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Abstract

A minor-closed class of graphs is a set of labelled graphs which is closed under isomorphism
and under taking minors. For a minor-closed class G, we let gn be the number of graphs in
G which have n vertices. A recent result of Norine et al. [13] shows that for all minor-closed
class G, there is a constant c such that gn ≤ cnn!. Our main results show that the growth
rate of gn is far from arbitrary. For example, no minor-closed class G has gn = cn+o(n)n! with
0 < c < 1 or 1 < c < ξ ≈ 1.76.

1 Introduction

In 1994, Scheinerman and Zito [15] introduced the study of the possible growth rates of hered-
itary classes of graphs (that is, sets of graphs which are closed under isomorphism and induced
subgraphs). Here we study the same problem for classes which are closed under taking minors.
Clearly, being minor-closed is a much stronger property than to be hereditary. However, many of
the more structured hereditary classes such as graphs embeddable in a fixed surface or graphs of
tree width bounded by a fixed constant are minor-closed and the possible growth rates attainable
are of independent interest.

A broad classification of possible growth rates for hereditary classes given by Scheinermann
and Zito [15] is into four categories, namely constant, polynomial, exponential and factorial. This
has been considerably extended in a series of papers by Balogh, Bollobas and Weinrich [2, 3, 4]
who use the term speed for what we call growth rate.

A first and important point to note is that if a class of graphs is minor-closed then it is
hereditary. Hence, in what follows we are working within the confines described by the existing
classifications of growth rates of hereditary classes. Working in this more restricted context, we
obtain simpler characterization of the different categories of growth rate and simpler proofs. This
is done in Section 2. In Section 3, we establish some results about the possible behaviour about
classes in the most interesting range of growth rates, namely the factorial range. We conclude by
listing some open questions in Section 4.
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A significant difference between hereditary and minor-closed classes is due to the following
recent result by Norine et al. A class is proper if it does not contain all graphs.

Theorem 1 (Norine et al. [13]). If G is a proper minor-closed class of graphs then gn ≤ cnn! for
some constant c.

Remark. In contrast, a hereditary class such as the set of bipartite graphs can have growth rate
of order 2cn2

with c > 0.
We close this introduction with some definitions and notations. We consider simple labelled

graphs. The size of a graph is the number of vertices; graphs of size n are labelled with vertex
set {1, 2, . . . , n}. A class of graphs is a family of labelled graphs closed under isomorphism. For
a class of graphs G, we let Gn be the graphs in G with n vertices, and we let gn = |Gn|. The
(exponential) generating function associated to a class G is G(z) =

∑
n≥0

gn

n! z
n.

The relation H < G between graphs means H is a minor of G. A family G is minor-closed if
G ∈ G and H < G implies H ∈ G. A class is proper if it does not contain all graphs. A graph H is
a (minimal) excluded minor for a minor-closed family G if H 6∈ G but every proper minor of H is
in G. We write G = Ex(H1,H2, · · · ) if H1, H2, . . . are the excluded minors of G. By the theory of
graph minors developed by Robertson and Seymour [14], the number of excluded minors is always
finite.

2 A classification theorem

Our classification theorem for the possible growth rate of minor-closed classes of graphs involves
the following classes; it is easy to check that they are all minor-closed.
• P is the class of path forests: graphs whose connected components are paths.
• S is the class of star forests: graphs whose connected components are stars (this includes isolated
vertices).
•M is the class of matchings: graphs whose connected components are edges and isolated vertices.
• X is the class of stars: graphs made of one star and some isolated vertices.

Theorem 2. Let G be a proper minor-closed family and let gn be the number of graphs in G with
n vertices.

1. If G contains all the paths, then gn has factorial growth, that is,
n! ≤ gn ≤ cnn! for some c > 1;

2. else, if G contains all the star forests, then gn has almost-factorial growth, that is,
B(n) ≤ gn ≤ εnn! for all ε > 0, where B(n) is the nth Bell number;

3. else, if G contains all the matchings, then gn has semi-factorial growth, that is,
ann(1−1/k)n ≤ gn ≤ bnn(1−1/k)n for some integer k ≥ 2 and some a, b > 0;
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4. else, if G contains all the stars, then gn has exponential growth, that is,
2n−1 ≤ gn ≤ cn for some c > 2;

5. else, if G contains all the graphs with a single edge, then gn has polynomial growth, that is,
gn = P (n) for some polynomial P (n) of degree at least 2 and n sufficiently large;

6. else, gn is constant, namely gn is equal to 0 or 1 for n sufficiently large.

Remark. As mentioned in the introduction, some of the results given by Theorem 2 follow from
the previous work on hereditary classes. In particular, the classification of growth between pseudo
factorial (this includes our categories factorial, almost-factorial and semi-factorial), exponential,
polynomial and constant was proved by Scheinerman and Zito in [15]. A refined description of the
exponential growth category was also proved in this paper (we have not included this refinement
in our statement of the classification Theorem 2 since we found no shorter proof of this result in
the context of minor-closed classes). The refined descriptions of the semi-factorial and polynomial
growth categories stated in Theorem 2 were established in [2]. Finally, the jump between the
semi-factorial growth category and the almost-factorial growth category was established in [4].

The rest of this section is devoted to the proof of Theorem 2. This proof is self-contained and
does not use the results from [15, 2, 3, 4]. We begin by the following easy estimates.

Lemma 3. 1. The number of path forests of size n satisfies |Pn| ≥ n!.
2. The number of star forests of size n satisfies |Sn| ≥ B(n).
3. The number of matchings of size n satisfies |Mn| ≥ n!! = n(n− 2)(n− 4) . . ..
4. The number of stars of size n satisfies |Xn| ≥ 2n−1.

We recall that log(n!) = n log(n) + O(n), log B(n) = n log(n) − n log(log(n)) + O(n) and
log(n!!) = n log(n)/2 + O(n).

Proof. 1. The number of path forests of size n ≥ 2 made of a single path is n!/2; the number of
path forests of size n ≥ 2 made of an isolated vertex and a path is n!/2.
2. A star-forest defines a partition of [n] := {1, 2, . . . , n} (together with some marked vertices: the
centers of the stars) and the partitions of [n] are counted by the Bell numbers B(n).
3. The vertex n of a matching of size n can be isolated or joined to any of the (n − 1) other
vertices, hence |Mn| ≥ |Mn−1|+ n|Mn−2|. The property |Mn| ≥ n!! follows by induction.
4. The number of stars for which 1 is the center of the star is 2n−1.

Proof of Theorem 2
• The lower bound for classes of graphs containing all paths follows from Lemma 3 while the upper
bound follows from Theorem 1.

• The lower bound for classes of graphs containing all the star forests but not all the paths follows
from Lemma 3. The upper bound is given by the following Claim (and the observation that if a
class G does not contain a given path P , then G ⊆ Ex(P )).
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Claim 4. For any path P , the growth rate of Ex(P ) is bounded by εnnn for all ε > 0.

The proof of Claim 4 use the notion of depth-first search spanning tree (or DFS tree for short)
of a graph. A DFS tree of a connected graph G is a rooted spanning tree obtained by a depth-first
search algorithm on G (see, for instance, [5]). If G is not connected, a choice of a DFS tree on
each component of G is a DFS spanning forest. We recall that if T is a DFS spanning forest of G,
every edge of G which is not in T joins a vertex of T to one of its ancestors (see [5]).

Proof. Let P be the path of size k. Let G be a graph in Ex(P ) and let T be a DFS spanning
forest of G. We wish to bound the number of pairs (G,T ) of this kind.
• First, the height of T is at most k−1 (otherwise G contains P ). The number of (rooted labelled)
forests of bounded height is at most εnnn for all ε > 0; this is because the associated exponential
generating function is analytic everywhere and hence has infinite radius of convergence (see Section
III.8.2 in [7]).
• Second, since T is a DFS spanning forest, any edge in G which is not in T joins a vertex of T to
one of its ancestors. Since the height of T is at most k−1, each vertex has at most k ancestors, so
can be joined to its ancestors in at most 2k different ways. This means that, given T , the graph
G can be chosen in at most 2kn ways, and so the upper bound εnnn for all ε > 0 holds for the
number of pairs (G,T ).

• We now consider minor-closed classes which do not contain all the paths nor all the star forests.
Given two sequences (fn)n∈N and (gn)n∈N, we write fn ³exp gn if there exist a, b > 0 such that
fn ≤ angn and gn ≤ bnfn. Observe that if G contains all the matchings, then gn ≥ n!! ³exp nn/2

by Lemma 3. We prove the following more precise result.

Claim 5. Let G be a minor-closed class containing all matchings but not containing all the paths
nor all the star forests. Then, there exists an integer k ≥ 2 such that gn ³exp n(1−1/k)n.

Remark. For any integer k ≥ 2, there exists a minor-closed class of graphs G such that gn ³exp

n(1−1/k)n. For instance, the class G in which the connected components have no more than k
vertices satisfies this property (see Lemma 7 below).

Proof. Let G be a minor-closed class G containing all matchings but not a given path P nor a
given star forest S. We denote by p and s the size of P and S respectively. Let F be set of graphs
in G such that every vertex has degree at most s. The following lemma compares the growth rate
of F and G.

Lemma 6. The number fn of graphs of size n in F satisfies fn ³exp gn.

Proof. Clearly fn ≤ gn so we only have to prove that there exists b > 0 such that gn ≤ bnfn. Let
c be the number of stars in the star forest S and let s1, . . . , sc be the respective number of edges
of these stars (so that s = c + s1 + . . . + sc).
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• We first prove that any graph in G has less than c vertices of degree greater than s. We suppose
that a graph G ∈ G has c vertices v1, . . . , vc of degree at least s and we want to prove that G
contains the forest S as a subgraph (hence as a minor; which is impossible). For i = 1 . . . , n,
let Vi be the set of vertices distinct from v1, . . . , vc which are adjacent to vi. In order to prove
that G contains the forest S as a subgraph it suffices to show that there exist disjoint subsets
S1 ⊆ V1, . . . , Sc ⊆ Vc of respective size s1, . . . , sc. Suppose, by induction, that for a given k ≤ c
there exist disjoint subsets S1 ⊆ V1, . . . , Sk−1 ⊆ Vk−1 of respective size s1, . . . , sk−1. The set
Rk = Vk −

⋃
i≤k Si has size at least s− c−∑

i<k si ≥ sk, hence there is a subset Sk ⊆ Vk distinct
from the Si, i < k of size sk. The induction follows.
• We now prove that gn ≤

(
n
c

)
2cnfn. For any graph in G one obtains a graph in F by deleting

all the edges incident to the vertices of degree greater than s. Therefore, any graph of Gn can
be obtained from a graph of Fn by choosing c vertices and adding some edges incident to these
vertices. There are at most

(
n
c

)
2cnfn graphs obtained in this way.

It remains to prove that fn ³exp n(1−1/k)n for some integer k ≥ 2. Let G be a graph in F
and let T be a tree spanning of one of its connected components. The tree T has height less than
p (otherwise G contains the path P as a minor) and vertex degree at most s. Hence, T has at
most 1 + s + . . . + sp−1 ≤ sp vertices. Thus the connected components of the graphs in F have
at most sp vertices. For a connected graph G, we denote by m(G) the maximum r such that F
contains the graph consisting of r disjoint copies of G. We say that G has unbounded multiplicity
if m(G) is not bounded. Note that the graph consisting of 1 edge has unbounded multiplicity
since G contains all matchings.

Lemma 7. Let k be the size of the largest connected graph in F having unbounded multiplicity.
Then, fn ³exp n(1−1/k)n.

Proof. • Let G be a connected graph in F of size k having unbounded multiplicity. The class of
graphs consisting of disjoint copies of G and isolated vertices (these are included in order to avoid
parity conditions) is contained in F and has exponential generating function exp(z + zk/a(G)),
where a(G) is the number of automorphisms of G. Hence fn is of order at least n(1−1/k)n, up to
an exponential factor (see Corollary VIII.2 in [7]).
• Let L be the class of graphs in which every connected component C appears at most m(C)
times. Then clearly F ⊆ L. The exponential generating function for L is P (z) exp(Q(z)), where
P (z) collects the connected graphs with bounded multiplicity, and Q(z) those with unbounded
multiplicity. Since Q(z) has degree k, we have an upper bound of order n(1−1/k)n.

This finishes the proof of Claim 5.

• We now consider the classes of graphs containing all the stars but not all the matchings. The
lower bound for these classes follows from Lemma 3 while the upper bound is given by the following
claim.

Claim 8. Let Mk be a perfect matching on 2k vertices. The growth rate of Ex(Mk) is at most
exponential.
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Proof. Let G be a graph of size n in Ex(Mk) and let M be a maximal matching of G. The matching
M has no more than 2k− 2 vertices (otherwise, Mk < G). Moreover, the remaining vertices form
an independent set (otherwise, M is not maximal). Hence G is a subgraph of the sum Hn of the
complete graph K2k−2 and n − (2k − 2) independent vertices. There are

(
n

2k−2

)
ways of labeling

the graph Hn and 2e(Hn) ways of taking a subgraph, where e(Hn) =
(
2k−2

2

)
+(2k−2)(n−2k+2) is

the number of edges of Hn. Since
(

n
2k−2

)
is polynomial and e(Hn) is linear, the number of graphs

of size n in Ex(Mk) is bounded by an exponential.

• We now consider consider classes of graphs G containing neither all the matchings nor all the
stars. If G does not contain all the graphs with a single edge, then either G contains all the graphs
without edges and gn = 1 for n large enough or gn = 0 for n large enough. Observe that if G
contains the graphs with a single edge, then gn ≥ n(n−1)

2 . It only remains to prove the following
claim:

Claim 9. Let G be a minor-closed class containing neither all the matching nor all the stars.
Then, there exists an integer N and a polynomial P such that gn = P (n) for all n ≥ N .

Remark. For any integer k ≥ 2, there exists a minor-closed class of graphs G such that gn = P (n)
where P is a polynomial of degree k. Indeed, we let the reader check that the class G of graphs
made of one star of size at most k plus some isolated vertices satisfies this property.

Proof. Since G does not contain all matchings, one of the minimal excluded minors of G is a graph
M which is made of a set of k independent edges plus l isolated vertices. Moreover, G does not
contain all the stars, thus one of the minimal excluded minors of G is a graph S made of one star
on s vertices plus r isolated vertices.
• We first prove that for every graph G in G having n ≥ max(s + r, 2k + l) vertices, the number
of isolated vertices is at least n− 2ks. Observe that for every graph G in G having at least s + r
vertices, the degree of the vertices is less than s (otherwise, G contains the star S as a minor).
Suppose now that a graph G in G has n ≥ max(s + r, 2k + l) vertices from which at least 2ks are
not isolated. Then, one can perform a greedy algorithm in order to find k independent edges. In
this case, G contains the graph M as a minor, which is impossible.
• Let M,S, H1, . . . , Hh be the minimal excluded minors of G and let M ′, S′, H ′

1, . . . , H
′
h be the

same graphs after deletion of their isolated vertices. We prove that there exists N ∈ N such that
Gn = Fn for all n ≥ N , where F = Ex(H ′

1, . . . ,H
′
h). Let m be the maximal number of isolated

vertices in the excluded minors M,S, H1, . . . , Hh and let N = max(s + r, 2k + l, 2ks + m). If G
has at least N vertices, then G has at least m isolated vertices, hence G is in G if and only if it is
in F .
• We now prove that there exists a polynomial P with rational coefficients such that fn ≡ |Fn| =
P (n). Let C be the set of graphs in F without isolated vertices; by convention we consider the
graph of size 0 as being in C. The graphs in C have at most max(s + r, 2k + l, 2ks) vertices,
hence C is a finite set. We say that a graph in G follows the pattern of a graph C ∈ C if C is
the graph obtained from G by deleting the isolated vertices of G and reassigning the labels in
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{1, . . . , r} respecting the order of the labels in G. By the preceding points, any graph in F follows
the pattern of a graph in C and, conversely, any graph following the pattern of a graph in C is in
F (since the excluded minors M ′, S′,H ′

1, . . . , H
′
h of F have no isolated vertices). The number of

graphs of size n following the pattern of a given graph C ∈ C is
(

n
|C|

)
, where |C| is the number of

vertices of C. Thus, fn =
∑

C∈C
(

n
|C|

)
which is a polynomial.

This conclude the proof of Theorem 2.

3 Growth constants

We say that class G has growth constant γ if limn→∞ (gn/n!)1/n = γ, and we write γ(G) = γ.

Proposition 10. Let G be a minor-closed class such that all the excluded minors of G are 2-
connected. Then, γ(G) exists.

Proof. In the terminology of [12], the class G is small (because of Theorem 1), and it is addable
because of the assumption on the forbidden minors. Hence, Theorem 3.3 from [12] applies and
there exists a growth constant.

We know state a theorem about the set Γ of growth constants of minor-closed classes. In what
follows we denote by ξ ≈ 1.76 the inverse of the unique positive root of x exp(x) = 1.

Theorem 11. Let Γ be the set of real numbers which are growth constants of minor-closed classes
of graphs.

1. The values 0, 1, ξ and e are in Γ.

2. If γ ∈ Γ then 2γ ∈ Γ.

3. There is no γ ∈ Γ with 0 < γ < 1.

4. There is no γ ∈ Γ with 1 < γ < ξ.

Remarks. • The property 1 of Theorem 11 can be extended with the growth constants of the
minor-closed classes listed in table by table 1.
• The properties 2, 3 and 4 of Theorem 11 remain valid if one replaces Γ by the set Γ′ = {γ′ =
lim sup

(
gn

n!

)1/n
/G minor-closed}.

Before the proof of Theorem 11, we make the following remark. Let G be a minor-closed class,
let C be the family of all connected members of G, and let G(z) and C(z) be the corresponding
generating functions. Then if C has growth constant γ, so does G. This is because the generating
functions G(z) is bounded by exp(C(z)) (they are equal if the forbidden minors for G are all
connected), and both functions have the same dominant singularity.
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Class of graphs Growth constant Reference
Ex(Pk) 0 This paper
Path forests 1 Standard
Caterpillar forests ξ ≈ 1.76 This paper
Forests = Ex(K3) e ≈ 2.71 Standard
Ex(C4) 3.63 [10]
Ex(K4 − e) 4.18 [10]
Ex(C5) 4.60 [10]
Outerplanar = Ex(K4,K2,3) 7.320 [1]
Ex(K2,3) 7.327 [1]
Series parallel = Ex(K4) 9.07 [1]
Ex(W4) 11.54 [10]
Ex(K5 − e) 12.96 [10]
Ex(K2 ×K3) 14.13 [10]
Planar 27.226 [9]
Embeddable in a fixed surface 27.226 [11]
Ex(K3,3) 27.229 [8]

Table 1: A table of some known growth constants.

Proof. 1) • All classes whose growth is not at least factorial have growth constant 0. In particular,
γ(Ex(P )) = 0 for any path P .
• The number of labelled paths is n!/2. Hence, by the remark made before the proof, the growth
constant of the class of path forests is 1.
• A caterpillar is a tree consisting of a path and vertices directly adjacent to (i.e. one edge away
from) that path. Let C be the class of graphs whose connected components are caterpillars, which
is clearly minor-closed. A rooted caterpillar can be considered as an ordered sequence of stars.
Hence the associated generating function is 1/(1− zez). The dominant singularity is the smallest
positive root of 1− zez = 0, and γ(C) is the inverse ξ of this value.
• The growth constant of the class of acyclic graphs (forests) is the number e. This is because the
number of labelled trees is nn−2 which, up to a sub-exponential factor, is asymptotic to ∼ enn!.

2) This property follows from an idea by Colin McDiarmid. Suppose γ(G) = γ, and let AG be
family of graphs G having a vertex v such that G− v is in G; in this case we say that v is an apex
of G. It is easy to check that if G is minor-closed, so is AG. Now we have

2n|Gn| ≤ |AGn+1| ≤ (n + 1)2n|Gn|.
The lower bound is obtained by taking a graph G ∈ G with vertices [n], adding n + 1 as a new
vertex, and making n + 1 adjacent to any subset of [n]. The upper bound follows the same
argument by considering which of the vertices 1, 2, . . . , n + 1 acts as an apex. Dividing by n! and
taking n-th roots, we see that γ(AG) = 2γ(G).
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3) This has been already shown during the proof of Theorem 2. Indeed, if a minor-closed class
G contains all paths, then |Gn| ≥ n!/2 and the growth constant is at least 1. Otherwise gn < εnnn

for all ε > 0 and γ(G) = 0.

4) We consider the graphs Catl and Apl represented in Figure 1.

2 31 2 31l l. . .. . .

Figure 1: The graph Catl (left) and the graph Apl (right).

If a minor-closed class G contains the graphs Catl for all l, then G contains all the caterpillars
hence γ(G) ≥ ξ ≈ 1.76. If G contains the graphs Apl for all l, then G contains the apex class
of path forests and γ(G) ≥ 2. Now, if G contains neither Catk nor Apl for some k, l, then
G ⊆ Ex(Catl, Apl). Therefore, it is sufficient to prove the following claim.

Claim 12. The growth constant of the class Ex(Catk, Apl) is 1 for all k > 2, l > 1.

Remark. Claim 12 gives in fact a characterization of the minor-closed classes with growth
constant 1. These are the classes containing all the paths but neither all the caterpillars nor all
the graphs in the apex class of the path forests. For instance, the class of trees not containing
a given caterpillar (as a minor) and the class of graphs not containing a given star (as a minor)
both have growth constant 1.

Proof. Observe that the class Ex(Catk, Apl) contains all paths as soon as k > 2 and l > 1. Hence,
γ(Ex(Catk, Apl)) ≥ 1 (by Lemma 3) and we only need to prove that γ(Ex(Catk, Apl)) ≤ 1. We
first prove a result about the simple paths of the graphs in Ex(Catk, Apl).

Lemma 13. Let G be a graph in Ex(Catk,Apl) and let P be a simple path in G. Then, there are
less than kl + 4k3l vertices in P of degree greater than 2.

Proof. • We first prove that any vertex not in P is adjacent to less than l vertices of P and any
vertex in P is adjacent to less than 2l vertices of P . Clearly, if G contains a vertex v not in P
and adjacent to l vertices P , then G contains Apl as a minor. Suppose now that there is a vertex
v in P adjacent to 2l other vertices of P . In this case, v is adjacent to at least l vertices in one of
the simple paths P1, P2 obtained by removing the vertex v from the path P . Hence G contains
Apl as a minor.
• We now prove that there are less than kl vertices in P adjacent to at least one vertex not in P .
We suppose the contrary and we prove that there exist k independent edges ei = (ui, vi), i = 1 . . . k
such that ui is in P and vi is not in P (thereby implying that Catk is a minor of G). Let r < k
and let ei = (ui, vi), i ≤ r be independent edges with ui ∈ P and vi /∈ P . The set of vertices in P
adjacent to some vertices not in P but to none of the vertices vi, i ≤ r has size at least kl− rl > 0
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(this is because each of the vertex vi is adjacent to less than l vertices of P ). Thus, there exists an
edge er+1 = (ur+1, vr+1) independent of the edges ei, i ≤ r with ur+1 ∈ P and vr+1 /∈ P . Thus,
any set of r < k independent edges with one endpoint in P and one endpoint not in P can be
increased.
• We now prove that there are no more than 4k3l vertices in P adjacent to another vertex in P
beside its 2 neighbors in P . We suppose the contrary and we prove that either Catk or Apl is a
minor of G. Let EP be the set of edges not in the path P but joining 2 vertices of P . We say that
two independent edges e = (u, v) and e′ = (u′, v′) of EP cross if the vertices u, u′, v, v′ appear in
this order along the path P ; this situation is represented in Figure 2 (a).
- We first show that there is a subset E′

P ⊆ EP of k3 independent edges. Let S be any set of
r < k3 edges in EP . The number of edges in EP sharing a vertex with one of the edges in S is
at most 2r × 2l < 4k3l (this is because any vertex in P is adjacent to less than 2l vertices in P ).
Since |EP | ≥ 4k3l, any set of independent edges in EP of size less than k3 can be increased.
- We now show that for any edge e in E′

P there are at most k edges of E′
P crossing e. Suppose

that there is a set S ⊆ E′
P of k edges crossing e. Let P ′ be the path obtained from P ∪ e by

deleting the edges of P that are between the endpoints of e. The graph made of P ′ and the set of
edges S contains the graph Catl as a minor which is impossible.
- We now show that there exists a subset E′′

P ⊆ E′
P of k2 non-crossing edges. Let S be any set of

r < k2 edges in E′
P . By the preceding point, the number of edges in E′

P crossing one of the edges
in S is less than rk < k3. Since |E′

P | ≥ k3, any set of non-crossing edges in E′
P of size less than

k2 can be increased.
- Lastly, we show that the graph Catk is a minor of G. We say that an edge e = (u, v) of E′′

P is
inside another edge e′ = (u′, v′) if u′, u, v, v′ appear in this order along the path P ; this situation
is represented in Figure 2 (b). We define the height of the edges in E′′

P as follows: the height of
an edge e is 1 plus the maximum height of edges of E′′

P which are inside e (the height is 1 if there
is no edge inside e). The height of edges have been indicated in Figure 2 (c). Suppose that there
is an edge of height k in E′′

P . Then there is a set S of k edges e1 = (u1, v1), . . . , ek = (uk, vk)
such that the vertices u1, u2, . . . , uk, vk, vk−1, . . . , v1 appear in this order along P . In this case,
the subgraph made of S and the subpath of P between u1 and uk contains Catk as a minor.
Suppose now that there is no edge of height k. Since there are k2 edges in E′′

P , there is a integer
i < k such that the number of edges of height i is greater than k. Thus, there is a set S of k
edges e1 = (u1, v1), . . . , ek = (uk, vk) such that the vertices u1, v1, u2, v2, . . . , uk, vk appear in this
order along P . In this case, the subgraph obtained from P ∪ {e1, . . . , ek} by deleting an edge of
P between ui and vi for all i contains Catk as a minor.

For any integer N , we denote by GN
T the set of pairs (G,T ) where G is a graph and T is a DFS

spanning forest on G having height at most N (the definition of DFS spanning forest was given
just after Claim 4).

Lemma 14. For any graph G in Ex(Catk,Apl), there exists a pair (G′, T ′) in Gkl+4k3l
T such that

G is obtained from G′ by subdividing some edges of T .

10
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Figure 2: (a) Two crossing edges. (b) An edge inside another. (c) A set of non-crossing edges.

Proof. Let G be a graph in Ex(Catk, Apl), let T be a DFS spanning forest of G and let R be the
set of roots of T (one root for each connected components of G). One contracts a vertex v of
degree 2 by deleting v and joining its two neighbors by an edge. Let G′ and T ′ be the graphs and
trees obtained from G and T by contracting the vertices v /∈ R of degree 2 which are incident to
2 edges of T . We want to prove that (G′, T ′) is in Gkl+4k3l

T .
• Since T is a DFS spanning forest of G, every edge of G which is not in T connects a vertex to
one of its ancestors [5]. This property characterize the DFS spanning forests and is preserved by
the contraction of the vertices of degree 2. Hence, T ′ is a DFS spanning forest of G′.
• By Lemma 13, the number of vertices which are not of degree 2 along a path of T from a root
to a leaf is less than kl + 4k3l. Thus, the height of T ′ is at most kl + 4k3l.

We have already shown in the proof of Claim 4 that the radius of convergence of the generating
function GN

T (z) of the set GN
T is infinite. Moreover, the generating function of the set of graphs

that can be obtained from pairs (G′, T ′) in GN
T by subdividing the tree T ′ is bounded (coefficient

by coefficient) by GN
T ( z

1−z ) (since a forest T ′ on a graph G′ of size n has at most n−1 edges to be
subdivided). Thus, Lemma 14 implies that the generating function of Ex(Catk,Apl) is bounded
by Gkl+4k3l

T ( z
1−z ) which has radius of convergence 1. Hence, the growth constant γ(Ex(Catk, Apl))

is at most 1.

This concludes the proof of Claim 12 and Theorem 11.

We now investigate the topological properties of the set Γ and in particular its limit points.
First note that Γ is countable (as a consequence of the Minor Theorem of Robertson and Seymour
[14]).

Lemma 15. Let H1, H2, . . . Hk be a family of 2-connected graphs, and let H = Ex(H1,H2, . . . Hk).
If G is a 2-connected graph in H, then γ(H ∩ Ex(G)) < γ(H).

Proof. The condition on 2-connectivity guarantees that the growth constants exist. By Theorem
4.1 from [12], the probability that a random graph in Hn contains G as a subgraph is a least
1 − e−αn for some α > 0. Hence the probability that a random graph in Hn does not contain G
as a minor is at most e−αn. If we denote G = H ∩ Ex(G), then we have

|Gn|
|Hn| =

|Gn|
n!

n!
|Hn| ≤ e−αn.

11



Taking limits, this implies
γ(G)
γ(H)

≤ lim
(
e−αn

)1/n = e−α < 1.

We recall that given a set A of real numbers, a is a limit point of A if for every ε > 0 there
exists x ∈ A− {a} such that |a− x| < ε.

Theorem 16. Let H1, . . . , Hk be 2-connected graphs which are not cycles. Then, γ = γ(Ex(H1, . . . ,Hk))
is a limit point of Γ.

Proof. For k ≥ 3, let Gk = G ∩ Ex(Ck), where Ck is the cycle of size k. Because of Proposition
10, the class Gk has a growth constant γk, and because of Lemma 15 the γk are strictly increasing
and γk < γ for all k. It follows that γ′ = limk→∞ γk exists and γ′ ≤ γ. In order to show equality
we proceed as follows.

Let gn = |Gn| and let gk,n = |(Gk)n|. Since γ = limn→∞(gn/n!)1/n, for all ε > 0 there exists N
such that for n > N we have

(gn/n!)1/n ≥ γ − ε.

Now define fn =
gn

e2n!
and fk,n =

gk,n

e2n!
. From [12, Theorem 3], the sequence fn is supermul-

tiplicative and γ = lim
n→∞

(fn)1/n = lim
n→∞

(gn/n!)1/n exists and equals supn (fn)1/n. Similarly,

γk = limn→∞ (fk,n)1/n = supn (fk,n)1/n.
But since a graph on less than k vertices cannot contain Ck as a minor, we have gk,n = gn for

k > n. Equivalently, fk,n = fn for k > n. Combining all this, we have

γk ≥ (fk,n)1/n ≥ (fn)1/n ≥ γ − ε

for k > N . This implies γ′ = lim γk ≥ γ.

Notice that Theorem 16 applies to all the classes in Table 1 starting at the class of outerplanar
graphs. However, it does not apply to the classes of of forests. In this case we offer an independent
proof based on generating functions.

Lemma 17. The number e is a limit point of Γ.

Proof. Let Fk be the class of forests whose trees are made of a path and rooted trees of height
at most k attached to vertices of the path. Observe that the classes Fk are minor-closed, that
Fk ⊂ Fk+1, and that ∪kFk = F , where F is the class of forests. We prove that γ(Fk) is a strictly
increasing sequence tending to e = γ(F).

Recall that the class Fk and the class Tk of its connected members have the same growth
constant. Moreover, the class ~Tk of trees with a distinguished oriented path to which rooted trees
of height at most k are attached has the same growth constant as Tk (this is because there are
only n(n− 1) of distinguishing and orienting a path in a tree of size n). The generating function

12



associated to ~Tk is 1/(1−Fk(z)), where Fk(z) of is the generating function of rooted trees of height
at most k. Hence, γ(Fk) = γ(~Tk) is the inverse of the unique positive root ρk of Fk(ρk) = 1.

Recall that the generating functions Fk are obtained as follows; see Section III.8.2 in [7]).

F0(z) = z; Fk+1(z) = zeFk(z) for k > 0.

It is easy to check that the roots ρk of Fk(ρk) = 1 are strictly decreasing. Recall that the generating
function F (z) of rooted trees has a singularity at 1/e and that F (1/e) = 1 (see [7]). Moreover,
for all n, 0 ≤ [zn]Fk(z) ≤ [zn]F (z) and limk→∞[zn]Fk(z) = [zn]F (z), thus limk→∞ Fk(1/e) =
F (1/e) = 1. Furthermore, the functions Fk(z) are convex and F ′k(1/e) ≥ 1 (since the coefficients
of Fk are positive and [z1]Fk(z) = 1). Thus, Fk(z) > Fk(1/e) + (z − 1/e) which implies 1/e ≤
ρk ≤ 1/e + (Fk(1/e) − F (1/e)). Thus, the sequence ρk tends to 1/e and the growth constants
γ(Fk) = 1/ρk tend to e.

Remark. The number ν ≈ 2.24, which is the inverse of the smallest positive root of z exp(z/(1−
z)) = 1, can be shown to be a limit point of Γ by similar methods. It is the smallest number
which we know to be a limit point of Γ. It is the growth constant of the family whose connected
components are made of a path P and any number of paths of any length attached to the vertices
of P .

Remark. All our examples of limit points in Γ come from strictly increasing sequences of growth
constants that converge to another growth constant. Is it possible to have an infinite strictly
decreasing sequences of growth constants? As we see now, this is related to a classical problem. A
quasi-ordering is a reflexive and transitive relation. A quasi-ordering≤ in X is a well-quasi ordering
if for every infinite sequence x1, x2, . . . in X there exist i < j such that xi ≤ xj . Now consider the
set X of minor-closed classes of graphs ordered by inclusion. It is an open problem whether this is
a well-quasi ordering [6]. Assuming this is the case, it is clear that an infinite decreasing sequence
γ1 > γ2 > · · · of growth constants cannot exist. For consider the corresponding sequence of graph
classes G1,G2, . . . . For some i < j we must have Gi ⊆ Gj , but this implies γi ≤ γj .

4 Conclusion: some open problems

We close by listing some of the open questions which have arisen in this work.

1) We know that a class G has a growth constant provided that all its excluded minor are
2-connected. The condition that the excluded-minors are 2-connected is certainly not necessary as
is seen by noting that the apex family of any class which has a growth constant also has a growth
constant. It is also easy to see that such an apex family is also minor-closed and that at least one
of its excluded minors is disconnected.

Thus our first conjecture is that every minor-closed family has a growth constant, that is,
lim

(
gn

n!

)1/n exists for every minor-closed class G.
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2) A minor-closed class is smooth if lim gn

ngn−1
exists. It follows that this limit must be the

growth constant and that a random member of G will have expected number of isolated vertices
converging to 1/γ. Our second conjecture is that if every excluded minor of a minor-closed class
is 2-connected then the class is smooth.

If true, then it would follow that a random member of the class would qualitatively exhibit all
the Poisson type behaviour exhibited by the random planar graph. However proving smoothness
for a class seems to be very difficult and the only cases which we know to be smooth are when the
exponential generating function has been determined exactly.

3) We have shown that the intervals (0, 1) and (1, ξ) are ”gaps” which contain no growth
constant. We know of no other gap, though if there is no infinite decreasing sequence of growth
constants they must exist. One particular question which we have been unable to settle is whether
(ξ, 2) is also a gap.

4) We have shown that for each nonnegative integer k, 2k is a growth constant. A natural
question is whether any other integer is a growth constant. More generally, is there any algebraic
number in Γ besides the powers of 2?

5) All our results concern labelled graphs. In unlabelled setting, the most important question
to settle is whether there is an analogue of the theorem of Norine et al. More precisely, suppose
G is a minor-closed class of graphs and that un denotes the number of unlabelled members of Gn.
Does there exist a finite d such that un is bounded above by dn?

Aknowledgements. We are very grateful to Colin McDiarmid who suggested the apex-construction,
to Angelika Steger for useful discussions, and to Norbert Sauer and Paul Seymour for information
on well quasi orders.
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[6] R. Diestel and D. Kühn. Graph minor hierarchies. Discrete Appl. Math., 145(2):167–182,
2005.

[7] P. Flajolet and R. Sedgewick. Analytic combinatorics. Web edition 2007, 767+xii pages
(available from the authors web pages). To be published in 2008 by Cambridge University
Press.
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