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Abstract. In this paper we obtain several model structures on
DblCat, the category of small double categories. Our model struc-
tures have three sources. We first transfer across a categorification-
nerve adjunction. Secondly, we view double categories as internal
categories in Cat and take as our weak equivalences various internal
equivalences defined via Grothendieck topologies. Thirdly, DblCat
inherits a model structure as a category of algebras over a 2-monad.
Some of these model structures coincide and the different points of
view give us further results about cofibrant replacements and cofi-
brant objects. As part of this program we give explicit descriptions
and discuss properties of free double categories, quotient double cate-
gories, colimits of double categories, and several nerves and categori-
fications.
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1. Introduction

The theory of categories enriched in Cat, called 2-categories, has been
highly developed over the past 40 years and has found numerous applica-
tions. Beginning with Bénabou’s bicategories (weak 2-categories) in [4],
through Kelly’s monograph [50] on enriched categories, and including the
more recent article [53], as well as many others, we have seen the n = 2
case for higher category theory become very well understood. Limits in
2-categories [51], 2-monads on 2-categories [7], and Kan extensions for 2-
functors [50] are now well known. Model structures on 2-Cat have also been
studied recently in [55], [56], and [78]. Model structures, more generally,
have been used in the study of (∞, 1)-categories as a means of comparison
by Bergner, Joyal-Tierney, Rezk, and Toën [5], [6], [48], [71], and [77].

Recent examples, however, show that 2-categories are not enough, and
that one must invoke Ehresmann’s earlier notion of double category [31],
[32]. In many mathematical situations one is interested in two types of
morphisms, which may or may not interact. Between rings, for example,
there are ring homomorphisms as well as bimodules. Between manifolds
there are diffeomorphisms and cobordisms, which are both used in field
theory. Between categories there are functors as well as adjunctions. The
notion of 2-category does not capture both types of morphisms, but the
notion of (pseudo) double category certainly does.

Concisely, a small double category is an internal category in Cat. A small
double category consists of a set of objects, a set of horizontal morphisms, a
set of vertical morphisms, and a set of squares, equipped with various asso-
ciative and unital compositions satisfying the interchange law. In addition
to the early work of Bastiani-Ehresmann [2], [28], [29], [30], [31], [32], and
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Brown-Spencer [17], recent work on double categories has been completed
by Brown and collaborators, Dawson, Fiore, Garner, Grandis, Paré, Pronk,
Shulman, and others [14], [15], [16], [21], [24], [25], [26], [35], [37], [39], [40],
[41], [42], [72], and [73].

Double categories are the n = 2 case for n-fold categories, which have
been studied and applied for some time now. In the same way that higher
categories may be defined by iterated enrichment, one may define wider cat-
egories or n-fold categories via iterated internalization. The edge symmet-
ric1 case has been studied by Brown under the name of cubical ω-categories.
Further, n-fold categories internal to the category of groups have been used
to model connected homotopy (n + 1)-types in [59] as summarized in the
survey paper [66]. Recent work includes [57] and [67]. Applications of ver-
sions of the n = 2 case of internalized categories include [23], [34], [35], [52],
[62], [65], [72], [73]. Thus, there has been a general trend towards n-fold
categories, especially the n = ω and n = 2 cases.

In this article we introduce model categories into the theory of double
categories, anticipating a utility in the theory of wider categories analogous
to that of model structures in the theory of higher categories. Already in
the n = 2 case we see that n-fold categories and n-categories diverge: even
though the homotopy theory of 2-categories resembles that of categories,
the homotopy theory of double categories is quite different. This results
from the numerous ways to view a double category: as an internal category
in Cat, as a categorical structure with two directions, as certain simplicial
objects in Cat, or as certain bisimplicial sets. Each point of view suggests
different notions of weak equivalence and fibration. The new types of pasting
diagrams available in a double category also create new phenomena. We
take these various point of view into consideration when constructing the
model structures.

Thus, our model structures have three sources. First, we transfer the
categorical and Thomason diagram structures on the category of simplicial
objects in Cat to DblCat via a horizontal categorification-horizontal nerve
adjunction. In the Thomason structure on Cat in [76], a functor is a weak
equivalence if and only if its nerve is a weak homotopy equivalence of sim-
plicial sets. In the categorical structure on Cat of [49] and [70], a functor is
a weak equivalence if and only if it is an equivalence of categories. Both the
Thomason structure and the categorical structure are cofibrantly generated,
and thus induce cofibrantly generated model structures on simplicial objects
in Cat where weak equivalences and fibrations are defined levelwise. We
apply Kan’s Lemma on Transfer of cofibrantly generated model structures
(Theorem 7.11)to transfer both of these diagram structures to DblCat.

1Edge symmetric means that the n-morphisms in all n + 1 directions are the same.
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However, the application is not straightforward, and we must make several
double categorical preparations, including horizontal categorification and a
pushout formula in DblCat. We also prove one negative result: it is im-
possible to transfer the Reedy categorical structure on Cat∆op

to DblCat.
The transfer from bisimplicial sets will be the subject of a later article.

We arrive at a second source for model structures on DblCat when we
view double categories as internal categories in Cat. In this way we obtain
double categorical versions of the categorical structure on Cat. Although
the notion of fully faithfulness makes sense internally, essential surjectiv-
ity does not, and therefore equivalences of internal categories need further
explanation. Model structures on categories internal to a good category
C have already been developed in [33], and we apply their results to the
case C = Cat. They define essential surjectivity (and hence also weak
equivalences) with respect to a Grothendieck topology T on C. We take
simplicially surjective functors and categorically surjective functors as bases
for Grothendieck topologies on Cat, and obtain two distinct model struc-
tures.

Third, DblCat inherits a model structure as a category of algebras over
a 2-monad as in [54]. The underlying 1-category of a 2-category with finite
limits and finite colimits always admits the so-called trivial model structure,
whose weak equivalences are equivalences and fibrations are isofibrations.
If K is a locally finitely presentable 2-category equipped with a 2-monad T
with rank, then the category of T -algebras is a model category: a morphism
of T -algebras is a weak equivalence or fibration if and only if its underlying
morphism is a weak equivalence or fibration in the trivial model structure on
K. In our application of [54], K is the 2-category Cat(Graph) of internal
categories in reflexive graphs, and T arises from the adjunction between
reflexive graphs and Cat.

We prove that some of these model structures coincide. The transferred
categorical diagram structure is the same as the model structure associated
to the simplicially surjective topology on Cat, while the algebra structure
is the same as the model structure associated to the categorically surjective
topology on Cat.

These two different constructions of the same model structures yield more
refined information about cofibrant replacements and cofibrant objects. For
example, the cofibrant objects in the algebra structure are known to be pre-
cisely the flexible algebras, but from the second characterization we see that
the flexible double categories are precisely those with object category pro-
jective with respect to functors that are surjective on objects and full. Such
a description of the cofibrant objects, and explicit cofibrant replacements
cannot be obtained using either model structure alone. Further, such a
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description allows us to conclude that the flexible 2-categories of [55] are
indeed flexible algebras for a 2-monad.

In order to build our model structures we prove various general results
about double categories, so far not available in the literature. These results
are also of independent interest for the theory of double categories in its own
right. We develop free double categories, their quotients, and colimits of
double categories using a double categorical version of Street’s 2-categorical
notion of derivation scheme [75]. In particular we obtain an explicit formula
for two pushouts of double categories in Theorem 10.6, which is essential
for our application of Kan’s Lemma on Transfer in Theorems 7.13 and 7.14.

Free double categories on reflexive double graphs have been studied in
[26]. By reflexive double graph we mean a collection of objects, vertical
edges, horizontal edges, and squares equipped with identity edges and iden-
tity squares. We factorize the adjunction of [26] between double categories
and reflexive double graphs via the category of double derivation schemes. A
double derivation scheme is a reflexive double graph in which the horizontal
and vertical reflexive 1-graphs are categories. In the free double category on
a double derivation scheme, the vertical and horizontal 1-categories are pre-
served, but squares consist of allowable compatible arrangements. Since we
are considering compatible arrangements of squares in a double derivation
scheme rather than in a double reflexive graph, our allowable compatible
arrangements are different than the composable compatible arrangements of
[25].

Free double categories on double derivation schemes and their quotients
allow us to construct colimits of double categories. First one takes the
colimits of the vertical and horizontal 1-categories. These together with
the colimit of the sets of squares form a double derivation scheme. Finally,
we mod out the free double category on this double derivation scheme by
the smallest congruence which guarantees that the natural maps are double
functors, and the result is the colimit in DblCat. This colimit formula is the
basis of Theorem 10.6 which gives an explicit description of the pushouts of
a double functor along two inclusions of external products. This theorem is
crucial for our application of Kan’s Lemma on Transfer. These two pushouts
are special cases of a more general theorem on pushouts along inclusions of
external products, which will appear in a separate paper with a comparison
to [22].

Free double categories on double derivation schemes and their quotients
find further application in the construction of fundamental double categories
of simplicial objects in Cat and bisimplicial sets, i.e., in our construction of
left adjoints to the horizontal nerve and double nerve functors. We obtain
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an important example of our explicit constructions of fundamental dou-
ble categories in a second way as well, namely via weighted colimits (see
Example 6.5 and Proposition 6.10).

We begin in Section 1 with a review of double categories, including hor-
izontal 2-categories, vertical 2-categories, and the external product of 2-
categories. Free double categories on double derivation schemes are intro-
duced in Section 2 and are used in Section 4 to describe colimits in DblCat.
Horizontal and double nerves are discussed in Section 5 along with their
representable definitions in terms of external products of finite ordinals. In
Section 6, free double categories on double derivation schemes and their
quotients are applied to construct the left adjoints to the horizontal nerve
and the double nerve. Section 7 focuses on transferring model structures
across the horizontal categorification-horizontal nerve adjunction, and re-
calls model structures on Cat, smallness issues, and the Kan’s Lemma on
Transfer. Section 8 begins with an exposition of the methods of [33], and
then applies them to obtain model structures on Cat(Cat) = DblCat in-
duced by three Grothendieck topologies on Cat: the simplicially surjective
topology, the categorically surjective topology, and the trivial topology. In
Section 9 we prove that the 2-monad structure on DblCat coincides with
the model structure induced by the categorically surjective topology. In
Section 10, the Appendix, we obtain an explicit description of certain push-
outs in DblCat, namely Theorem 10.6. We use this to characterize the
behavior of the horizontal nerve on such pushouts in Theorem 10.7. The
essential application is to the generating acyclic cofibrations in the transfer
in Section 7.
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2. Double Categories

We first recall the elementary notions of double category theory. In
many mathematical contexts there are two interesting types of morphisms;
double categories organize them into one structure. For example, between
rings there are morphisms of rings as well as bimodules, between objects
of any 2-category there are morphisms as well as adjunctions, and so on.
Sometimes one would like to distinguish a family of squares, such as the
pullback squares among the commutative squares, and double categories
are also of use here. The notion of double category is not new, and goes
back to Ehresmann in [31] and [32].

Definition 2.1. A small double category D = (D0,D1) is a category ob-
ject in the category of small categories. This means that D0 and D1 are
categories equipped with functors

D1 ×D0 D1
m // D1

s
%%

t

99 D0uoo

that satisfy the usual axioms of a category. We call the objects and mor-
phisms of D0 respectively the objects and vertical morphisms of D, and we
call the objects and morphisms of D1 respectively the horizontal morphisms
and squares of D.

When one expands this definition, one sees that a small double category
consists of a set of objects, a set of horizontal morphisms, a set of vertical
morphisms, and a set of squares equipped with various sources, targets, and
associative and unital compostions. Since we only deal with small double
categories, we will usually leave off the adjective small. Sources and targets
are indicated as follows.

(1) A
f // B A

j

²²

A
f //

j

²²
α

B

k

²²
C C g

// D
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We denote the set of squares with the boundary

A
f //

j

²²

B

k

²²
C g

// D

by D




f
j k

g


. Then one has the categories

(Obj D,Hor D) and (Ver D,Sq D)

under horizontal composition and the categories

(Obj D,Ver D) and (Hor D,Sq D)

under vertical composition. We will write [f g] for the horizontal composi-
tion of horizontal morphisms f and g, and similarly [α β] for the horizontal
composition of squares α and β. We will write

[
v
w

]
for the vertical com-

position of vertical morphisms v and w, and similarly
[
α
β

]
for the vertical

composition of squares α and β. Composition of squares in D satisfies the
usual interchange law.

There are many examples of double categories. The commutative squares
in a given 1-category form a double category. More generally, for a 2-
category C, Ehresmann defined the double categoryQC of quintets of C. Its
objects are the objects of C, horizontal and vertical morphisms are the mor-
phisms of C, and the squares α as in (1) are the 2-cells α : k ◦ f +3g ◦ j .
In many examples one direction is merely a bicategory (weak 2-category),
and one actually has a pseudo double category as defined in [41]. For ex-
ample, the double category of rings, bimodules, ring homomorphism, and
twisted maps of bimodules is weak in one direction. Another example is
given by finite sets, Riemann surfaces with labelled analytically parame-
trized boundary components, bijections of finite sets, and holomorphic maps
preserving the given structure. In these two examples we choose the horizon-
tal direction to be weak, so that bimodules respectively Riemann surfaces
are the horizontal morphisms. In this paper we work only with strict double
categories, though pseudo double categories can also fit into our framework.

The notion of double category contains many familiar structures. If we
view a category as an internal category in Cat with object and morphism
categories discrete, it is equivalent to viewing an ordinary category as a
double category with trivial vertical morphisms and trivial squares. Every
2-category C can be considered a double category in two ways: either as a
double category HC with trivial vertical morphisms or as a double category
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VC with trivial horizontal morphisms. Similarly, any double category D
has an underlying horizontal 2-category HD and an underlying vertical 2-
category VD: we obtain these substructures as the full subdouble categories
with only trivial vertical morphisms or trivial horizontal morphisms respec-
tively. We denote the underlying 1-categories of HD and VD by (HD)0 and
(VD)0 respectively.

A double functor F : D //E is an internal functor in Cat. Such a
functor consists of functions

Obj D // Obj E

Hor D // Hor E
Ver D // Ver E
Sq D // Sq E

which preserve all sources, targets, compositions, and identities.
Internal natural transformations are also called horizontal natural trans-

formations.

Definition 2.2. If F, G : D //E are double functors, then a horizon-
tal natural transformation θ : F +3G as in [41] assigns to each object A

a horizontal morhism θA : FA //GA and assigns to each vertical mor-
phism j a square

FA
θA //

Fj

²²

θj

GA

Gj

²²
FC

θC
// GC

such that:
(i) For all A ∈ D, we have θ1v

A = ivθA,
(ii) For composable vertical morphisms j and k,

FA
θA //

F [j
k]

²²

θ[j
k]

GA

F [j
k]

²²
FE

θE
// GE

=

FA
θA //

Fj

²²

θj

GA

Gj

²²
FC θC //

Fk

²²

θk

GC

Gk

²²
FE

θE
// GE,
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(iii) For all α as in (1),

FA
Ff //

Fj

²²

Fα

FB
θB //

Fk

²²

θk

GB

Gk

²²
FC

Fg
// FC

θC
// GD

=

FA
θA //

Fj

²²

θj

GA
Gf //

Gj

²²

Gα

GB

Gk

²²
FC

θC
// GC

Gg
// GD.

We also need the analogous notion of vertical natural transformation.

Definition 2.3. If F, G : D //E are double functors, then a vertical nat-
ural transformation σ : F +3G as in [41] assigns to each object A a ver-
tical morphism σA : FA //GA and assigns to each horizontal morphism
f a square

FA

σA

²²

Ff //

σf

FB

σB

²²
GA

Gf
// GB

such that:
(i) For all objects A ∈ D, we have σ1h

A = ihσA,
(ii) For all composable horizontal morphisms f and g,

σ[f g] = [σf σg],

(iii) For all α as in (1), [
Fα

σg

]
=

[
σf

Gα

]
.

Thus, double categories form a 2-category in two different ways, depend-
ing on the choice of 2-cell. Further, there is a useful adjunction with 2-Cat.

Proposition 2.4. Let DlbCath respectively DblCatv denote the 2-catego-
ries of small double categories, double functors, and horizontal natural trans-
formations respectively vertical natural transformations. Then the inclusion
2-functors

H : 2-Cat // DblCath

V : 2-Cat // DblCatv
have as right 2-adjoints the 2-functors

H : DblCath // 2-Cat

V : DblCatv // 2-Cat
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respectively.

The inclusion H gives us another way of constructing examples of double
categories from 1- and 2-categories.

Definition 2.5. If C and D are 2-categories, then their external product
C£D is the double category with objects Obj C×Obj D, vertical morphisms

(f, D) : (C, D) //(C ′, D) ,

horizontal morphisms

(C, g) : (C, D) //(C, D′) ,

and squares

(C,D)
(C,g1) //

(f1,D)

²²
α

(C,D′)

(f2,D′)
²²

(C ′, D)
(C′,g2)

// (C ′, D′)

given by pairs α = (γ, δ) of 2-cells γ : f1
+3f2 and δ : g1

+3g2 in C and
D respectively. More succinctly, C £ D = VC×HD = (HC)t ×HD where
(HC)t denotes the transpose2 of the double category HC. More generally,
the external product of double categories C and D is C£ D := Ct × D.

Lemma 2.6. The external product is a functor

£ : 2-Cat× 2-Cat //DblCat .

Proof: Transpose is functorial.

Example 2.7. Let [m] denote the partially ordered set {0, 1, 2, . . . , m}.
Then the double category [m] £ [n] has the shape

//

²²

//

²²

//

²²

//

²² ²²

//

²²

// //

²² ²²//

²²

//

²²

//

²²

//

²² ²²

//

²²

// //

²² ²²//

²²

//

²²

//

²²

//

²² ²²

//

²²

// //

²² ²²//

²²

//

²²

//

²²

//

²² ²²

//

²²

// //

²² ²²// // // // // // //

2To transpose a double category, one interchanges the roles of the horizontal and
vertical morphisms.
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with m rows and n-columns.

Next we turn to some other adjunctions.

3. Free Double Categories and Quotients

As expected, there is a notion of free double category and quotient double
category. However, the situation is richer than for ordinary categories, as
there is an intermediate step between double categories and reflexive double
graphs, which we call double derivation schemes. Double derivation schemes
and quotients are crucial in the explicit description of colimits in Section 4,
the construction of left adjoints to horizontal and double nerves in Section
6, and the computation of pushouts in Theorems 10.6 and 10.7.

In this section we introduce double analogues to some of the concepts in
[75], with one important difference: we always require identities. We work
with reflexive graphs, i.e., graphs which are equipped with a distinguished
identity edge 1A : A //A for each vertex A. Consequently, our reflexive
2-graphs and derivation schemes always have identity edges and identity
2-edges. This is important because nontrivial squares in a double category
may very well have one or more trivial edges. All graphs are directed multi-
graphs, also called quivers.

Definition 3.1. A reflexive double graph A is an internal reflexive graph in
the category of reflexive graphs. This consists of a set of vertices (objects)
Obj A, a set of horizontal edges Hor A, a set of vertical edges Ver A,
and a set of squares Sq A equipped with source and target maps as in
(1) as well as horizontal and vertical identity edges and identity squares.
A morphism of reflexive double graphs is a morphism of internal reflexive
graphs, or equivalently, a map which preserves sources and targets as well
as all identities. Reflexive double graphs form a category which we denote
by RefDblGr. We denote the horizontal and vertical reflexive 2-graphs of
a double graph A by HA and VA.

A reflexive double graph is a double category without any of the com-
positions. The intermediate structure between reflexive double graphs and
double categories is analogous to Street’s notion of derivation scheme in
[75].

Definition 3.2. A double derivation scheme is a reflexive double graph
whose vertical reflexive 1-graph and horizontal reflexive 1-graph are cate-
gories. A morphism of double derivation schemes is a map which is a functor
on both the horizontal and vertical 1-categories, and preserves source, tar-
get, and identity squares. Double derivation schemes form a category which
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we denote by DblDerSch. We denote the horizontal and vertical deriva-
tion schemes of a double derivation scheme S by HS and VS, and their
underlying categories by (HS)0 and (VS)0.

To take a free category on a reflexive graph, one merely takes paths
of composable edges and identifies paths which differ only by insertion or
deletion of identity edges. However, the 2-dimensional situation is more
subtle, as evidenced by [46], [68], and [69]. Thus, in the construction of
a free double category we need a careful definition of allowable compatible
arrangement. We use the notion of compatible arrangement from [25], and
develop it further for our purposes.

Definition 3.3. A compatible arrangement in a double derivation scheme S
consists of a subdivision of a rectangle into smaller rectangles and a function
which assigns to each vertex an object, to each horizontal line segment a
horizontal morphism, to each vertical line segment a vertical morphism,
and to each constituent rectangle a square in S, which are compatible in the
sense that

(i) for each horizontal edge in the subdivision, the domain and codo-
main respectively of the morphism assigned to it are the objects
assigned to the left and right vertices respectively;

(ii) for each vertical edge in the subdivision, the domain and codomain
respectively of the morphism assigned to it are the objects assigned
to the top and bottom vertices respectively;

(iii) for each constituent rectangle the composition of the morphisms
assigned to the edges on
(a) the left side is the horizontal domain of the square assigned to

it;
(b) the right side is the horizontal codomain of the square assigned

to it;
(c) the top is the vertical domain of the square assigned to it;
(d) the bottom is the vertical codomain of the square assigned to

it.

In the free double category on a double derivation scheme, the squares
will be compatible arrangements for which the image under any morphism
of double derivation schemes into a double category would become compos-
able to a single square by a sequence of horizontal and vertical compositions.
We will call such compatible arrangements allowable. However, such an im-
age would just be a compatible arrangement in that double category with
the same underlying subdivision of the rectangle. So whether a compatible
arrangement is allowable in the free double category depends only on its
shape, i.e., the underlying subdivision of the rectangle. A horizontal (resp.
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vertical) cut in a compatible arrangement is a horizontal (resp. vertical) line
segment which consists of edges of the underlying subdivision of the rectan-
gle. A horizontal (respectively vertical) cut is full length if it stretches from
the left (respectively top) edge of the arrangement to the right (respectively
bottom) edge of the arrangement. We can use this to characterize when a
compatible arrangement is allowable.

Definition 3.4. A subdivision of the rectangle is allowable if it is either the
trivial subdivision, consisting of just the rectangle itself, or contains a full
length horizontal or vertical cut which divides it into two allowable subdi-
visions. A compatible arrangement is allowable if its underlying subdivision
of the square is allowable.

As an illustration, consider the following two examples of subdivisions of
the rectangle.

Allowable:
Not

allowable:

Note that the notion of allowable compatible arrangement differs from
the notion of composable compatible arrangement in [25] in that Dawson
and Paré call a compatible arrangement in a double category D composable
if it is composable to a single square through the use of both factorizations
and compositions in D. So their notion does depend on the ambient double
category, not only on the shape of the arrangement. Any allowable com-
patible arrangement in our sense is composable in the sense of Dawson and
Paré.

Proposition 3.5. A compatible arrangement in a double category is allow-
able if and only if it can be composed to a single square by a sequence of
horizontal and vertical compositions.

Proof: We argue by induction on the number of squares in the arrange-
ment. The statement is trivially true for arrangements consisting of a single
square. Now let C be a compatible arrangement consisting of two or more
squares, with an assignment into a double category D which is composable
by a sequence of horizontal and vertical compositions of squares. Consider
the last composition used. Without loss of generality, assume that this is a
horizontal composition of two squares γ1 and γ2 along a vertical morphism
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v, as in

²²

//

γ1 v

²²

//

γ2

²²// //

Both γ1 and γ2 have been obtained by sequences of horizontal and vertical
compositions of squares in C, so v is a vertical composition of vertical mor-
phisms v1, . . . , vn in C. The underlying edges of these vertical morphisms
form a cut in the underlying subdivision of the rectangle for C. The squares
on the left side of this cut form a compatible arrangement, since they form
a rectangular subset of a compatible arrangement. Call this arrangement
C1. It can be composed to γ1 by a subsequence of the horizontal vertical
compositions used for C. In the same way, the squares on the right side of
this cut form a compatible arrangement C2 which can be composed to γ2

by a sequence of horizontal and vertical compositions. Since both C1 and
C2 contain strictly less squares than C, the induction hypothesis gives that
they are both allowable compatible arrangements.

Conversely, suppose that a compatible arrangement C of two or more
squares in a double category D is allowable. Then it contains a horizontal
(resp. vertical) cut into two allowable compatible arrangements C1 and C2.
By induction these arrangements can be composed to single squares in D
by sequences of horizontal and vertical compositions. Now consider the
sequence of horizontal and vertical compositions used for C1 followed by
the one for C2 and then one final vertical (resp. horizontal) composition
along the cut. This shows that C is composable to a single square in D by
a sequence of horizontal and vertical compositions of squares.

For inductive arguments on the number of squares in an allowable com-
patible arrangement, we need to know that cutting an allowable arrange-
ment along any full length cut produces two smaller compatible arrange-
ments.

Proposition 3.6. If CA is a compatible arrangement which is allowable,
then any full length cut divides the arrangement into two allowable compat-
ible arrangements.

Proof: We prove this by induction on the number of squares in the
arrangement. It is obviously true for compatible arrangements consisting
of a single square. For an arrangement consisting of n ≥ 2 squares, let C1

be the cut of this proposition and let C2 be the cut used to establish that
CA is allowable. Assume without loss of generality that C2 is horizontal.
Let CA1 and CA2 be the compatible arrangements obtained by cutting CA
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along C2 (with CA1 on the top and CA2 on the bottom). Note that both of
these arrangements are allowable and contain strictly less than n squares.

If C1 is vertical, call the compatible arrangement to its left CA3 and the
one to its right CA4. We need to show that CA3 and CA4 are allowable.
The cut C1 itself gets divided by C2 into two vertical full length cuts C1,1

and C1,2, for CA1 and CA2 respectively. The cut C1,1 divides CA1 into
compatible arrangements CA1,1 and CA1,2, and the cut C1,2 divides CA2

into compatible arrangements CA2,1 and CA2,2. Assume that CA1,1 and
CA2,1 lie to the left of the cuts and C1,2 and CA2,2 lie to the right of the
cuts. By the induction hypothesis, CA1,1, CA1,2, CA2,1, and CA2,2 are all
allowable. It is clear CA3 gets divided into CA1,1 and CA2,1 by the left
side of the cut C2, so CA3 is allowable. In the same way CA4 gets cut into
CA1,2 and CA2,2 by the right side of the cut C2, so CA4 is allowable.

If C1 is horizontal, assume that CA1 contains C1. By the induction hy-
pothesis, C1 divides the allowable compatible arrangement CA1 into two
allowable compatible arrangements, say CA1,a and CA1,b, where CA1,a is
on the top. Also, C1 divides CA into two compatible arrangements, CA1,a

and CA1,c, the latter of which is divided by C2 into CA1,b and CA2. Since
both CA1,b and CA2 are allowable, we conclude that CA1,c is allowable in
addition to CA1,a.

Proposition 3.7. The forgetful functors T and U admit left adjoints S and
R.

RefDblGr ⊥

S
**

DblDerSch

T

jj

R
**

⊥ DblCat

U

jj

The left adjoint S gives the free double derivation scheme on a reflexive
double graph, and the left adjoint R gives the free double category on a double
derivation scheme. The functor R preserves the horizontal and vertical 1-
categories.

Proof: For a reflexive double graph A, let SA have vertical and hori-
zontal 1-categories the free 1-categories on the respective reflexive graphs.
The set of squares remains the same. It is straightforward to verify that
this defines a left adjoint to T .

For a double derivation scheme S, let RS have vertical and horizontal
1-categories the vertical and horizontal 1-categories of S respectively. The
squares of RS are allowable compatible arrangements of squares of S. Such
compatible arrangements are composed vertically and horizontally by con-
catenation. Clearly, composites of allowable compatible arrangements are
allowable.
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If J : S //UD is a morphism of double derivation schemes, then it
induces a double functor J ′ : RS //D which is J on the horizontal and
vertical 1-categories. For an allowable compatible arrangement D, J ′D
is the composite in D of J applied to the constituents of D. Morphisms
RS //D restrict to morphisms S //UD , and it is not hard to check
that these two operations are inverse. We conclude that R a U .

Now that we have free notions, we also define quotients. Note that the
notion of congruence for ordinary categories is an equivalence relation on
the cells of highest dimension, satisfying certain compatibility properties.
We imitate this in our notion of congruence for a double category.

Definition 3.8. A congruence on a category C is an equivalence relation
on C(a, b) for each a, b ∈ C, such that if f ∼ f ′ and g ∼ g′, then gf ∼ g′f ′

whenever the composites exist.

Definition 3.9. A congruence on a double derivation scheme S consists of
a congruence on the horizontal 1-category and a congruence on the vertical
1-category.

Definition 3.10. A congruence on a double category D consists of an equiv-

alence relation on D




f
j k

g


 for each boundary

A
f //

j

²²

B

k

²²
C g

// D

such

that if α ∼ α′, β ∼ β′, and γ ∼ γ′ then
[
α β

] ∼ [
α′ β′

]

[
α
γ

]
∼

[
α′

γ′

]

whenever the composites exist. Note that the congruence does not concern
the horizontal and vertical morphisms.

Proposition 3.11. Let D be a double category equipped with a congruence.
If two allowable compatible arrangements D1 and D2 with the same un-
derlying tiling of the rectangle have congruent constituent squares, then the
composites of D1 and D2 in D are congruent.

Proof: By Theorem 1.2 of [25], any two composites of a composable
compatible arrangement are equal. The compatible arrangements D1 and
D2 are composable since they are allowable. If we compose each of D1 and
D2 using the same sequence of pairwise compositions, then the pairwise



18 FIORE, PAOLI, PRONK

composites in each step are congruent. An inductive argument shows that
total composites are then also congruent.

Definition 3.12. The quotient C/∼ of a category C by a congruence ∼
has the same objects as C but has (C/∼)(a, b) = C(a, b)/∼.

Definition 3.13. The quotient S/∼ of a double derivation scheme S by a
congruence ∼ has the same objects and squares as S but has horizontal and
vertical 1-categories the quotient categories of (HS)0 and (VS)0.

Definition 3.14. The quotient D/∼ of a double category D by a congruence
∼ has the same objects and horizontal and vertical 1-categories as D but
has

Dq




f
j k

g


 = D




f
j k

g


 / ∼ .

These are of course not the most general notions of quotient, but more
general quotients can be built from these as follows. All quotients can be
characterized by the usual universal properties.

Definition 3.15. Let C be a category and R ⊆ C × C a subcategory
satisfying the usual axioms of an equivalence relation both on the set of
objects and on the set of morphisms. Then the quotient C/R of C by
the equivalence relation R is defined as follows. First we obtain a graph
with object set Obj C/Obj R and morphism set Mor C/Mor R. We make
this into a reflexive graph by identifying 1A and 1B whenever A and B are
identified. Next we take the free category F on this reflexive graph and mod
out by the smallest congruence that makes the graph morphism C //F
into a functor.

Such quotients of categories have been considered by [8]. However a coun-
terexample in [8], [63], and [64] shows that the quotient functor may identify
morphisms which are not equivalent. Early work on quotients is found in
[45]. More recently, quotients of categories by generalized congruences have
been considered in [3].

For general quotients of double categories, we need intermediate quotients
of double derivation schemes.

Definition 3.16. Let S be a double derivation scheme and R ⊆ S × S a
sub-double derivation scheme satisfying the usual axioms of an equivalence
relation on the sets of objects, vertical morphisms, horizontal morphisms,
and squares. Then the quotient S/R of S by the equivalence relation R is
defined as follows. The horizontal and vertical 1-categories are the quotients
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of the horizontal and vertical 1-categories of S as in Definition 3.15. The
squares are Sq (S/R) = (Sq S)/(Sq R).

Definition 3.17. Let D be a double category and R ⊆ D×D a sub-double
category satisfying the usual axioms of an equivalence relation. Then the
quotient D/R of D by the equivalence relation R is defined as follows. First
take the quotient of the underlying double derivation scheme as in Definition
3.16. Then take the free double category F on this double derivation scheme
and mod out by the smallest congruence (Definitions 3.10 and 3.14) that
makes the morphism D //F of double derivation schemes into a double
functor. Note that only squares get identified in this last step, since the
horizontal and vertical 1-categories of the free double category on a deriva-
tion scheme are the same as the horizontal and vertical 1-categories of the
derivation scheme.

We will make use of free double categories and their quotients in our
discussion of categorification in Section 6 as well as in an explicit description
of certain pushouts of double categories in Theorem 10.6 and Theorem 10.7.
These are essential ingredients in the construction of model structures on
DblCat. For now it is sufficient to give a colimit formula in DblCat.

4. Limits and Colimits of Double Categories

Model structures in general require the existence of limits and colimits.
Moreover, in order to transfer model structures along certain adjunctions
we will need an explicit formula for certain pushouts of double categories,
as in Theorem 10.6 and Theorem 10.7. So in this section we discuss limits
and colimits of double categories.

Colimits for categories were described in detail by Gabriel and Zisman.
Their work was extended in [78] to a construction of colimits in 2-categories.
We extend this further to a construction in double categories which goes
roughly as follows. To take the colimit of a functor F : I //DblCat ,
with index category I, first we take the colimit S of the underlying double
derivation schemes, then take the free double category F on S, and finally
mod out by the congruence that makes the maps Fi //F into double
functors. The intermediate notion of double derivation scheme allows us to
deal with the quotients of morphisms and quotients of squares separately.
We present the details in the following theorems.

Theorem 4.1. The category DblCat is complete and cocomplete.

Proof: The limits of the sets of objects, horizontal morphisms, vertical
morphisms, and squares assemble to form a double category and this double
category is the limit. After all, DblCat is a category of algebras.
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The category DblCat is the category of models in Cat of a sketch with
finite diagrams, and Cat is locally finitely presentable, so an application
of Proposition 1.53 of [1] shows that DblCat is locally finitely presentable.
Locally finitely presentable categories are cocomplete, so DblCat is cocom-
plete.

Note that the underlying horizontal and vertical 2-categories of the limit
are the limits of the underlying horizontal and vertical 2-categories, since
H and V admit left adjoints by Proposition 2.4. The forgetful functor
2-Cat //Cat also admits a left adjoint, so similar comments hold for
the horizontal and vertical 1-categories.

We work towards an explicit description of colimits in DblCat which
mimics Gabriel and Zisman’s calculation of colimits in Cat below.

Theorem 4.2 (Colimit Formula in Cat of [36]). To calculate a colimit of
a functor F : I //Cat , one first calculates the colimit of the underlying
reflexive graphs, then takes the free category F on this, and finally one mods
out by the smallest congruence on F that makes the maps Fi //F into
functors.

Lemma 4.3. The horizontal and vertical 1-categories of a colimit of double
derivation schemes are the colimits of the underlying horizontal and vertical
1-categories. Similarly, the horizontal and vertical 1-categories of a colimit
of double categories are the colimits of the underlying horizontal and vertical
1-categories.

Proof: The right adjoint to the forgetful functor

DblDerSch // Cat

S Â // (HS)0
assigns to a category E the double derivation scheme E with horizon-
tal 1-category E, a unique vertical morphism between any two objects,
and a unique square for each boundary. Similarly, the forgetful functor
S Â //(VS)0 admits a right adjoint. Since left adjoints preserve colimits,
the statement for double derivation schemes follows.

The same argument works for DblCat in place of DblDerSch.

Theorem 4.4 (Colimit Formula in DblDerSch). The colimit S of a func-
tor F : I //DblDerSch is obtained by first taking the colimit of the
underlying reflexive double graphs and then taking the free double deriva-
tion scheme F on the resulting reflexive double graph, and modding out by
the smallest congruence that makes the double-graph morphisms Fi //F
into morphisms of double derivation schemes.
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Proof: Suppose S′ is a double derivation scheme and βi : Fi //S′
are natural morphisms of double derivations schemes. We define a unique
factorization

Fi
βi //

αi

²²

S′

S

>>

on horizontal and vertical 1-categories by the universal property of Lemma
4.3, and on squares by the universal property of the colimit of the sets
Sq Fi. The set of squares in the free double derivation scheme on a reflexive
double graph is the same as the set of squares in the reflexive double graph
by Proposition 3.7.

Theorem 4.5 (Colimit Formula in DblCat). The colimit C of a functor

F : I //DblCat

is calculated as follows. Let S be the colimit in DblDerSch of the underlying
double derivation schemes, and F the free double category on S. Then C is
the quotient of F by the smallest congruence such that the natural morphisms
of double derivation schemes

Fi
αi // S // F

become double functors. Note that the horizontal and vertical 1-categories
of S,F, and C are the same, in particular the horizontal and vertical 1-
categories of C are the colimits of the horizontal and vertical 1-categories of
the Fi.

Proof: Let q denote the map of double derivation schemes from S to the
quotient C of the free double category F. Then q ◦αi is a double functor for
all i ∈ I. Suppose C′ is a double category and βi : Fi //C′ are natural
double functors. Then by Lemma 4.4 there exists a unique morphism J of
double derivation schemes that makes the upper left triangle commute,

Fi
βi //

αi

²²

C′

S

∃! J

>>

q
// C .

∃! L

OO

The morphism J induces a double functor K : F //C′ since F is free on
S. The commutativity of the upper left triangle says that K preserves the
congruence on F, and therefore induces a unique functor L which makes



22 FIORE, PAOLI, PRONK

the lower right triangle commute. Therefore the square commutes, and
further L is the unique double functor such that the square commutes by
the uniqueness of the two fillers.

Recall that filtered colimits in Cat are particularly simple to calculate:
the filtered colimit of the underlying reflexive graphs is already a category
and this category is the filtered colimit in Cat. Similarly, one does not
need to use free constructions and quotients to calculate filtered colimits in
DblCat.

Theorem 4.6. A filtered colimit of double categories is calculated by simply
taking the filtered colimits of the underlying reflexive double graphs.

Proof: The filtered colimit of the underlying reflexive double graphs
admits all the associative and unital compositions necessary for a double
category by the corresponding result in Cat. The interchange law holds
because it is possible to find representatives of all four squares in a single
stage, where the interchange law is known to hold.

5. Nerves of Double Categories

Grothendieck’s full and faithful nerve embedding N : Cat //SSet has
been of tremendous use in higher category theory. One can expect that its
n-fold version will similarly be of use. In fact, the authors of [10],[11], [12],
[13] have studied edge symmetric n-fold categories from the point of view of
cubical sets. A double category is a 2-truncated cubical set. We introduce
in this section simplicial and bisimplicial nerves of double categories. These
will be of use in Section 7 where we transfer model structures on Cat∆op

to
DblCat via a categorification-nerve adjunction. The first nerve we consider
is the horizontal nerve, which is really an internal notion.

Definition 5.1. Let D = (D0,D1) be a double category. Then the horizon-
tal nerve NhD is the simplicial object in Cat

(NhD)0 = D0

(NhD)1 = D1

(NhD)n = D1 t×s D1 t×s · · · t×s D1︸ ︷︷ ︸
n copies of D1

.

Obj (NhD)n : // // // // // // //

Mor (NhD)n :

//

²²

//

²²

//

²²

//

²² ²²

//

²²

// //

²² ²²// // // // // // //
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In other words,

Obj (NhD)n = HomCat([n], (Obj D,Hor D))

Mor (NhD)n = HomCat([n], (Ver D,Sq D)).
Composition in (NhD)n is vertical.

Example 5.2. If C is a category, then the simplicial set Nh(HC) is the
usual nerve of C.

Like the nerve of a category, the horizontal nerve of a double category
has a representable definition. Recall that DblCatv denotes the 2-category
of small double categories, double functors, and vertical natural transfor-
mations.

Theorem 5.3. For every double category D, the simplicial category

[n] 7→ DblCatv(H[n],D)

is isomorphic to the horizontal nerve NhD. Equivalently, the object simpli-
cial set of the horizontal nerve is

[n] 7→ DblCat([0] £ [n],D)

and the morphism simplicial set of the horizontal nerve is

[n] 7→ DblCat([1] £ [n],D).

Proof: The double categories H[n] and [0]£[n] are isomorphic, and ver-
tical natural transformations H[n] //D are the same as double functors
[1] £ [n] = (H[1])t ×H[n] //D as pointed out in [41].

In Section 6 we construct the left adjoint to the horizontal nerve explicitly,
but for now we observe that a left adjoint exists.

Theorem 5.4. The horizontal nerve Nh : DblCat //Cat∆op

admits a
left adjoint ch called horizontal categorification.

Proof: This follows from Theorem 5.3, the 2-categorical cocompleteness
of DblCatv (a slight improvement of Theorem 4.1), and an enriched version
of Theorem 5.14, which can be found in Chapter 5 of [50].

Theorem 5.5. The horizontal nerve Nh preserves filtered colimits.

Proof: It follows from Theorem 4.6 that the category of horizontal
morphisms and squares of a filtered colimit of double categories is the filtered
colimit of the categories of horizontal morphisms and squares. Since filtered
colimits commute with finite limits, in particular iterated pullbacks, Nh

preserves filtered colimits.



24 FIORE, PAOLI, PRONK

The horizontal nerve is also well behaved with respect to external prod-
ucts.

Proposition 5.6. Let σ : Cat //Cat∆op

denote the constant functor.
Let ν : Set∆op //Cat∆op

be the inclusion induced by the functor
Set //Cat which takes a set to the corresponding discrete category. If
A and B are categories, then Nh(A £ B) = σA × νNB. In other words,
Nh(A£B)k = A×NBk where we view the set NBk as a discrete category.

The second nerve we introduce in this section is the bisimplicial nerve,
which we geometrically realize to get a classifying space. Let SSet2 denote
the category of bisimplicial sets, i.e., functors from ∆op × ∆op into Set.
Since

Cat(∆op ×∆op,Set) ∼= Cat(∆op,Set∆op

)
we see that that the category of bisimplicial sets is isomorphic to the cate-
gory SSet∆op

of simplicial objects in SSet.

Definition 5.7. The bisimplicial nerve or double nerve of a double category
D is the bisimplicial set NdD with (m,n)-bisimplices given by m×n arrays
of squares of D. In particular (NdD)0,0 is the set of objects of D, (NdD)0,n

consists of paths of n horizontal morphisms, and (NdD)n,0 consists of paths
of n vertical morphisms.

Definition 5.8. The classifying space functor B is the composite

DblCat
Nd // SSet2

diag // SSet
|·| // Top,

where diag is the functor induced by the diagonal and | · | is the geometric
realization.

The traditional nerve functor N : Cat //SSet is a fully faithfull em-
bedding. We have a similar statement for the double nerve.

Proposition 5.9. The double nerve Nd : DblCat //SSet2 is a fully
faithful embedding.

The traditional nerve, the horizontal nerve, and the double nerve are
related as follows.

Proposition 5.10. The functor

Dbl
Nh // Cat∆op N∗ // SSet∆op

D Â // ([n] 7→ N((NhD)n))

is naturally isomorphic to Nd.
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Corollary 5.11. Let C be a 2-category. Consider the bisimplicial set ob-
tained by taking the nerves of the hom-categories of C, viewing the resulting
SSet-category as a simplicial object in Cat with constant object set, and
then composing this functor ∆op //Cat with the traditional nerve func-
tor. This bisimplicial set is naturally isomorphic to Nd(C) if we view C as
a double category with trivial vertical morphisms.

The traditional nerve, like its higher dimensional counterparts as in [18],
[19], [27], [58], and [74], is defined via the inclusion J : ∆ //Cat as
(NC)n = HomCat(J [n],C). We similarly have a representable definition of
the double nerve using the external product of 2-categories from Definition
2.5.

Theorem 5.12. Let J : ∆×∆ //Cat be the full and faithful functor
J([m], [n]) = [m] £ [n]. Then the double nerve of a double category D has
(m,n)-bisimplices

(2) (NdD)m,n = HomDblCat(J(m,n),D).

Remark 5.13. This theorem shows how the double nerve can be extended
to pseudo double categories: one takes normal homomorphisms of pseudo
double categories in (2).

Theorem 5.14 (Kan’s Lemma on Transfer). Let A be a small category and
J : A //B a functor. If B is cocomplete, then the left Kan extension of
J along the Yoneda embedding exists and is the left adjoint of the singular
functor

J∗ : B //SetA
op

B
Â // HomB(J(−), B).

In Section 6 we construct the left adjoint to the double nerve explicitly,
but we can already prove its existence.

Corollary 5.15. The double nerve Nd : DblCat //SSet2 admits a left
adjoint cd called double categorification.

Proof: Let J be as in Theorem 5.12. Then J∗ is the double nerve,
and the existence of the left adjoint follows from Theorem 4.1 and Theorem
5.14.
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Example 5.16. Since Nd is a right adjoint, it preserves products. As a
result, it preserves external products: if C and D are 1-categories, then

NC £ ND = (NdHC)t ×NdHD

= Nd(HC)t ×NdHD

= Nd((HC)t ×HD)

= Nd(C £ D).

Theorem 5.17. The double nerve preserves filtered colimits.

Proof: By Theorem 4.6 a filtered colimit of double categories is the
filtered colimit of the underlying reflexive double graphs with the induced
compositions and identities. For any double category D, the set Nd(D)m,n

is a finite limit, in much the same way that N(C)n is an n-fold pullback.
Since filtered colimits commute with finite products and filtered colimits of
double categories have a simple form, Nd preserves filtered colimits.

6. Categorification

We now construct left adjoints ch and cd to the horizontal nerve Nh and
the double nerve Nd by analogy with the usual nerve N . Both ch and cd are
appropriately compatible with external products, as we show in Example
6.5, Proposition 6.10, and Example 6.13.

Recall the well known left adjoint c : SSet //Cat to the nerve functor
N . For a simplicial set X, the category cX is the fundamental category of
X, or categorification of X. It is the free category on the reflexive graph
(X0, X1) modulo the smallest congruence such that for every τ ∈ X2 with
edges

τ

g

ÂÂ?
??

??
??

f
??ÄÄÄÄÄÄÄ
h

//

we have g ◦ f ∼ h. The following proof is our guideline for left adjoints ch

and cd to Nh and Nd.

Proposition 6.1. Categorification c is left adjoint to the nerve functor N .

Proof: We need to construct a natural bijection

Cat(cX,A) ∼= SSet(X, NA).

Suppose we have a map G : X //NA of simplicial sets. The 1-truncation
is a morphism of reflexive graphs, so there is a unique functor J making the
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upper left triangle commute.

(X0, X1)
(G0,G1) //

²²

A

FreeCat(X0, X1)

∃! J

99

// cX

∃! G′

OO

Since J comes from a morphism of simplicial sets, the functor J takes con-
gruent morphisms to equal ones. Therefore there exists a unique functor G′

making the lower right triangle commute.
For the converse, we first show that a morphism of simplicial sets

G : X //NA is completely determined by its 1-truncation (G0, G1). If
we define injective maps ei,i+1 : {0, 1} // {0, . . . , n} by

ei,i+1(0) = i

ei,i+1(1) = i + 1
for 0 ≤ i ≤ n − 1, and if σ is an n-simplex, then G(σ) is the string of n
morphisms in A

G(e∗0,1(σ))
//

G(e∗1,2(σ))
// · · · · · ·G(e∗n−1,n(σ))

// .

Given a functor G′ : cX //A , we compose it with the morphism of
reflexive graphs

(X0, X1) // FreeCat(X0, X1) // cX

to obtain a morphism of reflexive graphs (X0, X1) //A which induces
a morphism G : X //NA of simplicial sets. These two procedures are
inverse.

6.1. Horizontal Categorification. We turn first to the left adjoint of the
horizontal nerve. We will obtain two proofs that the horizontal categorifica-
tion of the product of a category with a simplicial set is an external product
of the category with the fundamental category of the simplicial set. This
is done in Example 6.5 using the definition of horizontal categorification,
while it is done in Proposition 6.10 using weighted colimits.

Definition 6.2. Let X ∈ Cat∆op

. We define a double category chX called
the horizontal categorification or fundamental double category of X as fol-
lows. First we define a double derivation scheme S with vertical 1-category
X0 and with horizontal 1-category the fundamental category of the simpli-
cial set Obj X. The squares of S are the morphisms of X1. We equip the
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free double category F on the double derivation scheme S with the smallest
congruence ∼ such that

(i) If α, β ∈ Mor X1 are vertically composable in F then
[
α
β

]
is congru-

ent to the composite of β and α in X1,
(ii) For all τ ∈ Mor X2 with boundary

τ

β

ÂÂ?
??

??
??

α

??ÄÄÄÄÄÄÄ
γ

//

we have
[αβ] ∼ γ,

(iii) For any vertical morphism j, the horizontal identity ihj is congruent
to the degeneracy of j in Mor X1.

We define chX as the quotient of F by the congruence ∼. The horizontal
and vertical 1-categories of chX are the horizontal and vertical 1-categories
of S.

Remark 6.3. In the definition of horizontal categorification it is not neces-
sary to mod out by additional relations to make the identity squares func-
torial. If g ◦ f ∼ h because of τ ∈ Obj X2, then the identity morphism on τ
in the category X2 implies we have ivh ∼ [ivf ivg ] (the face maps are functors).
For vertically composable morphisms j and k, we have

ih[j
k]
∼

[
ihj
ivk

]

because degeneracy is a functor and by (i) and (ii).

Example 6.4. If X is a simplicial set, then chνX = HcX. By definition,
the horizontal 1-category is cX, and the vertical 1-category is the discrete
category X0. Since X1 is also discrete, there are no nontrivial squares.

Example 6.5. Recall from Proposition 5.6 that σ : Cat //Cat∆op

de-
notes the constant functor and ν : Set∆op //Cat∆op

denotes the inclu-
sion. If A is a category and Y is a simplicial set, then the horizontal
categorification of the simplicial category σA× νY is A £ cY . In fact, the
horizontal 1-category of the double derivation scheme S is

c(Obj (σA× νY )) = c(Obj A× Y ) = (H(A £ cY ))0.

The vertical 1-category of S is

(σA× νY )0 = A× Y0 = (V(A £ cY ))0.
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The squares of S are

Mor (σA× νY )1 = (Mor A)× Y1.

The congruence on F corresponds precisely to the relations in A £ cY . We
present an alternative conceptual proof of this example in Proposition 6.10.

Proposition 6.6. Horizontal categorification ch is left adjoint to the hori-
zontal nerve Nh.

Proof: We use the notation of Definition 6.2 and construct a natural
bijection

DblCat(chX,D) ∼= [∆op,Cat](X, NhD).

Suppose G : X //NhD is a morphism of simplicial objects in Cat. This
induces a morphism of double deriviation schemes S //D and a unique
double functor J making the upper left triangle commute,

S //

²²

D

F //

∃! J

>>

chX .

∃! G′

OO

Since G is a morphism of simplicial objects in Cat, J takes congruent
squares to equal squares, and there exists a unique double functor G′ making
the lower right triangle commute.

On the other hand, given a double functor G′ : chX //D we compose
it with the morphism of 1-truncated simplicial objects in Cat

(X0, X1) // F // chX .

The resulting morphism of 1-truncated simplicial objects determines a mor-
phism G : X //NhD of simplicial objects in Cat: such a morphism is
determined by its 1-truncation since

GObj : Obj X // Obj NhD

GMor : Mor X // Mor NhD

are determined by their 1-truncations as in the proof of Proposition 6.1.
These two procedures are inverse to one another.

We now move towards a conceptual proof of Example 6.5 in Proposition
6.10.
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Remark 6.7. Recall that if S is a set and A is an object of a category,
then the copower S · A is the coproduct of A with itself S-times. In some
categories, the copower has a simple description. For example, if C is a
category, then the copower in Cat is

S ·C =
∐

S

C = S ×C.

If X is a simplicial set and Y ∈ [∆op,Cat], then X · Y is the simplicial
object in Cat

[n] Â // Xn · Yn =
∐

Xn
Yn = Xn × Yn ,

which is the same as νX × Y .

Lemma 6.8. For categories C and D and a double category E we have a
natural isomorphism of categories

DblCatv(VC×HD,E) ∼= Cat(C,DblCatv(HD,E)).

Proof: Recall that VC×HD = C£D and that Nh(C£D) = σC×νND
by Proposition 5.6. Since Nh is 2-fully faithful, we have

(3) DblCatv(VC×HD,E) ∼= [∆op,Cat](σC× νND, NhE).

Since (Cat,×) is closed symmetric monoidal, it follows from a general fact
that [∆op,Cat] has a tensor product

(Y ⊗ Z)n := Yn × Zn = (Y × Z)n

and an internal hom

[Y, Z]n := [∆op,Cat](∆[n] · Y, Z)
∼= [∆op,Cat](Y × ν∆[n], Z)

for all Y, Z ∈ [∆op,Cat]. Applying this to the right hand side of equation
(3) we obtain

(4) DblCatv(VC×HD,E) ∼= [∆op,Cat](σC, [νND, NhE]).

But recall that σC = sk0 C where sk0 is the left adjoint to the 0-truncation
tr0 of simplicial objects in Cat. Thus

DblCatv(VC×HD,E) ∼= [∆op,Cat](σC, [νND, NhE])
∼= Cat(C, [νND, NhE]0)
∼= Cat(C, [∆op,Cat](νND, NhE))
∼= Cat(C, [∆op,Cat](NhHD, NhE))
∼= Cat(C,DblCatv(HD,E))

by the 2-fully faithfulness of Nh.
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Lemma 6.9. If X and Y are simplicial objects in Cat, then X × Y is the
weighted colimit X ∗G of the Cat-functor

G : ∆ // [∆op,Cat]

[n] Â // Y × ν∆[n]

with weighting X : ∆op //Cat .

Proof: For any Z ∈ [∆op,Cat],

[∆op,Cat](G([n])× Z)

is the n-th category of the internal hom [Y, Z] as in the proof of Lemma 6.8.
Thus we have a natural isomorphism

[∆op,Cat](X, [∆op,Cat](G(−), Z)) ∼= [∆op,Cat](X × Y, Z)

and X×Y satisfies the universal property of the weighted colimit X ∗G.

We finish the conceptual proof of Example 6.5.

Proposition 6.10. If A is a category and Y is a simplicial set, then the
horizontal categorification of the simplicial category σA × νY is A £ cY
where cY is the traditional categorification of Y .

Proof: By Lemma 6.9, σA× νY is the weighted colimit σA ∗G of

G : ∆ // [∆op,Cat]

[n] Â // νY × ν∆[n]

with weighting σA : ∆op //Cat .
Let J : ∆ //DblCat be the horizontal embedding. Then from the

enriched version of Theorem 5.14 (Kan’s Lemma), found in Chapter 5 of
[50], for each Z ∈ [∆op,Cat], ch(Z) ∼= Z ∗ J. Hence

(5)

ch(σA× νY ) = ch(σA ∗G)
∼= (σA ∗G) ∗ J

∼= σA ∗ (G ∗ J)

by Fubini’s Theorem, also in [50]. The functor G ∗ J : ∆ //DblCat in
the last line takes [n] to

G([n]) ∗ J ∼= ch(G([n])) = ch(νY × ν∆[n]).

From Example 6.4 and the fact that c preserves finite products, we have

ch(νY × ν∆[n]) = Hc(Y ×∆[n]) ∼= HcY ×H[n].
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We conclude that (5) has the form

(6) ch(σA× νY ) ∼= σA ∗ (HcY ×H[−]).

We claim that the right hand side of (6) is isomorphic to VA×HcY . In
fact, Lemma 6.8 and the adjunction sk0 a tr0 give, for all E ∈ DblCatv
DblCatv(VA×HcY,E)) ∼= Cat(A,DblCatv(HcY,E))

∼= Cat(A, tr0 DblCatv(HcY ×H[−],E))
∼= [∆op,Cat](σA,DblCatv(HcY ×H[−],E)).

The claim follows now from the definition of weighted colimit. Hence, (6)
implies that

ch(σA× νY ) ∼= VA×HcY = A £ cY.

The vertical categorification of a simplicial object X in Cat is the trans-
pose of chX.

6.2. Double Categorification. Finally, we turn to the left adjoint cd to
the double nerve Nd, and show that cd preserves external products. This
section is not needed for the rest of the paper, so it may be skipped on a first
reading. This section will be of use when we construct a model structure
on DblCat from bisimplicial sets in future work.

Definition 6.11. Let X ∈ SSet2 be a bisimplicial set. We define a dou-
ble category cdX called the double categorification or fundamental double
category of X as follows. First define a double derivation scheme S with
horizontal 1-category cX0∗ and vertical 1-category cX∗0, and with squares
X11. We equip the free double category F on the double derivation scheme
S with the smallest congruence ∼ such that

(i) For all τ ∈ X12 with boundary

τ

β

ÂÂ?
??

??
??

α

??ÄÄÄÄÄÄÄ
γ

//

we have
[αβ] ∼ γ,

(ii) For all τ ∈ X21 with boundary

τ

β

ÂÂ?
??

??
??

α

??ÄÄÄÄÄÄÄ
γ

//
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we have [
α

β

]
∼ γ,

(iii) For all f ∈ X01, the vertical identity ivf is congruent to the degen-
eracy of f in X11,

(iv) For all j ∈ X10, the horizontal identity ihj is congruent to the de-
generacy of j in X11.

We define cdX as the quotient of F by the congruence ∼. The horizontal
and vertical 1-categories of cdX are cX0∗ and cX∗0 respectively.

Remark 6.12. In the definition of double categorification it is not necessary
to mod out by additional relations to make the identity squares functorial.
They already are functorial in the free double category F on the double
derivation scheme S.

Example 6.13. If X and Y are simplicial sets, and X£Y is the bisimplicial
set with (m,n)-bisimplices Xm ×Xn, then cd(X £ Y ) = cX £ cY .

Proposition 6.14. Double categorification cd is left adjoint to the double
nerve Nd.

Proof: We use the notation of Definition 6.11 and prove a natural
bijection

DblCat(cdX,D) ∼= SSet2(X, NdD).
Suppose G : X //NdD is a morphism of bisimplicial sets. Then the
restriction to the map of double graphs (Xij)0≤i,j≤1

//D induces a map
of double derivation schemes S //D as in the 1-category case, which
induces a unique double functor J making the upper left triangle commute,

S //

²²

D

F //

∃! J

>>

cdX .

∃! G′

OO

However, J takes congruent squares to equal squares since G is a map of
bisimplicial sets, thus J induces a unique double functor G′ making the
lower right triangle commute.

If we are given a double functor G′ : cdX //D , then we compose it
with the morphism of double graphs

(Xij)0≤i,j≤1
// F // cdX

to induce a morphism of bisimplicial sets G : X //NdD . Such a mor-
phism G is determined by its restriction to (Xij)0≤i,j≤1.
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These two procedures are inverse to one another.

7. Model Structures Arising from Cat∆op

Now that we have the adjunction Cat∆op

: ch a Nh : DblCat in place
we can use it to transfer model structures from Cat∆op

to DblCat using
Kan’s Lemma 7.11 on Transfer. This theorem says that one can lift a model
structure across an adjunction under certain smallness conditions, which
guarantee functorial factorizations. This is our first method for constructing
model structures on DblCat. In Section 8 we will adopt the point of view
of double categories as internal categories and apply the results of [33]. In
Section 9 we will consider DblCat as a category of algebras for a 2-monad
and use [54].

The category Cat∆op

has four model structures of interest to us. These
arise as diagram structures and Reedy structures associated to two cofi-
brantly generated model structures on Cat: the categorical structure and
the Thomason structure. In this section we first describe the structures on
Cat and their associated diagram structures and then recall some prelimi-
naries about model categories, such as smallness arguments and the Kan’s
Lemma on Transfer. We then transfer the diagram structures to DblCat
across the horizontal categorification-horizontal nerve adjunction. In the
proofs of our transfer results we crucially need to know the behavior of
certain pushouts, and these are treated in Theorems 10.6 and 10.7 of the
Appendix. We also show that the Reedy categorical structure cannot trans-
fer.

Recall the notion of cofibrantly generated model category.

Definition 7.1. A model category C is cofibrantly generated if there exist
sets of morphism I and J in C such that

(i) The domains of I are small with respect to I-cell as defined in
Definitions 7.5 and 7.8,

(ii) The domains of J are small with respect to J-cell,
(iii) The class of fibrations is precisely the class of morphisms with the

right lifting property with respect J ,
(iv) The class of acyclic fibrations is precisely the class of morphisms

with the right lifting property with respect to I.

In this case, I is the set of generating cofibrations and J is the set of gener-
ating acyclic cofibrations.

7.1. Model Structures on Cat. In the Thomason structure on Cat in
[76] a functor F is a weak equivalence (respectively fibration) if and only if
Ex2NF is a weak equivalence (respectively fibration) of simplicial sets. The
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functor Ex is superfluous for weak equivalences, as Thomason proved that F
is a weak equivalence if and only if NF is. The functor Ex: SSet //SSet
is the left adjoint to barycentric subdivision Sd: SSet //SSet , which
we recall below. The Thomason structure is cofibrantly generated. The
generating cofibrations are the inclusions of categorical boundaries

cSd2∂∆[m] //cSd2∆[m]

while the generating acyclic cofibrations are the inclusions of categorical
horns

cSd2Λk[m] //cSd2∆[m] .
We now recall the definition of barycentric subdivision Sd. The simpli-

cial sets Sd∆[m] and SdΛk[m] are respectively the nerves of the posets of
nondegenerate simplices of ∆[m] and Λk[m]. The ordering is the face rela-
tion. Thus a q-simplex of Sd∆[m] is a tuple (v0, . . . , vq) of nondegenerate
simplices (faces) of ∆[m] such that vi is a face of vi+1 for all 0 ≤ i ≤ q − 1.
Such a tuple is a q-simplex of SdΛk[m] if and only if all v0, . . . , vq are in
Λk[m]. A p-simplex u is a face of a q-simplex v in Sd∆[m] if and only if

{u0, . . . , up} ⊆ {v0, . . . , vq}.
A p-simplex u of Sd∆[m] is nondegenerate if and only if all ui are distinct.

The subdivision of a simplicial set Y is by definition

colim
∆[n]→Y

Sd∆[n]

where the colimit is indexed over the category of simplices of Y . It follows
from Page 311 of [76] that cSd2∆[m] and cSd2Λk[m] are respectively the
posets of nondegenerate simplices of Sd∆[m] and SdΛk[m] and the generat-
ing acyclic cofibration cSd2Λk[m] //cSd2∆[m] is the inclusion of these
posets.

The other model structure on Cat is the categorical structure of [49]. In
the categorical structure a functor is a weak equivalence if and only if it is
an equivalence of categories. A functor F : A //B is a fibration if for
each isomorphism g : b ∼= Fa in B there is an isomorphism f : a′ ∼= a in
A such that Fa′ = b and Ff = g. These fibrations of categories are also
called isofibrations. A cofibration is a functor that is injective on objects.
The categorical structure on Cat is also cofibrantly generated. There are
three generating cofibrations:

∅ Â Ä // {1}

{0, 1} Â Ä // {0 → 1}
{0 ⇒ 1} // {0 → 1}
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and one generating acyclic cofibration:

{1} Â Ä // {0 ∼= 1} = I .

7.2. Diagram Model Structures on Cat∆op

. Given a model category M
and a small category C, one might hope that the category MC of functors
C //M is also a model category with levelwise weak equivalences and
levelwise fibrations. By this we mean that a natural transformation is a weak
equivalence (respectively fibration) if and only if each of its components is.
Unfortunately, this definition does not always give rise to a model structure
on MC. However, if M is a cofibrantly generated model category, Theorem
7.2 guarantees that this definition does indeed give rise to a model structure
on MC, which is even cofibrantly generated.

Theorem 7.2 (11.6.1 in [43]). Let C be a small category and M a cofi-
brantly generated model category with I the set of generating cofibrations
and J the set of generating acyclic cofibrations. Then MC is a cofibrantly
generated model category with levelwise weak equivalences and levelwise fi-
brations. The generating cofibrations are natural transformations of the
form

∐

C(C,−)

A

`
C(C,−)

f

//
∐

C(C,−)

B

for f : A //B in I. The generating acyclic cofibrations are defined sim-
ilarly with f in J . A morphism in MC is a cofibration if it is a retract of a
transfinite composition of pushouts of generating cofibrations. The compo-
nents of a cofibration are also cofibrations.

Thus, the category Cat∆op

inherits two model structures from Section
7.1. In the diagram Thomason structure on Cat∆op

, a natural transforma-
tion α is a weak equivalence (respectively fibration) if and only if Nαi is a
weak equivalence (respectively fibration) of simplicial sets for each i ≥ 0. In
the diagram categorical structure on Cat∆op

, a natural transformation α is
a weak equivalence (respectively fibration) if and only if αi is an equivalence
of categories (respectively isofibration) for all i ≥ 0.

If C is a Reedy category, then a model structure on M also induces a
Reedy model structure on MC (see for example [43] or [44]). The category
∆ is a Reedy category, so the Thomason and categorical structures on Cat
also give rise to two more model structures on Cat∆op

. However, we do
not study these in more detail because of the following Remark and also
because of Theorem 7.16.
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Remark 7.3. If C is a Reedy category and M is a cofibrantly generated
model category, then the Reedy structure on MC is Quillen equivalent to
the diagram structure.

7.3. Smallness. We will need some knowledge about smallness to use Kan’s
Lemma on Transfer. We recall some of the relevant notions from [44]. Ap-
propriate smallness conditions also allow us to conclude that a transfinite
composition of weak equivalences is a weak equivalence.

Definition 7.4. Let κ be a cardinal. An ordinal λ is κ-filtered if it is a
limit ordinal and, if A ⊆ λ and |A| ≤ κ, then sup A < λ.

Definition 7.5. Let C be a category with all small colimits and κ a car-
dinal. An object A of C is called κ-small if for all κ-filtered ordinals λ and
all colimit-preserving functors X : λ //C the map of sets

(7) colim
β<λ

C(A,Xβ) // C(A, colim
β<λ

Xβ)

is a bijection. An object A is said to be small if it is κ-small for some cardinal
κ. An object A is said to be finite if it is κ-small for a finite cardinal κ, i.e.,
for any limit ordinal λ and colimit-preserving functor X, the map (7) is a
bijection. We say the concepts hold relative to a class of morphisms D in
C if they hold true for all X with Xβ

//Xβ+1 in D for all β + 1 < λ.

For example, categories are small as follows, and we conclude also that
double categories are small.

Proposition 7.6. Any category A is κ-small where

κ = |Obj A|+ |Mor A|+ |Mor As×t Mor A|.
In particular, if Mor A is a finite set, then A is finite as an object of Cat.

Proof: Let X : λ //Cat be a colimit-preserving functor from a κ-
filtered ordinal λ. Recall that ordinals are filtered categories and filtered
colimits of categories are formed by simply taking the filtered colimits of
the object set and the morphism set.

Suppose F : A //colim X is a functor. For each A ∈ Obj A and
f ∈ Mor A there are α1(A) and α2(f) such that F (A) and F (f) are in the
image of Xα1(A) and Xα2(A). Let β be the suprema of all the α1(a) and
α2(f). Then β < λ and we obtain maps of sets

GObj : Obj A //Obj Xβ

GMor : Mor A //Mor Xβ

which factor the functor F . There exists for each f ∈ Mor A an index
γ(f) such that s(G(f)) = G(s(f)) and t(G(f)) = G(t(f)) in Xγ(f). For
each A ∈ Obj A there is an index δ(A) such that G(1A) = 1G(A) in Xδ(A).
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For each (`, k) ∈ Mor As×t Mor A there exists an index ε(`, k) such that
G(`◦k) = G(`)◦G(k) in Xε(`,k). Let ζ be the supremum of all these indices
γ, δ, ε. Then ζ < λ and G induces a functor A //Xζ which factors F .
Hence (7) is onto.

Suppose M : A //Xα and N : A //Xβ are functors that become
equal in the colimit. Then for each a ∈ Obj A and each f ∈ Mor A there are
indices γ(a) and δ(f) such that M(a) = N(a) and M(f) = N(f) in Xγ(a)

and Xδ(f) respectively. Let ζ < λ be the supremum of all these indices γ(a)
and δ(f). Then M and N become equal at the stage ζ and the map (7) is
injective.

Corollary 7.7. Let D be a double category and sh, sv, th, tv the horizontal
and vertical source and target maps. Then D is κ-small where

κ =|Obj D|+ |Hor D|+ |Hor Dsh×th Hor D|
+ |Ver D|+ |Ver Dsv×tv Ver D|
+ |Sq D|+ |Sq Dsv×tv Sq D|
+ |Sq Dsh×th Sq D|.

In particular, if Sq D is a finite set, then D is finite as an object of DblCat.

Proof: We first obtain a map of the underlying quadruple of sets, and
then we go out far enough to make it into a double functor by considering
the various compositions and identities as in Proposition 7.6.

Note that this corollary easily generalizes to n-fold categories.
One useful application of finiteness is to transfinite compositions of weak

equivalences.

Definition 7.8. If C is a category with all small colimits, λ is an ordinal,
D is a class of morphisms in C, and X : λ //C is a colimit preserving
functor such that Xβ

//Xβ+1 is in D for all β+1 < λ, then the morphism

X0
//colim X

is called a transfinite composition of morphisms in D. If I is a class of
morphisms in C, then a transfinite composition of pushouts of elements of
I is called a relative I-cell complex. The class of relative I-cell complexes is
denoted I-cell.

Proposition 7.9 (7.4.2 of [44]). Suppose C is a cofibrantly generated model
category in which the domains and codomains of the generating cofibrations
and generating acyclic cofibrations are finite. Then every transfinite com-
position of weak equivalences is a weak equivalence.
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Example 7.10. In both the Thomason structure and the categorical struc-
ture on Cat, every transfinite composition of weak equivalences is a weak
equivalence, as the domains and codomains of the generating cofibrations
and generating acyclic cofibrations only have finitely many morphisms.
Since weak equivalences and colimits in Cat∆op

are levelwise, every trans-
finite composition of weak equivalences in the diagram structures is also a
weak equivalence.

7.4. Kan’s Lemma on Transfer. Our first main tool for constructing
model structures on DblCat is Kan’s Lemma on Transfer. The form we
will use is Corollary 7.12.

Theorem 7.11 (Kan’s Lemma on Transfer, 11.3.2 in [43]). Let C be a
cofibrantly generated model category with generating cofibrations I and gen-
erating acyclic cofibrations J . Suppose D is complete and cocomplete, and
that

(8) C ⊥

F

&&
D

G

ff

is an adjunction. Assume the following.
(i) For every i ∈ I, dom Fi is small with respect to FI-cell. For every

j ∈ J , dom Fj is small with respect to FJ-cell.
(ii) The functor G maps every relative FJ-complex to a weak equiva-

lence in C.
Then there exists a cofibrantly generated model structure on D with gener-
ating cofibrations FI and generating acyclic cofibrations FJ . Further, f is
a weak equivalence in D if and only G(f) is a weak equivalence in C, and
f is a fibration in D if and only G(f) is a fibration in C.

Along the lines of [78], we have the following corollary.

Corollary 7.12. Let C be a cofibrantly generated model category with gen-
erating cofibrations I and generating acyclic cofibrations J . Suppose D is
complete and cocomplete, and that F a G is an adjunction as in (8). As-
sume the following.

(i) For every i ∈ I and j ∈ J , the objects dom Fi and dom Fj are
small with respect to the entire category D.

(ii) For any ordinal λ and any colimit preserving functor X : λ //C
such that Xβ

//Xβ+1 is a weak equivalence, the transfinite com-
position

X0
// colim X

is a weak equivalence.
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(iii) G preserves filtered colimits.
(iv) If j′ is a pushout of F (j) in D for j ∈ J , then G(j′) is a weak

equivalence in C.
Then there exists a cofibrantly generated model structure on D with gener-
ating cofibrations FI and generating acyclic cofibrations FJ . Further, f is
a weak equivalence in D if and only G(f) is a weak equivalence in C, and
f is a fibration in D if and only G(f) is a fibration in C.

Proof: Clearly, (i) of Theorem 7.11 follows from the hypotheses. To
see (ii), we recall that a relative FJ-complex is a transfinite composition
of pushouts of morphisms Fj where j ∈ J . If a relative FJ-complex f
is a transfinite composition of Y : λ //D , then Gf is the transfinite
composition of X = G ◦ Y . Since Gf is a transfinite composition of weak
equivalences, Gf is also a weak equivalence. Hence G takes relative FJ-
complexes to weak equivalences in C.

7.5. Transfer of the Diagram Thomason Structure on Cat∆op

. With
these preliminaries and our free constructions on double categories, we can
transfer the diagram Thomason structure to DblCat. Recall the diagram
Thomason structure on Cat∆op

from Section 7.2.

Theorem 7.13. There is a cofibrantly generated model structure on
DblCat such that a double functor K is a weak equivalence (respectively
fibration) if and only if NhK is levelwise a weak equivalence (respectively
fibration) in the Thomason structure on Cat.

Proof: We apply 7.12 to the adjunction F = ch a Nh = G. First we
point out that

ch(
∐

∆op([n],−)

cSd2Λk[m]) = ch(cSd2Λk[m]×∆[n])

= (cSd2Λk[m]) £ c∆[n]

= (cSd2Λk[m]) £ [n]

by Example 6.5 or Proposition 6.10 (for simplicity we suppress σ and ν).
Similarly,

ch(
∐

∆op([n],−)

cSd2∆[m]) = (cSd2∆[m]) £ [n]

and the horizontal categorification of the generating acyclic cofibrations j
in Theorem 7.2 are the inclusions i £ 1[n] for the inclusions

i : cSd2Λk[m] //cSd2∆[m]

and [n] ∈ ∆.
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(i) The double categories (cSd2∆[m])£ [n] and (cSd2Λk[m])£ [n] have
a finite number of squares, hence they are finite by Corollary 7.7.

(ii) A transfinite composition of weak equivalences in Cat∆op

is a weak
equivalence by Example 7.10.

(iii) The horizontal nerve Nh preserves filtered colimits by Theorem 5.5.
(iv) Consider the pushout in DblCat,

(cSd2Λk[m]) £ [n] //

ch(j)=i£1[n]

²²

D

j′

²²
(cSd2∆[m]) £ [n] // P .

Then by Proposition 5.6 Nhch(j) = j and by Theorem 10.7 the
induced map in the pushout in Cat∆op

(cSd2Λk[m])×∆[n] //

Nhch(j)=j

²²

NhD

j

²² Nh(j′)

±±

(cSd2∆[m])×∆[n] //

//

P

ÁÁ
NhP

is an isomorphism. But j is an acyclic cofibration, as it is a pushout
of an acyclic cofibration. Hence Nh(j′) is a weak equivalence in
Cat∆op

by the 2-out-of-3 property.

7.6. Transfer of the Diagram Categorical Structure on Cat∆op

. Our
preparations allow us to also quickly transfer the diagram categorical struc-
ture. Recall the diagram categorical structure on Cat∆op

from Section 7.2.
In Section 8.2 we will show that this model structure on DblCat coincides
with the model structure induced by the simplicially surjective topology τ
on Cat using the methods of [33]. An important reason for interest in the
equality of these two structures lies in the fact that the second construction
yields an explicit form for the cofibrant replacement, which is not all all
transparent using only the transferred structure.

Theorem 7.14. There is a cofibrantly generated model structure on
DblCat such that a double functor K is a weak equivalence (respectively
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fibration) if and only if NhK is levelwise a weak equivalence (respectively
fibration) in the categorical structure on Cat.

Proof: We apply 7.12 to the adjunction F = ch a Nh = G. All
generating acyclic cofibrations j for the categorical diagram structure on
Cat∆op

are natural transformations of the form∐

∆op([n],−)

{1} //
∐

∆op([n],−)

I

and have horizontal categorification

{1}£ [n] //I £ [n]

by Example 6.5 or Proposition 6.10 (for simplicity we suppress σ and ν).
(i) The double categories {1}£ [n] and I £ [n] have a finite number of

squares, hence they are finite by Corollary 7.7.
(ii) A transfinite composition of weak equivalences in Cat∆op

is a weak
equivalence by Example 7.10.

(iii) The horizontal nerve Nh preserves filtered colimits by Theorem 5.5.
(iv) Consider the pushout in DblCat,

{1}£ [n] //

ch(j)

²²

D

j′

²²
I £ [n] // P .

Then by Proposition 5.6 Nhch(j) = j and by Theorem 10.7 the
induced map in the pushout in Cat∆op

{1} ×∆[n] //

Nhch(j)=j

²²

NhD

j

²² Nh(j′)

±±

I×∆[n] //

//

P

ÂÂ
NhP

is an isomorphism. But j is an acyclic cofibration, as it is a pushout
of an acyclic cofibration. Hence Nh(j′) is a weak equivalence in
Cat∆op

by the 2-out-of-3 property.
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7.7. No Transfer of the Reedy Categorical Structure on Cat∆op

.
In this subsection we consider the category Cat∆op

of simplicial objects in
Cat equipped with the Reedy model structure associated with the categor-
ical model structure on Cat. The weak equivalences in this Reedy model
structure are the levelwise equivalences of categories and the fibrations are
the Reedy fibrations. (For further details, see [43].) In this section we will
show that it is impossible to transfer this model structure to DblCat via
the adjunction ch a Nh , where Nh is the horizontal nerve and ch is the
horizontal categorification. We will need the following theorem.

Theorem 7.15 (Theorem 1 in [47]). For a given functor G : B //C ,
the canonical comparison functor from the pullback of F along G to the
pseudo pullback of F along G is an equivalence of categories for all functors
F : A //C if and only if G is an isofibration.

Now we turn to the objective of this subsection.

Theorem 7.16. There does not exist a model structure on DblCat such
that a double functor K is a weak equivalence (respectively fibration) if and
only if NhK is a weak equivalence (respectively fibration) in the Reedy model
structure on Cat∆op

associated to the categorical structure on Cat.

Proof: Suppose that such a transferred model structure on DblCat
does exist. Then (ch, Nh) is a Quillen pair. Let D be a double category and
consider a Reedy fibrant replacement r : NhD //V• in Cat∆op

, that is,
V• is a Reedy fibrant object and r is an acyclic cofibration in the Reedy
structure. Our strategy is to prove that at least one of the source and the
target functors (NhD)1 //(NhD)0 is an isofibration, which will lead to a
contradiction.

The morphism chr is an acyclic cofibration since ch is a left Quillen
functor. Moreover, since V• is Reedy fibrant, the map

V1

(d0,d1) // V0 × V0

is an isofibration in Cat. Also, since every object in Cat is fibrant in
the categorical structure, the two projections π1, π2 : V0 × V0

//V0 are
isofibrations. It follows that the maps d0, d1 : V1

//V0 are themselves
isofibrations. By Theorem 7.15 this implies that the canonical functor

(9) V1 ×V0 V1
//V1

ps×V0 V1

from the pullback to the pseudo pullback is an equivalence of categories.
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Next we similarly show that (12) is an equivalence of categories. By
definition, ch(V )0 = V0. We claim that the functor

(10) (chV )1
(d0,d1) // (chV )0 × (chV )0

is also a fibration. First note that V1
//V0 × V0 is an isofibration pre-

cisely when any diagram

v ‖o
²²

o‖ w

²²
g

//

with vertical isomorphisms can be filled with a vertically invertible “square”
α (morphism of V1),

v ‖o
²²

g′ //

α o‖ w

²²
g

// .

Now consider a similar diagram in ch(V ). This has the form

(11)
v ‖o

²²
o‖ w

²²
g1

//
g2

//
gn

// ,

where the bottom edge is the equivalence class of a path of composable
horizontal morphisms by Definition 6.2. We next insert vertical identity
morphisms and fill in the individual squares (V1

//V0 × V0 is an isofi-
bration) to obtain the following compatible arrangement,

v ‖o
²²

g′1 //

α1

g′2 //

α2

g′n //

αn o‖ w

²²
g1

//
g2

//
gn

// .

The equivalence class in ch(V ) of this compatible arrangement gives the
required filling for (11). So (10) is indeed a fibration. Reasoning as for (9),
this implies that the following functor is an equivalence of categories.

(12) (chV )1 ×(chV )0 (chV )1 // (chV )1
ps×(chV )0 (chV )1

Next we show that at least one of the source and the target functors
(NhD)1 //(NhD)0 is an isofibration, which we will see is a contradiction.
We claim that the unit ηV is a weak equivalence. Since the nerve functor
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Nh is fully faithful, the counit ε : chNh
+3IdDblCat is an isomorphism.

One of the triangle identities states that NhεD · ηNhD = id, so ηNhD is an
isomorphism. The naturality of the unit η therefore gives us a commutative
diagram

NhD = NhchNhD

Nhchr

²²

NhD
ηNhDoo

r

²²
NhchV VηV

oo

in which the morphism ηNhD is a levelwise equivalence (since it is an iso-
morphism), and the morphism r is a levelwise equivalence (by hypothesis).
The morphism Nhchr is one as well, since chr is a weak equivalence (chr is
even an acyclic cofibration). By the 2-out-of-3 property, it follows that ηV

is a levelwise equivalence of categories, as claimed.
Consider the following commutative diagram in Cat.

(NhD)2

r2 o
²²

Segal

∼=
//

(D)

(NhD)1 ×(NhD)0 (NhD)1

(r1,r1)

²²
(C)

// (NhD)1
ps×(NhD)0 (NhD)1

(r1,r1)

²²
V2

(ηV )2 o
²²

(B)

// V1 ×V0 V1
∼ //

((ηV )1,(ηV )1)

²²
(A)

V1

ps× V0 V1

((ηV )1,(ηV )1)

²²
(NhchV )2

Segal

∼= // (NhchV )1×(NhchV )0 (NhchV )1
∼ // (NhchV)1

ps×(NhchV)0 (NhchV)1
Note that (B) and (D) commute by the definition of Segal maps, while the
commutativity of (A) and (C) follows from the universal property of the
pseudo pullbacks. The vertical functors r2 and (ηV )2 are equivalences of
categories, since r and ηV are weak equivalences from above. The bottom
edge of (C) is an equivalence, since it is (9). The bottom edge of (A) is an
equivalence as it is (12) (recall that (NhE)0 = E0 and (NhE)1 = E1 for any
double category E).

We claim that the top edge of (C) is an equivalence of categories. Since
r0 and r1 are equivalences, the vertical functor

(r1, r1) : (NhD)1
ps×(NhD)0 (NhD)1 // V1

ps×V0 V1

is an equivalence. Moreover, since ηV is a levelwise equivalence, the 2-out-
of-3 property and the commutativity of (A) imply that the functor

V1 ×V0 V1
// (NhchV )1 ×V0 (NhchV )1
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is an equivalence. Also, the commutativity of (B) and the 2-out-of-3 prop-
erty imply that V2

//V1 ×V0 V1 is an equivalence. The commutativity of
(D) then implies that

(NhD)1 ×(NhD)0 (NhD)1 // V1 ×V0 V1

is an equivalence. Finally, the commutativity of (C) implies that the canon-
ical map

(13) (NhD)1 ×(NhD)0 (NhD)1 // (NhD)1
ps×(NhD)0 (NhD)1

is an equivalence of categories, as claimed.
The map (13) is nothing but

(14) D1 ×D0 D1
// D1

ps×D0 D1.

The objects of D1

ps×D0 D1 are diagrams of the form

(15)
g //

∼=
²²

f
//

and morphisms of D1

ps×D0 D1 are diagrams of the form

(16)
f //

²²
α

²²

∼=oo g //

β

²² ²²
f ′

// ∼=
oo

g′
//

where the middle square is a commutative square of vertical morphisms.
The objects and morphisms of D1 ×D0 D1 are those of (15) and (16) where
the isomorphisms are identities. The canonical functor (14) is given by this
inclusion.

We now describe a double category D where the canonical functor (14)
is not an equivalence, which then implies that our original assumption on
the existence of a transferred Reedy structure on DblCat is false. Let D
be the double category with four distinct objects A,B, C,D and only the
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following nontrivial arrows.

(17) C
g //

∼=
²²

D

A
f

// B

There are no nontrivial squares. Suppose that the canonical functor (14) is
essentially surjective. Then there exist objects X,Y, Z and morphisms as
in the following diagram

(18) A
f //

²²
α

B

²²

C
∼=oo g //

β

²²

D

²²
X

f ′
// Y Y

g′
// Z

with α and β vertically invertible squares. However, since all squares in
D are trivial, we conclude that B = Y = C, a contradiction. Hence, the
canonical functor (14) is not essentially surjective and is not an equivalence.

We conclude that it is impossible to transfer the categorical Reedy model
structure on Cat∆op

to DblCat.

8. Model Structures Arising from Grothendieck Topologies

Until now we have considered model structures transferred from Cat∆op

.
But one can also view double categories as internal categories, and for these
homotopy theory has already been developed. Model structures on internal
categories in a category C satisfying certain hypotheses have been studied
by Everaert, Kieboom, and Van der Linden in [33]. As they point out,
there are various notions of internal equivalence of internal categories. The
notions full and faithful representably make sense for internal functors as
in 8.7, but notions of essential surjectivity depend on a class of morphisms
E in C. If this class of morphisms is the class ET of T -epimorphisms for a
Grothendieck topology T on C, then the internal equivalences are the weak
equivalences for a model structure on Cat(C) in good cases. The classes
fib(T ), cof(T ), and we(T ) are defined in [33] so that the following theorem
holds.

Theorem 8.1 (5.5 of [33]). Let C be a finitely complete category such that
Cat(C) is finitely complete and finitely cocomplete and T is a Grothendieck
topology on C. If the class we(T ) of T -equivalences has the 2-out-of-3 prop-
erty and C has enough ET -projectives, then

(Cat(C), fib(T ), cof(T ),we(T ))
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is a model category.

We apply this theorem to C = Cat for various Grothendieck topologies
in this section. In Section 8.2 we show that the model structure associated to
the simplicially surjective topology τ is the same as the transferred diagram
categorical structure. This second construction using [33] is advantageous,
as it gives us more information about the model structures, such as simple
descriptions of cofibrations and cofibrant replacements. We will show in
Section 9 that the model structure associated to the categorically surjective
basis τ ′ in Section 8.3 turns out to be the same as the model structure on
DblCat viewed as a category of algebras over a 2-monad.

8.1. Homotopy Theory of Internal Categories as in [33]. First we
recall the notions and results of [33] for the special case of internal categories
in C = Cat.

Definition 8.2. Let iso : Cat(Cat) //Grpd(Cat) be the right adjoint
to the inclusion Grpd(Cat) //Cat(Cat). For B ∈ Cat(Cat), this means
that iso(B)1 has objects the invertible horizontal morphisms of B and mor-
phisms the horizontally invertible squares. This is a category under vertical
composition of squares.

Definition 8.3. If F : A //B is a double functor, then the mapping path
object is the category (PF )0 defined as the pullback below,

(PF )0
F 0 //

δ1

²²

iso(B)1

δ1

²²
A0

F0

// B0 .

The objects of (PF )0 are (a, f : b
∼= //F0a) for a an object of A and f a

horizontal isomorphism of B. The morphisms are pairs

(19)




a

k

²²
a′

,

b
∼= //

j

²²
α

F0a

F0k

²²
b′ ∼=

// F0a
′




where k is a vertical morphism in A and α is a horizontally invertible square
in B. Composition in (PF )0 comes from the vertical composition in A and B.
The functor δ0 : iso(B)1 //B0 is the source for horizontal composition.
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Definition 8.4. Let T be a topology on Cat. We denote the composition
of the Yoneda embedding with the sheafification functor

Cat
Y // SetCatop // Sh(Cat, T )

by YT . A functor p : E //B is T -epi if YT (p) is epi. We denote the class
of T -epimorphisms by ET .

To show that a functor is T -epi, we will use the following characterization
of T -epimorphisms.

Proposition 8.5 (Corollary III.7.5 and III.7.6 in [61], Proposition 2.12 in
[33]). Let T be a topology on a small category. A morphism p : E //B is
T -epi if and only if for every morphism g : X //B there exists a covering
sieve {fi : Ui

//X }i and a family of morphisms {ui : Ui
//E }i such

that for every i ∈ I the diagram

(20) Ui

ui

²²

fi // X

g

²²
E p

// B

commutes.

Remark 8.6. Suppose K is a basis for the topology T in Proposition 8.5
and such g and p are given. Then there exists a covering sieve
{fi : Ui

//X }i in T and a family of morphisms {ui : Ui
//E }i making

(20) commute if and only if there exists a covering family {gj : Vj
//X }j

in K and a family of morphisms {vj : Vj
//E }j making (20) commute.

Thus, in Proposition 8.5 one could equivalently replace the phrase “covering
sieve” by the phrase “covering family in a given basis”.

Proof: A sieve S is a covering sieve in the topology T generated by
the basis K if and only if it contains a covering family R from the basis K.
Suppose such a covering sieve {fi}i with morphisms {ui}i is given. Then
this covering sieve contains a covering family in L for which (20) commutes.
Conversely, given such a covering family {gj}j with morphisms {vj}j , we
may take the sieve

{gj ◦ w|w a morphism such that gj ◦ w exists}j

generated by the family {vj}j . Then the family {vj ◦ w} makes (20) com-
mute.
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Definition 8.7. Let ET be the class of T -epimorphisms for a Grothendieck
topology on Cat and let δ0 : iso(B)1 //B0 be the source map for horizon-
tal composition. A double functor F : A //B is essentially T -surjective
if the functor

(PF )0
F 0 // iso(B)1

δ0 // B0

given by

δ0 ◦ F 0(a, b
∼= //F0a) = b,

and

δ0 ◦ F 0




a

k

²²
a′

,

b
∼= //

j

²²
α

F0a

F0k

²²
b′ ∼=

// F0a
′




=
b

j

²²
b′

is in ET . If F is additionally fully faithful in the sense of [20], i.e., if

A1
F1 //

(s,t)

²²

B1

(s,t)

²²
A0 × A0

F0×F0

// B0 × B0

is a pullback square in Cat, then F is called a T -equivalence. We denote
the class of T -equivalences by we(T ). Note that a double functor F is fully
faithful if and only if the restricted functors

(Obj A,Hor A) //(Obj B,Hor B)

(Ver A,Sq A) //(Ver B,Sq B)
are both fully faithful.

Remark 8.8. If A and B are 1-categories, then a functor F : A //B is
essentially surjective in the usual sense if and only if δ0 ◦ F 0 is surjective.
The functor F is fully faithful in the sense of 8.7 if and only if it is fully
faithful in the usual sense. The notions of essential surjectivity and fully
faithfulness can be found in any standard reference on category theory, such
as Pages 19 and 115 of [9] or Pages 14, 15, and 93 of [60].

Remark 8.9. We conclude from Proposition 8.5 that if T ′ ⊆ T are Grothen-
dieck topologies, then every T ′-epimorphism is also a T -epimorphism. Thus,
every T ′-equivalence is a T -equivalence. Thus, finer topologies give rise to
model categories with more weak equivalences. 3

3We thank Joachim Kock for posing this question.
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Definition 8.10. A category P is ET -projective, or simply T -projective,
if for every T -epi functor G : Q // //R and every functor H : P //R
there exists a factorization F : P //Q such that GF = H,

P

H

²²

∃F

ÄÄÄ
Ä

Ä
Ä

Ä
Ä

Q
G

// // R .

Definition 8.11. We say that Cat has enough ET -projectives if for every
category C there exists an ET -projective category P and a T -epi functor
P // //C .

Definition 8.12. A double functor F : E //B is a T -fibration if the
induced morphism (rF )0 in the diagram below is T -epi,

(21) iso(E)1

(rF )0

I
I

$$I
I

iso (F )1

##

δ1

%%

(PF )0

δ1

²²

F 0 // iso(B)1

δ1

²²
E0

F0

// B0 .

Remark 8.13. If E and B are 1-categories, then (rF )0 is surjective if
and only if F is an isofibration. Recall from Section 7.1 that a functor
F : E //B is said to be an isofibration if for any object e of E and any
isomorphism b ∼= Fe in B, there exists a lift to an isomorphism b′ ∼= e in E.

Proposition 8.14 (Proposition 5.6 of [33]). Under the assumptions of The-
orem 8.1, a double functor F : E //B is an acyclic T -fibration if and only
if it is fully faithful and F0 is a T -epi functor.

Definition 8.15. A double functor is a T -cofibration if it has the left lifting
property with respect to all acyclic T -fibrations.

Proposition 8.16 (Proposition 5.9 of [33]). Under the assumptions of The-
orem 8.1, a double functor J : A //X is a T -cofibration if and only if J0

has the left lifting property with respect to all T -epi functors.

Corollary 8.17. A double category X is cofibrant in the T -model structure
if and only if X0 is ET -projective.
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Proof: By Proposition 8.16, X is cofibrant if and only if for any T -epi
functor G and any functor H, a lift `

∅ //

²²

Q

G
²²²²

X0
H

//

`

>>~
~

~
~

R

exists, or equivalently, if X0 is ET -projective.

8.2. Model Structure from the Simplicially Surjective Basis. For
a category C, we write Ck for the k-th set of the nerve NC. Similarly
for a functor F we write (NF )k = Fk. We say that a functor F is sim-
plicially surjective if Fk is surjective for all k ≥ 0. We prove that the
associated topology on Cat induces a model structure on DblCat which
coincides with the transferred diagram categorical structure of Section 7.6.
This second construction gives additional information about the transferred
diagram categorical structure, including an explicit form for the cofibrant
replacement functor.

Lemma 8.18. For a category C define

K(C) := {{F : D //C}| F a simplicially surjective functor }.
Then K is a basis for a Grothendieck topology τ on Cat.

Proof:
(i) If F is an isomorphism, then NF is an isomorphism and each Fk is

bijective.
(ii) If {F} ∈ K(C) and G : C′ //C is any functor, consider the

pullback π2 : D×C C′ //C′ in Cat of F along G. Since the
nerve functor preserves limits, Nπ2 is the pullback of NF along
NG. Then Nπ2 is simplicially surjective, since limits of simplicial
sets are formed pointwise.

(iii) If G ◦ F exists and Fk and Gk are surjective for all k ≥ 0, then
clearly Gk ◦Fk is surjective for all k ≥ 0, and {G ◦F} is a covering.

Lemma 8.19. A functor p : E //B is τ -epi for the Grothendieck topol-
ogy τ if and only if p is simplicially surjective.

Proof: If p is τ -epi, then take g = 1B in Proposition 8.5 with Remark
8.6 to obtain pui = f for some covering family {f} in K. Then fk is
surjective for all k ≥ 0. Hence p is simplicially surjective.
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If p is simplicially surjective, then {p} is a covering family in K, and so
is the pullback π2 of p along g. Applying Proposition 8.5 with Remark 8.6
again, we see that p is τ -epi.

Recall that the objects of the k-th category ((A0)k, (A1)k) = (NvA)k of
the vertical nerve are composable strings of k vertical morphisms, and the
morphisms are vertically composable strings of k squares. The composition
is horizontal composition of vertical strings of squares. Fully faithful double
functors and τ -equivalences have a useful characterization in terms of the
vertical nerve.

Proposition 8.20. A double functor F : A //B is fully faithful if and
only for every k ≥ 0 the functor

((F0)k, (F1)k) : ((A0)k, (A1)k) // ((B0)k, (B1)k)

is fully faithful.

Proof: Since the nerve functor preserves pullbacks, and pullbacks of
simplicial sets are formed pointwise, it follows from Definition 8.7 that F is
fully faithful if and only if each ((F0)k, (F1)k) is fully faithful.

Proposition 8.21. A double functor F : A //B is a τ -equivalence if
and only if for every k ≥ 0 the functor

((F0)k, (F1)k) : ((A0)k, (A1)k) // ((B0)k, (B1)k)

is an equivalence of categories.

Proof: The double functor F is essentially τ -surjective if and only if
δ0 ◦ F 0 is τ -epi. But this occurs if and only if (δ0 ◦ F 0)k is surjective for
each k, which is equivalent to the essential surjectivity of ((F0)k, (F1)k) by
Remark 8.8. Fully faithfullness follows from Proposition 8.20.

Corollary 8.22. The class we(τ) of τ -equivalences has the 2-out-of-3 prop-
erty.

Proposition 8.23. Cat has enough Eτ -projectives.

Proof: We first construct an Eτ -projective category P from a category
C. Let

P :=
∐

n≥1

Cn · [n] =
∐

n≥1

∐

(f1,...,fn)∈Cn

[n]

where [n] = {0, 1, . . . , n} is the (n+1)-element ordinal viewed as a category
and Cn · [n] denotes the copower of the category [n] with the set Cn, as
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recalled in Remark 6.7. Suppose we have functors

P

H

²²
Q

G
// R ,

and G is τ -epi. We denote H on the (f1, . . . , fn)-summand of P by

H(f1,...,fn) : [n] // R.

If H(f1,...,fn)(j − 1 ≤ j) = rj for 1 ≤ j ≤ n, then there exists (q1, . . . , qn) ∈
Qn such that Gn(q1, . . . , qn) = (r1, . . . , rn) since G is τ -epi. We define a
functor

F(f1,...,fn) : [n] // Q

F(f1,...,fn)(j − 1 ≤ j) := qj

for 1 ≤ j ≤ n. Putting these together, we obtain a functor F : P //Q
such that GF = H, and we conclude that P is Eτ -projective.

Next we construct a τ -epi functor L : P //C . On the (f1, . . . , fn)-
summand of P define L as

L(f1,...,fn)(j − 1 ≤ j) := fj

for 1 ≤ j ≤ n. We claim that for each k ≥ 1, Lk : Pk
//Ck is surjective.

Note that
Pk =

∐

n≥1

∐

(f1,...,fn)∈Cn

[n]k.

If (f1, . . . , fk) ∈ Ck, then Lk maps (0 ≤ 1, 1 ≤ 2, . . . , k − 1 ≤ k) in the
(f1, . . . , fk)-component of Pk to (f1, . . . , fk). From the surjectivity of L1

it follows that L0 is surjective: if x ∈ C0, then 1x lies in the image of
L1. Hence Lk is surjective for all k ≥ 0, L is τ -epi, and Cat has enough
Eτ -projectives

Theorem 8.24. The simplicially surjective topology τ on Cat determines
a model structure

(Cat(Cat), fib(τ), cof(τ), we(τ)).

Proof: The category Cat(Cat) is complete and cocomplete by Theorem
4.1. The class of τ -equivalences has the 2-out-of-3 property by Corollary
8.22 and Cat has enough Eτ -projectives by Proposition 8.23, so we can
apply Theorem 8.1.

We now give a more explicit description of the fibrations, acyclic fibra-
tions, cofibrant objects, and fibrant objects.
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Proposition 8.25. Let F : E //B be a double functor.
(i) F is a τ -fibration if and only if for each k ≥ 0 the functor

((F0)k, (F1)k) : ((E0)k, (E1)k) // ((B0)k, (B1)k)

is an isofibration.
(ii) F is an acyclic τ -fibration if and only if for each k ≥ 0 the functor

((F0)k, (F1)k) is fully faithful and surjective on objects.

Proof:
(i) Applying the nerve to Diagram (21), we see that F is a τ -fibration

if and only if (rF )0k is surjective for all k ≥ 0. By Remark 8.13, this
is the case if and only if for each k ≥ 0 the functor ((F0)k, (F1)k) is
an isofibration. Here (iso(B)1)k = iso((B0)k, (B1)k) is the category
with objects composable strings of k vertical morphisms and with
morphisms vertical strings of vertically composable squares that are
each horizontally invertible.

(ii) From the proof of Theorem 8.21, F is fully faithful if and only if
each ((F0)k, (F1)k) is fully faithful. Since F0 is τ -epi if and only
if (F0)k is surjective for each k ≥ 0, the statement follows from
Proposition 8.14.

Corollary 8.26. The model structure on DblCat induced by the simpli-
cially surjective topology τ on Cat coincides with the transferred diagram
categorical structure in Section 7.6.

Proof: From Propositions 8.21 and 8.25 we see that the weak equiva-
lences and fibrations of the two model structures coincide.

Remark 8.27. These results allow us to construct a cofibrant replacement
E for a double category B. Let E0 be the Eτ -projective category associated
to B0 with projection L0 := L as in the proof of Proposition 8.23. Let E1

be the following pullback in Cat,

E1
L1 //

(s,t)

²²

B1

(s,t)

²²
E0 × E0

L0×L0

// B0 × B0 .

Then the double graph E carries a unique double category structure such
that (L0, L1) is a double functor by Lemma 5.14 of [33]. Since L is fully
faithful and L0 is τ -epi, L : E //B is an acyclic fibration by Proposition
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8.14. By Corollary 8.17, E is a cofibrant double category, and hence a
cofibrant replacement for B.

Proposition 8.28. Let F be a τ -equivalence. Then BF , as in Definition
5.8, is a weak homotopy equivalence of topological spaces.

Proof: By Proposition 8.21, F is a τ -equivalence if and only if (NvF )k

is an equivalence of categories for each k ≥ 0. Since ((NvF )k)` = (NdF )k`,
we see that (NdF )k∗ is a weak equivalence of simplicial sets for each k ≥
0. Hence diag(NdF ) is a weak equivalence of simplicial sets, and BF =
|diag(NdF )| is a weak homotopy equivalence.

Remark 8.29. In the τ model structure we have chosen one direction
to take the nerve. We obtain a completely analogous model structure by
choosing the other direction.

Remark 8.30. For each m ∈ N, the assignment

C 7→ Km(C) := {{F : D //C}|Fk surjective for all 0 ≤ k ≤ m}
is a basis for a Grothendieck topology τm on Cat. We obtain a τm-model
structure as above, though τm-equivalences will not necessarily be weak
homotopy equivalences of classifying spaces.

8.3. Model Structure from the Categorically Surjective Basis. A
functor is said to be categorically surjective if it is surjective on objects and
full. It is straightforward to check that a basis for a Grothendieck topology
on Cat is given by declaring a covering family to be a single categorically
surjective functor. We call this topology τ ′. In this section we study the
model structure on DblCat induced by τ ′. In Section 9 we show that this
model structure is the model structure on DblCat viewed as a category of
algebras over a 2-monad.

As before we start with a characterization of the τ ′-epi functors. We will
use this to prove a 2-out-of-3 property for the τ ′-equivalences.

Proposition 8.31. A functor p : E //B is τ ′-epi if and only if there is
a subcategory H Â Ä //E such that p|H : H //B is surjective on objects
and full. Thus, a τ ′-epi functor is not necessarily categorically surjective.

Proof: Suppose that p is τ ′-epi. Then by Proposition 8.5 and Remark
8.6 there is a commutative square

U

u

²²

f // B

1B

²²
E p

// B ,
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where f is surjective on objects and full. For each pair of objects x, y in U,
we have a commutative triangle

U(x, y)
f(x,y) //

u(x,y) %%LLLLLLLLLL
B(fx, fy)

E(ux, uy)
p(ux,uy)

88qqqqqqqqqqq
.

Since f(x, y) is surjective, so is p(ux, uy). Let H = Im(u). Thus, p|H is
surjective on objects and full.

Conversely, let H Â Ä ` //E be a subcategory such that p|H is surjective
on objects and full, and let g : X //B be any functor. Consider the
commutative diagram

H×B X
p′ //

pbs

²²

X

g

²²

H

`

²²

p|H

$$IIIIIIIIII

E p
// B .

Then p′ is surjective on objects and full since p|H is. Further, gp′ = p`s.
By Proposition 8.5 and Remark 8.6, it follows that p is τ ′-epi.

Even though the τ ′-epi functors do not coincide with the categorically
surjective functors, they do give rise to the same projective objects.

Corollary 8.32. A category P is τ ′-projective if and only if it is projective
with respect to categorically surjective functors.

Proof: We use the same notation as in Definition 8.10. If P is τ ′-
projective, then P is projective with respect to categorically surjective func-
tors because every categorically surjective functor is τ ′-projective by Propo-
sition 8.31. For the converse, suppose P is projective with respect to cate-
gorically surjective functors, and suppose G is τ ′-epi. Then by Proposition
8.31 again, there exists an inclusion ` : Q′ //Q such that G` is a cate-
gorically surjective functor. Thus there exists an F ′ such that G`F ′ = H. If
we let F = `F ′ then we see that P is surjective with respect to categorically
surjective functors.

Proposition 8.33. If a functor p : A //B is τ ′-epi, then for all k ≥ 0,
pk : Ak

//Bk is surjective.
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Proof: By Proposition 8.5 and Remark 8.6 there exists a functor f
surjective on objects and full such that 1B ◦ f = p ◦ u for some u. Since
fk = pk ◦ uk is surjective, so is pk.

Proposition 8.34. If a double functor F : A //B is a τ ′-equivalence,
then for every k ≥ 0 the functor

((F0)k, (F1)k) : ((A0)k, (A1)k) // ((B0)k, (B1)k)

is an equivalence of categories.

Proof: Since F is fully faithful, ((F0)k, (F1)k) is fully faithful for all
k ≥ 0 by Proposition 8.20. Since F is essentially τ ′-surjective, δ0 ◦ F 0 is
τ ′-epi and hence (δ0 ◦ F 0)k = (δ0)k ◦ (F 0)k is surjective for all k ≥ 0 by
Proposition 8.33. Remark 8.8 then implies that ((F0)k, (F1)k) is essentially
surjective for all k ≥ 0.

Lemma 8.35. Suppose A F //B G //C are double functors and two of
GF, G, or F are τ ′-equivalences. Then the third double functor is fully
faithful.

Proof: By Proposition 8.34 the vertical nerves of the two τ ′-equivalences
are levelwise equivalences of categories. Hence the vertical nerve of the third
double functor is also levelwise an equivalence of categories, and in particu-
lar levelwise fully faithful. By Proposition 8.20, this implies that the third
functor is fully faithful.

Lemma 8.36. Suppose A F //B G //C are double functors and GF and
F are τ ′-equivalences. Then G is essentially τ ′-surjective.

Proof: We need to show that δ0 ◦ G0 is τ ′-epi. Let HF ⊆ (PF )0 and
HGF ⊆ (PGF )0 be subcategories such that δ0 ◦ F 0|HF and δ0 ◦ (GF )0|HGF

are surjective on objects and full. Define a full subcategory HG of (PG)0 =
B0×C0 iso(C)1 by applying F0 to the first coordinate of HGF as follows. For
any object (a, c

∼=→ G0F0a) in HGF , we have an object (F0a, c
∼=→ G0(F0a))

in HG. For any morphism



a

k

²²
a′

,

c
∼= //

j

²²
α

G0F0a

G0F0k

²²
c′ ∼=

// G0F0a
′



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in HGF we have a morphism



F0a

F0k

²²
F0a

′

,

c
∼= //

j

²²
α

G0(F0a)

G0(F0k)

²²
c′ ∼=

// G0(F0a
′)




in HG. Then we see as follows that δ0 ◦G0|HG
: HG → C0 is surjective on

objects and full. If c ∈ C0, there exists an object (a, c
∼=→ G0F0a) ∈ HGF ,

with (F0a, c
∼=→ G0(F0a)) ∈ HG and δ0G0((F0a, c

∼=→ G0F0a)) = c. So

δ0 ◦ G0|HG
is surjective on objects. If c

j→ c′ is a morphism in C0 and
(F0a, c

∼=→ G0(F0a)) and (F0a
′, c′

∼=→ G0(F0a
′)) are objects of HG, then

there exists a morphism



a

k

²²
a′

,

c
∼= //

j

²²
α

G0F0a

G0F0k

²²
c′ ∼=

// G0F0a
′




in HGF which gives rise to a morphism



a

F0k

²²
a′

,

c
∼= //

j

²²
α

G0(F0a)

G0(F0k)

²²
c′ ∼=

// G0(F0a
′)




in HG that maps to j under δ0 ◦ G0|HG
. We conclude that δ0 ◦ G0|HG

is
surjective on objects and full and therefore δ0 ◦ G0 is τ ′-epi. This implies
that G is essentially τ ′-surjective.

Lemma 8.37. Suppose A F //B G //C are double functors and GF and
G are τ ′-equivalences. Then F is essentially τ ′-surjective.

Proof: We need to show that δ0 ◦ F 0 is τ ′-epi. Let HG ⊆ (PG)0 and
HGH ⊆ (PGF )0 be subcategories such that δ0 ◦ G0|HG

and δ0 ◦ GF 0|HGF

are surjective on objects and full. Define a full subcategory HF of (PF )0 =
A0 ×B0 iso(B)1 with object set

Obj HF := {(a, b
∼=→ F0a)|(a,G0(b

∼=→ F0a)) ∈ Obj HGF }.
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Then we can see as follows that δ0 ◦ F 0|HF : HF → B0 is surjective on
objects and full. If b ∈ B0, then G0b ∈ C0, and there is an object (a,G0b

∼=→
G0F0a) ∈ HGF , because δ0 ◦ (GF )0|HGF

is surjective on objects. However,
((G0)0, (G1)0) is fully faithful, i.e., G restricted to the objects of B and the
horizontal morphisms of B is a fully faithful functor of categories. So there
is a unique isomorphism b

∼=→ F0a whose image under G is G0b
∼=→ G0F0a.

Hence, (a, b
∼=→ F0a) ∈ HF and this object maps to b under δ0 ◦ F 0|HF

. We
conclude that δ0 ◦ F 0|HF

is surjective on objects.

Moreover, if b
j→ b′ is a morphism in B0 and (a, b

∼=→ F0a) and (a′, b′
∼=→

F0a
′) are objects of HF , then G0j is a morphism of C0, and since δ0 ◦

(GF )0|HGF
is full, there is a morphism of the form




a

k

²²
a′

,

G0b
G(∼=) //

G0j

²²
α

G0F0a

G0F0k

²²
G0b

′
G(∼=)

// G0F0a
′




in HGF . However, the functor ((G0)1, (G1)1) is fully faithful, so there is a
unique square β, such that

G




b

j

²²

∼= //

β

F0a

F0k

²²
b′ ∼=

// F0a
′




= α.

Moreover, β is also horizontally invertible. Hence



a

k

²²
a′

,

b
∼= //

j

²²
β

F0a

F0k

²²
b′ ∼=

// F0a
′




is a morphism in HF which maps to j under δ0 ◦ F 0. We conclude that
δ0 ◦ F 0|HF

is surjective on objects and full, so δ0 ◦ F 0 is τ ′-epi and F is
essentially τ ′-surjective.

Lemma 8.38. Suppose that A F // B G // C are double functors, and
F and G are τ ′-equivalences. Then G ◦ F is essentially τ ′-surjective.
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Proof: We need to show that δ0 ◦ (GF )0 is τ ′-epi. Let HF ⊆ (PF )0
and HG ⊆ (PG)0 be subcategories such that δ0 ◦ F 0|HF

and δ0 ◦ G0|HG

are surjective on objects and full. Let HGF be the full subcategory of
(PGF )0 = A0 ×C0 iso(C)1, with objects

Obj HGF :={(a, c
∼=→ G0b

∼=→ G0F0a) |
(b, c

∼=→ G0b) ∈ HG, (a, b
∼=→ F0a) ∈ HF }.

Suppose that c ∈ C0, then there are objects (b, c
∼=→ G0b) ∈ HG and (a, b

∼=→
F0a) ∈ HF , because δ0 ◦ G0|HG

and δ0 ◦ F 0|HF
are surjective on objects.

Thus (a, c
∼=→ G0b

∼=→ G0F0a) ∈ HGF , and this object maps to c under
δ0 ◦GF 0|HGF

.

Next, suppose that c
j→ c′ is a morphism of C0 and (a, c

∼=→ G0b
∼=→

G0F0a) and (a′, c′
∼=→ G0b

′ ∼=→ G0F0a
′) are objects of HGF . Then there exist

morphisms 


b

kb

²²
b′

,

c

j

²²

∼= //

α

G0b

G0kb

²²
c′ ∼=

// G0b
′




in HG, and 


a

ka

²²
a′

,

b

kb

²²

∼= //

β

F0a

F0ka

²²
b′ ∼=

// F0a
′




in HF , and therefore



a

ka

²²
a′

,

c

j

²²

∼= //

α

G0b

G0kb

²²
Gβ

∼= // G0F0a

G0F0ka

²²
c′ ∼=

// G0b
′

∼=
// G0F0a

′




is a morphism of HGF that maps to c
j→ c′ under δ0 ◦ (GF )0|HGF . So

we have proved that δ0 ◦ (GF )0|HGF is surjective on objects and full. We
conclude that GF is τ ′-epi and essentially τ ′-surjective.

The previous four lemmas are summarized in the following theorem.
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Theorem 8.39. The class we(τ ′) of τ ′-equivalences has the 2-out-of-3 prop-
erty.

Lemma 8.40. Let Eτ ′ denote the class of τ ′-epis in Cat. Then Cat has
enough Eτ ′-projectives.

Proof: For a category C, we will denote the free category on its under-
lying graph by PC. The functor PC → C, which is the identity on objects
and defined by composition on paths of morphisms, is surjective on objects
and full, so it is τ ′-epi.

Suppose G : Q //R is a τ ′-epi and H : PC
//R is a functor. Let

Q′ ⊆ Q be a subcategory such that G|Q′ : Q′ //R is surjective on ob-
jects and full. Let U : Cat → Graph denote the forgetful functor. Then
there is a map of graphs which makes the following diagram commute,

UC

wwp p p p p p
U(H|C)

²²
UQ′

U(G|Q′ )
// UR

and induces a functor F such that

PC

F

}}|
|

|
|

H

²²
Q′

G|Q′
// R

commutes. Hence the diagram

PC

wwoooooo

H

²²
Q′
jJ

wwpppppp

Q Â Ä

G
// // R

commutes, and Cat has enough Eτ ′-projectives.

Theorem 8.41. The categorically surjective topology τ ′ determines a model
structure

(Cat(Cat), fib(τ ′), cof(τ ′), we(τ ′)).

Proof: The category Cat(Cat) is complete and cocomplete by Lemmas
4.1 and 4.1. The class of τ ′-equivalences has the 2-out-of-3 property by
Corollary 8.39 and Cat has enough Eτ ′-projectives by Proposition 8.40, so
we can apply Theorem 8.1.
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Proposition 8.42. A double category X is cofibrant in the τ ′-model struc-
ture if and only if X0 is projective with respect to functors that are surjective
on objects and full.

Proof: By Corollary 8.17 a double category is cofibrant if and only if
X0 is projective with respect to τ ′-epi functors. But by Corollary 8.32 X0 is
projective with respect to τ ′-epis if and only if it is projective with respect
to functors that are surjective on objects and full.

As an immediate consequence of Propositions 8.21 and 8.34, we see that
every τ ′-equivalence is a τ -equivalence. This also follows from Remark 8.9,
since the categorically surjective τ ′-topology is contained in the simplicially
surjective τ -topology. An interesting question is whether or not a condition
slightly stronger than simplicial surjectivity but also slightly weaker than
categorical surjectivity would give rise to a model structure with weak equiv-
alences between those of the τ ′-structure and the τ -structure. For example,
such a condition on a functor is to be U -split. However, this condition re-
covers the τ ′-topology instead of something new. In fact, this condition only
gives a different basis for the τ ′-topology which will be of use in Section 9.

Definition 8.43. Let U : Cat //Graph be the forgetful functor from
categories to directed graphs. We say that a functor p is U -split if there
exists a morphism q of directed graphs such that (Up) ◦ q = id.

Lemma 8.44. A functor p : E //B is U -split if and only if there is
a subcategory H Â Ä //E such that p|H : H //B is surjective on objects
and full.

Proof: Suppose p is U -split. Then there exists a morphism of directed
graphs q such that Up ◦ q = id. Let H be the full subcategory E whose
objects are in the image of q. Then p|H is surjective on objects and full, as
one sees using the directed graph section q.

Conversely, suppose there exists a subcategory H of E such that p|H is
categorically surjective. Then p|H is U -split, and id = U(p|H) ◦ q = Up ◦ q
so that p is also U -split.

Proposition 8.45. The assignment

C 7→ L(C) := {{F : D //C}| F is U -split }
is a basis for the τ ′-topology on Cat.

Proof: We omit the proof that this is a basis.
Recall that a sieve is a covering sieve in the topology induced by a basis

if and only if it contains a covering family from the basis. If S is a τ ′-
covering sieve, it contains a categorically surjective functor, and hence a
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U -split functor by Lemma 8.44, so that S is also a covering sieve in the
topology induced by L.

Conversely, suppose S is a sieve on B ∈ Cat that contains a U -split
functor p : E //B and p|H is categorically surjective. Then p ◦ i ∈ S for
the inclusion i : H //E , and S is a sieve in the τ ′-topology.

8.4. Model Structure from the Trivial Topology. On any 2-catego-
ry K with finite limits and finite colimits there is the Cat-enriched trivial
model structure as proved in [54] using pseudo limits. A weak equivalence
(fibration) in this model structure is a morphism f : A //B such that
K(E, f) : K(E,A) //K(E, B) is a weak equivalence (fibration) for all E
in the categorical model structure on Cat. Thus f is a weak equivalence if
and only if there is a morphism g : B //A such that gf and fg are iso-
morphic via 2-cells to the respective identities. A morphism f is a fibration,
or isofibration, if for all morphisms a : X //A and b : X //B and any
invertible 2-cell β : b ∼= fa, there exists a morphism a′ : X //A and an
invertible 2-cell α : a′ ∼= a with fa′ = b and fα = β. If the 2-category
K is merely a 1-category, then the trivial model structure agrees with the
usual trivial model structure: weak equivalences are isomorphisms and all
morphisms are fibrations and cofibrations.

Thus DblCat admits three trivial model structures, depending on whe-
ther we take as 2-cells the horizontal natural transformations, the vertical
natural transformations, or only trivial 2-cells. When we say trivial model
structure on DblCat we mean the one arising from the 2-category with
horizontal natural transformations as 2-cells.

Remark 8.46 ([33]). If τtr is the trivial topology4 on a finitely complete
and finitely cocomplete category C with enough Eτtr -projectives and if the
τtr-equivalences have the 2-out-of-3 property, then the τtr-model structure is
the trivial model structure on the 2-category Cat(C). Note that Proposition
8.5 implies that a morphism p in C is τtr-epi if and and only if there exists
a morphism q such that pq = id.

Proof: A morphism f is essentially τtr-surjective (fully faithful) if and
only if Cat(C)(E, f) : Cat(C)(E, A) //Cat(C)(E, B) is essentially surjec-
tive (fully faithful) for all E. Hence the weak equivalences in the τtr-model
structure on Cat(C) are the weak equivalences in the trivial model structure.

Fibrations are seen to be isofibrations using the diagram of Definition
8.12 adapted to the general case.

4In the trivial topology the only covering sieve on an object is the maximal sieve.
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The trivial model structure on a category of internal categories is much
like the Strøm structure, as studied in [33].

After the discussion of model structures on DblCat as a category of in-
ternal categories in Section 8, we now turn to a model structure on DblCat
as a category of algebras and show that this model structure is the same as
the categorically surjective model structure. We will make use of the trivial
model structure.

9. A Model Structure for DblCat as the 2-Category of
Algebras for a 2-Monad

Every 2-category of algebras over a 2-monad T with rank (i.e., which
preserves α-filtered colimits for some α) on a locally finitely presentable
2-category K admits a canonical cofibrantly generated Cat-enriched model
structure as in [54]. It is obtained by transferring from the trivial model
structure on the 2-category K described in Section 8.4. A strict morphism
of strict T -algebras is a weak equivalence (fibration) if and only if its under-
lying morphism is an equivalence (isofibration). We prove that the model
structure induced by the categorically surjective topology τ ′ can be recov-
ered in this way. The interest in having these two different descriptions lies
in the fact that they allow a characterization of the flexible double cate-
gories (Corollary 9.4) that cannot be obtained using only the description of
[54]. Further, DblCat provides a good setting for comparing the categori-
cal model structure on 2-Cat in [55] and [56] to a model structure induced
by a 2-monad.

Recall that the adjunction F : Graph a Cat : U induces a 2-adjunction

Cat(Graph) ⊥

F

$$
Cat(Cat)

U

dd

which is 2-monadic. The category of algebras for UF is DblCat. An
internal category in Graph is a double graph with a category structure on
(Obj ,Hor ) and on (Ver ,Sq ), in other words horizontal compositions are
defined but vertical compositions are not.

Theorem 9.1. The model structure induced by the 2-monad UF is the
τ ′-model structure.

Proof: First we prove that the weak equivalences are the same. Note
that a double functor G is fully faithful if and only if UG is fully faithful as
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in Definition 8.7. A double functor G is a weak equivalence as a morphism of
algebras if and only if UG is a weak equivalence in the trivial model structure
on Cat(Graph), which is the case if and only if UG is fully faithful and
there exists a morphism q of directed graphs such that U(δ0 ◦G0)◦ q = idB0

by Remark 8.46. That is equivalent to G being fully faithful and δ0 ◦ G0

being U -split, which is precisely the definition of weak equivalence in the
τ ′-model structure using Proposition 8.31 and Lemma 8.44. Hence the weak
equivalences coincide.

Similarly, a double functor G is a fibration as a morphism of algebras if
and only if UG is a fibration in the trivial model structure on Cat(Graph),
which is the case if and only if there exists a morphism q of direct graphs
such that (U(rG)0) ◦ q = id in Diagram (21), which is the case if and only
if (rG)0 is U -split. This is equivalent to G being a fibration in the τ ′-model
structure. Hence the fibrations coincide.

Corollary 9.2. The categorically surjective τ ′-model structure is Cat-enri-
ched and cofibrantly generated.

For a 2-monad T on K as above, let T -Algs denote the 2-category of
strict T -algebras, strict morphisms, and 2-cells. We denote, as usual, by
T -Alg the 2-category of strict T -algebras, pseudo morphisms, and 2-cells.
As shown in [7], the inclusion T -Algs

//T -Alg admits a left 2-adjoint
denoted A 7→ A′. The counit q : A′ //A is a strict morphism, and if q
admits a section in T -Algs, then A is called flexible. The flexible algebras are
the closure under flexible colimits of the free algebras. Pseudo morphisms
from A to B are in bijective correspondence with strict morphisms from A′

to B.

Theorem 9.3 (Theorem 4.12 in [54]). The cofibrant objects of T -Algs are
precisely the flexible algebras; in particular, any algebra of the form A′ is
cofibrant, and is thus a cofibrant replacement for A. Every free algebra is
flexible.

Corollary 9.4. The cofibrant objects in the τ ′-model structure are precisely
the flexible double categories. In particular, a double category X is flexible
if and only if X0 is projective with respect to functors that are surjective on
objects and full.

Proof: This follows from Proposition 8.42 and Theorem 9.3.

The categorical model structure on 2-Cat of [55] and [56] has weak equiv-
alences the strict 2-functors that are biequivalences, fibrations the equivfi-
brations, and cofibrations those 2-functors whose underlying functor has the
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left lifting property with respect to functors that are surjective on objects
and full. We can compare this with the τ ′-model structure as follows.

Proposition 9.5. Consider 2-Cat vertically embedded in DblCat. If a
2-functor is a cofibration in DblCat, then it is a cofibration in 2-Cat. A
2-category is cofibrant in 2-Cat if and only if it is cofibrant in DblCat.
Thus a 2-category is flexible as in [55] if and only if it is flexible as an
algebra over the 2-monad UF .

Proof: If the underlying functor of a 2-functor has the left lifting prop-
erty with respect to all τ ′-epis, then it has the left lifting property with
respect to all functors that are surjective on objects and full by Proposi-
tion 8.31. The underlying functor of a vertically embedded 2-functor is the
functor on object categories.

A 2-category is cofibrant in 2-Cat if and only if its underlying category is
projective with respect to all functors that are surjective on objects and full.
But this coincides with cofibrant 2-categories in DblCat by Proposition
8.42.

The sets of weak equivalences with source and target 2-categories in the
two model structures have nontrivial intersection, but neither set of weak
equivalences is contained in the other. Biequivalences are not in general
fully faithful in the sense of internal categories.

It is interesting to note that the Cat-analogue of Theorem 9.1 does not
hold. In other words, if we view Cat as the category of algebras over the
2-monad UF on Graph, then the associated model structure on Cat is
not the model structure associated to the topology of surjective functions
on Set. A covering family in a basis for this topology is a single surjective
function, so that the epis for this topology are the same as the epis for
the trivial topology by Proposition 8.5 and Remark 8.6, namely the surjec-
tive maps themselves. In fact, the trivial topology, simplicially surjective
topology, and categorically surjective topology on Set all give rise to the
categorical model structure on Cat, while the 2-monad structure on Cat
has weak equivalences the isomorphisms of categories. When we pass to
DblCat on the other hand, the three model structures associated to these
three topologies become distinct, and one of them agrees with the 2-monad
structure.

10. Appendix: Horizontal Nerves and Pushouts

Though the horizontal nerve and bisimplicial nerve preserve filtered col-
imits, they certainly do not preserve general colimits, not even pushouts.
The purpose of this appendix is to explicitly describe the behavior of the
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horizontal nerve on pushouts in DblCat along

i £ 1C : A £ C //B £ C

where i : A //B is either of the following full inclusions from Section
7.1.

cSd2Λk[m] // cSd2∆[m]

{1} //I

Theorem 10.7 is the main technical result needed for an application of Kan’s
Lemma on Transfer 7.11 to transfer model structures across the adjunction
ch a Nh in Theorems 7.13 and 7.14. In the following, we use “\” to denote
set-theoretic complement. We begin with some pushouts in Cat which will
aid us in our description of the horizontal and vertical 1-categories of the
pushouts in Theorem 10.6. The squares will require an induction argument.

Lemma 10.1. If A ⊆ B and D are sets, then the pushout in Set

AÄ _

²²

// D

²²
B // P

is P = D
∐

(B\A).

Lemma 10.2. Suppose A is a full subcategory of B and

A
F //

Ä _

²²

D

²²
B // P

is a pushout in Cat. Then the objects of P are

Obj P = Obj D
∐

(Obj B\Obj A)

and morphisms of P have two forms:

(i) A morphism B0
f //B1 with f ∈ (Mor B\Mor A).

(ii) A path X1
f1 //D1

d //D2
f2 //X2 where d is a mor-

phism in D, and f1, f2 ∈ (Mor B\Mor A) ∪ {identities on Obj P}.
If f1 is nontrivial, then D1 ∈ A. If f2 is nontrivial, then D2 ∈ A.

Proof: To calculate a pushout of categories, one takes the free category
on the pushout of the underlying graphs, and then mods out by the relations



MODEL STRUCTURES ON DBLCAT 69

necessary to make the natural maps from A,B,D to the free category into
functors as in Theorem 4.2. Thus the objects of P are

Obj D
∐

(Obj B\Obj A)

by Lemma 10.1. The edges of the pushout graph are

Mor D
∐

(Mor B\Mor A),

again by Lemma 10.1. The free category on this consists of finite composable
paths of these edges.

Suppose

P0
f1 // P1

f2 // P2 Pk−1
fk // Pk

is a morphism in the pushout P. Then we can reduce it to the form (i) or
(ii) using the relations induced by A,B, and D as follows. Suppose fi−1

and fi+1 are in Mor D, while fi is in (Mor B\Mor A). Then Pi−1 and Pi

must be objects of A. But by the fullness of A, fi must be in Mor A, and
we have arrived at a contradiction. Thus no morphism of (Mor B\Mor A)
can be surrounded by morphisms of D: there exist 0 ≤ m ≤ n ≤ k + 1 such
that for all 0 ≤ i ≤ m and all n ≤ i ≤ k we have fi ∈ (Mor B\Mor A), and
for all m < i < n we have fi ∈ Mor D. Next we compose the fi in each
range, and we obtain a path of the form (i) or (ii).

Remark 10.3. A morphism j of B is in Mor B\Mor A if and only if its
source or target is in Obj B\Obj A by the fullness of A in B.

Lemma 10.4. If A ⊆ B are sets and C and D are categories, then the
pushout in Cat

Adisc ×C //
Ä _

i×1C

²²

D

²²
Bdisc ×C // P

is P = D
∐

((B\A)disc ×C). (The subscript ‘disc’ means discrete category
on a given set.)

Proof: Since Bdisc ×C = Adisc ×C
∐

((B\A)disc ×C), the pushout of
the underlying graphs is

(22) D
∐

((B\A)disc ×C)

by Lemma 10.1. The free category on this graph, modulo the appropriate
relations as in Theorem 4.2, is once again (22).
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Lemma 10.5. Suppose A is a full subcategory of B, C is a set, and

A× Cdisc
F //

Ä _

²²

D

²²
B× Cdisc

// P

is a pushout in Cat. Then the objects of P are

Obj P = Obj D
∐

((Obj B\Obj A)× C)

and the morphisms of P have two forms:

(i) A morphism (B0, c)
f //(B1, c) with c ∈ C and f = (f ′, c) ∈

(Mor B\Mor A)× C.

(ii) A path X1
f1 //D1

d //D2
f2 //X2 where d is a mor-

phism in D, and each of f1 and f2 is either in Mor B\Mor A× C
or an identity morphism.

Moreover, if f1 or f2 is not an identity morphism in (ii), then the path has
one of the two respective forms

(B1, c1)
(f ′1,c) // (A1, c1)

d // D2
f2 // X2

X1
f1 // D1

d // (A2, c2)
(f ′2,c2) // (B2, c2)

where c1, c2 ∈ C, B1, B2 ∈ Obj B\Obj A, A1, A2 ∈ Obj A, f ′1, f
′
2 ∈

Mor B\Mor A, and d ∈ Mor D.

Proof: This follows from Lemma 10.2.

Let us recall the two full inclusions i : A //B under consideration.
The first case in which we are interested is the full inclusion of posets
cSd2Λk[m] //cSd2∆[m] . Here c : SSet //Cat denotes the funda-
mental category functor as described in Section 6 and Sd: SSet //SSet
is the subdivision functor defined in [38] and recalled on Page 35.

The second full inclusion i : A //B of interest is {1} //I . The cat-
egory I consists of two objects 0 and 1 and four morphisms: an isomorphism
between 0 and 1, and the identity maps. The discrete subcategory {1} is
clearly full.

We can now give an explicit description of pushouts in DblCat along
i £ 1C : A £ C //B £ C which we use immediately in Theorem 10.7 for
the transfer.
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Theorem 10.6. Let i : A //B be either of the following full inclusions.

cSd2Λk[m] //cSd2∆[m]

{1} //I

Let C be a category (e.g.,the finite ordinal [n]), and D a double category.
Then the pushout

A £ C
F //

i£1C

²²

D

²²
B £ C // P

in DblCat has the following explicit description.

(23) Obj P = Obj D
∐

((Obj B\Obj A)×Obj C)

(24) (HP)0 = (HD)0
∐

((Obj B\Obj A)disc ×C)

(25)

Mor (VP)0 = {paths of the form (i) and (ii)
in Lemma 10.5 with C = Obj C

and D = (VD)0}
Squares of P have two forms:

(i) A square

//

²²
β

²²//

in Sq (B £ C)\Sq (A £ C).

(ii) A vertical path of squares

//

²²
β1

²²//

²²
δ

²²//

²²
β2

²²//

where δ is a square in D and

each of β1 and β2 is either a vertical identity square (on a horizontal
morphism) in P or is in Sq (B £ C)\Sq (A £ C). Moreover, in the
case of cSd2Λk[m] //cSd2∆[m] , the square β1 is always a vertical
identity square.
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Note that Sq (B £ C)\Sq (A £ C) =




(B, C)
(1B ,g) //

(f,1C)

²²

(B, C ′)

(f,1C′ )
²²

(B′, C)
(1B′ ,g)

// (B′, C ′)

∣∣∣∣∣
g ∈ Mor C,

f ∈ Mor B\Mor A





.

Proof: We use Theorem 4.5. First we calculate the pushout S of the
underlying double derivation schemes. The object set Obj S = Obj P is the
pushout of the object sets, so (23) follows from Lemma 10.1. The horizontal
and vertical 1-categories of S (and P) are the pushouts of the horizontal and
vertical 1-categories, so (24) follows from Lemma 10.4 and (25) follows from
Lemma 10.5. By Lemma 10.1 again, the pushout of the sets of squares is

(26) Sq S = Sq D
∐

(Sq (B £ C)\Sq (A £ C)).

Thus we have calculated the pushout S of the underlying double derivation
schemes, its horizontal and vertical 1-categories coincide with those of P,
and they have the form claimed in the theorem. It only remains to show
that the squares of P have the form claimed in the theorem.

The double category P is the free double category on the double derivation
scheme S modulo the smallest congruence making the natural morphisms of
double derivation schemes from A£C,B£C, and D to P into double func-
tors. Squares of P are represented by allowable compatible arrangements in
S. To prove that squares of P have the form (i) or (ii), it suffices to show that
any allowable compatible arrangement of squares in S can be transformed
into (i) or (ii) using the relations of the congruence and the double cate-
gory associativity, identity, and interchange axioms. The congruence allows
us to compose squares according to the relations in the double categories
A £ C,B £ C, and D.

We must treat the two inclusions i separately.
Let i : A //B be the full inclusion cSd2Λk[m] //cSd2∆[m] . Recall

from Page 35 that cSd2Λk[m] and cSd2∆[m] are respectively the posets
of nondegenerate simplices of SdΛk[m] and Sd∆[m], and that there is a
morphism (u0, . . . , up) //(v0, . . . , vq) in B if and only if

{u0, . . . , up} ⊆ {v0, . . . , vq}.
Also, an object (v0, . . . , vq) of B is in A if and only all vi are faces of Λk[m].
Thus, we see for any path of composable morphisms in B

B0
f1 //B1

f2 //B2 Bn−1
fn //Bn
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with Bi not in A, all fj and Bj with j ≥ i are also not in A. Thus, once
a path leaves A, it cannot return to A. In particular, if B //B′ is a
morphism in B and B is not in A, then B′ is also not in A. Another
useful property of B is that every morphism has a unique decomposition
into irreducibles. These special features of the posets A and B allow us to
put the squares of P into the desired form (i) or (ii), as we do now.

Suppose R is an allowable compatible arrangement of squares in S, i.e.,
a representative of a square in P. If R consists entirely of squares in D, then
it is equivalent to its composition in D, so it has the form (ii) and we are
finished.

So suppose that R contains at least one square in Sq B £ C\Sq A £ C.
Then R has at least one vertex (B,C) in B£C but not in A£C, i.e., B is
in B but not in A. Any horizontal morphism in R with source (respectively
target) (B, C) is in B£C but not in A£C, as (B, C) is not in A£C. Thus
the target (respectively source) of such a morphism has the form (B, C ′)
and is also in B £ C but not A £ C. Any vertical morphism in R with
source (B, C) is in B£C but not in A£C, as (B,C) is not in A£C. Thus
the target of such a vertical morphism is of the form (B′, C) with B′ not in
A by the special feature of the posets A and B described in the preceding
paragraph. From the original vertex (B, C) we traverse down a vertical
morphism with source (B, C) if there is one, otherwise we traverse to the
right along a horizontal morphism with source (B, C). In either case, we
arrive at another vertex (B1, C1) which is in B£C but not in A£C. From
this vertex we repeat the procedure, moving either to the right or down.
We continue in this way until we reach the bottom edge of the allowable
compatible arrangement R. We conclude that the entire bottom edge of the
diagram consists of objects and horizontal morphisms in B £ C but not in
A £ C, and hence not in D.

Each of these horizontal morphisms on the bottom edge is the bottom
edge of a square in B £ C but not in A £ C, since squares of D only have
vertices in D (some objects of D are identified with objects of A£C). Thus,
the bottom portion of R looks like Figure 1 with all squares in B £ C but
not in A £ C.

Next we factor the vertical morphisms of Figure 1 into irreducibles, which
we can do since these vertical morphisms are of the form (f, C) where f
is a morphism in B and C is an object of C. By the uniqueness of the
factorization and the form of squares in B£C, we can factor these squares
at the height of the shortest one as illustrated in Figure 2. We include these
new horizontal morphisms into the allowable compatible arrangement R,
and obtain a new compatible arrangement R1. The compatible arrangement
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Figure 1. The bottom portion of R.

Figure 2. A factorization of the squares in Figure 1.

R1 is also allowable, since the same cuts that make R allowable also make
R1 allowable.

The bold horizontal line in Figure 2 is a full length cut on an allow-
able compatible arrangement R1, hence it divides R1 into two allowable
compatible arrangements by Proposition 3.6. We denote the upper allow-
able compatible arrangement by R1,1 and the lower allowable compatible
arrangement by R1,2. Then R1,1 has at least one square less than R, since
we cut off at the height of the shortest square whose bottom edge is on the
bottom edge of R. If we argue by induction on the number of squares in an
allowable compatible arrangement, we may assume that R1,1 is equivalent
to a square of the form (i) or (ii). The allowable compatible arrangement
R1,2 is equivalent to a square of the form (i), as it can be composed hor-
izontally. Finally, we compose R1,1 with R1,2 to conclude that R is also
equivalent to a compatible arrangement of the form (i) or (ii).

We only need an argument for the triviality of β1 whenever a compatible
arrangement is equivalent to one of the form (ii). Suppose β1 is in Sq (B £
C)\Sq (A £ C). Then its lower two vertices cannot be in A £ C (for if
they were, the upper two vertices must also be in A £ C, and the square
β1 would be in A £ C). Thus, the upper two vertices of the square δ are
not in A£C, a contradiction. Thus β1 must be trivial. This completes the
proof of Theorem 10.6 for the case cSd2Λk[m] //cSd2∆[m] .

Now we turn to the squares in the second case. Let i : A //B be the
full inclusion {1} //I where I is the category with two objects 0 and 1
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(0, C1) // (0, C2) (1, C1) // (1, C2)

(0, C1) // (0, C2) (1, C1) // (1, C2)

(0, C1) //

²²

(0, C2)

²²

(1, C1)

²²

// (1, C2)

²²
(1, C1) // (1, C2) (0, C1) // (0, C2)

Figure 3. The Four Types of Squares in B £ C.

and an isomorphism between them. We will again argue by induction on the
number of squares in the allowable compatible arrangement, but the special
features of the inclusion {1} //I are different from those of the previous
case. Note that B£C only has the four types of squares listed in Figure 3.
The only vertical morphisms in B £ C that are identified with a morphism
in D are the trivial vertical morphisms idv

(1,C) : (1, C) //(1, C).
Suppose that any allowable compatible arrangement of squares in S with

fewer than n squares is equivalent in P to one of the form (i) or (ii). Let R be
an allowable compatible arrangement of n squares in S. Since R is allowable,
it admits a full length cut C which divides R into two allowable compatible
arrangements each with fewer than n squares. We now recombine these two
smaller allowable compatible arrangements to show that R is equivalent to a
compatible arrangement of the form (i) or (ii), but the argument is slightly
different depending on whether C is horizontal or vertical.

Suppose the full length cut C is horizontal. Let R1 and R2 be the al-
lowable compatible arrangements above and below C respectively. Since R1

and R2 have fewer than n squares, they must be equivalent to compatible
arrangements of the form (i) or (ii). If R1 and R2 both are equivalent to
compatible arrangements of the form (ii), then by the fullness of A in B
their vertical composite is also of the form (ii), and hence R is equivalent
to a compatible arrangement of the form (ii). If one or both of R1 and R2

has the form (i), then one can similarly conclude that R is equivalent to a
compatible arrangement of form (i) or (ii).

Suppose the full length cut C is vertical. Let Q` and Qr be the allowable
compatible arrangements to the left and to the right of C respectively. Since
Q` and Qr have fewer than n squares, they must be equivalent to compatible
arrangements of the form (i) or (ii). There are several cases to consider.
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(B1, C
`
1)

²²

//

β`

(B1, C)

p`

²²

(B1, C) //

jr

²²
βr
1

²²
Q` (Br

2 , C)

kr

²²

//

δr

²²

Qr

(Br
3 , C)

mr

²²

//

βr
2

²²(B4, C
`
1) // (B4, C) (B4, C) //

Figure 4.

If both Q` and Qr are equivalent to compatible arrangements of the form
(i), then their horizontal composite R is clearly in B £ C, and hence also
equivalent to a compatible arrangement of the form (i) or (ii).

If Q` is equivalent to a compatible arrangement of the form (i) and Qr

is equivalent to a compatible arrangement of the form (ii), then βr
1 and

βr
2 must be in B £ C as in Figure 4. Further, the vertical morphism

kr : (Br
2 , C) //(Br

3 , C) must be the identity

idv
(1,C) : (1, C) // (1, C),

since kr = (mr)−1p`(jr)−1 lies in both B £ C and D, and the only vertical
morphisms in both B £ C and D are such vertical identities. Then we can
subdivide β` in B £ C as in Figure 5. The middle square of Q` is now an
identity square on a horizontal morphism in D, and hence is also a square
in D. Finally, we horizontally compose Q` and Qr and use the interchange
law to obtain a compatible arrangement of the form (i) or (ii). Hence R is
equivalent to a compatible arrangement of the form (i) or (ii).

Next we consider the case where Q` and Qr are both equivalent to com-
patible arrangements of the form (ii) and the squares β`

1, β
`
2, β

r
1 , βr

2 are in
B £ C as in Figure 6. Then B`

2 = 1 = Br
2 and B`

3 = 1 = Br
3 , since the only

objects of B £ C that are identified with an object of D are of the form
(1, C). Thus j` = jr and m` = mr, as there is a unique vertical morphism
from any object of B £ C to another. Since j` and m` are invertible and
m`k`j` = m`krj`, we see also that k` = kr. Hence Q` and Qr can be hori-
zontally composed to obtain a compatible arrangement equivalent to (i) or
(ii).
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(B1, C
`
1)

²²

// (B1, C)

²²

(B1, C) //

²²
βr
1

²²
Q` (1, C`

1) // (1, C) (1, C) //

δr

²²

Qr

(1, C`
1)

²²

// (1, C)

²²

(1, C)

²²

//

βr
2

²²(B4, C
`
1) // (B4, C) (B4, C) //

Figure 5.

²²

//

β`
1

(B1, C1)

j`

²²

(B1, C1) //

jr

²²
βr
1

²²
Q`

²²

//

δ`

(B`
2, C1)

k`

²²

(Br
2 , C1)

kr

²²

//

δr

²²

Qr

²²

//

β`
2

(B`
3, C2)

m`

²²

(Br
3 , C2)

mr

²²

//

βr
2

²²// (B4, C2) (B4, C2) //

Figure 6.

Next we consider the case where Q` and Qr are both equivalent to com-
patible arrangements of the form (ii), but the squares β`

1, β
`
2, β

r
1 , βr

2 may be
vertical identity squares in P, i.e., not necessarily in B £ C, as in Figure 7.
Suppose β`

1 is a vertical identity square. Then P1 = D`
1. We claim that βr

1

is also a vertical identity square; there are two cases to prove. If D`
1 is an

object of D that is not of the form (1, C), then fr cannot be in B £ C (as
its source is not in B £ C). Hence βr

1 is a vertical identity square. For the
second case, if D`

1 is of the form (1, C), then jr is a vertical arrow in B£C
with source and target (1, C). By the special form of squares in B £ C in
Figure 3, we see that βr

1 is also a vertical identity square. Thus, we have
proved, if β`

1 is a vertical identity square, then βr
1 is also a vertical identity
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²²

//

β`
1

P1

j`

²²

P1
fr

//

jr

²²
βr
1

²²
Q`

²²

//

δ`

D`
1

k`

²²

Dr
1

kr

²²

//

δr

²²

Qr

²²

//

β`
2

D`
2

m`

²²

Dr

mr

²²

//

βr
2

²²// P2 P2
//

Figure 7.

square. One can similarly show that if any one of β`
1, β

`
2, β

r
1 , βr

2 is a vertical
identity square, then the square next to it is also.

Let us continue the case where Q` and Qr are both equivalent to com-
patible arrangements of the form (ii) as in Figure 7, and suppose again that
β`

1 is a vertical identity square. Then βr
1 is also a vertical identity square.

If either of β`
2 or βr

2 is a trivial identity square, then so is the other, in
which case Q` and Qr can be horizontally composed to give a compatible
arrangement equivalent to one of the form (i) or (ii). If neither β`

2 nor βr
2 is

a vertical identity square, then they are both in B£C, and we can argue as
in Figure 6 to conclude (B4, C2) = P2 = (B4, C2), m` = mr, and k` = kr,
in which case Q` and Qr can be horizontally composed to give a compatible
arrangement equivalent to one of the form (i) or (ii).

The other cases of Figure 7, where one or more of β`
1, β

`
2, β

r
1 , βr

2 is a
vertical identity square in P, are similar.

Thus every every square of P is equivalent to a compatible arrangement of
the form (i) or (ii), for both inclusions i under consideration. This completes
the proof of Theorem 10.6.

The two inclusions of Theorem 10.6 have some features in common, and
the theorem holds for an entire class of inclusions i : A //B . We will
return to the this topic and its interaction with [22] in the future. Theorem
10.6 allows us to characterize the behavior of the horizontal nerve on such
pushouts in Theorem 10.7, which we need to transfer the model structures
from Cat∆op

in Section 7.
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Theorem 10.7. Let i : A //B be either of the following full inclusions.

cSd2Λk[m] // cSd2∆[m]

{1} //I

Let C be a finite ordinal [n] viewed as a category, D a double category, and
P the pushout

A £ C //

i£1C

²²

D

²²
B £ C // P

in DblCat. Then the induced map

Nh(D)
∐

Nh(A£C)

Nh(B £ C) // Nh(P)

is an isomorphism of simplicial objects in Cat.

Proof: We calculate the pushout

(27) Nh(D)
∐

Nh(A£C)

Nh(B £ C)

levelwise and compare it with Nh(P), which was described in Theorem 10.6.
The horizontal nerve of an external product of categories is known from
Proposition 5.6.

In level 0, the pushout (27) is

D0

∐

A×(Obj C)disc

B× (Obj C)disc

which is the same as the vertical 1-category of P and thus (NhP)0.
In level k ≥ 1 the pushout (27) is

Nh(D)k

∐

A×NCk

B×NCk

by Proposition 5.6. An application of Lemma 10.5 to level k shows that it
is equal to Nh(P)k by Theorem 10.6.
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426, 1963.

[32] Charles Ehresmann. Catégories et structures. Dunod, Paris, 1965.
[33] T. Everaert, R.W. Kieboom, and T. Van der Linden. Model structures for homotopy

of internal categories. Theory Appl. Categ., 15:No. 3, 66–94 (electronic), 2005/06.
[34] Thomas M. Fiore. Pseudo limits, biadjoints, and pseudo algebras: categorical

foundations of conformal field theory. Mem. Amer. Math. Soc., 182(860), 2006,
http://arxiv.org/abs/math.CT/0408298.

[35] Thomas M. Fiore. Pseudo algebras and pseudo double categories. Journal of Homo-
topy and Related Structures, to appear, http://arxiv.org/abs/math.CT/0608760.

[36] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse
der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc.,
New York, 1967.

[37] Richard Garner. Double clubs. Cahiers Topologie Géom. Différentielle, 47(4):261–
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[39] Marco Grandis and Robert Paré. Kan extensions in double categories (on weak
double categories, part iii). http://www.dima.unige.it/∼grandis/Dbl3.pdf.
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