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Abstract. We show that H-spaces with finitely generated cohomol-

ogy, as an algebra or as an algebra over the Steenrod algebra, have

homotopy exponents at all primes. This provides a positive answer
to a question of Stanley.

Introduction

A simply connected space is elliptic if both its rational homotopy and
rational homology are finite. Moore’s conjecture, see for example [9], pre-
dicts that elliptic complexes have an exponent at any prime p, meaning
that there is a bound on the p-torsion in the graded group of all homotopy
groups. Any finite H-space is known to be elliptic as it is rationally equiva-
lent to a finite product of (odd dimensional) spheres. Relying on results by
James [6] and Toda [11] about the homotopy groups of spheres, the fourth
author (re)proved in [10] Long’s result that finite H-spaces have an expo-
nent at any prime [7]. He proved in fact a stronger result which holds for
example for H-spaces for which the mod p cohomology is finite. He also
asked whether this would hold for finitely generated cohomology rings. The
aim of this note is to give a positive answer to this question and provide a
way larger class of H-spaces which have homotopy exponents.

Theorem 0.1. 1.2 Let X be a connected and p-complete H-space such
that H∗(X; Fp) is finitely generated as an algebra over the Steenrod algebra.
Then X has an exponent at p.

This class of H-spaces is optimal in the sense that H-spaces with a larger
mod p cohomology, such as an infinite product of Eilenberg-Mac Lane spaces
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K(Z/pn, n), will not have in general an exponent at p. As a corollary, we
obtain the desired result. In fact we obtain the following global theorem.

Theorem 0.2. 1.4 Let X be a connected H-space such that H∗(X; Z) is
finitely generated as an algebra. Then X has an exponent at each prime p.

The methods we use are based on the deconstruction techniques of the
third author in his joint work with Castellana and Crespo, [3]. Our results
on homotopy exponents should also be compared with the computations
of homological exponents done with Clément, [4]. Whereas such H-spaces
always have homotopy exponents, they almost never have homological ex-
ponents. The only simply connected H-spaces for which the 2-torsion in
H∗(X; Z) has a bound are products of mod 2 finite H-spaces with copies of
the infinite complex projective space CP∞ and K(Z, 3).
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1. Homotopy exponents

Our starting point is the fact that mod p finite H-spaces have always
homotopy exponents. The following is a variant of Stanley’s [10, Corol-
lary 2.9]. Whereas he focused on spaces localized at a prime, we will stick to
p-completion in the sense of Bousfield and Kan, [2]. Since the p-localization
map X → X(p) is a mod p homology equivalence, his result implies the
following.

Proposition 1.1 (Stanley). Let p be a prime and X be a p-complete and
connected H-space such that H∗(X; Fp) is finite. Then X has an exponent
at p.

We will not repeat the proof, but let us sketch the main steps. Let us
consider a decomposition of X by p-complete cells, i.e. X is obtained by
attaching cones along maps from (Sn)∧p . The natural map X → ΩΣX
factors then through the loop spaces on a wedge W of a finite numbers
of such p-completed spheres, up to multiplying by some integer N : the
composite X → ΩΣX N−→ ΩΣX is homotopic to X → ΩW → ΩΣX.
The proof goes by induction on the number of p-complete cells and the
key ingredient here is Hilton’s description of the loop space on a wedge of
spheres, [5]. Note that the suspension of a map between spheres is torsion
except for the multiples of the identity. This idea to “split off” all the cells
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of X up to multiplication by some integer is dual to Arlettaz’ way to split
off Eilenberg-Mac Lane spaces in H-spaces with finite order k-invariants,
[1, Section 7]. The final step relies on the classical results by James, [6],
and Toda, [11], that spheres do have homotopy exponents at all primes.

Theorem 1.2. Let X be a connected and p-complete H-space such that
H∗(X; Fp) is finitely generated as an algebra over the Steenrod algebra.
Then X has an exponent at p.

Proof. A connected H-space such that H∗(X; Fp) is finitely generated as
an algebra over the Steenrod algebra can always be seen as the total space
of an H-fibration F → X → Y where Y is an H-space with finite mod p
cohomology and F is a p-torsion Postnikov piece whose homotopy groups
are finite direct sums of copies of cyclic groups Z/pr and Prüfer groups
Zp∞ , [3, Theorem 7.3]. This is a fibration of H-spaces and H-maps, so that
we obtain another fibration F∧p → X → Y ∧p by p-completing it. The base
space Y ∧p now satisfies the assumptions of Proposition 1.1. It has therefore
an exponent at p. The homotopy groups of the fiber F∧p are finite direct
sums of cyclic groups Z/pn and copies of the p-adic integers Z∧p . Thus F∧p
has an exponent at p as well. The homotopy long exact sequence of the
fibration allows us to conclude. �

We see here how the p-completeness assumption plays an important role.
The space K(Zp∞ , 1) for example has obviously no exponent at p, but its
p-completion is K(Z∧p , 2) = (CP∞)∧p , which is a torsion free space. The
mod p cohomology of K(Zp∞ , 1) is a polynomial ring on one generator in
degree 2, we must thus also work with p-complete spaces to give an answer
to Stanley’s question [10, Question 2.10].

Corollary 1.3. Let X be a connected and p-complete H-space such that
H∗(X; Fp) is finitely generated as an algebra. Then X has an exponent
at p.

In fact, when the mod p cohomology is finitely generated, the fiber F in
the fibration described in the proof of Theorem 1.2 is a single Eilenberg-Mac
Lane space K(P, 1). Thus the typical example of an H-space with finitely
generated mod p cohomology is the 3-connected cover of a simply connected
finite H-space (P is Zp∞ in this case). Likewise, the typical example in
Theorem 1.2 are highly connected covers of finite H-spaces. This explains
why such spaces have homotopy exponents!

If one does not wish to work at one prime at a time and prefers to
find a global condition which permits to conclude that a certain class of
spaces have exponents at all primes, one must replace mod p cohomology
by integral cohomology.
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Theorem 1.4. Let X be a connected H-space such that H∗(X; Z) is finitely
generated as an algebra. Then X has an exponent at each prime p.

Proof. Since the integral cohomology groups are finitely generated it fol-
lows from the universal coefficient exact sequence (see [8]) that the integral
homology groups are also finitely generated. Since X is an H-space we may
use a standard Serre class argument to conclude that so are the homotopy
groups. Therefore the p-completion map X → X∧p induces an isomorphim
on the p-torsion at the level of homotopy groups. The theorem is now a
direct consequence of the next lemma. �

Lemma 1.5. Let X be a connected space. If H∗(X; Z) is finitely generated
as an algebra, then so is H∗(X; Fp).

Proof. Let u1, . . . , ur generate H∗(X; Z) as an algebra. Consider the uni-
versal coefficients short exact sequences

0→ Hn(X; Z)⊗ Z/p −→ Hn(X; Fp) ∂−→ Tor(Hn+1(X; Z); Z/p)→ 0 .

Since H∗(X; Z) is finitely generated as an algebra it is degree-wise finitely
generated as a group and therefore Tor(H∗(X; Z); Z/p) can be identified
with the ideal of elements of order p in H∗(X; Z). This ideal must be finitely
generated since H∗(X; Z) is Noetherian. Choose generators a1, . . . , as.
Each ai corresponds to a pair αi, βαi in H∗(X; Fp), where β denotes the
Bockstein.

We claim that the elements α1, . . . , αs together with the mod p reduction
of the algebra generators, denoted by ū1, . . . , ūr, generate H∗(X; Fp) as
an algebra. Let x ∈ H∗(X; Fp) and write its image ∂(x) =

∑
λjaj with

λj = λj(u) a polynomial in the ui’s. Define now λ̄j = λj(ū) ∈ H∗(X; Fp)
to be the corresponding polynomial in the ūi’s. As the action of H∗(X; Z)
on the ideal Tor(H∗(X; Z); Z/p) factors through the mod p reduction map
H∗(X; Z)→ H∗(X; Fp), the element x−

∑
λ̄jαj belongs to the kernel of ∂,

i.e. it lives in the image of the mod p reduction. It can be written therefore
as a polynomial µ̄ in the ūi’s. Thus x = µ̄+

∑
λ̄jαj . �
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