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Abstract. Based on Lucas functions, an improved version of the
Diffie-Hellman distribution key scheme and to the ElGamal public
key cryptosystem scheme are proposed, together with an implemen-
tation and computational cost. The security relies on the difficulty
of factoring an RSA integer and on the difficulty of computing the
discrete logarithm.

Introduction

In [1], Diffie and Hellman introduced a practical solution to the key dis-
tribution problem, allowing two parties, Alice and Bob never met, to share
a secret key by exchanging information over an open channel. In [2], ElGa-
mal used Diffie-Hellman ideas to designe a cryptosystem whose security is
based on the difficulty of solving the discrete logarithm problem. In [3, 5, 6],
It was suggested that linear sequences can be used instead of the standard
RSA.

In this paper, based on second order linear sequences (Lucas functions),
an improved version of the Diffie-Hellman distribution key and to the El-
Gamal public key cryptosystem method are proposed. This considerably
reduces the computation cost of these methods. The security relies on the
difficulty of factoring an RSA integer. In section 1, an investigation of the
cryptographic properties of second order linear sequences, and a computa-
tional method to evaluate the kth term of a second order linear sequence are
given. In section 2, two cryptographic applications are given, their security
and computational cost are analysed.

1. Second order linear sequences

In this section, the main cryptographic properties of second order linear
sequences are studied. A computational method to evaluate the kth term
of a second order linear sequence are given, together with an analysis of its
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computational cost.

Let f(X) = X2 − aX + 1 be a polynomial in IF[X], where IF is a field.
Denote A = IF[X]/(f(X)) and α = X̄ the class of X modulo the principal
ideal of IF[X] generated by f(X). For every x ∈ A, let lx be the linear map
of A defined by lx(y) = xy, T (x) = Tr(lx) and N(x) = det(lx) the trace and
norm of x, where det(lx) is the determinant of the linear map lx, and Tr(lx)
is its trace. Define a sequence s(a) as follows : sk(a) = T (αk). Since f(α) =
0 and the map trace is linear, it follows that sk+2(a) = ask+1(a) − sk(a).
So, s(a) is a second order linear sequence, called the characteristic sequence
generated by a.
Remark. Let lk be the endomorphism of A defined by lk(x) = αkx, and

Mk its matrix with respect to the basis (1, α). Then M0 =
(

1 0
0 1

)
,

M1 =
(

0 −1
1 a

)
, and then s0(a) = 2 and s1(a) = a.

1.1. Cryptographic properties. The cryptographic applications of Lu-
cas sequences are listed in [3, 4]. For the commodity of the reader, we
present some of these results in a more accessible form and with simplified
proofs.

Lemma 1. 1. Let f(X) = X2 − aX + 1 be a polynomial in IF[X], α1 and
α2 the roots of f(X) in a splitting field of f(X). Then for all integer k,
sk(a) = αk

1 + αk
2 , and sk(a) = s−k(a).

Proof. Let K be a splitting field of f(X). Since f(X) is the characteristic
polynomial of M1, and splits in K, there exists an invertible matrix P in

M2(K) and x ∈ K such that M1 = PTP−1, where T =
(

α1 x
0 α2

)
. Let k

be an integer. As Mk = Mk
1 , then Mk = PT kP−1 and T k =

(
αk

1 xk

0 αk
2

)
,

where xk ∈ K. Therefore, sk(a) = Tr(Mk) = αk
1 + αk

2 .
Let k be an integer. Since α1α2 = 1, s−k(a) = α−k

1 + α−k
2 = αk

2 + αk
1 =

sk(a).

Corollary 1. 2. Let f(X) = X2− aX +1 be a polynomial in IF[X], α1 and
α2 be the roots of f(X) in a splitting field of f(X). For every integer k, let
fk(X) = X2 − sk(a)X + 1. Then fk(X) = (X − αk

1)(X − αk
2).

Indeed, sk(a) = αk
1 + αk

2 and αk
1αk

2 = 1.
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Lemma 1. 3. Let f(X) = X2 − aX + 1 be a polynomial in IF[X], and s(a)
be the characteristic sequence generated by a. Then for every integers k and
e, se(sk(a)) = ske(a).

Proof. From Corollary 1.2, the roots of the polynomial fk(X) are αk
1

and αk
2 . So, se(sk(a)) = (αk

1)e + (αk
2)e = T (αke) = ske(a).

Lemma 1. 4. Let f(X) = X2−aX +1 be a polynomial in IFp[X], and s(a)
the characteristic sequence generated by a. Then π = p2 − 1 is a period of
s(a).

Proof. Since α is an element of A of norm 1, α is an invertible element
of A. Let 4 = a2− 4 be the disciminant of f(X). Denote (d

p ) the Legendre
symbol, where d is an integer such that p does not divide d. Then there are
three cases :

(1) p divides (a2 − 4). Then a = ∓2 modulo p. If a = 2 modulo p,
then for every k, sk(a) = 2. If a = −2 modulo p, then for every k,
s2k(a) = 2 and s2k+1(a) = −2, and then 2 is the period of s(a).

(2) If (a2−4
p ) = 1, then f(X) splits in IFp, and α1 6= α2. Thus A ' IFp×IFp.

Hence the exponent of the multiplicative group A∗ is p − 1. So,
αp−1 = 1.

(3) If (a2−4
p ) = −1, then A ' IFp2 . Let σ be a primitive element of the

multiplicative group IF∗p2 . Set α = σk. Then N(α) = σk(p+1) = 1.
Therefore, p2 − 1 divides k(p + 1), i.e., p − 1 divides k, and then
there exists an integer l such that α = σl(p−1). So, αp+1 = 1.

Consequently, απ = 1. Let k and m be two integers, sm+kπ(a)=T (αm+kπ) =
T (αm(απ)k) = T (αm) = sm(a). Hence π is a period of the sequence s(a).

Corollary 1. 5. Let f(X) = X2 − aX + 1 be a polynomial in IFp[X], and
s(a) the characteristic sequence generated by a. Then for every integer e

such that gcd(e, π) = 1, the map
Luce : IFp −→ IFp

a −→ se(a) is a one-one

correspondence.

Indeed, since gcd(e, π) = 1, let d be the inverse of e modulo π. Then
there exists an integer k such that de = 1+kπ. Hence sd(se(a)) = sde(a) =
s1+kπ(a) = s1(a) = a.

1.2. Computational Method and Cost.

Lemma 1. 6. Let f(X) = X2 − aX + 1 be a polynomial in IFp[X], and
sk(a) the characteristic sequence generated by a. Then
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{
i) s2n(a) = sn(a)2 − 2,
ii) s2n+1(a) = sn(a)sn+1(a)− a

Proof. Let n and m be two integers. sn(a)sm(a) = (αn
1 +αn

2 )(αm
1 +αm

2 )
= (αn+m

1 + αn+m
2 ) + (αn−m

1 + αn−m
2 ) = sn+m(a) + sn−m(a).

In particular, we have i) and ii).

Let k = 2rm, where m is an odd integer. To compute sk(a), first we
compute sm(a), then s2m(a) = (sm(a))2 − 2, then s4m(a) = (s2m(a))2 −
2,...,sk(a) = s2r−1m(a)2 − 2. Then to compute sk(a), we need r multipli-
cations modulo p and we need sm(a). Let m =

∑l−1
i=0 ki2l−1−i. For every

0 ≤ i < l − 1, let fi+1 = 2fi + ki+1 and f0 = k0. Then fl−1 = k. For
0 ≤ i < l− 1 and assume that, sfi−1(a) and sfi−1+1(a) are computed. Then

if ki = 0, then
{

sfi(a) = s2fi−1(a) = (sfi−1(a))2 − 2
sfi+1(a) = s2fi−1+1(a) = sfi−1(a)sfi−1+1(a)− a

if ki = 1, then
{

sfi(a) = s2fi−1+1(a) = sfi−1(a)sfi−1+1(a)− a
sfi+1(a) = s2(fi−1+1)(a) = (sfi−1+1(a))2 − 2

Computational Algorithm.
In put k = 2r

∑l−1
i=0 ki2i and a, where k0 6= 0 and kl−1 6= 0.

Out put sk.
Algorithm
s0 = 2, s1 = a,
for i from 0 to l − 1 do

if ki = 0 then s1 = s1s0 − a, s0 = s2
0 − 2

else then s0 = s1s0 − a, s1 = s2
1 − 2

End
return (s0).
s = s0, for i from 1 to r do s = s2 − 2.
End
return (s).

This method ensures that sk can be computed in about the same length
of time as the kth power is computed in the RSA method. But in the com-
putation of sm(a), having to compute two numbers at each stage does slow
the computation down a little, but there are optimizations in the calculation
which mean that the total amount of computation is only about half more
than the amount needed for the RSA system. Therefore, to compute sk(a),
the total number of multiplications modulo p is log2(k).
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2. Main result

In this section we describe some applications of Lucas functions, in more
details : Diffie-Hellman distribution key method and the ElGamal encryp-
tion scheme.

Let n = pq be an RSA integer, f(X) = X2 − aX + 1 a polynomial in
ZZn = ZZ/nZZ, A = ZZn[X]/(f(X)) and α = X̄ the class of X modulo the
principal ideal (f(X)). Let s(a) be the characteristic sequence generated
by a, defined in ZZn by : sk(a) = T (αk).

Lemma 2. 7. Let π = (p2 − 1)(p2 − 1). Then απ = 1 modulo n. In
particular, απ = 1 is a period of s(a).

Indeed, ααπ

= (α(p2−1))(q
2−1) = 1 modulo p and ααπ

= (α(q2−1))(p
2−1) =

1 modulo q.

2.1. Lucas Diffie-Hellman. Let a be an integer. Suppose that Alice and
Bob, who both have access to the Lucas function public key data (n, a),
want to agree on a shared secret key KAB . recall that in [3], there is a
Diffie-Hellman scheme based on lucas functions defined in IFq. Here, we give
the same version but with lucas functions on ZZn.

(1) User Alice selects 0 < xA ≤ n as her private key. She then computes
yA = sxA(a) as her public key from the system public key n and
f(X) = X2 − aX + 1.

(2) User Bob selects 0 < xB ≤ n as his private key. He then computes
yB = sxB

(a) as his public key from the system public key n and
f(X) = X2 − aX + 1.

(3) Key-Distribution Phase : KAB = sxA
(yB) = sxB

(yA) is their com-
mon secret key.

Remarks (1) KAB = sxAxB (a).
(2) In each exchange session, the computational cost of each user is 2log2(n).
(3) If an attacker tries to compute Alice’s private key x from her public key
y = sx(a), a polynomial fy(X) = X2 − yX + 1 is formed. According to
Lemma 1.2, αx

1 and α−x
1 are the roots of fy(X). As a result, once αx

1 and
α1 are known, solving the exponent x is equivalent to solving the discret
logarithm problem in ZZn. Since ZZn ' IFp × IFq, let α1 = (α11, α12), then
αx

1 = (αx
11, α

x
12). Consequently, solving the discret logarithm problem in ZZn

is much harder than solving the discret logarithm problem in IFp, and then
this method improves that presented in [3].

2.2. Lucas ElGamal. We now explain our version of the public key sys-
tem. It is based on ElGamal system, which is defined by Lucas functions.
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Suppose Bob is the owner of the Lucas public key data (p, q, a). Bob
selects a small integer e such that gcd(d, (p2 − 1)(q2 − 1)) = 1 and a secret
integer 0 < x ≤ n. Computes d the inverse of e modulo (p2− 1)(q2− 1) and
y = sx(a), and makes public (e, y).
Given Bob’s public data (n, a, e, y), Alice can encrypt a message m, where
0 ≤ m < n, intended for Bob using the following Lucas version of the
ElGamal encryption scheme :
Algorithm

(1) Public key : (n, a, y, e)
(2) Private key : (p, q, d, x).

(3) Encryption : For a message 0 ≤ m < n, Alice chooses a (secret)
random number 0 < k < n, and she sends Bob the ciphertext
c = (c1, c2), where c1 = sk(a) and c2 = K+se(m), where K = sk(y).

(4) Decryption : For a ciphertext c = (c1, c2), Bob computes K =
sx(c1), and then m = sd(c2−K), where (p, q, d, x) is its private key.

Note that
(1) All computations are performed in ZZn.
(2) sx(c1) = sx(sk(a)) = sxk(a) = sk(sx(a)) = sk(y) = K, and then c2 −
K = se(m).
Since ed = 1 modulo (p2 − 1)(q2 − 1), there exists an integer l such that
ed = 1+l(p2−1)(q2−1). As (p2−1)(q2−1) is a period of s(m), sd(c2−K) =
sd(se(m)) = sed(m) = s1+l(p2−1)(q2−1)(m) = s1(m) = m.

2.3. Security. If an attacker tries to compute m from c = (c1, c2) and
(a, y, e, n), he will compute K and d, i.e., he will compute the secret pa-
rameters k and d. The first one is equivalent to braking standard the El
Gamal scheme. For the second one, because the properties of Lucas func-
tions mirror those of exponentiation, public key and private key processes
can be developed in an exactly analogous manner to the RSA system, this
enables us to prove that any successful attack on this system would give
a successful attack on the standard RSA system [3]. Thus the security of
the method relies on the difficulty of factoring an RSA integer and on the
difficulty of computing the discrete logarithm in ZZn.

2.4. Computational Cost. As in the standard RSA public key system,
Bob chooses a small integer e and Alice chooses a relatively small integer
k such that the computational cost for evaluating sk(a) and se(m) are low.
For example e = 5, we need 3 multiplications modulo n for computing
s3(m), log2(k) multiplications modulo n for computing sk(a), i.e., totally,
we need 3 + log2(k) multiplications modulo n for enciphering.
For deciphering, once d and y are computed, we need log2(x) multiplications
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modulo n for computing K = sx(c1), and log2(d) multiplications modulo
n for computing sd(c2 − K). As d < n2, we need log2(n) multiplications
modulo n for deciphering. Totally, we need 4log2(n) on average.
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