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Abstract. We show that the classifying category C(T) of a depen-

dent type theory T with axioms for identity types admits a non-

trivial weak factorisation system. After characterising this weak fac-
torisation system explicitly, we relate it to the homotopy theory of

groupoids.

1. Introduction

From the point of view of mathematical logic and theoretical computer
science, Martin-Löf’s axioms for identity types [24] admit a conceptually
clear explanation in terms of the propositions-as-types paradigm [14, 21, 27].
The fundamental idea behind this explanation is that, for any two elements
a, b of a type A, we have a new type IdA(a, b), whose elements are to be
thought of as proofs that a and b are equal. Yet, identity types determine a
highly complex structure on each type, which is far from being fully under-
stood. A glimpse of this structure reveals itself as soon as we start applying
the construction of identity types iteratively: not only do we have proofs
of equality between two elements of a type, but also of proofs of equality
between such proofs, and so on. The difficulty of isolating the structure
determined by identity types is closely related to the problem of describ-
ing a satisfactory category-theoretic semantics for them. For example, the
semantics arising from locally cartesian closed categories [9, 29] validates
not only the axioms for identity types, but also additional axioms, known
as the reflection rules, which make identity types essentially trivial. One
approach to obtain a semantics of identity types that does not validate the
reflection rules is to consider categories equipped with a weak factorisation
system [2].

Our aim here is to advance our understanding of the categorical struc-
ture implicit in the axioms for identity types. We do so by providing fur-
ther evidence of a close connection with the notion of a weak factorisa-
tion system. Our main result states that if T is a dependent type theory
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with the axioms for identity types, then its classifying category C(T) ad-
mits a non-trivial weak factorisation system, which we shall refer to as the
identity type weak factorisation system. This result should be regarded as
analogous to the fundamental result exhibiting the structure of a carte-
sian closed category on the classifying category of the simply-typed lambda
calculus [19, 28]. As such, it provides also a contribution to the develop-
ment of a functorial semantics [20] for dependent type theories with identity
types [2, 5, 7, 10, 15].

A remarkable feature of the identity type weak factorisation system is
that its definition does not involve the notion of identity types, but only a
canonical class of maps in C(T), to which we shall refer as dependent pro-
jections. Indeed, the axioms for identity types are used only to verify that
the appropriate axioms hold. After having established the existence of the
identity type weak factorisation system, we will provide an explicit charac-
terisation of its classes of maps. This will lead us to two applications. The
first establishes an unusual stability property of the identity type weak fac-
torisation system; the second provides further insight into the relationship
between dependent type theories with identity types and the category of
groupoids, which we denote Gpd.

The idea of relating identity types and groupoids dates back to the dis-
covery of the groupoid model of type theory [12]. Indeed, Hofmann and
Streicher noticed that the axioms for identity types allow us to equip each
type with the structure of a groupoid. We develop this idea in three direc-
tions. First, we generalise it by exhibiting a groupoid structrure on each
context, which we think of as a family of types, rather than on a single
type. Secondly, we extend this construction to a functor F : C(T)→ Gpd.
Finally, we use the functor F to relate the identity type weak factori-
sation system to the natural Quillen model structure on the category of
groupoids [1, 17], by showing how the identity type weak factorisation sys-
tem is mapped into the weak factorisation system determined by injective
equivalences and Grothendieck fibrations in Gpd.

2. Identity types

2.1. The syntax of dependent type theories. The dependent type the-
ories that we consider allow us to make judgements of four forms:

(1) A ∈ Type , a ∈ A , A = B ∈ Type , a = b ∈ A .

They assert, respectively, that A is a type, that a is an element of A, that A
and B are definitionally equal types, and that a and b are definitionally equal
elements of A. We speak of definitional equality, rather than just equality,
since the axioms for identity types will provide us with a second notion of
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equality, which we will refer to as propositional equality. The distinction
between definitional and propositional equality plays a fundamental role for
our purposes. As usual, the judgements in (1) may also be made relative to
contexts, which consist of lists of variable declarations of the form

(2) Φ =
(
x0 ∈ A0, x1 ∈ A1(x0), . . . , xn ∈ An(x0, . . . , xn−1)

)
.

For the context in (2) to be well-formed, it is necessary that the variables
x0, . . . , xn are distinct, and that the following sequence of judgements is
derivable

A0 ∈ Type ,

(x0 ∈ A0) A1(x0) ∈ Type ,
. . .

(x0 ∈ A0 , . . . , xn−1 ∈ An−1(x0, . . . , xn−2)) An(x0, . . . , xn−1) ∈ Type .

From now on, whenever we mention contexts, we implicitly assume that
they are well-formed. We write (Φ) J to express that a judgement J holds
under the assumptions in Φ. The axioms for a dependent type theory will
be stated here as deduction rules of the form

(Φ1) J1 · · · (Φn) Jn

(Φ) J
.

The dependent type theories that we discuss here are always be assumed to
include the basic axioms stated in Appendix A. For more information on
dependent type theories, see [21, 23].

2.2. The classifying category. We briefly recall the definition of the clas-
sifying category C(T) of a dependent type theory T. For a context Φ as in (2)
and a context Ψ = (y0 ∈ B0, . . . , ym ∈ Bm(y0, . . . , ym−1)), a context mor-
phism f : Φ → Ψ consists of a sequence f = (b0, . . . , bm) such that the
following judgements are derivable

(Φ) b0 ∈ B0 ,

(Φ) b1 ∈ B1(b0) ,
. . .

(Φ) bm ∈ Bm(b0, . . . , bm−1) .

We can define an equivalence relation on contexts by considering two con-
texts to be equivalent if they coincide up to renaming of their free variables
and up to componentwise definitional equality. Similarly, we can define an
equivalence relation on context morphisms by considering two context mor-
phisms from Φ to Ψ to be equivalent if they concide up to renaming of the
free variables in Φ and up to pointwise definitional equality. The classifying
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category C(T) can then be defined as having equivalence classes of contexts
as objects, and equivalence classes of context morphisms as maps. Com-
position is defined via substitution; and identity maps are defined in the
evident way [25]. When working with C(T), we implicitly identify contexts
and context morphisms up to the equivalence relations defined above, with-
out introducing additional notation. The empty context, written ( ) here,
is a terminal object in C(T).

2.3. Dependent contexts and dependent elements. To work with the
category C(T) and its slices, it will be convenient to have some abbreviations
for manipulating contexts, as developed in [6]. Let us consider a fixed
context Γ. For a sequence of variable declarations as in (2), we write (Γ) Φ ∈
Cxt to abbreviate the following sequence of judgements

(Γ) A0 ∈ Type ,

(Γ, x0 ∈ A0) A1(x0) ∈ Type ,
. . .

(Γ, x0 ∈ A0, . . . , xn−1 ∈ An−1(x0, . . . , xn−1)) An(x0, . . . , xn−1) ∈ Type .

When these are derivable, we say that Φ is a dependent context relative to Γ.
Dependent contexts relative to the empty context are simply contexts. If we
have a dependent context Φ relative to Γ, we obtain a new context (Γ,Φ)
by concatenation, and an evident map (Γ,Φ) → Γ, projecting away the
variables that are in Φ. Maps of this form will be referred to as dependent
projections. The class of dependent projections may be understood as the
closure under composition of the class of display maps [15, 32]. As we will
see in Section 4, dependent projections play a crucial role in the definition
of the identity type weak factorisation system. For a context Φ relative
to Γ, as above, and a sequence a = (a0, a1, . . . , an), we write (Γ) a ∈ Φ to
abbreviate the following sequence of judgements

(Γ) a0 ∈ A0 ,

(Γ) a1 ∈ A1(a0) ,
. . .

(Γ) an ∈ An(a0, . . . , an−1) .

When these can be derived, we say that a is a dependent element of Φ
relative to Γ, and obtain a map a : Γ → (Γ,Φ) over Γ. The expressions
(Γ) Φ ∈ Cxt and (Γ) a ∈ Φ should be understood as counterparts of the
first and second judgement in (1). It is also possible to introduce expressions
(Γ) Φ = Ψ ∈ Cxt and (Γ) a = b ∈ Φ that correspond to the third and fourth
judgement in (1), respectively, so that the evident counterparts of the rules
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in Appendix A hold. The details are essentially straightforward, and hence
omitted.

Remark 2.3.1. Let Φ be a context, or a dependent context, as in (2). We
also write (x ∈ Φ) to denote Φ itself. We then write (x ∈ Φ , y ∈ Φ) for
the result of duplicating Φ and renaming the variables in the second copy
to avoid clashes, so as to obtain the context(

x0 ∈ A0, x1 ∈ A1(x0), . . . , xn ∈ An(x0, . . . , xn−1),

y0 ∈ A0, y1 ∈ A1(y0), . . . , yn ∈ An(y0, . . . , yn−1)
)
.

2.4. The axioms for identity types. The axioms for identity types are
stated in Table 1. The axiom in (3) is referred to as the formation rule for
identity types. It asserts that if A is a type and a, b are elements of A, then
IdA(a, b) is a type. We omit the subscript in expressions of the form IdA(a, b)
when no confusion arises. If there exists an element p ∈ Id(a, b), then we say
that a and b are propositionally equal. The axiom in (4) is referred to as the
introduction rule for identity types. Elements of the form r(a) ∈ Id(a, a) are
referred to as reflexivity elements. The axioms in (5) and (6) are referred to
as the elimination rule and the computation rule, respectively. For brevity,
we have omitted from their premisses the judgement(

x ∈ A, y ∈ A, u ∈ Id(x, y), Θ(x, y, u)
)
C(x, y, u) ∈ Type .

Here we are assuming that Θ(x, y, u) is a dependent context relative to
the context (x ∈ A, y ∈ A, u ∈ Id(x, y)). We have highlighted the vari-
ables x, y, u in Θ(x, y, u) in order to describe their role in the deduction
rules without using substitution. All the axioms in Table 1 should be un-
derstood as being relative to a context Γ that is common to both the pre-
misses and the conclusion of the rules, which we leave implicit for brevity.
Hence, all the constructions that we perform in C(T) may equally well take
place in one of its slices. The presence of the implicit context Γ plays a role
only when stating further axioms, which we assume but do not spell out,
expressing commutation laws between the syntax of identity types and the
substitution operation. For example, the first of these axioms allows us to
derive a rule of the form

(x ∈ A0) A1(x)∈Type (x ∈ A0) a1(x)∈A1(x) (x ∈ A) b1(x)∈A1(x) a0∈A0

IdA1(x)(a1(x), b1(x))[a0/x] = IdA1(a0)(a1(a0), b1(a0)) ∈ Type
.

Since these axioms are essentially straightforward, we prefer to omit them.
However, let us point out that the assumption of these axioms ensures that
all the constructions that we perform, when regarded as taking place in one
of the slices of C(T), are stable under pullbacks.
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(3)
A ∈ Type a ∈ A b ∈ A

IdA(a, b) ∈ Type

(4)
a ∈ A

r(a) ∈ IdA(a, a)

(5)
p ∈ IdA(a, b) (x ∈ A, Θ(x, x, r(x))

´
d(x) ∈ C(x, x, r(x))

(Θ(a, b, p)) J(a, b, p, d) ∈ C(a, b, p)

(6)
a ∈ A (x ∈ A, Θ(x, x, r(x))) d(x) ∈ C(x, x, r(x))

(Θ(a, a, r(a)) J(a, a, r(a), d) = d(a) ∈ C(a, a, r(a))

Table 1. Deduction rules for identity types.

Remark 2.4.1. The elimination and computation rules, as stated in Ta-
ble 1, generalise the standard elimination and computation rules for iden-
tity types [24]. The latter can be obtained from the former by restricting
the context Θ(x, y, u) to be empty. The reason for adopting the generalised
rules instead of the standard ones is related to our preference for working
without assuming the axioms for Π-types. Without Π-types, the standard
rules are quite weak, since they do not seem to imply the Leibniz rule for
propositional equality [24], whereas our generalised rules suffice, as shown in
Lemma 2.5.1. Furthermore, the generalised rules become derivable from the
standard ones in the presence of Π-types, so that our development applies
also to dependent type theories with standard axioms for identity types and
Π-types.

Remark 2.4.2. We do not assume the rules in (7), to which we refer as the
reflection rules.

(7)
p ∈ Id(a, b)

a = b ∈ A

p ∈ Id(a, b)

r(a) = p ∈ Id(a, b)

The first reflection rule was shown to be independent from the axioms for
identity types in [12]. Note that the judgement r(a) ∈ Id(a, b), that is pre-
supposed by the conclusion of the second reflection rule, is derivable by the
first reflection rule and the standard rules concerning substitution, as given
in Appendix A. The reflection rules are generally avoided, since they imply
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that propositional equality and definitional equality collapse into equivalent
notions, which has the effect of destroying the decidability of type-checking,
one of the fundamental properties of dependent type theories [11]. As shown
in [15, Proposition 10.1.3] extending [31, Theorem 1.1], the reflection rules
are equivalent to the following rule

p ∈ Id(a, b) (x ∈ A, y ∈ A, u ∈ Id(x, y),Θ(x, y, u)) e(x, y, u) ∈ C(x, y, u)

(Θ(a, b, p)) J(a, b, p, [x]e(x, x, r(x))) = e(a, b, p) ∈ C(a, b, p)

Here and in the following, expressions of the form [x]f denote λ-abstractions
in the metatheory. If the computation rule for identity types in (5) is
understood as a version of the β-rule, then this rule can be understood
as a version of the η-rule.

2.5. Identity contexts. One fundamental fact for our development is that,
as shown in [8], the axioms for identity types can be used to construct
what we will refer to as identity contexts. More precisely, there are explicit
definitions such that all the rules in Table 2 are derivable. Because of
their similarity with the axioms for identity types, we refer to (8) as the
formation rule, to (9) as the introduction rule, to (10) as the elimination
rule, and to (11) as the computation rule for identity contexts. When stating
these rules, we leave again implicit a context Γ, to which all the notions are
assumed to be relative. For example, in the introduction rule Φ may be
assumed to be a context relative to Γ. When stating the elimination and
computation rules, we are assuming that Φ has the form in (2) and using the
notational conventions set in Remark 2.3.1. For a context Φ and a, b ∈ Φ,
we refer to a context of the form IdΦ(a, b) as an identity context. As before,
we have omitted the judgement(

x ∈ Φ, y ∈ Φ, u ∈ IdΦ(x, y),Θ(x, y, u)
)

Ω(x, y, u) ∈ Cxt

from the premisses of the elimination and computation rules. From now on,
we omit the subscript from expressions of the form IdΦ(a, b) if no confusion
arises. It will be convenient to fix some terminology. When we use the elim-
ination rule as in Table 2, we will say that we are applying the elimination
rule on p ∈ Id(a, b). We then refer to the relative context Ω(x, y, u) as the
eliminating context, and to d as the eliminating family.

Lemma 2.5.1 states a very useful property, to which we refer as the Leibniz
rule for contexts, which is going to be used repeatedly in what follows. To
prove it, we make use of the general formulation of the elimination and
computation rules that we adopt here.
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(8)
a ∈ Φ b ∈ Φ

IdΦ(a, b) ∈ Cxt

(9)
a ∈ Φ

r(a) ∈ IdΦ(a, a)

(10)
p ∈ IdΦ(a, b) (x ∈ Φ,Θ(x, x, r(x)) d(x) ∈ Ω(x, x, r(x))

(Θ(a, b, p)) J(a, b, p, d) ∈ Ω(a, b, p)

(11)
a ∈ Φ (x ∈ Φ,Θ(x, x, r(x))) d(x) ∈ Ω(x, x, r(x))

(Θ(a, a, r(a))) J(a, a, r(a), d) = d(a) ∈ Ω(a, a, r(a))

Table 2. Deduction rules for identity contexts.

Lemma 2.5.1. We can derive a rule of the form
p ∈ Id(a, b) (x ∈ Φ) Ω(x) ∈ Cxt e ∈ Ω(a)

p!(e) ∈ Ω(b)
such that

a ∈ Φ e ∈ Ω(a)

(r(a))!(e) = e ∈ Ω(a)

holds.

Proof. We use elimination over p ∈ Id(a, b) with(
x ∈ Φ, y ∈ Φ, u ∈ Id(x, y), z ∈ Ω(x)

)
Ω(y) ∈ Cxt

as the eliminating context. Since we have

(x ∈ Φ, z ∈ Ω(x)) z ∈ Ω(x)

the elimination rule allows us to derive

(z ∈ Ω(a)) J(a, b, p, [x]z) ∈ Ω(b) .

The required term p!(e) is defined as the result of substituting e ∈ Ω(a)
for z ∈ Ω(a) in the expression J(a, b, p, [x]z), so that

p!(e) = J(a, b, p, [x]e) ∈ Ω(b)

The second rule is an immediate consequence of this definition and the
computation rule. �
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The Leibniz rule allows us to give a description of the identity contexts
by induction on their length. For a context of length n = 1, the definition
is straightforward: if Φ = (x ∈ A), then elements of Φ are the same as
elements of the type A, and the identity context corresponding to a, b ∈ Φ
is given by

IdΦ(a, b) = (u ∈ IdA(a, b)) .
Assuming we know how to define the identity contexts associated to contexts
of length n, we can describe the identity contexts associated to a context of
length n + 1 as follows. Let us assume to have a context Φ of length n as
in (2), and consider a context Φ′ of length n+ 1 of the form

(12) Φ′ = (x ∈ Φ, xn+1 ∈ An+1(x)) .

By definition, elements a′, b′ ∈ Φ′ have the form a′ = (a, an+1) and b′ =
(b, bn+1), where a, b ∈ Φ, an+1 ∈ An+1(a), and bn+1 ∈ An+1(b). Their
associated identity context has the form

Id(a′, b′) =
(
u ∈ IdΦ(a, b), un+1 ∈ IdAn+1(b)(u!(an+1), bn+1)

)
where we have u!(an+1) ∈ An+1(b) by the following application of the Leib-
niz rule

u ∈ IdΦ(a, b) (x ∈ Φ) An+1(x) ∈ Type an+1 ∈ An+1(a)

u!(an+1) ∈ An+1(b)
.

In the following, we will need only this description of the identity contexts
and the rules in Table 2. Hence, we do not describe the other syntactic
constructs involved in them, and refer the reader to [8] for details.

3. The fundamental groupoid of a context

3.1. Contexts as spaces. The axioms for identity types allow us to think
of a context Φ as a space, as we explain below. To emphasize this per-
spective, we refer to elements of Φ as points. Given two points a, b ∈ Φ,
we refer to elements of Id(a, b) as paths from a to b. Following this idea,
the context Id(a, b) can be thought of as the space of all paths from a to b.
Now that we have points and paths, we may want to speak of homotopies
between paths. For this, it suffices to apply the formation rule as follows:

p0 ∈ Id(a, b) p1 ∈ Id(a, b)

Id(p0, p1) ∈ Cxt
.

Elements θ ∈ Id(p0, p1) will be referred to as homotopies from p0 to p1, and
two paths p0 ∈ Id(a, b) and p1 ∈ Id(a, b) will be said to be homotopic if
there exists an homotopy between them. Our aim is to pursue this analogy
and to define a groupoid having the points of Φ as objects and homotopy
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equivalence classes of paths as maps. Because of the analogy with the
definition of the fundamental groupoid of a space [22], we refer to this
groupoid as the fundamental groupoid of a context. In order to carry this
over, we need to show that paths can be composed, that there are constant
paths, and that the groupoid axioms hold. All of this follows from the
axioms for identity types via the rules for identity contexts of Table 2.

3.2. The fundamental groupoid construction. Lemma 3.2.1 can the
understood as expressing that paths can be composed, that there is a trival
path on each point, and that paths can be reversed. From now on, we
assume to work with a fixed context Φ as in (2). We use freely the notation
introduced in Remark 2.3.1.

Lemma 3.2.1. We can derive rules of the form

p ∈ Id(a, b) q ∈ Id(b, c)

q ◦ p ∈ Id(a, c)

a ∈ Φ

1a ∈ Id(a, a)

p ∈ Id(a, b)

p−1 ∈ Id(b, a)

such that

p ∈ Id(a, b)

1b ◦ p = p ∈ Id(a, b)

a ∈ Φ

(1a)−1 = 1a ∈ Id(a, a)

hold.

Proof. For the first rule, we apply the Leibniz rule as follows

q ∈ Id(b, c) (x ∈ Φ) Id(a, x) ∈ Cxt p ∈ Id(a, b)

q!(p) ∈ Id(a, c)

and define q ◦ p =def q!(p) ∈ Id(a, c). For the second rule, we use the
introduction rule, and simply define 1a =def r(a) ∈ Id(a, a). For the third
rule, we apply the elimination rule on p ∈ Id(a, b), with

(x ∈ Φ, y ∈ Φ, u ∈ Id(x, y)) Id(y, x) ∈ Cxt

as the eliminating context, and r(x) ∈ Id(x, x) as the eliminating family.
Hence, we can define

p−1 =
def

J(a, b, p, [x] r(x)) ∈ Id(b, a).

The computation rule implies the other rules. �
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Lemma 3.2.2. Let p0, p1 ∈ Id(a, b) and q0, q1 ∈ Id(b, c). We can derive
rules of the form

φ ∈ Id(p0, p1) ψ ∈ Id(q0, q1)

ψ ◦ φ ∈ Id(q0 ◦ p0, q1 ◦ p1)

φ ∈ Id(p0, p1)

φ∗ ∈ Id(p0
−1, p1

−1)

such that

φ ∈ Id(p0, p1) q ∈ Id(b, c)

1q ◦ φ = φ ∈ Id(q ◦ p0, q ◦ p1)

p ∈ Id(a, b)

(1p)∗ = 1p ∈ Id(p, p)

hold.

Proof. For the first rule, use elimination over ψ∈ Id(q0, q1) and Lemma 3.2.1.
For the second rule, use elimination over φ∈ Id(p0, p1) and Lemma 3.2.1. �

Lemma 3.2.3. We can derive rules of the form

p ∈ Id(a, b) q ∈ Id(b, c) r ∈ Id(c, d)

αp,q,r ∈ Id((r ◦ q) ◦ p, r ◦ (q ◦ p))

p ∈ Id(a, b)

φp ∈ Id(1b ◦ p, p)

p ∈ Id(a, b)

ψp ∈ Id(p ◦ 1a, p)

p ∈ Id(a, b)

σp ∈ Id(p−1 ◦ p, 1a)

p ∈ Id(a, b)

τp ∈ Id(p ◦ p−1, 1b)

such that

p ∈ Id(a, b) q ∈ Id(b, c)

αp,q,1c
= 1q◦p ∈ Id(q ◦ p, q ◦ p)

a ∈ Φ

φ1a
= 11a

∈ Id(1a, 1a)

a ∈ Φ

ψ1a
= 11a

∈ Id(1a, 1a)

a ∈ A

σ1a
= 11a

∈ Id(1a, 1a)

a ∈ A

τ1a
= 11a

∈ Id(1a, 1a)
hold.

Proof. For αp,q,r use elimination over r ∈ Id(c, d). For φp we can define φp

to be 1p by Lemma 3.2.1. For ψp use elimination over p ∈ Id(a, b). For σp

and τp use elimination over p ∈ Id(a, b). �



12 N. GAMBINO AND R. GARNER

Let a, b ∈ Φ. An application of Lemma 3.2.1, taking Φ therein to be
IdΦ(a, b), shows that homotopy of paths is a reflexive, symmetric, and tran-
sitive relation on the set of paths from a to b. We write [a, b] for the quotient
set, and [p] : a → b for the equivalence class of a path p ∈ Id(a, b). We can
now define the fundamental groupoid F(Φ) associated to Φ. The objects
of F(Φ) are the elements of Φ. The maps from a to b in F(Φ) are equiv-
alence classes of paths [p] : a → b. Composition, identities, and inverses in
F(Φ) are defined by letting

[q] ◦ [p] =def [q ◦ p] , 1a =def [1a] , [p]−1 =def [p−1] .

These operations are well-defined by Lemma 3.2.2. To establish the axioms
for a category, we need to show

(13) [r ◦ (q ◦ p)] = [(r ◦ q) ◦ p] , [1b ◦ p] = [p] , [p ◦ 1a] = [p]

and to establish the additional axioms for a groupoid, we need to show

(14) [p−1 ◦ p] = [1a] , [p ◦ p−1] = [1b] .

For (13), we need homotopies α ∈ Id(r ◦ (q ◦ p), (r ◦ q) ◦ p), φ ∈ Id(1b ◦ p, p),
and ψ ∈ Id(p ◦ 1a, p). For (14), we need homotopies σ ∈ Id(p−1 ◦ p, 1a)
and τ ∈ Id(p ◦ p−1, 1b). All of these are provided by Lemma 3.2.3.

3.3. Functorial aspects. We write Gpd for the category having small
groupoids as objects and functors as maps.

Proposition 3.3.1. Let T be a dependent type theory with axioms for iden-
tity types. The function mapping a context Φ to its fundamental groupoid
F(Φ) extends to a functor F : C(T)→ Gpd.

Proof. We need to define a functor F(f) : F(Φ) → F(Ψ) for every context
morphism f : Φ → Ψ. On objects, F(f) sends a ∈ F(Φ) to fa ∈ F(Ψ).
On maps, F(f) sends [p] : a → b to [f(p)] : f(a) → f(b), where f(p) ∈
Id(f(a), f(b)) is defined using the elimination rule by letting

(15) f(p) = J(a, b, p, [x]1fx) ∈ Id(f(a), f(b)) ,

so that

(16) f(1a) = 1fa ∈ Id(f(a), f(a)) .

It is routine to check that the action of F(f) on maps is well-defined. To
show that F(f) is a functor amounts to verifying the equations

[f(q ◦ p)] = [f(q) ◦ f(p)] , [f(1a)] = [1f(a)] .

For the first equation, elimination on q ∈ Id(b, c) can be used to exhibit
the required homotopy between f(q ◦ p) and f(q) ◦ f(p). For the second
equation, use (16). We have therefore defined F : C(T) → Gpd on objects
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and maps. Thus, it remains to check that it is a functor. We begin by
checking

F(g ◦ f) = F(g) ◦ F(f) .
It is clear that F(g◦f) and F(g)◦F(f) have the same action on objects. To
show that they coincide on maps, we need to show that we have a homotopy
between g(f(p)) and (gf)(p) for every p ∈ Id(a, b). By (15), we have

g(f(p)) = J(f(a), f(b), f(p), [x] 1g(x)) ∈ Id(gf(a), gf(b))

and
(gf)(p) = J(a, b, p, [x] 1gf(x)) ∈ Id(gf(a), gf(b)) .

The required homotopy can be obtained by the elimination rule on p ∈
Id(a, b). To conclude the proof, it suffices to check that

F(1Φ) = 1F(Φ) .

As before, it is clear that F(1Φ) is the identity on objects. To check that it is
the identity on maps, it suffices to show that [p] : a→ b and [1Φ(p)] : a→ b
are the same equivalence classes, which can be proved by the elimination
rule on p ∈ Id(a, b). �

4. The identity type weak factorisation system

4.1. Weak factorisation systems. Let us recall the notion of a weak
factorisation system [4]. For this, we need some terminology and notation.
Let E be a category. Given maps f : A → B and g : C → D in E , we say
that f has the left lifting property with respect to g, or that g has the right
lifting property with respect to f , if every commutative diagram of the form

A
h //

f

��

C

g

��

B
k

// D

has a diagonal filler, that is to say is a map j : B → C making the diagram

A
h //

f

��

C

g

��

B
k

//

j
>>~~~~~~~
D

commute. We write f t g to denote this situation. For a class of maps M,
we defineMt to be the class of maps having the right lifting property with
respect to every map inM. Similarly, we define tM to be the class of maps
having the left lifting property with respect to every map in M. A weak
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factorisation system on E consists of a pair of classes of maps (A,B) such
that the following hold.

(1) Every map f admits a factorisation f = pi with i ∈ A and p ∈ B.

(2) At = B and A = tB.
We refer to (1) as the Factorisation Axiom and to (2) as the Weak Or-
thogonality Axiom. For more information on weak factorisation systems,
see [16, Appendix D].

Φ ∈ Cxt

(x ∈ Φ, y ∈ Φ) IdΦ(x, y) ∈ Cxt

Φ ∈ Cxt

(x ∈ Φ) r(x) ∈ IdΦ(x, x)

(x ∈ Φ,Θ(x, x, r(x))) d(x) ∈ Ω(x, x, rx)

(x ∈ Φ, y ∈ Φ, u ∈ IdΦ(x, y),Θ(x, y, u)) J(x, y, u, d) ∈ Ω(x, y, u)

(x ∈ Φ,Θ(x, x, r(x))) d(x) ∈ Ω(x, x, r(x))`
(x ∈ Φ,Θ(x, x r(x)))

´
J(x, x, r(x), d) = d(x) ∈ Ω(x, x, r(x))

Table 3. Variable-based rules for identity contexts.

4.2. The identity type weak factorisation system. Let T be a depen-
dent type theory and consider its classifying category C(T). Recall from
Section 2.3 that a dependent projection is a context morphism of the form
Γ,Φ→ Γ, obtained by forgetting the variables in Φ. We write J for the set
of dependent projections in C(T). Our main result is the following.

Theorem 4.2.1. Let T be a dependent type theory. If T includes the axioms
for identity types, then the pair (A,B), where A = tJ and B =def At,
forms a weak factorisation system on C(T).

Let us emphasize that identity types are not involved in the definition
of the classes of maps A and B. They are, however, essential for the proof
that these classes of maps satisfy the axioms for a weak factorisation system.
As usual in the proof of the existence of a weak factorisation system, the
difficulties are concentrated in one particular step of the proof. Lemma 4.2.2
is the key step in our case, with the proof of Theorem 4.2.1 following from
it by standard arguments in the theory of weak factorisation systems. To
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prove Lemma 4.2.2, it is convenient to work with the equivalent formulation
of the rules for identity contexts given in Table 3. The equivalence between
the sets of rules in Table 2 and in Table 3 follows by standard properties
of substitution. As before, we use the notational convention stipulated in
Remark 2.3.1.

Lemma 4.2.2. Every map f admits a factorisation f = pi, where i ∈ A
and p is a dependent projection.

Proof. For f : Φ → Ψ, define Id(f) =def

(
x ∈ Φ, y ∈ Ψ, u ∈ IdΨ(fx, y)

)
.

The required factorisation is defined as follows:

(17) Φ
if

// Id(f)
pf

// Ψ ,

where if =def (x, fx, 1fx) and pf = (y). Apart from the ordering of the
variable declarations x ∈ Φ and y ∈ Ψ, which is clearly unessential, pf is a
dependent projection, as required. Hence, we only need to show that if ∈ A.
This amounts to showing that it has the left lifting property with respect
to all the dependent projections. This amounts to providing diagonal fillers
for every diagram of the form

Φ //

��

(Λ,Ξ)

��

Id(f) // Λ

Since dependent projections are closed under pullback [25, Lemma 6.3.2],
it suffices to show that we can define a diagonal filler for every diagram of
the form

Φ //

��

(Id(f),Ω)

��

Id(f) Id(f)

The right-hand side dependent projection gives us a dependent context
Ω(x, y, u) relative to (x ∈ Φ, y ∈ Ψ, u ∈ Id(f)). By the commutativ-
ity of the diagram, the top horizontal map gives us a dependent element
d(x) ∈ Ω(x, fx, 1fx) relative to (x ∈ Φ). We can derive

(Γ, y0 ∈ Ψ, y1 ∈ Ψ, v ∈ Id(y0, y1),Θ(y0, y1, v)) Ω(x, y1, v ◦ u) ∈ Cxt ,

where Γ =def (x ∈ Φ) and Θ(y0, y1, v) = (u ∈ Id(fx, y0), z ∈ Ω(x, y0, u)).
By the definitional equality 1y◦u = u ∈ Id(f(x), y0), proved in Lemma 3.2.1,
we have (

Γ, y ∈ Ψ,Θ(y, y, 1y)
)
z ∈ Ω(x, y, 1y ◦ u) ,
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By the elimination rule applied to v ∈ Id(y0, y1), we obtain

(Γ, y0 ∈ Ψ, y1 ∈ Ψ, v ∈ Id(y0, y1),Θ(y0, y1, v))

m(y0, y1, v, u, z) ∈ Ω(x, y1, v ◦ u)

where m(y0, y1, v, u, z) =
def

J(y0, y1, v, [ ]z). We then obtain

(x ∈ Φ, y ∈ Ψ, u ∈ Id(fx, y), z ∈ Ω(x, fx, 1fx)

n(x, y, u, z) ∈ Ω(x, y, u ◦ 1fx)

where n(x, y, u, z) =
def

m(fx, y, u, 1fx, z). We can now substitute d(x) for z

and obtain

(x ∈ Φ, y ∈ Ψ, u ∈ Id(fx, y)) n(x, y, u, d(x)) ∈ Ω(x, y, u ◦ 1fx)

Let us now recall that by Lemma 3.2.3 we have ψu ∈ Id(u ◦ 1fx, u). Hence,
we can apply Lemma 2.5.1 and obtain

(x ∈ Φ, y ∈ Ψ, u ∈ Id(fx, y)) (ψu)!(n(x, y, u, d(x))) ∈ Ω(x, y, u)

We claim that j =
def

(x, y, u, (ψu)!(n(x, y, u, d(x)))) provides the required

filler, fitting in the diagram

Φ //

��

(Id(f),Ω)

��

Id(f)

j
99sssssssss
Id(f)

The commutativity of the bottom triangle is evident. The commutativity
of the top triangle follows by the chain of definitional equalities

(ψ1fx
)!(n(x, fx, 1fx, d(x))) = n(x, fx, 1fx, d(x))

= m(fx, fx, 1fx, 1fx, d(x))

= J(fx, fx, 1fx, [ ]d(x))

= d(x).

Here, we used Lemma 3.2.1, the definitions of n and m, and the elimina-
tion rule for identity types. The commutativity of the bottom triangle is
immediate. �

Proof of Theorem 4.2.1. The Factorisation Axiom follows from Lemma 4.2.2,
since J ⊆ B. The very definition of B implies that A = tB. For the Weak
Orthogonality Axiom, we reason as follows. To show that At = B, ob-
serve that J ⊆ B. Hence, we have tB ⊆ tJ , and so tB ⊆ A. Thus, we
only need to prove that A ⊆ tB. For this, observe that every map in B
is a retract of a dependent projection by Lemma 4.2.2. This follows from
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Lemma 4.2.2 via the Retract Argument [13, Lemma 1.1.9]. Hence, if a map
has the left lifting property with respect to all dependent projections, then
it has the left lifting property with respect to all maps in B. The required
inclusion A ⊆ tB follows. �

Let us illustrate what happens when we apply the factorisation of
Lemma 4.2.2 to the identity map 1Φ : Φ → Φ. The factorisation in (17)
becomes

Φ
i // Id(Φ)

p
// Φ .

where Id(Φ) is defined as the context (y ∈ Φ, x ∈ Φ, u ∈ Id(x, y)), and
the maps i and p are defined by letting i =def (x, x, 1x) and p =def (y),
respectively. Let us consider a diagram of the form

Φ //

i

��

(Id(Φ),Ω)

��

Id(Φ) Id(Φ)

Here, Ω is a context relative to Id(Φ). By the commutativity of the diagram,
the top horizontal map gives us a dependent element d(x) ∈ Ω(x, x, r(x)) rel-
ative to (x ∈ Φ). By the elimination rule, we can deduce that J(x, y, u, d) ∈
Ω(x, y, u). We can therefore define a filler j

Φ //

i

��

(Id(Φ),Ω)

��

Id(Φ)

j
66mmmmmmmmmmmmmm

Id(Φ)

by letting j =def (x, y, u, J(x, y, u, d)). The commutativity of the top tri-
angle follows from the computation rule, while the commutativity of the
bottom triangle is immediate. This is the key idea underpinning the se-
mantics of identity types in weak factorisation systems introduced in [2].

5. Characterisation and applications

5.1. Characterisation of the weak factorisation system. We provide
an explicit characterisation of the maps in the classesA and B of the identity
type weak factorisation system established in Theorem 4.2.1. For this, we
introduce some terminology, which is inspired by concepts of 2-dimensional
category theory [3, 18, 30]. We define a context morphism f : Φ→ Ψ to be
a type-theoretic injective equivalence if we can derive a jugdement

(y ∈ Ψ) s(y) ∈ Φ
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such that we can derive also judgements of the form

(x ∈ Φ) x = s(f(x)) ∈ Φ ,(18)

(y ∈ Ψ) εy ∈ IdΨ(f(s(y)), y) ,(19)

(x ∈ Φ) εf(x) = 1f(x) ∈ IdΨ(f(x), f(x)) .(20)

We say that f : Φ → Ψ is a type-theoretic normal isofibration if we can
derive a judgement(

x ∈ Φ, y ∈ Ψ, u ∈ Id(f(x), y)
)
j(x, y, u) ∈ Φ

such that we can also derive judgements of the following form(
x ∈ Φ, y ∈ Ψ, u ∈ Id(f(x), y)

)
fj(x, y, u) = y ∈ Ψ ,(21)

(x ∈ Φ) j(x, fx, 1fx) = x ∈ Φ .(22)

Although the identity type weak factorisation system does not seem to be
functorial, we can follow the argument used to characterise the maps of a
functorial weak factorisation system in [26, §2.4] to establish Lemma 5.1.1.

Lemma 5.1.1. Let f : Φ→ Ψ be a context morphism.

(i) It holds that f ∈ A if and only if f is a type-theoretic injective equiv-
alence.

(ii) It holds that f ∈ B if and only if f is a type-theoretic normal isofibra-
tion.

Proof. Recall that by Lemma 4.2.2 every map f : Φ → Ψ admits a factori-
sation

Φ
if

// Id(f)
pf

// Ψ ,

where if ∈ A and pf ∈ B. Let us prove (i). Define A′ to be the class of
maps f : Φ→ Ψ such that the commutative diagram

(23) Φ
if

//

f

��

Id(f)

pf

��

Ψ Ψ

has a diagonal filler. We claim that A = A′. To show A ⊆ A′, let f : Φ→ Ψ
be in A. The diagram in (23) has a diagonal filler since f ∈ A and pf ∈ B.
To show A′ ⊆ A, let f : Φ → Ψ be in A′, and assume to have a diagonal
filler j : Ψ → Id(f) for the diagram in (23). We can then exhibit f as a
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retract of if by the diagram

Φ

f

��

Φ

if

��

Φ

f

��

Ψ
j

// Id(f)
pf

// Ψ

We have that if ∈ A. Since the class A, being defined by a weak orthog-
onality condition, is closed under retracts, we have f ∈ A. To conclude
the proof, it is sufficient to observe that f is an injective equivalence if and
only if f ∈ A′. This involves unfolding the definition of the context Id(f).
For the proof of (ii), let B′ be the class of maps f : Φ → Ψ such that the
commutative diagram

Φ
if

��

Φ

f

��

Id(f)
pf

// Ψ

has a diagonal filler. The rest of argument follows along the lines of the one
used to establish (i) and hence we omit it. �

5.2. Pullback stability of injective equivalences. The first application
concerns a closure property of the identity type weak factorisation system
which does not seem to be shared by many other examples of weak fac-
torisation systems. Recall that, even if C(T) is not complete, it does admit
pullbacks along dependent projections [25, §6].

Proposition 5.2.1. Pullbacks of maps in A along maps in J are in A.

Proof. By Lemma 5.1.1, the claim follows once we show that, for a pullback
diagram of form

(x ∈ Φ, z ∈ Ω(f(x)) //

g

��

(x ∈ Φ)

f

��

(y ∈ Ψ, z ∈ Ω(y)) // (y ∈ Ψ)

where g = (f(x), z), if f is an injective equivalence, then so is g. Since f is
an injective equivalence, we may assume to have

(y ∈ Ψ) s(y) ∈ Φ

and the judgements in (18), (19), (20). Our first step in showing that g is
an injective equivalence will be to construct a judgement

(y ∈ Ψ, z ∈ Ω(y)) t(y, z) ∈ (x ∈ Φ, z ∈ Ω(f(x))
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satisfying (x ∈ Φ, z ∈ Ω(fx)) tg(x, z) = (x, z) ∈ (x ∈ Φ, z ∈ Ω(x)). Now,
to give t is equivalently to give judgements

(y ∈ Ψ, z ∈ Ω(y)) t1(y, z) ∈ Φ ,

(y ∈ Ψ, z ∈ Ω(y)) t2(y, z) ∈ Ω(f(t1(y, z))).

So we define t1(y, z) =def s(y). Now must give an element t2(y, z) ∈ Ω(fsy).
We obtain this by substituting z ∈ Ω(y) along ε−1

y ∈ Id(y, fsy) using the
Leibniz rule:

(y ∈ Ψ, z ∈ Ω(y)) t2(y, z) =def (ε−1
y )!(z) ∈ Ω(f(t1(y, z))) .

Observe that we have

tg(x, z) = t(fx, z)

= (t1(fx, z), t2(fx, z))

= (sfx, (ε−1
fx )!(z))

= (x, (1fx)!(z))

= (x, z)

as required. We now come to the second step in the proof, which is to
construct a judgement

(y ∈ Ψ, z ∈ Ω(y)) δ(y,z) ∈ Id(gt(y, z), (y, z))

satisfying (x ∈ Φ, z ∈ Ω(fx)) δ(fx,z) = 1(fx,z) ∈ Id((fx, z), (fx, z)). Now,
to give δ is the same as to give a judgement

(y ∈ Ψ, z ∈ Ω(y)) δ(y, z) ∈ Id
(
(fsy, (ε−1

y )!(z)), (y, z)
)
.

By the description of identity context in Section 2.5, to give this is equally
well to give a pair of judgements

(y ∈ Ψ, z ∈ Ω(y)) δ1(y, z) ∈ Id(fsy, y)

(y ∈ Ψ, z ∈ Ω(y)) δ2(y, z) ∈ Id
(
δ1(y, z)!(ε−1

y )!(z), z
)

So we define δ1(y, z) =def ε(y). We must now give an element

δ2(y, z) ∈ Id((εy)!(ε−1
y )!(z), z) .

For this, let us show that we can derive a rule of the form

p ∈ Id(a, b) (x ∈ Φ) Ω(x) ∈ Cxt e ∈ Ω(b)

γp(e) ∈ Id((p)!(p−1)!(e), e)
such that
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a ∈ Φ e ∈ Ω(a)

γ1a
(e) = 1e ∈ Id(e, e)

By elimination on p ∈ Id(a, b), we define

γp(e) =def J(a, b, p, [x]1e) ∈ Id((p)!(p−1)!(e), e)

Indeed, Lemma 3.2.1 implies that for x ∈ Φ and z ∈ Ω(x), we have

(1x)!(1−1
x )!(z) = (1−1

x )!(z)

= (1x)!(z)

= z .

We can then define δ2(y, z) =def γεy (z). This specifies δ, and we now
calculate

δ(fx, z) = (δ1(fx, z), δ2(fx, z))

= (εfx, γεfx
(z))

= (1fx, γ1fx
(z))

= (1fx, 1z)
= 1(fx,z)

as required. �

5.3. Relationship with the homotopy theory of groupoids. Let us
recall that the category Gpd of groupoids and functors admits a Quillen
model structure (W, C,F), in which the class of weak equivalences W con-
sists of the categorical equivalences, the class of fibrations F consists of
the Grothendieck fibrations, and the class of cofibrations C consists of the
functors that are injective on objects [1, 17]. As a consequence of this, the
category Gpd admits a first weak factorisation system given by (W∩C,F),
and a second weak factorisation system given by (C,W ∩ F). We shall be
interested in relating the weak factorisation system (W ∩ C,F) on Gpd
with the identity type weak factorisation system on C(T). Let us recall that
a functor f : A → B between groupoids is a Grothendieck fibration if and
only if for every β : f(a) → b in B there exists α : a → a′ in A such that
f(a′) = b and f(α) = β. The required factorisation of a functor f : A→ B
as an equivalence injective on objects followed by a Grothendieck fibration
can be obtained using the familiar mapping space construction,

A
if

// Path(f)
pf

// B ,
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where Path(f) is the groupoid whose objects consist of triples (a, b, β), where
a ∈ A, b ∈ B, and β : f(a)→ b in B.

Theorem 5.3.1. Let f : Φ→ Ψ be a context morphism.
(i) If f ∈ A, then F(Φ)→ F(Ψ) is an equivalence injective on objects.

(ii) If f ∈ B, then F(Φ)→ F(Ψ) is a Grothendieck fibration.

Proof. For part (i), let f : Φ → Ψ be in A. By Lemma 5.1.1 f is a type-
theoretic injective equivalence, so let us assume

(y ∈ Ψ) s(y) ∈ Φ

and the judgements in (18), (19), (20). We show that F(s) : F(Ψ)→ F(Φ)
provides a quasi-inverse to F(f) : F(Φ) → F(Ψ). First of all, we have a
natural isomorphism F(s) ◦ F(f) ⇒ 1F(Ψ) with components given by the
maps [εb] : f(s(b)) → b. To establish naturality, we need to show that for
every q ∈ Id(b0, b1), there is a homotopy between q ◦ εb0 and εb1 ◦ fs(q),
which can be proved by elimination on q ∈ Id(b0, b1). Secondly, we have

F(s) ◦ F(f) = F(s ◦ f) = F(1Φ) = 1F(Φ) .

which also shows that F(f) is injective on objects, as required. For part
(ii), let f : Φ → Ψ be a type-theoretic normal isofibration, and assume to
have

(x ∈ Φ, y ∈ Ψ, u ∈ Id(f(x), y)) j(x, y, u) ∈ Φ
and judgements as in (21) and (22). By (21), the map j : Id(f)→ Φ makes
the following diagram commute

(24) Id(f)
j

//

pf

!!DD
DD

DD
DD

Φ

f

��

Ψ

To show that F(f) : F(Φ)→ F(Ψ) is Grothendieck fibration, let us consider
a map β : f(a) → b in F(Ψ). Let p ∈ Id(f(a), b) such that β = [p]. Note
that such a p exists, but it is neither unique nor determined canonically.
We then define a′ =def j(a, b, p). Next, we need to define α : a → a′ in
F(Φ). By the description of identity contexts in Section 2.5, we can find an
element of the form

(1a, p, φ) ∈ Id(f)
(
(a, fa, 1fa), (a, b, p)

)
We define a map θ : (a, fa, 1fa) → (a, b, p) in F(Id(f)) by letting θ =
[(1a, p, φ)]. The required map α : a→ a′ can then be defined as the result of
an application of the functor F(j) to θ. This has the required domain and



THE IDENTITY TYPE WEAK FACTORISATION SYSTEM 23

codomain, since a = j(a, f(a), 1f(a)) ∈ Φ by (22), and a′ = j(a, b, p) ∈ Φ by
the definition set earlier. Furthermore, the commutativity of the diagram
in (24) implies that the result of applying F(f) to α is β, as required. �

We can now compare the factorisations in C(T) and in Gpd.

Proposition 5.3.2. For every context morphism f : Φ→ Ψ, we can define
an equivalence surjective on objects σf : F(Id(f))→ Path(F(f)) making the
following diagram commute

F(Φ)
iF(f)

//

F(if )

��

Path(F(f))

pF(f)

��

F(Id(f))

55kkkkkkkkkkkkkk

F(pf )
// F(Ψ)

Proof. The objects of F(Id(f)) are triples (a, b, p), where p ∈ Id(f(a), b).
The objects of Path(F(f)) are triples a, b, α, where α is an arrow α : f(a)→
b in F(Φ). Thus, σf can be defined as mapping (a, b, p) to (a, b, [p]). Direct
calculations show the required properties. �

Let us write J for the groupoid with two objects and an isomorphism
between them. As a special case of Proposition 5.3.2, we obtain that for
every context Φ, there is a surjective equivalence between

σ : F(x ∈ Φ, y ∈ Φ, u ∈ Id(x, y))→ F(x ∈ Φ)J ,

where F(x ∈ Φ)J can be seen as the groupoid of isomorphisms in F(x ∈ Φ).
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Appendix A. Structural rules for dependent type theories

Weakening and substitution. The rule (∗) has the side-condition that the
variable x should not appear as a free variable in Γ or ∆. When stating the
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first two rules below, J stands for an arbitrary judgement.

(Γ,∆) J (Γ) A ∈ Type
(∗)

(Γ, x ∈ A,∆) J

(Γ, x ∈ A,∆) J (Γ) a ∈ A

(Γ,∆[a/x]) J [a/x]

Reflexivity, symmetry, and transitivity of definitional equality of types.
A ∈ Type

A = A

A = B

B = A

A = B B = C

A = C

Reflexivity, symmetry, and transitivity of definitional equality of objects.
a ∈ A

a = a ∈ A

a = b ∈ A

b = a ∈ A

a = b ∈ A b = c ∈ A

a = c ∈ A
Compatibility rules for definitional equality.

a ∈ A A = B

a ∈ B

a = b ∈ A A = B

a = b ∈ B
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