn(ω) of (15) is the expectation
E(‖f‖2 | Bn) of f with respect to the subalgebra Bn := (α∗)−n(B) of the
Borel σ-algebra B. To see this, we note that Bn is the σ-algebra of Borel
sets which are invariant under the action of kerα∗n, so that Xn is certainly
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Bn-measurable, and for B ∈ Bn, we have∫
B

Xn(ω) dω =
1
Nn

∑
ζ ∈ kerα∗n

∫
Bζ−1

‖f(ω)‖2 dω

=
1
Nn

∑
ζ ∈ kerα∗n

∫
B

‖f(ω)‖2 dω

=
∫
B

‖f(ω)‖2 dω;

in other words, Xn has the properties which characterise E(‖f‖2 | Bn) (see
the observation at the top of page 18 of [17]), and hence Xn = E(‖f‖2 | Bn).
Further, if B ∈ Bn+1 ⊂ Bn, then we have∫

B

Xn+1(ω) dω =
∫
B

‖f(ω)‖2 dω =
∫
B

Xn(ω) dω,

and hence Xn+1 = E(Xn | Bn+1). Thus the family {Xn} satisfies the hy-
potheses of the reverse martingale convergence theorem (as in [10, Theo-
rem 10. 6.1], for example), and we can deduce from that theorem that Xn

converges almost everywhere to the expectation E(‖f‖2 | B∞) associated to
B∞ :=

⋂
n≥1 Bn.

To identify E(‖f‖2 | B∞), we need the following standard lemma.

Lemma 11. If B ∈ B∞, then λ(B) is either 0 or 1.

Proof. Notice that B is invariant under multiplication by elements of kerα∗n

for every n ≥ 1. Suppose γ ∈ Γ\{0}. Since
⋃
n≥1 kerα∗n is dense in Γ̂,

two characters of Γ̂ which agree on
⋃
n≥1 kerα∗n must agree on all of Γ̂.

Thus there exist n and ζ ∈ kerα∗n such that ζ(γ) 6= 1. Then the Fourier
coefficients of the characteristic function χB satisfy

χ̂B(γ) =
∫

bΓ χB(ω)ω(γ) dω =
∫

bΓ χB(ζω)(ζω)(γ) dω

= ζ(γ)
∫

bΓ χζ−1B(ω)ω(γ) dω = ζ(γ)
∫

bΓ χB(ω)ω(γ) dω

= ζ(γ)χ̂B(γ),

and hence χ̂B(γ) = 0. Thus χ̂B(γ) = 0 for every non-zero γ, and χB is
either 0 or 1 in L1(Γ̂), which implies the result. �

So B∞ = {B ∈ B : λ(B) = 0 or 1}, and the expectation E(‖f‖2 | B∞) is
the constant function

∫
‖f(ω)‖2 dω. Since our f is a unit vector, we have

now proved the following Proposition.
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Proposition 12. For almost all ω ∈ Γ̂, we have

‖fn(α∗n(ω)‖2 =
1
Nn

∑
η ∈ kerα∗n

‖f(ωη)‖2 → 1 as n→∞.

We are now ready to get the contradiction which will prove that SH is a
pure isometry. We fix δ > 0. We view H as a block matrix H = (Hi,j) for
the decomposition Cc = Ca ⊕ Cc−a, and choose a neighborhood V of the
identity such that for each ω ∈ V we have

‖H1,1(ω)−
√
N1a‖ < δ and ‖Hi,j(ω)‖ < δ for (i, j) 6= (1, 1).

Next, we choose a neighborhood W of the identity such that W , α∗(W ) and
α∗2(W ) are all contained in V .

By Egorov’s theorem, there exists a set E whose complement has measure
less than λ(W )/4 and an integer M such that, for all n ≥M and all ω ∈ E,

1− δ < ‖fn(α∗n(ω))‖ < 1 + δ.

Since α∗ is measure-preserving in the sense that λ((α∗)−1(E)) = λ(E), the
set

A := W ∩ (α∗)−M (E) ∩ (α∗)−(M+1)(E) ∩ (α∗)−(M+2)(E)

has positive measure. It then follows that α∗M (ω), α∗(M+1)(ω), and
α∗(M+2)(ω) all belong to V ∩ E for every ω ∈ A.

We now fix ω ∈ A, write v = ([v]1, [v]2) for the block decomposition of
v ∈ Cc, and make lower and upper estimates for ‖[fM+1(α∗(M+1)(ω))]1‖.
For the lower estimate, we observe that

‖[fM+1(α∗(M+1)(ω))]2‖ ≤
2∑
j=1

∥∥Ht
2,j(α

∗(M+1)(ω))[fM+2(α∗(M+2)(ω))]j
∥∥

≤ 2δ(1 + δ),

and deduce that

‖[fM+1(α∗(M+1)(ω))]1‖ ≥
∥∥fM+1(α∗(M+1)(ω))

∥∥− ∥∥[fM+1(α∗(M+1)(ω))]2
∥∥

≥ 1− δ − 2δ(1 + δ).

For the upper estimate, we write

(16) [fM (α∗M (ω))]1 =
2∑
j=1

H1,j(α∗M (ω))[fM+1(α∗(M+1)(ω))]j ,

rewrite the first summand on the right as

N1/2[fM+1(α∗(M+1)(ω))]1 +(H1,1(α∗M (ω))−N1/21a)[fM+1(α∗(M+1)(ω))]1,
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and turn (16) round to get the estimate

N1/2
∥∥[fM+1(α∗(M+1)(ω))]1

∥∥ ≤ 1 + δ + 2δ(1 + δ)

= (1 + δ)(1 + 2δ).

Combining the upper and lower estimates shows that for every δ > 0 we
must have

1− δ − 2δ(1 + δ) ≤ N−1/2(1 + δ)(1 + 2δ),
which we can see is impossible by letting δ → 0.

This completes the proof of Theorem 8.

5. Examples

We give several examples showing how low-pass filters can occur for differ-
ent values of a in Proposition 7 and Theorem 8 even for the same multiplicity
function m. For simplicity of notation, we identify the multiplicative group
T with the additive set R/Z, where we choose the coset representatives of
R/Z in R to be [−1/2, 1/2). This agrees with the notation in [3].

Example 13. Consider the multiplicity function for dilation by 2 in R cor-
responding to the Journé wavelet, previously studied in [8], [2] and [3]. The
multiplicity function for this minimally supported frequency wavelet is given
by

m(x) =


2 if x ∈ [− 1

7 ,
1
7 )

1 if x ∈ ±[ 1
7 ,

2
7 ) ∪ ±[ 3

7 ,
1
2 )

0 otherwise.

Filters which give rise to the Journé wavelet and satisfy the low-pass condi-
tion of rank a = 1 were constructed in [8]. However, for this m the number
a = 2 also satisfies the conditions of Proposition 7, and we can also find
filters which satisfy the low-pass condition of rank a = 2. Indeed,

h1,1 =
√

2χ[− 2
7 ,−

1
4 )∪[− 1

7 ,
1
7 )∪[ 14 ,

2
7 ), h1,2 = h2,1 = 0, and h2,2 =

√
2χ[− 1

14 ,
1
14 )

have the required properties. If we consider the 2 × 2 matrix H = [hi,j ]
as in Theorem 8 and view the infinite product

∏∞
j=1[2−1/2H(2−jx)] as a

2 × 2 matrix with entries in L∞(R), we find that it is a diagonal matrix
with diagonal entries

φ̂1 := χ[− 4
7 ,−

1
2 )∪[− 2

7 ,
2
7 )∪[ 12 ,

4
7 ) and φ̂2 := χ[− 1

7 ,
1
7 ).

Then the shift invariant subspace of L2(R) generated by the inverse Fourier
transforms φ1 and φ2 has multiplicity function

m′ = χ[− 1
2 ,−

3
7 )∪[− 2

7 ,
2
7 )∪[ 37 ,

1
2 ),
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which is a degenerate version of the original multiplicity function m. Thus
one does not have an analogue of Theorem 3.4 of [2] in this situation, and
one must rely on the direct limit Hilbert space instead of L2(R) to construct
our GMRA.

Example 14. The Journé wavelet set corresponds to the case n = 1 in
[4, §4, Example 1]. If we consider the case n = 2 in this family of examples,
we obtain the wavelet set W = ±[ 4

15 ,
1
2 ) ∪ ±[4, 64

15 ) and the multiplicity
function given by

m(x) =


3 if x ∈ [− 1

15 ,
1
15 )

2 if x ∈ ±[ 1
15 ,

2
15 )

1 if x ∈ ±[ 2
15 ,

4
15 ) ∪ ±[ 7

15 ,
1
2 )

0 otherwise.

Thusm(x)−m̃(x) = 2 in a neighborhood of x = 0, and a = 1 does not satisfy
the hypothesis of Proposition 7 or Theorem 8. However, the values a = 2
and a = 3 satisfy the hypothesis of Proposition 7, and we can construct
filters corresponding to these two values.

For a = 2, we can take

H = [hi,j ] =
√

2

χ[− 2
15 ,

2
15 )∪±[ 14 ,

4
15 ) 0 0

0 χ[− 1
15 ,

1
15 ) 0

χ±( 7
15 ,

1
2 ] 0 0

 ,

which is low-pass of rank a = 2 for dilation by 2. A different low-pass filter
of rank a = 2 for this m is

H = [hi,j ] =
√

2

χ[− 2
15 ,

2
15 )∪±[ 14 ,

4
15 ) 0 0

0 χ[− 1
30 ,

1
30 ) χ±[ 1

30 ,
1
15 )

χ±( 13
30 ,

1
2 ] 0 0

 .

The following family satisfies the low-pass condition of rank a = 3 for
dilation by 2, with the same choice of m:

H = [hi,j ] =
√

2

χ[− 2
15 ,

2
15 )∪±[ 14 ,

4
15 ) 0 0

0 χ[− 1
15 ,

1
15 ) 0

0 0 χ[− 1
30 ,

1
30 )

 .

In all of these cases, the infinite product
∏∞
j=1[2−1/2H(2−jx)] gives func-

tions whose inverse Fourier transforms in L2(R) generate a shift invariant
subspace with multiplicity function a degenerate form of the original m.
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