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Abstract. We exhibit a triangulated category T having both prod-

ucts and coproducts and a triangulated subcategory S ⊂ T which is

both localizing and colocalizing, and for which neither a Bousfield

localization nor a colocalization exists. It follows that neither the

category S nor its dual satisfy Brown representability. Our example

involves an abelian category whose derived category does not have

small Hom-sets.

Introduction

In recent years, several authors have proved remarkable generalizations

of Brown’s representability theorem [1]; see, for example, [3, 6, 7, 8]. It

therefore becomes important to have an example of a triangulated category

where Brown representability fails. In this short note we produce such a

category.

There has also been considerable activity on the subject of localization

in homotopy theory, and in particular on Bousfield’s old problem of proving

the existence of localization of spaces or spectra with respect to cohomology

theories. In [2] it was shown that the existence of cohomological localizations

follows from a suitable large-cardinal axiom, although Bousfield’s problem

remains open under the ZFC axioms alone.

In a similar vein, it was asked in [5, p. 35] if every localizing subcategory

(i.e., one which is closed under triangles and coproducts) of a stable homo-

topy category admits a Bousfield localization. Although the answer is not
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known in ZFC either, the counterexample displayed in the present article

shows that Bousfield localizations need not exist for localizing subcategories

of arbitrary triangulated categories.

More explicitly, we show that there is an abelian category A, due to

Freyd, for which the following holds:

(i) The category A satisfies the [AB5] and [AB4∗] conditions (it has exact

products and coproducts, and filtered colimits are exact).

(ii) Nevertheless, the derived category D(A) does not have small Hom-

sets. That is, there is a proper class of morphisms between certain

objects of D(A).

(iii) Let K(A) be the homotopy category of chain complexes in A, and let

A(A) be the full subcategory of acyclic complexes. Then A(A) is both

a localizing and a colocalizing subcategory, but neither a Bousfield

localization nor a colocalization exist for A(A) in K(A).

(iv) Neither the category A(A) nor its dual satisfy Brown representability.

1. Description and proof

In his 1966 book [4, Chapter 6, Exercise 1, pp. 131–132], Freyd con-

structed an interesting abelian category. Let us briefly recall the construc-

tion.

Let I be the class of all ordinals, and let R = Z[I] be the polynomial ring

freely generated by I. The ring R has a proper class of elements, but for

what we will do this is no problem. Let A be the abelian category of all small

R-modules. Thus an object in A is a (small) abelian group M together with

endomorphisms ϕi : M −→M for every i ∈ I, such that all the ϕi commute.

The morphisms in A are the R-module homomorphisms. Given two objects

M and N in A, there is only a set of morphisms HomA(M,N); it is a subset

of the set of abelian group homomorphisms.

Note that the abelian category A has many good properties. It satisfies

the [AB5] and [AB4∗] conditions. After all, it is the category of modules

over a ring, albeit a very large ring. However, there is no generator or

cogenerator, and it will follow from our remarks that there are not enough

projectives or injectives.

Let Z ∈ A be the trivial R-module. Thus the underlying abelian group

is the additive group of integers Z, and all the maps ϕi : Z −→ Z are zero.

The following observation is due to Freyd [4].

Lemma 1.1. With the notation as above, Ext1A(Z,Z) is a proper class.
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Proof. For every ordinal i ∈ I we construct a module Mi such that, as an

abelian group, Mi = Z ⊕ Z. The endomorphisms ϕj : Mi −→ Mi are given

by the following rule:

(i) If j 6= i, then ϕj : Mi −→Mi is zero.

(ii) The map ϕi : Mi −→Mi is determined by the matrix
(

0 1

0 0

)

.

It is clear that the Mi are pairwise non-isomorphic as R-modules, since the

element j ∈ I for which ϕj is nonzero on Mi changes as we change i. Hence,

we have a proper class of non-isomorphic modules Mi, each of which fits in

an exact sequence

0 −−−−→ Z −−−−→ Mi −−−−→ Z −−−−→ 0,

and we have produced a proper class of elements in Ext1A(Z,Z). �

Now consider the category K(A), the homotopy category of A. The

objects are chain complexes of small R-modules, and the morphisms are

homotopy equivalence classes of chain maps. Each R-module is viewed as

a chain complex concentrated in degree zero. Let A(A) ⊂ K(A) be the full

subcategory of all acyclic complexes. Both K(A) and A(A) are triangulated

categories with small Hom-sets.

In what follows, we refer to [8] for the necessary terminology and basic

facts. The category K(A) satisfies the [TR5] and [TR5∗] conditions; that

is, it has small products and coproducts. The subcategory A(A) is localiz-

ing and colocalizing, meaning that it is closed under both coproducts and

products. (In a triangulated category with coproducts, every triangulated

subcategory which is closed under coproducts is automatically thick by [8,

Proposition 1.6.8]; that is, it contains all direct summands of its objects.)

The derived category of A is the Verdier quotient

D(A) = K(A)/A(A).

Since HomD(A)(Z,ΣZ) ∼= Ext1A(Z,Z), Lemma 1.1 implies the following.

Corollary 1.2. There is a proper class of morphisms Z −→ ΣZ in D(A).

�

We remark that it does not help if we restrict attention to bounded

derived categories, since the category Db(A) does not have small Hom-sets

either.
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Recall that a Bousfield localization for the pair A(A) ⊂ K(A) is a right

adjoint of the canonical functor K(A) −→ D(A), and a Bousfield colocal-

ization is a left adjoint. As shown in [8, Proposition 9.1.18], a Bousfield

localization exists for the pair A(A) ⊂ K(A) if and only if the inclusion

i : A(A) −→ K(A)

has a right adjoint. Dually, a colocalization exists if and only if i has a left

adjoint.

Corollary 1.3. There is neither a Bousfield localization nor a Bousfield

colocalization for A(A) in K(A). The inclusion functor i : A(A) −→ K(A)

has neither a right adjoint nor a left adjoint.

Proof. By [8, Theorem 9.1.16], if a Bousfield localization existed for A(A) ⊂

K(A), then the quotient category D(A) = K(A)/A(A) would be equivalent

to a full subcategory ⊥A(A) ⊂ K(A), namely the one whose objects are

those X such that

HomK(A)(A,X) = 0

for all A ∈ A(A). For this, the category D(A) would have to have small

Hom-sets. Since this is not the case by Corollary 1.2, a Bousfield localization

cannot exist. Dually, there can be no Bousfield colocalization. Therefore,

By [8, Proposition 9.1.18], the inclusion of A(A) into K(A) has neither a

right adjoint nor a left adjoint. �

Let Ab denote the category of abelian groups. A functor from a triangu-

lated category to Ab is called homological if it takes triangles to long exact

sequences. A triangulated category T satisfies Brown representability if it

has small coproducts and every homological functor H : T
op −→ Ab that

takes products to products is representable; that is, there is an object A in

T such that H is naturally isomorphic to HomT(−, A). (Note that, since

products in the dual category T
op are coproducts in T, our assumption is

in fact that H takes coproducts in T to products in Ab.)

Corollary 1.4. Neither the category A(A) nor its dual satisfy Brown rep-

resentability.

Proof. The category A(A) has small products and coproducts, and the in-

clusion

i : A(A) −→ K(A)
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respects both. If Brown representability held for A(A), then the inclu-

sion would have a right adjoint by [8, Proposition 9.1.19]. If Brown rep-

resentability held for the dual of A(A), then a left adjoint would have to

exist. Corollary 1.3 tells us that we have neither. �

The failure of Brown representability for A(A)op can be displayed more

explicitly, without referring to results in [8], as follows. (The argument for

A(A) is similar.) The functor Hom
K(A)(Z,−) is a representable functor

from K(A) to Ab. The composite

(1) A(A)
i

−−−−→ K(A)
Hom

K(A)(Z,−)
−−−−−−−−−−→ Ab

is a homological functor taking products to products, and we assert that it

is not representable by any object of A(A).

Suppose the contrary. If the composite (1) were representable, then there

would exist a map ϕ : Z −→ A whereA ∈ A(A) and such that all other maps

from Z to acyclic complexes factor uniquely through ϕ. Let us complete ϕ

to a triangle

X
α

−−−−→ Z
ϕ

−−−−→ A −−−−→ ΣX

in K(A). Now any morphism Z −→ ΣZ in D(A) can be realized as a pair

of maps

(2) Yβ

ttiiiiiiiiii

**VVVVVVVVVV

Z ΣZ

where β is a quasi-isomorphism. This fits into a triangle

Y
β

−−−−→ Z
ψ

−−−−→ B −−−−→ ΣY

with B ∈ A(A). Hence, ψ would factor through the universal map ϕ : Z −→

A, and we discover that the above diagram (2) would be equivalent to a

diagram

Xα

ttiiiiiiiiii

++VVVVVVVVVV

Z ΣZ .

Thus each morphism Z −→ ΣZ in D(A) would be represented by some map

X −→ ΣZ in K(A), where X is fixed. Since there is only a (small) set of

such maps, we have contradicted Corollary 1.2.
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