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Abstract. The main purpose of this work is to give a survey of main
monotonicity properties of queueing processes based on the coupling
method. The literature on this topic is quite extensive, and we do
not consider all aspects of this topic. Our more concrete goal is to
select the most interesting basic monotonicity results and give sim-
ple and elegant proofs. Also we give a few new (or revised) proofs
of a few important monotonicity properties for the queue-size and
workload processes both in single-server and multi- server systems.
The paper is organized as follows. In Section 1, the basic notions
and results on coupling method are given. Section 2 contains known
coupling results for renewal processes with focus on construction of
synchronized renewal instants for a superposition of independent re-
newal processes. In Section 3, we present basic monotonicity results
for the queue-size and workload processes. We consider both discrete-
and continuous-time queueing systems with single and multi servers.
Less known results on monotonicity of queueing processes with depen-
dent service times and interarrival times are also presented. Section
4 is devoted to monotonicity of general Jackson-type queueing net-
works with Markovian routing. This section is based on the notable
paper [17]. Finally, Section 5 contains elements of stability analysis
of regenerative queues and networks, where coupling and monotonic-
ity results play a crucial role to establish minimal sufficient stability
conditions. Besides, we present some new monotonicity results for
tandem networks.

1. Introduction

Coupling is a common way to present random variables, generally defined
on different probability spaces, as elements of a new common probability
space keeping their predetermined (marginal) distributions. Another im-
portant aspect we discuss in the work is a coupling time of two renewal
processes defined on a common probability space and governed by the same
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interrenewal distribution. We show how to couple different versions of re-
newal processes in particular, delayed renewal process with its stationary
version or with its zero-delayed version.

The concept of coupling is also very useful both in estimation the (steady-
state) performance measure and the obtaining the rate of convergence to
stationarity. The most interesting aspect of coupling we consider in this
work is its application to stability analysis obtained via monotonicity prop-
erties.

The most important sources on coupling method are [1, 6, 22], and other
sources for the survey are [17, 18, 25].

Consider two stochastic processes X = {Xt, t ≥ 0}, X ′ = {X ′
t, t ≥ 0}

with distributions P, P′ respectively, with the same state space (E, B) (and
defined in general on different probability spaces) with the same parameter
t ∈ N = {0, 1, . . .} or t ∈ R+ = [0,∞). The coupling of X and X ′ is a
realization X̂ = (X̂, X̂ ′) on a common probability space with state space
(E2, B⊗ B) such that

X̂ =st X, X̂ ′ =st X ′ (1.1)
(=st means equality in distribution). In other words, distributions of ran-
dom elements X, X ′ are the marginals of the distribution of coupling X̂.
Coupling allows a sample-path comparison of realizations of random pro-
cesses. In what follows we (as a rule) assume that the process X̃ = (X, X ′)
is already a coupling with a distribution P.

Assume original processes have the same distributions, or the process X
could be obtained by a ”shift” of the process X ′. Then the following notion
is used.

Definition. Let X̃ = (X, X ′) be a coupling. A random time T ∈ [0, ∞] is
a coupling time of X̃ if

Xt = X ′
t for t ≥ T on {T < ∞}. (1.2)

The coupling is called successful if P(T < ∞) = 1. Note that for any
measurable set A,

|P(Xt ∈ A)− P(X ′
t ∈ A)| =

= |P(Xt ∈ A, T ≤ t)− P(X ′
t ∈ A, T ≤ t|

+ |P(Xt ∈ A, T > t)− P(X ′
t ∈ A, T > t| ≤ P(T > t),

where we use (1.2). Now taking supremum over A, we obtain the main
coupling inequality

||P(Xt ∈ ·)− P(X ′
t ∈ ·)|| ≤ P(T > t), (1.3)

estimating the total variation distance between distributions X and X ′. In
fact, this inequality holds in sample-path sense if we replace values Xt, X ′

t
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by shifted versions θXt =: (Xt+s, s ≥ 0) and θX ′
t =: (X ′

t+s, s ≥ 0), re-
spectively, because since instant T both processes coincide. Inequality (1.3)
allows to obtain convergence rate to stationarity if say X ′ is a strictly sta-
tionary version of X with P′(X ′

t ∈ ·) = π(·) for all t. If there is a function
φ(x) →∞ such that Eφ(T ) < ∞, then the following rate of convergence in
total variation holds:

||P(Xt ∈ ·)− π(·)|| ≤ P(T > t) ≤ Eφ(T )
φ(T )

= O(
1

φ(t)
).

In the context of this work, it is especially important to discuss a special
case of the coupling leading to stochastic ordering. Let X, Y be real-valued
random variables with distributions FX , FY . Then X ≤st Y (in the sense
of stochastic ordering) if FX(x) ≥ FY (x) for all x. (It is denoted FX ≥ FY .)

This definition is equivalent to the following: i) Ef(X) ≤ Ef(Y ) for
all increasing functions f : R = (−∞,∞) → R or ii) there exist random
variables X ′, Y ′ (defined on a common probability space) such that X ′ =st

X, Y ′ =st Y and X ′ ≤ Y ′ with probability 1 (w.p.1).
Condition ii) allows us to compare stochastic processes in a sample -path

sense given ordering between distributions. To construct a common proba-
bility space (supporting new random variables with the same marginal dis-
tributions), the quantile functions are used. We describe this construction
for the state space E = R.

Consider random variables X,Y with distributions FX , FY . Define quan-
tile functions QX , QY as

QX(u) = inf(x : FX(x) ≥ u), QY (u) = inf(x : FY (x) ≥ u), u ∈ (0, 1).
(1.4)

It is easy to see that

QX(u) ≤ x iff FX(x) ≥ u, QY (u) ≤ x, iff FY (x) ≥ u. (1.5)

To construct a common probability space, we take Ω∗ = (0, 1) with Borel
sigma-algebra B∗ and Lebesgue measure P∗(dx) = dx. In other words,
elements ω∗ ∈ Ω∗ are uniformly distributed in (0, 1). Define new variables
X∗, Y ∗ as

X∗(ω∗) = QX(ω∗), Y ∗(ω∗) = QY (ω∗), ω∗ ∈ Ω∗. (1.6)

Then by (1.5),

P∗(ω∗ : X∗(ω∗) ≤ x) = P∗(ω∗ : QX(ω∗) ≤ x)
= P∗(ω∗ : ω∗ ≤ FX(x)) = FX(x);

P∗(ω∗ : Y ∗(ω∗) ≤ x) = P∗(ω∗ : QY (ω∗) ≤ x)
= P∗(ω∗ : ω∗ ≤ FY (x)) = FY (x).
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Thus, random variables X∗, Y ∗ defined on the common probability space
(Ω∗, B∗, P∗) have given (marginal) distributions FX , FY , respectively. Hen-
ce, an order FX ≥ (≤)FY between given distributions implies P∗-a.s. in-
equalities between new random variables

X∗(ω∗) = QX(ω∗) ≤ (≥)Y ∗(ω∗) = QY (ω∗), ω∗ ∈ Ω∗. (1.7)

2. Coupling of renewal processes

Following [1], we construct a successful coupling of a renewal process
with its stationary version. This construction is used in stability analysis
in Section 5.

Consider a renewal (i.i.d.) sequence Xn, n ≥ 1, with Xn > 0, with mean
EX = µ < ∞ (where X is a generic renewal period) and with spread-
out distribution F . It means that F ∗n, n-convolution F with itself, has
an absolutely continuous component for some n ≥ 1. Define S0 = 0 and
random walk Sn = X1+ · · ·+Xn, n ≥ 1. Define also the number of renewals
in (0, t] as

N(t) = #{n ≥ 1 : Sn ≤ t}, t ≥ 0. (2.1)
By the Stone’s decomposition [19], the renewal function U(t) = EN(t) can
be written as

U = U1 + U2, (2.2)
where Ui are nonnegative measures on [0,∞), measure U2 is bounded (total
variation ||U2|| < ∞) and there exists a bounded continuous density for
measure U1,

u1(x) = dU1(x)/dx → 1
µ

as x →∞. (2.3)

For each t ≥ 0 we define the forward renewal time (overshoot)

Bt = inf
n≥0

(Sn − t : Sn − t ≥ 0).

In particular, B0 = 0. Define distribution Gt(x) = P(Bt ≤ x) and the
density of the stationary forward renewal time,

F0(dx) =
1
µ

(1− F (x))dx. (2.4)

The following statements are adopted from [1].
Theorem 2.1.

||Gt − F0|| → 0 for any X1 (2.5)
if and only if F is spread-out.
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We recall the renewal equation

Z(t) = z(t) +
∫ t

0

Z(t− u)dF (u), t ≥ 0, (2.6)

where Z is unknown function on [0,∞) and z is a known one. In what
follows we will assume (without loss of generality) that

F (dx) ≥ cdx if x ∈ (a, a + 2b) (2.7)

for some a, b > 0, c > 0.

Lemma 2.1. If z is bounded on finite intervals then solution to renewal
equation (2.6) is

Z(t) =
∫ t

0

z(t− u)dU(u). (2.8)

We include an instructive proof of the following statement.

Theorem 2.2. For the zero-delayed case (that is X1 has the same dis-
tribution as others), distribution Gt has a common uniform component on
(0, b) for all t ≥ C where C is a finite constant. In other words, for some
δ ∈ (0, 1),

P(u < Bt ≤ v) ≥ δ
v − u

b
, 0 < u < v < b, t ≥ C. (2.9)

Proof [1]. Denote X = X1 and fix arbitrary u < v. Let Z(t) = P(u <
Bt ≤ v) and

z(t) = P(u < Bt ≤ v, X > t) = P(Bt ≤ v, X > t)− P(Bt ≤ u, X > t).

Because P(Bt ≤ v, X > t) = F (t + v) then it follows that

z(t) = F (t + v)− F (t + u). (2.10)

By Stone’s decomposition, U ≥ U1, and then solution Z(t) to equation (2.6)
gives for t ≥ a + b (see (2.3), (2.8))

Z(t) ≥
∫ t

0

z(y)u1(t− y)dy ≥
∫ a+b

a

z(y)u1(t− y)dy. (2.11)

If y ∈ (a, a + b) and 0 < u < v < b then a < y + u < y + v < a + 2b, and
we obtain from (2.6), (2.10) that

z(y) =
∫ y+v

x=y+u

dF (x) ≥ c(v − u). (2.12)
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By (2.3), there exists t0 such that

u1(t) ≥ 1
2µ

, t ≥ t0.

Then it follows from (2.11), (2.12) that for t ≥ t0 + a + b,
∫ a+b

a

z(y)u1(t− y)dy ≥ c(v − u)
b

2µ
=

v − u

b
· cb2

2µ
. (2.13)

By (2.7),

µ = EX ≥
∫ a+2b

a

xdF (x) ≥ c
(a + 2b)2 − a2

2
= 2bc(a + b),

and we obtain 2µ ≥ 4b2c. Hence, (2.9) holds with δ = cb2

2µ ≤ 1/4 and with
any C ≥ t0 + a + b.

Above given construction is well-known and allows us to construct a (less
known) coupling of a few renewal processes. Consider two renewal processes,
zero-delayed and stationary, with the forward renewal times Bt, B′

t, respec-
tively. Let C be fixed and satisfy (2.9). Define

t0 = 0, Bt0 = 0, L0 = max(Bt0 , B′
t0), t1 = t0 + L0 + C,

where B′
t0 has distribution (2.4). We choose random variables Uk, Vk such

that
P(Uk = 1) = 1− P(Uk = 0) = δ ∈ (0, 1),

and that Vk are uniform on (0, b). Also let

M0 = L0 + C −Bt0 , M ′
0 = L0 + C −B′

t0 ,

and define for any k ≥ 1,

Lk = max(Btk
, B′

tk
), tk+1 = tk + Lk + C, Mk = Lk + C −Btk

,

M ′
k = Lk + C −B′

tk
.

First of all we have

Mk ≥ C, M ′
k ≥ C, tk+1 − tk = C + Lk ≥ max(Mk, M ′

k).

A key observation is that the instants tk+1−Mk = tk +Btk
and tk+1−M ′

k =
tk +B′

tk
are the renewal points of the corresponding processes. Now we put

Btk+1 = UkVk + (1− Uk)Rk, B′
tk+1

= UkVk + (1− Uk)R′k,

where variables Rk, R′k are chosen with the rest distributions

P(Btk
≤ x)−min(x, b)δ/b

1− δ
,

P(B′
tk
≤ x)−min(x, b)δ/b

1− δ
,
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respectively. Then it follows from Theorem 2.2 that Btk+1 , B′
tk+1

have the
same distributions as Mk, M ′

k, respectively. At that, variables Uk, Vk, Rk,
R′k are taken independent of all preceding Ur, Vr, Rr, R′r.

The renewals for the zero-delayed process {Sn} in interval [tk −Mk, tk]
are constructed using the conditional distribution given that its forward
renewal time at instant Mk has the constructed value Btk+1 (similarly, for
the stationary process {S′n}). The procedure is stopped at the instant σ =
inf(n ≥ 0 : Un = 1), when both processes have a common renewal at
instant T = tσ + Lσ+1. Indeed, if Un = 1 then overshoots Btk+1 , B′

tk+1

are uniformly distributed in (0, b) and, by coupling, we obtain the common
renewal point tk+1 + Btk+1 = tk+1 + B′

tk+1
= tk+1 + Vk. Then we construct

a new renewal process {S̃n} (coupling of two original processes) which has
the same renewals as {Sn} before T and the same renewals as {S′n} after
T , and this new process has required marginal distribution. The stopping
time σ has geometrical distribution P(σ = n) = δ(1 − δ)n, so σ < ∞ and
T < ∞ (w.p.1).

A slight modification of this construction allows us to obtain common
renewal points for a superposition of m independent renewal processes, see
[18]. Let m = 2 and Fi be the interevent distribution of the process i = 1, 2.
Assume F1(dx) ≥ cdx, x ∈ (a, a+2b), for suitable constants a, b > 0, c > 0.
Let B

(i)
t be the forward renewal time of the process i at instant t; ν be the

uniform measure on (0, b) and let t
(i)
n , n ≥ 1, be the renewal instants of the

process i = 1, 2. Consider the i.i.d. sequence Vi, i ≥ 1, with distribution
ν and independent of the i.i.d. 0 − 1 random variables Ui, n ≥ 1, with
P(U1 = 1) = δ. Introduce the overshoot process Bt = (B(1)

t , B
(2)
t ), t ≥ 0.

Then by Theorem 2.2,

P(B(1)
t ∈ A) ≥ δν(A)

for any set A ∈ B(0, b) and t ≥ C. Let

t0 = 0, L0 = B
(1)
t0 , t1 = min(t(2)n : t(2)n ≥ t0 + L0 + C).

Then we take B
(1)
t1 = U1V1 + (1− U1)R1 and define recursively

tk = min(t(2)n : t(2)n ≥ tk−1 + Lk−1 + C),

B
(1)
tk

= UkVk + (1− Uk)Rk, Lk = B
(1)
tk

, k ≥ 1,

with Uk, Vk, Rk independent of all preceding Ul, Vl, Rl. Let T0 = 0 and
Tn+1 = min(tk > Tn : Uk = 1), n ≥ 0. It then follows that {Tn} ∈ {t(2)n },
and the overshoot BTn = (B(1)

Tn
, B

(2)
Tn

) at each instant Tn has distribution
ν ⊗ F2 and is independent of the pre-history Bt, t < Tn−1. As a result,
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{Tn} are regeneration points for the one-dependent process Bt, t ≥ 0. (This
process has the i.i.d periods {Tn+1−Tn} and one-dependent cycles, see [18].)

To couple m ≥ 2 renewal processes, we assume that at least m − 1
interevent distributions F2, . . . , Fm say are spread-out. Then we replace Ln

by max2≤i≤m B
(i)
tn

, constant C by max2≤i≤m Ci and the event {Un = 1}
by the event {min2≤i≤m U

(i)
n = 1}, where constant Ci, overshot B

(i)
tn

and
variable U

(i)
n relate to the ith renewal process. (For more details see [18]).

We mention splitting of a Markov chain {Xn, n ≥ 0} with the state
space (R, B) and transition kernel Pn(x, ·), n ≥ 1 [1]. Consider a set A and
let τ(A) = inf(n ≥ 1 : Xn ∈ A). The set A is recurrent if Px(τ(A) < ∞) = 1
(for all initial states x) and is regenerative if in addition,

Pr(x, ·) ≥ ελ(·), x ∈ A, (2.19)

for some r ≥ 1, ε ∈ (0, 1) and a probability measure λ. If a regenerative
set exists, then the chain is called Harris recurrent, and one can construct
an embedded renewal process of regenerations as follows. We realize usual
version of the process up to the time τ(A). Then, with probability ε, we
realize Xτ(A)+r according to distribution λ, and thus a regeneration occurs
at instant τ(A) + r. Otherwise, with probability 1 − ε, we use the rest
distribution,

Pr(Xτ(A), ·)− ελ(·)
1− ε

. (2.20)

Then we realize fragment {Xτ(A)+k, 0 < k < r} in according to the condi-
tional distribution of the process {Xk, 0 < k < r} given boundary values
X0 = Xτ(A), Xr = Xτ(A)+r. The procedure is repeated with the new initial
value Xτ(A)+r = x, and so on. As a result we get a new Markov chain with
the same transition probabilities which is one-dependent regenerative with
dependent adjacent cycles and independent regeneration periods. As above,
the coupling time has geometrical distribution.

3. Coupling and monotonicity of queues

3.1. Classical systems. In this section, we collect together the most im-
portant and interesting applications of the coupling in analysis of queues.
The main purpose is to find monotonicity properties of queues and use them
for comparison of queueing performance measures. The basic sources are
[1, 2, 4, 25].

First of all we will follow [4] to obtain monotonicity property for queue-
size and workload both in continuous and in discrete time. Our proofs are
mainly modified and simplified versions of that are given in [4].
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We consider two GI/G/m queues Q, Q̃ with m ≥ 1 servers. Let A,B
be interarrival time and service time distributions in queue Q, respectively.
(Corresponding variables in queue Q̃ we endow with tildes.) Let tn be
arrival instants and τn = tn+1 − tn, n ≥ 1, be the i.i.d.interarrival times.
(In the delayed case, τ1 has in general another distribution.) Denote the
i.i.d. service times Sn, n ≥ 1.

To simplify notations, we will not often distinguish original and coupled
variables living in a common space. For instance, if distributions FX ≥ FY

then we write X ≤ Y instead of X∗ ≤ Y ∗ (P∗-a.s.) for the coupled variables
X∗, Y ∗ such that X∗ =st, Y ∗ =st Y (see (1.7)). Also let S and τ denote
generic service time and input interval, respectively. Let Wi(t) be the (left-
continuous) ith smallest unfinished workload among all m servers at instant
t, and W (t) = (W1(t), . . . ,Wm(t)). Introduce backward interarrival time at
instant t, τ(t) = maxn(t− tn : t− tn > 0). Note that the process τ(t), t ≥ 0,
is right-continuous and τ(tn+1) = τn. Let also N(t) = max(n ≥ 1 : tn < t)
be the number of arrivals in (0, t). Unlike definition of the process N in
section 2, here N(·) is left-continuous, N(0) = 0 and N(tn) = n−1. Denote
Wi(tn) = W

(i)
n , i = 1, . . . , m. We note the following relation connecting

processes W (t) and Wn:

W (t) = R(W (1)
N(t) + SN(t) − τ(t), W

(2)
N(t) − τ(t), . . . , W (m)

N(t) − τ(t))+, (3.1)

where operator (·)+ is component wise and operator R puts components in
an increasing order. For t = tn+1 relation (3.1) transforms into well-known
Kiefer-Wolfowitz recursion for the workload vector Wn = (W (1)

n , . . . ,W
(m)
n ):

Wn+1 = R(W (1)
n + Sn − τn, W (2)

n − τn, . . . ,W (m)
n − τn)+

= R(Wn + eSn − Iτn)+, n ≥ 1, (3.2)

where vectors e = (1, 0, . . . , 0), I = (1, . . . , 1) ∈ Rn
+. Now we prove mono-

tonicity of the workload process W = (Wn, n ≥ 1). Assume that Wn ≤ W̃n

and that
S̃n ≤ Sn, τn ≤ τ̃n,

for some n. Then obviously,

(W̃n + eS̃n − Iτ̃n)+ ≤ (Wn + eSn − Iτn)+, n ≥ 1.

Assume that m-dimensional vectors X, Y are ordered, X ≤ Y , and show
that operator R keeps the ordering, that is

RX =: X∗ = (X∗
1 , . . . , X∗

m) ≤ RY =: Y ∗. (3.3)

This implies the monotonicity of mapping (3.2) with respect to (w.r.t) input
interval (decreasing) and service time (increasing). Define index n(i) as

X∗
i = Xn(i), i = 1, . . . , m.
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Since Xn(1) = mink(Xk) then, by (3.3), the inequality

X∗
1 =: Xn(1) > Y ∗

1 =: Yn(1)

is impossible and thus X∗
1 ≤ Y ∗

1 . Also inequality X∗
2 =: Xn(2) > Yn(2) = Y ∗

2

is impossible since Xn(2) = Θ2(Xk, k = 1, . . . , m), where operator Θn se-
lects the nth smallest element. These arguments show that operator R keeps
(component-wise) order. It immediately gives us the following result.

Theorem 3.1. Assume that W̃1 ≤ W1 w.p.1 and

τ̃ ≥st τ, S̃ ≤st S. (3.4)

Then the following (component-wise) ordering holds:

W̃n ≤st Wn, n ≥ 1. (3.5)

In particular, waiting times are ordered as

W̃ (1)
n ≤st W (1)

n , n ≥ 1. (3.6)

In what follows, we write down stochastic relations for original variables
as X = (≤,≥)Y (instead of =st (≤st,≥st)) although such (w.p.1) relations
indeed hold for the coupled variables.

The following statement is a revised and extended version of Theorem 3.1
from [4]. Let, in the system Q, νn be the number of customers just before
arrival instant tn; Dn be the departure instant of customer n; Bn be the
nth service beginning epoch, and Qn be the number of customers waiting
in the queue just before tn.

Theorem 3.2. If ν1 = ν̃1 = 0, τ = τ̃ , S ≥ S̃, then

ν̃n ≤ νn, Q̃n ≤ Qn, n ≥ 1. (3.7)

Proof. Using coupling we have tn = t̃n, n ≥ 1. Then by (3.6),

Dn = tn + W (1)
n + Sn ≥ tn + W̃ (1)

n + S̃n = D̃n, n ≥ 1. (3.8)

Introduce the number of departures in interval [0, tn] in both systems:

∆(n) = #{k : Dk ≤ tn}, ∆̃(n) = #{k : D̃k ≤ t̃n}. (3.9)

It follows from (3.8) that ∆̃(n) ≥ ∆(n) and we obtain the 1st inequality
(3.8):

νn = n− 1−N(n) ≥ n− 1− Ñ(n) = ν̃n, n ≥ 1. (3.10)
Because

Bn = max(tn, Dn−m), n ≥ 1 (Dk = 0 for k < 0), (3.11)
then by (3.8),

Bn ≥ B̃n, (3.12)
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and thus,

M(n) = #{k : Bk < tn} ≤ M̃(n) = #{k : B̃k < tn}.
It implies desired inequality for the queue size,

Qn = n− 1−M(n) ≥ n− 1− M̃(n) = Q̃n, n ≥ 1.

Note 3.1. It is possible to extend Theorem 3.2 for non-empty initial
conditions, when ν̃1 ≤ ν1 and initial unfinished service times are ordered in
an evident way.

Let ξ∞, resp., ξ(∞) denote a weak limit of the sequence ξn, resp., ξ(t).
Obviously, inequalities (3.5)- (3.7) hold also for weak limits (if exist) that
is (stochastically)

W̃∞ ≤ W∞, W̃ (1)
∞ ≤ W (1)

∞ , ν̃∞ ≤ ν∞, Q̃∞ ≤ Q∞. (3.13)

Let ν(t) be the number of customers in the system Q at instant t+. Now
we present a simpler proof of the following statement which includes theo-
rems 4.1 and 4.2 from [4].

Theorem 3.3. If ν(0) = ν̃(0) = 0, τ = τ̃ and S ≥ S̃ then

ν(t) ≥ ν̃(t), W (t) ≥ W̃ (t), t ≥ 0. (3.14)

In particular, virtual waiting times are ordered as

W1(t) ≥ W̃1(t), t ≥ 0.

Proof. To establish first inequality in (3.14), we note that by (3.8),

Λ̃(t) =: #{k : D̃k ≤ t} ≥ #{k : Dk ≤ t} =: Λ(t), t ≥ 0.

Then the desired result follows since

ν(t) = N(t)− Λ(t) ≥ Ñ(t)− Λ̃(t) = ν̃(t),

where N(t) = Ñ(t) is the number of arrivals in (0, t]. (Note that ∆(n) =
Λ(tn) and ∆̃(n) = Λ̃(tn), see (3.9).) The 2nd inequality in (3.14) is a direct
consequence of the monotonicity of Kiefer-Wolfowitz recursion (3.2) and
its continuous-time analog (3.1), because SN(t) =st S, τ(t) =st τ̃(t) and
W̃Ñ(t) ≤st WN(t) by (3.5).

In the next two statements, we simplify and modify the proof of three
results from [4] for a single-server system GI/G/1. We assume that conti-
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nuous- and discrete- time processes in systems Q, Q̃ have (in evident no-
tations) weak limits, W (∞), ν(∞), W∞, ν∞ and W̃ (∞), ν̃(∞), W̃∞, ν̃∞,
respectively. Sufficient conditions for the discrete-time limits to exist are:

ρ =: Eτ/ES < 1, ρ̃ =: Eτ̃ /ES̃ < 1. (3.15)

These conditions in turn imply conditions P(τ > S) > 0 and P(τ̃ > S̃) > 0,
respectively. These conditions also imply aperiodicity of the (discrete-time)
regeneration period and finiteness of its mean. If moreover, distributions
of τ, τ̃ are non-lattice then regeneration period is also non-lattice and weak
limits for continuous time also exist [1].

Theorem 3.4. Assume that

τ ≤ τ̃ , S = S̃. (3.16)

Then regardless of the initial state,

W̃ (∞) ≤ W (∞), ν̃(∞) ≤ ν(∞). (3.17)

Proof. By (3.15),(3.16), 1 > ρ ≥ ρ̃ and, by (3.6), also Wn = W
(1)
n ≥

W̃
(1)
n = W̃n and hence, W∞ ≥ W̃∞. As in [4] we now use explicit relations

between limit distributions. Denote Ŝ the stationary service time with
(common for both systems) distribution

P(Ŝ ≤ x) =
1

ES

∫ x

0

(1−B(y))dy,

where B is the distribution of service time. Then by (3.16) and [21],

P(ν(∞) > k) = ρP(τ1 + · · ·+ τk ≤ W∞ + Ŝ)

≥ ρ̃P(τ̃1 + · · ·+ τ̃k ≤ W̃∞ + Ŝ)
= P(ν̃(∞) > k),

and the 2nd relation in (3.17) follows. Also the 1st inequality in (3.17)
follows since for each x > 0,

P(W (∞) > x) = ρP(W∞ + Ŝ > x) ≥ ρ̃P(W̃∞ + Ŝ > x) = P(W̃ (∞) > x),

where the equalities have been proved in [21], Theorem 2.

Let Q(t) be the number of customers waiting in the queue Q at instant
t and Q(∞) be its weak limit (if exist).

Theorem 3.5. Let, in a stationary queue GI/M/k, assumptions (3.16)
hold. Then

Q̃(∞) ≤ Q(∞).
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Proof. It is proved in [20] that P (Q(∞) ≥ n) = ρ
kP(ν∞ ≥ n + k) for any

n ≥ 0. Because ρ ≥ ρ̃ by (3.16), and ν∞ ≥ ν̃∞ by Theorem 3.2, we obtain
ρ

k
P(ν∞ ≥ n + k) ≥ ρ̃

k
P(ν̃∞ ≥ n + k) = P(Q̃(∞) ≥ n), n ≥ 0.

The proof of the following result in [4] is not satisfactory, and we give
another proof.

Theorem 3.6. Let, in m-server queues Q, Q̃,

W̃1 ≤ W1, τ ≤ τ̃ , S̃ = S. (3.18)

Then
ν̃n ≤ νn, n ≥ 1. (3.19)

Proof. By (3.18) and Theorem 3.1, W̃n ≤ Wn, n ≥ 1. It also follows from
(3.18) that the difference ∆n =: t̃n − tn ≥ 0 is non-decreasing in n. Hence,
the departure instants of customer n in both systems satisfy inequality

T̃n =: t̃n + W̃ (1)
n + Sn ≤ tn + ∆n + W (1)

n + Sn =: ∆n + Tn, n ≥ 1.

Because
T̃k ≤ Tk + ∆k ≤ Tk + ∆n, n ≥ k ≥ 1,

then we obtain

C(n) = #{k : Tk < tn} = #{k : Tk + ∆n < tn + ∆n}
≤ #{k : Tk + ∆k < t̃n} ≤ #{k : T̃k < t̃n} = C̃(n).(3.20)

Hence,

νn = n− 1− C(n) ≥ n− 1− C̃(n) = ν̃n,(3.21)

and (3.19) follows.

Note that (3.18) does not imply ordering (3.19) for continuous-time
queue-size process.

Now we compare continuous-time workload processes in an m-server
GI/G/m queue Q with the i.i.d. service times Sn, n ≥ 1, with a single-
server queue Q∗ in which service times Sn are reduced in m times. We will
keep previous notations assuming t1 = 0. Let Wt =

∑m
i=1 Wi(t) be the total

workload at instant t−. As always, we consider a coupling of queues Q, Q∗

on the same probability space, with the same interarrival times τ∗n = τn and
service times S∗n = Sn/m, n ≥ 1. Let W ∗

t be the workload at instant t in
queue Q∗.
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Theorem 3.7 [1]. If mW ∗
0 ≤ W0 then

mW ∗
t ≤ Wt. (3.22)

Proof. Using inequality (x + y)+ ≤ x+ + y+ m times we have for 0 =
t1 ≤ t < τ1 = t2:

mW ∗
t = m(W ∗

0 + S1/m− t)+ = (mW ∗
0 + S1 − tm)+

≤ (
m∑

i=1

Wi(0) + S1 − tm)+ = (W1(0) + S1 − t +
m∑

i=2

(Wi(0)− t))+

≤ (W1(0) + S1 − t)+ +
m∑

i=2

(Wi(0)− t)+ = Wt.

Since mW ∗
t2 ≤ Wt2 , we deduce that (3.22) holds for t ∈ [t2, t3), and so on.

Note that if m > 1, both queues are initially empty and S1 > mτ1,
then W

(1)
t2 = 0 (because rest m − 1 ≥ 1 servers are empty) but W ∗

t2 =
(S1/m − τ1)+ > 0. Thus, the above established bounds are generally false
for the waiting times themselves.

Now we show that FCFS (First-Come-First-Served) discipline is an op-
timal one in a certain sense. Consider original m-server queue Q and any
m-server queue Q̃ with possible non-FCFS service discipline assuming ini-
tially empty systems, ν(0) = ν̃(0) = 0 and t1 = 0. Also we assume that
now service times Sn correspond to the order of joining service. This new
coupling holds distributional properties because of the i.i.d. assumption.
(As always we keep original notations for the coupled variables.) Let Bn

be the nth initiation service instant and Dn be the nth service completion
instant in queue Q.

Theorem 3.8. For the coupled queues Q, Q̃,

Dn ≤ D̃n, n ≥ 1, (3.23)

and
ν(t) ≤ ν̃(t), t ≥ 0. (3.24)

Proof. Because tn = t̃n and Q̃ is non-FCFS queue it follows from (3.11)
that

B̃n ≥ tn = Bn, n = 1, . . . , m. (3.25)

In general, service completion epochs are defined by the following relations

Dn = Θn(B1 + S1, . . . , Bn+m−1 + Sn+m−1),

D̃n = Θn(B̃1 + S1, . . . , B̃n+m−1 + Sn+m−1), n ≥ 1.(3.26)
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Assume now that
B̃i ≥ Bi, i = 1, . . . , n, (3.27)

for some n > m and prove (3.27) for i = n + 1. By (3.11), (3.26), (3.27),

Bn+1 = max(tn+1, Dn+1−m)
= max(tn+1, Θn+1−m(Bi + Si : i ≤ n))

≤ max(tn+1, Θn+1−m(B̃i + Si : i ≤ n))

= max(tn+1, D̃n+1−m) = B̃n+1.

Thus (3.27) holds for any n. It now follows from (3.26) that (3.23) also
holds. Recall that N(t) = max(n ≥ 1 : tn ≤ t), and that Λ(t), Λ̃(t) are the
number of departures in (0, t] in Q, Q̃, respectively. By (3.23), Λ(t) ≥ Λ̃(t),
and (3.24) follows since

ν(t) = N(t)− Λ(t) ≤ N(t)− Λ̃(t) = ν̃(t), t ≥ 0.

The following statement for m-server FCFS queue Q and non-FCFS
queue Q̃ has been established in [24, 25] but we follow [1] to present the
proof. (Recall that the 1st customer arrives at instant t1 = 0 at empty
queues.)

Theorem 3.9. For queues Q, Q̃ for each t

Wt =
m∑

i=1

Wi(t) ≤st W̃t =
m∑

i=1

W̃i(t); (3.28)

m∑

i=1

W (i)
n ≤st

m∑

i=1

W̃ (i)
n . (3.29)

Proof. Fix t > 0 and introduce the number of customers

J(t) = max(n ≥ 1 : Bn ≤ t), J̃(t) = max(n ≥ 1 : B̃n ≤ t),

which enter servers in interval [0, t] in Q and Q̃, respectively. Now we will
use the following modification of the coupling. For each t, we keep allocation
of service times for customers who join service in [0, t] as above (according
to the order in which they enter server) and allocate remaining service times
N(t) − J(t), respectively N(t) − J̃(t), in the FCFS order in both queues.
Denote coupled queues (which keep distributions) as Q∗, Q̃∗, respectively.
By construction (in evident notations), for each fixed t,

W ∗
t =st Wt, W̃ ∗

t =st W̃t.
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Because Bn ≤ B̃n, then J(t) ≥ J̃(t) for each t. Moreover, Bn ≤ t for
n ≤ J(t). Thus we obtain

W ∗
t =

J(t)∑
n=1

(Bn + Sn − t)+ +
N(t)∑

n=J(t)+1

Sn

≤
J̃(t)∑
n=1

(B̃n + Sn − t)+ +
J(t)∑

n=J̃(t)+1

Sn +
N(t)∑

n=J(t)+1

Sn = W̃ ∗
t ,

because customers n = J̃(t) + 1, . . . , J(t) are still waiting in Q̃∗, and thus
(B̃n + Sn − t)+ = Sn for these customers, while they have already joint
service in Q∗. This coupling deals with permutations (different for Q and
Q̃) of customers 1, . . . , N(t). Thus we obtain inequality

W ∗
t ≤ W̃ ∗

t =
m∑

i=1

W̃ ∗
i (t),

which also holds for t = t−n .

Unlike previous models, this result is false in the sample-path sense be-
cause we use (new) coupling for each t. By this reason we can not replace
notation ≤st by ≤ in (3.28), (3.29).

Note 3.2. Some previous results can be extended to initially non-empty
queues under appropriate initial conditions.

Note 3.3. We also mention monotonicity of a multiserver retrial queue Q
with a finite buffer, batch arrivals and with exponential retrial times, estab-
lished recently in [26]. Consider an initially empty queue Q with retrial rate
γ(n) depending on current number n of customers in orbit, and let X1(t)
be the number of customer in queue, X2(t) be the number of customers in
orbit at instant t. Denote X(t) = (X1(t), X2(t)). Let tildes denote vari-
ables in a retrial system Q̃ with γ̃(n) ≤ γ(n), n ≥ 1. In particular, it has
been proved that X(t) ≤st X̃(t) for t ≥ 0. (We omitt the proof based on
laborious path-wise comparisons.)

3.2. Queues with dependencies. Following [2], we now present coupling
for dependent interarrival and service times {τ1, S1, τ2, S2, . . .} in a G/G/1
queue determined by conditional distributions

F1(x) = P(τ1 ≤ x),
F2(x1, x2) = P(S1 ≤ x2|τ1 ∈ dx1),

F3(x1, x2, x3) = P(τ2 ≤ x3|τ1 ∈ dx1, S1 ∈ dx2),(3.30)
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and so on. Note that one can use another order of interarrival and service
times. Define new random variables via quantile functions on a common
probability space Ω∗ as follows: for any ω∗ ∈ Ω∗,

τ∗1 (ω∗) = inf(x : F1(x) ≥ ω∗);
S∗1 (ω∗) = inf(x : F2(τ1(ω∗), x) ≥ ω∗),
τ∗2 (ω∗) = inf(x : F3(τ1(ω∗), S∗1 (ω∗), x) ≥ ω∗),

etc. It is obvious that P(τ∗1 ≤ x) = F1(x) and τ∗1 (ω∗) ≤ x iff ω∗ ≤ F1(x).
Moreover,

S∗1 (ω∗) ≤ x if and only if F2(τ1(ω∗), x) ≥ ω∗.

Because ω∗ is uniformly distributed in (0, 1),

P(S∗1 (ω∗) ≤ x2|τ∗1 (ω∗) ∈ dx1) = P(F2(τ1(ω∗), x2) ≥ ω∗|τ∗1 (ω∗) ∈ dx1)
= P(F2(x1, x2) ≥ ω∗) = F2(x1, x2),

and so on. Thus, new random variables defined on a common probability
space hold predefined (marginal) conditional distributions.

The paper [2] also extends Theorems 2.2, 3.1, 3.2, 4.1, 4.2 from [4] to a
GI/G/m queue with dependencies given by conditional distributions under
suitable consistency assumptions.

4. Stochastic monotonicity in the networks

In this section, we follow a landmark paper [17]. Consider a general
stochastic network with M stations, FCFS service discipline and denote for
station i: the number of servers mi, the nth external arrival instant Ei(n),
the nth service time Si(n), next station Vi(n) to be visited by the customer
that is the nth to depart station i (Vi(n) = 0 if the customer leaves the
network), νi(t) the number of customers at instant t with a given initial
state νi(0). The input sequence

{νi(0), Ei(n), Si(n), Vi(n), i = 1, . . . , M ; n ≥ 1} =: {ν(0), E, S, V}, (4.1)

is assumed to be given, where ν(0) = (ν1(0), . . . , νM (0)) is initial allocation
of customers. We call V routing. Now we define for each station i the output
sequence

{Ai(n), Bi(n), Di(n), i = 1, . . . , M ; n ≥ 1} =: {A, B, D}, (4.2)

where Ai(n) is the nth arrival instant, Bi(n) is the nth service initiation
epoch and Di(n) is the nth service completion instant. Let 1(A) be the indi-
cator of an event A, and 1−1(A) be its reciprocal, that is 1(A) = 1−1(A) = 1
if A is true, and 1−1(A) = ∞ if 1(A) = 0. The following representation of
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the output sequence in the terms of the input sequence is now obvious.

Theorem 4.1.

Ai(n) = Θn

(
Ei(m)

⋃[ M⋃

j=1

Dji(m)
]
, m ≤ n

)
, (4.3)

where
Dji(m) = Θm{Dj(l) · 1−1(Vj(l) = i), l = 1, 2, . . .}; (4.4)

Bi(n) = max(Ai(n), Di(n−mi)); (4.5)

Di(n) = Θn(Bi(k) + Si(k); k ≤ n + mi − 1), (4.6)

with Ei(n) = 0 for n = −1, . . . ,−νi(0).
Note that we use negative numbering for the customers initially presented

in the network. If customer l leaving station j does not go to station i then
1−1(Vj(l) = i) = ∞ and thus Dji(m) is the mth internal transition instant
j → i.

The following statement is a direct consequence of the representation
(4.3)-(4.6). In fact, the proof is based on induction in the number of transi-
tions and the 1st step of induction must be established for initial customers
ν(0).

Theorem 4.2. The output sequence {A, B, D} is
i) increasing in {E, S}
ii) decreasing in ν(0) and {mi}.

For each station i and any interval [0, t], introduce the following notations:
the number of departures

ND
i (t) = sup(n : Di(n) ≤ t); (4.7)

the number of external arrivals,

NE
i (t) = sup(n : Ei(n) ≤ t); (4.8)

the total number of arrivals,

NA
i (t) = sup(n : Ai(n) ≤ t); (4.9)

the total number of arrivals leaving network after station i,

ND
i0 (t) = sup(n : Di0(n) ≤ t), (4.10)

where
Di0(n) = Θn

(
Di(l) · 1−1(Vi(l) = 0), l = 1, 2, . . .

)
(4.11)
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is the nth instant when a customer leaves the network (after station i). Also
introduce the total number of customers in the network at instant t,

νt =
M∑

i=1

(NE
i (t)−ND

i0 (t)), t ≥ 0. (4.12)

In what follows we will consider two stochastic networks Σ, Σ̃ (with tildes
denoting variables in Σ̃ ). Stochastic ordering between two vectors is as-
sumed to be component wise.

We establish a monotonicity of the processes in a closed network w. r.
t. initial state ν(0). (Closed network contains M stations and a fixed
number of customers

∑M
i=1 νi(0) circulating between stations.) Let ν(t) =

(ν1(t), . . . , νM (t)), t ≥ 0.

Theorem 4.3. Consider two closed networks Σ, Σ̃ with equivalent ser-
vice processes and routing,

{S, V} =st {S̃, Ṽ},
which are independent of the initial states ν(0) and ν̃(0), respectively. As-
sume

ν(0) ≤st ν̃(0). (4.13)

Then the output sequences are ordered as

{A, B, D} ≥st {Ã, B̃, D̃}, (4.14)

and moreover

{ND
i (t), i = 1, . . . , M} ≤st {ÑD

i (t), i = 1, . . . , M}. (4.15)

Proof. We let

Ei(n) = 0, n ≤ νi(0), Ei(n) = ∞, n > νi(0), i = 1, . . . , M, (4.16)

and similarly for the network Σ̃. Obviously, the networks have constant
populations, which, by (4.13), satisfy inequality

M∑

i=1

νi(0) ≤st

M∑

i=1

ν̃i(0).

On a common probability space we generate new initial data ν∗(0) =
(ν∗1 (0), . . . , ν∗M (0)), ν̂(0) = (ν̂1(0), . . . , ν̂M (0)) such that

ν∗(0) =st ν(0), ν̂(0) =st ν̃(0),

and
ν∗(0) ≤ ν̂(0). (4.17)
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Because
∑M

i=1 ν∗i (0) ≤ ∑M
i=1 ν̂i(0), it then follows from (4.16) that

E∗ ≥ Ê. (4.18)

On the same probability space we now generate sequences (S∗, V∗) = (Ŝ, V̂)
(=st (S, V)) and independent of the initial states ν∗(0), ν̂(0), respectively.
Then given input sequences (ν∗(0), S∗, V∗), (ν̂(0), Ŝ, V̂), using representa-
tion (4.3)-(4.6) one constructs the output sequences {A∗, B∗, D∗}, {Â, B̂, D̂}
in such a way that

{A∗, B∗, D∗} =st {A, B, D}, {Â, B̂, D̂} =st {Ã, B̃, D̃}. (4.19)

Then it follows from (4.17), (4.18) and Theorem 4.2 (i), that

{A∗, B∗, D∗} ≥ {Â, B̂, D̂}. (4.20)

Thus (4.14) is proved. To prove (4.15), we apply definitions (4.7)-(4.11).
Indeed, A∗i (n) ≥ Âi(n) implies B∗

i (n) ≥ B̂i(n) and the latter implies
D∗

i (n) ≥ D̂i(n) and D∗
i0(n) ≥ D̂i0(n) because we use the same routing

(coupling) and 1−1(Vj(l) = i) = 1 if and only if 1−1(Ṽj(l) = i) = 1 for all
i, j, l. Thus,

(N∗D
i (t), i = 1, . . . ,M) ≤st (N̂D

i (t), i = 1, . . . , M), (4.21)

and (4.15) follows.

Now we establish the similar monotonicity property of the network pro-
cesses (both for open and closed networks) w.r.t. service times.

Theorem 4.4 Consider two open (or closed) networks Σ, Σ̃ with service
times sequences

S ≥st S̃,

which are independent of the routing, external input and initial states, and
assume that

{ν(0), E, V} =st {ν̃(0), Ẽ, Ṽ}.
Then

{A, B, D} ≥st {Ã, B̃, D̃}; (4.22)

(ND
i (t), i = 1, . . . ,M) ≤st (ÑD

i (t), i = 1, . . . , M); (4.23)
and for an open network also

(ND
i0 (t), i = 1, . . . ,M) ≤st (ÑD

i0 (t), i = 1, . . . , M). (4.24)

Proof. Formulas (4.22), (4.23) are deduced as (4.20), (4.21) since, by
Theorem 4.2, the output sequence is increasing in service times. Since we
use the same routing, the sequence {Di0(n)} is monotone (see (4.10), (4.11)),
and (4.24) follows.
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Previous results give the following statement.

Corollary. Consider two open networks Σ, Σ̃ with input and service
times sequences

{E, S} ≥st {Ẽ, S̃},
independent of the initial states

{ν(0), V} =st {ν̃(0), Ṽ}.
Then (4.22), (4.24) hold.

Theorem 4.5. Assume that in two networks Σ, Σ̃ (open or closed) the
number of servers at each station i are connected as

mi ≤ m̃i, i = 1, . . . , M.

Then the statement of Theorem 4.4 holds.
Proof. It follows from (4.5) that Bi(n) decreases in mi. By (4.6), de-

creasing Bi(n) implies increasing Di(n). Finally, arrival sequence Ai(n)
decreases in Dji(n).

5. Regenerative stability analysis

In this Section, we present a few examples of stability analysis of re-
generative systems using several new and also above obtained monotonicity
results.

First, we consider a 2-station tandem network GI/G/1 → · → ·/G/1
where the input to station 1 is rejected if the queue size at station 2 exceeds a
predetermined threshold N > 0. We call it feedback admission control. The
(external) input to station 1 is a stationary renewal process with instants
t∗n, n ≥ 1, and rate λ. Let S

(i)
n , n ≥ 1, be the i.i.d. service times at station

i with rate µi and let νi(t) be the queue size at station i at instant t−,
i = 1, 2; t ≥ 0. Thus, the input to station 1 is rejected as long as ν2(t) ≥
N . Such a model (under exponential assumptions) has been introduced in
[12, 13]. Moreover, stability analysis of this network is also discussed in
[15, 16]. For this network, we establish a few new monotonicity properties
and, on this basis, develop stability analysis when µ1 > µ2.

We exploit a regenerative structure of the (right-continuous) basic queue-
size process, ν(t) = (ν1(t), ν2(t)), t ≥ 0, which is classically regenerative
with regeneration instants

β0 = 0, βn+1 = inf
(
t∗k > βn : ν(t∗k) = (0, 0)

)
, n ≥ 0, (5.1)
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and the i.i.d. regeneration periods αn = βn+1 − βn, n ≥ 1, independent
of β1. Of course, (5.1) are classical regenerations of the one-dimensional
processes νi(t), t ≥ 0, i = 1, 2. We use the following characterization of the
forward regeneration time β(t) = min{βk − t : βk − t > 0} at instant t ≥ 0,
see [3]. We assume β1 < ∞ with probability 1 (w.p.1). Then the mean
regeneration period Eα = ∞ if and only if

β(t) →∞ in probability as t →∞. (5.2)

If Eα < ∞ then the process {β(t), t ≥ 0} is tight and renewal process
of regenerations (5.1) and the basic queueing process are called positive
recurrent. To establish positive recurrence (the key element of stability),
we show that (5.2) does not hold.

Denote original 2nd station Q (with the queue-size ν2(t)), and also con-
sider a modified system Q̃ (with queue-size ν̃2(t)) which is fed by the 1st
saturated station of original network Q. (Again we apply a coupling using
the sample-path equivalence between renewal output process from the 1st
station and the renewal input to Q̃.)

More exactly, interarrival times in Q̃ are service times {S(1)
n }. In what

follows tildes denote the variables describing system Q̃. Let, for station Q,
tn be the nth input instant, Wn be the waiting time of customer n and let
Tn be the nth output instant, n ≥ 1. We assume the same initial states
in both queues Q, Q̃. More precisely, if the 1st station (in the tandem) is
busy at instant t = 0 with unfinished service time S

(1)
0 , then S

(1)
0 is also

the 1st input interval in Q̃. Otherwise, the 1st input interval in Q̃ equals
t̃1 = S

(1)
1 , while at the 1st station, an empty period µ0 ≥ 0 precedes first

service and thus, t1 = S
(1)
1 +µ0 ≥ t̃1. Hence, t̃1 = S

(1)
0 Iν1(0)>0+S

(1)
1 Iν1(0)=0.

It follows from construction that the difference µn−1 := tn − t̃n ≥ 0 is the
amount of an empty time at the 1st queue after the nth departure, n ≥ 1.
Denote µ(n) =

∑n−1
k=0 µk and introduce input intervals τn = tn+1− tn, τ̃n =

t̃n+1− t̃n, n ≥ 1. It is also assumed that initial unfinished workload in both
queues Q, Q̃ has the same value x0. By construction, t̃1 + µ0 = t1 and for
n ≥ 1,

t̃n =
n∑

k=1

S
(1)
k , if ν1(0) = 0; t̃n =

n−1∑

k=0

S
(1)
k , if ν1(0) > 0. (5.3)

Moreover,

tn+1 = tn + S
(1)
n+1 + µn, tn = t̃n + µ(n), n ≥ 1. (5.4)

Theorem 5.1.

T̃n ≤ Tn ≤ T̃n + µ(n), Wn ≤ W̃n ≤ Wn + µ(n), n ≥ 1. (5.5)
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Proof. In what follows we use coupling taking S
(2)
n as the service time

of customer n in both queues Q, Q̃. Also recall that a coupling is used
to generate input to stations Q and Q̃ taking the same service times S

(1)
n

according to (5.4). Obviously,

W1 = (x0−t1)+ ≤ (x0−t̃1)+ = W̃1 ≤ µ0+(x0−t̃1−µ0)+ = W1+µ(1). (5.6)

It then follows that

T̃1 = t̃1 +W̃1 +S
(2)
1 = t̃1 +µ0 +W̃1−µ0 +S

(2)
1 ≤ t1 +W1 +S

(2)
1 = T1, (5.7)

and by (5.6),

T1 = t̃1 + µ0 + W1 + S
(2)
1 ≤ T̃1 + µ(1). (5.8)

Based on (5.6)–(5.8), we prove (5.5) for n + 1 by induction, assuming it
holds for k = 1, . . . , n. Because τ̃n = S

(2)
n and τn = S

(2)
n + µn−1, n ≥ 1,

then by induction assumption,

T̃n+1 = t̃n+1 + (W̃n + S(2)
n − S(1)

n )+ + S
(2)
n+1

≤ tn+1 + (W̃n − µ(n) + S(2)
n − S(1)

n − µn)+ + S
(2)
n+1,

≤ tn+1 + (Wn + S(2)
n − S(1)

n − µn)+ + S
(2)
n+1 = Tn+1.

On the other hand (again by induction assumption),

Tn+1 = tn+1 + (Wn + S(2)
n − S(1)

n − µn)+ + S
(2)
n+1

≤ t̃n+1 + µ(n + 1) + (W̃n + S(2)
n − S(1)

n )+ + S
(2)
n+1

= T̃n+1 + µ(n + 1),

and the 2nd group of inequalities in (5.5) follows. To estimate workload, we
have

Wn+1 = (Wn + S(2)
n − S(1)

n − µn)+ ≤ (W̃n + S(2)
n − S(1)

n )+ = W̃n+1

≤ (Wn + µ(n) + S(2)
n − S(1)

n − µn)+

≤ (Wn + S(2)
n − S(1)

n − µn)+ + µ(n + 1)
= Wn+1 + µ(n + 1).

where we use inequality µ(n) ≤ µ(n + 1). Thus, (5.5) is proved for all n.

Note 5.1. Because tn ≥ t̃n, then inequality Tn ≥ T̃n also follows from
[7, 9, 17].

Note 5.2. It follows from the Kiefer -Wolfowitz representation (3.2) that
monotonicity (5.5) also holds for the waiting times {W (1)

n } in a GI/G/m
system, that is

W (1)
n ≤ W̃ (1)

n ≤ W (1)
n + µ(n), n ≥ 1. (5.9)
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The 2nd inequality follows as in the proof above, and the 1st inequality
(5.9) holds since τn − τ ′n ≥ µn−1 + µn ≥ 0 and we can apply Theorem 3.1
and the monotonicity of mapping (3.2).

Now we establish a reduction of the total time when the queue size (in
Q) exceeds any fixed threshold k, in comparison with the time in queue Q̃,
within any interval [0, t]. Fix some n for a moment and denote

a1 = Tn − tn+k−1, ã1 = T̃n − t̃n+k−1, a2 = a1 − S(2)
n , ã2 = ã1 − S(2)

n .

Note that the nth beginning service time (in Q) is defined as Bn =
max(tn, Tn−1) = tn + Wn. Define

l̃n = ã+
1 − ã+

2 , ln = a+
1 − a+

2 , (5.10)

and note that l̃n and ln are the parts of the nth service intervals

[B̃n, B̃n + S(2)
n ) and [Bn, Bn + S(2)

n ),

respectively, such that ν̃2(t) ≥ k and ν2(t) ≥ k, see [1].

Theorem 5.2.
ln ≤ l′n, n ≥ 1. (5.11)

Proof. Note that a1 ≥ a2, ã1 ≥ ã2.
i) Let ã1 > 0, ã2 > 0. Then ln = S

(2)
n . If moreover, a1 > 0, a2 > 0, then

l̃n = ln. Now we assume a1 > 0, a2 ≤ 0. Then ln = Tn−tn+k−1 ≤ S
(2)
n = l̃n.

ii) Let ã1 > 0, ã2 ≤ 0. Then 0 < l̃n = T̃n − t̃n+k−1 ≤ S
(2)
n . Denote

∆n(k) = µ(n+k−1)−µ(n), k ≥ 1. Because ∆n(k) ≥ 0 then it follows from
(5.5) that

a2 = Tn − S(2)
n − t̃n+k−1 − µ(n + k − 1)

= Tn − µ(n)− S(2)
n − t̃n+k−1 −∆n(k)

≤ T̃n − S(2)
n − t̃n+k−1 = ã2 ≤ 0.

Thus,

ln = a+
1 ≤ (Tn − µ(n)− t̃n+k−1)+ ≤ (T̃n − t̃n+k−1)+ = ã+

1 = l̃n.

iii) Eventually, let ã1 ≤ 0. Then ã2 ≤ 0 and thus, l̃n = 0. Since T̃n ≤
t̃n+k−1, we obtain

a1 = T̃n − tn+k−1 − µ(n + k − 1) ≤ T̃n − t̃n+k−1 −∆n(k) ≤ 0.

Because also a2 ≤ 0 then ln = 0, and (5.11) follows.

Denote

µ̃k(t) =
∫ t

0

Iν̃2(s)≥kds, µk(t) =
∫ t

0

Iν2(s)≥kds,
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the time when queues in Q̃, Q, respectively exceeds a (fixed) threshold k
(within interval [0, t]). The following monotonicity property holds.

Corollary 5.1.
µ̃k(t) ≥ µk(t), t ≥ 0. (5.12)

Proof. Because tn ≥ t̃n, Tn ≥ T̃n, it then follows that the service beginning
times are connected as Bn ≥ B̃ and hence,

N(t) = #{n : Bn ≤ t} ≤ #{n : B̃n ≤ t} = Ñ(t), t ≥ 0.

Now we obtain from (5.11) that (5.12) holds for each t and any threshold
k:

µ̃k(t) =
Ñ(t)∑

k=1

l̃k ≥
N(t)∑

k=1

lk = µk(t), t ≥ 0.

Now we apply previous results to stability analysis of original tandem
network with feedback admission control. (More details on stability analy-
sis using characterization (5.2) can be found in [10].) Let τ be a generic
interarrival time.

Theorem 5.3. Assume that µ1 > µ2 and condition

P(τ > S
(1)
1 + S

(2)
1 ) > 0 (5.13)

holds. Then the processes {ν(t), t ≥ 0}, and {νi(t), t ≥ 0}, i = 1, 2, with
regenerations (5.1), are positive recurrent for any λ < ∞.

Proof. Assume that

ν1(t) →∞ in probability as t →∞, (5.14)

and denote the empty time of the 1st station in interval [0, t] as

µ
(1)
0 (t) =

∫ t

0

Iν1(s)=0ds.

It then follows from (5.14) that P(ν1(t) = 0) → 0, and the mean empty time
is

Eµ
(1)
0 (t) = o(t) as t →∞. (5.15)

Let a1(t) (b1(t)) be the number of arrivals to (departures from) station 1 in
the original network, and let l(t) be the number of the rejected arrivals in
interval (0, t]. Obviously,

b1(t) + ν1(t) = ν1(0) + a1(t)− l(t). (5.16)

Based on the monotonicity results proved above, we now obtain bounds for
the queue-size processes in Q and Q̃. Let a2(t) (b2(t)) be the number of
arrivals to (departures from) station Q in (0, t]. (As above, tildes denote
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variables for station Q̃.) By construction, the number ã2(t − µ
(1)
0 (t)) of

arrivals to Q̃ in interval (0, t−µ
(1)
0 (t)] is the same as the number of arrivals

a2(t) to Q in interval (0, t], that is ã2(t−µ
(1)
0 (t)) = a2(t). By the inequality

(5.5), Tn ≤ T̃n +µ(n), and thus the number of departures from Q̃ in interval
(0, t] among ã2(t−µ

(1)
0 (t)) arrivals is not less than the number of departures

from Q within the same interval (0, t]. Assume that all arrivals to Q̃ in
interval (t − µ

(1)
0 (t), t] are rejected, and denote such a queue (at instant t)

as η2(t). Then it follows that ν2(t) ≥ η2(t) and moreover, ν̃2(t) ≤ η2(t) +
ã0(t), where ã0(t) is the number of new arrivals to station Q̃ in interval
[t − µ

(1)
0 (t), t] assuming that t − µ

(1)
0 (t) is an arrival instant. (That is the

process ã0(·) is the zero-delayed version of the input ã2(·).) It gives the
following inequalities

ν2(t) ≥ η2(t) ≥ ν̃2(t)− ã0(t), t ≥ 0. (5.17)

It is easy to show under assumption (5.14) that

Eã0(t) = o(t) as t →∞. (5.18)

To prove it, we use an upper linear bound of the renewal function. Moreover,
we apply stationarity of the renewal input to show that the number of
arrivals in interval [t − µ

(1)
0 (t), t] depends on its length µ

(1)
0 (t) only. It

follows from (5.18) that the family {ã0(t)/t, t > 0} is uniformly integrable,
and thus ã0(t)/t → 0 in probability. Because ν̃2(t)/t → µ1 − µ2 =: d > 0
w.p.1, hence in probability, it then follows from (5.17) that ν2(t)/t → d in
probability. In particular, ν2(t) →∞ in probability. Now we fix any δ > 0.
Then there exists t′ ≥ t0 such that P(ν2(t) ≥ N) ≥ 1 − δ, t ≥ t′, and the
expected fraction of the time when queue size ν2(t) exceeds threshold N ,

1
t
EµN (t) =

1
t

∫ t

0

P (ν2(s) ≥ N)ds → 1− δ.

Since δ is arbitrary, EµN (t)/t → 1. It now follows that the number l(t) of
rejected arrivals at station 1 is such that

lim
t→∞

1
t
El(t) = lim

t→∞
1
t
Ea1(t).

Because b1(t) ≤ a1(t) − l(t) + o(t) as t → ∞, it follows from (5.16) that
limt→∞ Eb1(t)/t = 0 while (5.14) implies

lim
t→∞

1
t
Eb1(t) = µ1 > 0. (5.19)

(More details see in [8, 9].) This contradiction shows that (5.14) does not
hold. Hence,

inf
i

P(ν1(zi) = 0) ≥ ε, (5.20)
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for some ε > 0 and a non-random sequence of instants zi → ∞. We note
that if (for a fixed i) ν2(zi) ≤ N , then

P(ν1(zi) = 0, ν2(zi) ≤ N) ≥ ε. (5.21)

Otherwise, there exists an interval (zi, ui] such that ν1(t) = 0, t ∈ [zi, ui]
and ν2(ui) ≤ N because station 1 is blocked as long as queue-size in Q ex-
ceeds threshold N . It is easy to show that on the event {ν1(zi) = 0, ν2(zi) ≤
N}, the lengths of intervals ui − zi are uniformly (in i) bounded by a finite
constant with a positive probability. Note that although the length ui − zi

may depend on ν2(zi) the following uniform lower bound for the probability
holds:

inf
i

P
(
ν1(s) = 0, s ∈ (zi, ui], ν2(ui) ≤ N

)
≥ ε. (5.22)

Thus, we conclude that there exists a non-random sequence ui → ∞ such
that

inf
i

P
(
ν1(ui) = 0, ν2(ui) ≤ N

)
≥ ε. (5.23)

Now we apply the tightness of the unfinished interarrival time process τ(t) =
inf(tn − t : tn − t > 0), t ≥ 0, and the unfinished service time process at
station Q (see [7]). It then follows from (5.23) that

inf
i

P
(
ν1(ui) = 0, W2(ui) ≤ R, τ(ui) ≤ D

)
≥ ε/2 (5.24)

for suitable finite constants R, D. (Note that if follows from ν2(ui) ≤ N
that workload W2(t) at station 2 at instant t is bounded, W2(t) ≤ D.) Note
that (5.13) and finiteness of Eτ = 1/λ imply

P(c ≥ τ > S
(1)
1 + S

(2)
1 + ε0) ≥ δ0 (5.25)

for some constants c < ∞, ε0 > 0, δ0 > 0. Denote integer part B =
dR/ε0e(≥ R/ε0), ni = inf(n : tn ≥ ui) and, on the event {ν1(ui) =
0, W2(ui) ≤ R, τ(ui) ≤ D}, realize the event

B⋂

k=1

{τni+k > S
(1)
ni+k + S

(2)
ni+k + ε0}.

Then a customer arrives within interval [ui, ui + D + cB] which meets an
empty network. Moreover, this occurs with a probability which is uniformly
lower bounded by positive constant εδB

0 /2. Thus (5.2) does not hold, and
positive recurrence of regenerations (5.1) follows.

Keeping the same notations, we consider previous network with no ad-
mission control under assumption λ > µ1 (1st station is overloaded). Then
w.p.1,

ν1(t) = ν1(0) + a1(t)− b1(t) ≥ a1(t)− ã2(t) + o(t) (t →∞),
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where ã2(t) is the number of renewals in [0, t] in the process generated by
service times S

(1)
n , n ≥ 1. Hence, ã2(t) ≥ b1(t). By assumptions,

a1(t)− ã2(t)
t

→ λ− µ1 > 0

w.p.1 as t →∞. Hence,

lim inf
t→∞

ν1(t)
t

> 0,

and the 1st queue in the network is strongly unstable. In particular, there
exists a (finite) random instant T such that ν1(t) > 0 w.p.1 for all t ≥ T . In
other words, the input to the 2nd station is coupled within a finite interval
with a renewal input generated by the service times {S(1)

n }. Thus, we may
treat the input to station 2 as a delayed renewal input (with the delay T )
and with rate µ1. Since µ1 > µ2 then the queue-size process ν2(t), t ≥ 0, is
also strongly unstable.

Note 5.3. Assume that µ2 > µ1. Then it is easy to obtain (using coupling
mentioned above) that the queue-size process ν2(t), t ≥ 0, is positive recur-
rent regenerative. If moreover λ > µ2, then the latter result seems surpris-
ing. Really, in this case the well-known balance equations for the (potential)
input rates give the traffic intensities ρ1 = λ/µ1 > 1, ρ2 = λ/µ2 > 1. It may
indicate an instability of both stations. Because the input to station 2 is
(delayed) renewal with rate µ1 (see above) then in fact the actual intensity
for the 2nd station is µ1/µ2 < 1, and thus the 2nd station is not overloaded.
(For more details see [8].)
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