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Abstract. Given a short exact sequence of groups with certain con-
ditions, 1 → F → G → H → 1, we prove that G has solvable
conjugacy problem if and only if the corresponding action subgroup
A 6 Aut(F ) is orbit decidable. From this, we deduce that the con-
jugacy problem is solvable, among others, for all groups of the form
Z2 o Fm, F2 o Fm, Fn o Z, and Zn oA Fm with virtually solvable
action group A 6 GLn(Z). Also, we give an easy way of constructing
groups of the form Z4 o Fn and F3 o Fn with unsolvable conjugacy
problem. On the way, we solve the twisted conjugacy problem for vir-
tually surface and virtually polycyclic groups, and give an example
of a group with solvable conjugacy problem but unsolvable twisted
conjugacy problem. As an application, an alternative solution to the
conjugacy problem in Aut(F2) is given.

1. Introduction

Let G be a group, and u, v ∈ G. The symbol ∼ will be used to denote
standard conjugacy in G (u ∼ v if there exists x ∈ G such that v = x−1ux).
In this paper, we shall work with a twisted version, which is another equiv-
alence relation on G. Given an automorphism ϕ ∈ Aut(G), we say that u
and v are ϕ-twisted conjugated, denoted u ∼ϕ v, if there exists x ∈ G such
that v = (xϕ)−1ux. Of course, ∼Id coincides with ∼. Reidemeister was the
first author considering the relation ∼ϕ (see [35]), which has an important
role in modern Nielsen fixed point theory. A few interesting references can
be found in [17], where it is proven that the number of ϕ-twisted conjugacy
classes in a non-elementary word-hyperbolic group is always infinite; [6],
where an algorithm is given for recognizing ϕ-twisted conjugacy classes in
free groups; and [18], where the notion of twisted conjugacy separability is
analyzed.

Precisely, the recognition of twisted conjugacy classes is one of the main
problems focused on in the present paper. The twisted conjugacy problem
for a group G consists on finding an algorithm which, given an automor-
phism ϕ ∈ Aut(G) and two elements u, v ∈ G, decides whether v ∼ϕ u
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or not. Of course, a positive solution to the twisted conjugacy problem
automatically gives a solution to the (standard) conjugacy problem, which
in turn provides a solution to the word problem. The existence of a group
G with solvable word problem but unsolvable conjugacy problem is well
known (see [30]). In this direction, one of the results here is the existence of
a group with solvable conjugacy problem, but unsolvable twisted conjugacy
problem (see Corollary 4.9 below).

Let us mention the real motivation and origin of the present work. Sev-
eral months ago, the same three authors (together with O. Maslakova) wrote
the paper [6], where they solved the twisted conjugacy problem for finitely
generated free groups and, as a corollary, a solution to the conjugacy prob-
lem for free-by-cyclic groups was also obtained. A key ingredient in this
second result was Brinkmann’s theorem, saying that there is an algorithm
such that, given an automorphism α of a finitely generated free group and
two elements u and v, decides whether v is conjugate to some iterated image
of u, v ∼ uαk (see [10]). At some point, Susan Hermiller brought to our
attention an article due to Miller, [30], where he constructed a free-by-free
group with unsolvable conjugacy problem. It turns out that the full proof
in [6] extends perfectly well to the bigger family of free-by-free groups with-
out any problem, except for a single step in the argumentation: at the point
in [6] where we used Brinkmann’s result, a much stronger problem arises,
which we call orbit decidability (see below for definitions). This way, orbit
decidability is really the unique obstruction when extending the arguments
from free-by-cyclic to free-by-free groups.

Hence, we can deduce that a free-by-free group has solvable conjugacy
problem if and only if the corresponding orbit decidability problem is solv-
able. This idea is formally expressed in Theorem 3.1, the main result of the
present paper. In fact, Theorem 3.1 works not only for free-by-free groups,
but for an even bigger family of groups. And, of course, when we restrict
ourselves to the free-by-cyclic case, orbit decidability becomes exactly the
algorithmic problem already solved by Brinkmann’s theorem.

More precisely, Theorem 3.1 talks about a short exact sequence 1 →
F → G → H → 1 with some conditions on F and H. And states that the
group G has solvable conjugacy problem if and only if the action subgroup
AG 6 Aut(F ) is orbit decidable. Here, AG is the group of elements in G
acting by right conjugation on F ; and being orbit decidable means that,
given u, v ∈ F , we can algorithmically decide whether v ∼ uα for some
α ∈ AG. Of course, if we take F to be free and H to be infinite cyclic, we
get free-by-cyclic groups for G; and the action subgroup being orbit decid-
able is precisely Brinkmann’s theorem (see Subsection 6.2). The conditions
imposed to the groups F and H are the twisted conjugacy problem for F ,
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and the conjugacy problem plus a technical condition about centralizers for
H.

In light of Theorem 3.1, it becomes interesting, first, to collect groups F
where the twisted conjugacy problem can be solved. And then, for every
such group F , to study the property of orbit decidability for subgroups of
Aut(F ): every orbit decidable (undecidable) subgroup of Aut(F ) will cor-
respond to extensions of F having solvable (unsolvable) conjugacy problem.
After proving Theorem 3.1, this is the main goal of the paper. We first show
how to solve the twisted conjugacy problem for surface and polycyclic groups
(in fact, the solution of these problems follows easily from the solution of the
conjugacy problem for polycylic and for fundamental groups of 3-manifolds,
respectively). We also prove that the solvability of this problem goes up to
finite index for these classes of groups. Then, we concentrate on the simplest
examples of groups with solvable twisted conjugacy problem, namely finitely
generated free (say Fn) and free abelian (Zn). On the positive side, we find
several orbit decidable subgroups of Aut(Fn) and Aut(Zn) = GLn(Z), with
the corresponding free-by-free and free abelian-by-free groups with solvable
conjugacy problem. Probably the most interesting result in this direction
is Proposition 6.9 saying that virtually solvable subgroups of GLn(Z) are
orbit decidable; or, say in a different way, orbit undecidable subgroups of
GLn(Z) must contain F2. On the negative side, we establish a source of
orbit undecidability, certainly related with a special role of F2 inside the
automorphism group. In particular, this will give orbit undecidable sub-
groups in Aut(Fn) for n > 3, which will correspond to Miller’s free-by-free
groups with unsolvable conjugacy problem; and orbit undecidable subgroups
in GLn(Z) for n > 4, which will correspond to the first known examples of
Z4-by-free groups with unsolvable conjugacy problem.

All over the paper, Fn denotes the free group of finite rank n > 0; and F ,
G and H stand for arbitrary groups. Having Theorem 3.1 in mind, we will
use one or another of these letters to make clear which position in the short
exact sequence the reader should think about. For example, typical groups
to put in the first position of the sequence are free groups (Fn), and in the
third position are hyperbolic groups (H). We will write morphisms as acting
on the right, x 7→ xϕ. In particular, the inner automorphism given by right
conjugation by g ∈ G is denoted γg : G → G, x 7→ xγg = g−1xg. As usual,
End(G) denotes the monoid of endomorphisms of G, Aut(G) the group of
automorphisms of G, Inn(G) denotes the group of inner automorphisms,
and Out(G) = Aut(G)/Inn(G). Finally, we write [u, v] = u−1v−1uv, and
CG(u) = {g ∈ G | gu = ug} 6 G for the centralizer of an element u.
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As usual, given a group F = 〈X | R〉 and m automorphisms ϕ1, . . . , ϕm ∈
Aut(F ), the free extension of F by ϕ1, . . . , ϕm is the group

F oϕ1,...,ϕm
Fm = 〈X, t1, . . . , tm | R, t−1

i xti = xϕi (x ∈ X, i = 1, . . . , m)〉.
Such a group is called F -by-[f.g. free]. In particular, if m = 1 we call it
F -by-cyclic and denote by F oϕ1 Z. It is well known that a group G is F -
by-[f.g. free] if and only if it has a normal subgroup isomorphic to F , with
finitely generated free quotient G/F (i.e. if and only if it is the middle term
in a short exact sequence of the form 1 → F → G → Fn → 1). Above, when
talking about “free-by-free” and “free abelian-by-free” we meant [f.g. free]-
by-[f.g. free] and [f.g. abelian]-by-[f.g. free], respectively. To avoid confusions,
we shall keep these last names; they make an appropriate reference to finite
generation, and they stress the fact that parenthesis are relevant (note, for
example, that surface groups are both free-by-cyclic and finitely generated,
but most of them are not [f.g. free]-by-cyclic).

The paper is structured as follows. In Section 2 we discuss some pre-
liminaries concerning algorithmic issues, setting up the notation and names
used later. Section 3 contains the first part of the work, developing the
relation between the conjugacy problem and the concept of orbit decidabil-
ity. In Section 4 the applicability of Theorem 3.1 is enlarged, by finding
more groups with solvable twisted conjugacy problem (Subsection 4.1), and
by proving that many hyperbolic groups have small centralizers in an al-
gorithmic sense (Subsection 4.2). Then, Section 5 is dedicated to solve the
conjugacy problem for Aut(F2); this problem was already known to be solv-
able (see [3] and [4]), but we present here an alternative solution to illustrate
an application of the techniques developed in the paper. Sections 6 and 7
are dedicated, respectively, to several positive and negative results, namely
orbit decidable subgroups corresponding to extensions with solvable conju-
gacy problem, and orbit undecidable subgroups corresponding to extensions
with unsolvable conjugacy problem. Both, in the free abelian case, and in
the free case. Finally, Section 8 is dedicated to summarize and comment on
some questions and open problems.

2. Algorithmic preliminaries

From the algorithmic point of view, the sentence “let G be a group” is
not precise enough: the algorithmic behaviour of G may depend on how G
is given to us. For the purposes of this paper, we assume that a group will
always be given to us in an algorithmic way: elements must be represented
by finite objects and multiplication and inversion must be doable in an
algorithmic fashion; also, morphisms between groups, α : F → G, are to be
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represented by a finite amount of information in such a way that one can
algorithmically compute images of elements in F .

If G is finitely presented, a natural way (though not the unique one)
consists in giving the group G by a finite presentation, G = 〈x1, . . . , xn |
r1, . . . , rm〉; here, elements of G are represented by words in the xi’s, mul-
tiplication and inversion are the standard ones in the free group (modulo
relations), and morphisms are given by images of generators.

Let G and φ : G → G be a group and an automorphism given in an algo-
rithmic way. Also, let F 6 G be a subgroup. The following are interesting
algorithmic problems in group theory (the first two typically known as Dehn
problems):

• the word problem for G, denoted WP(G): given an element w ∈
G, decide whether it represents the trivial element of G. It is well
known that there exists finitely presented groups with unsolvable
word problem (see [31] or [7]).

• the conjugacy problem for G, denoted CP(G): given two ele-
ments u, v ∈ G, decide whether they are conjugate to each other in
G. Clearly, a solution for the CP(G) immediately gives a solution
for the WP(G), and it is well known the existence of finitely pre-
sented groups with solvable word problem but unsolvable conjugacy
problem (see, for example, [11] or [30]).

• the φ-twisted conjugacy problem for G, denoted TCPφ(G):
given two elements u, v ∈ G, decide whether they are φ-twisted
conjugate to each other in G (i.e. whether v = (gφ)−1ug for some
g ∈ G). Note that TCPId(G) is CP(G).

• the (uniform) twisted conjugacy problem for G, denoted
TCP(G): given an automorphism φ ∈ Aut(G) and two elements
u, v ∈ G, decide whether they are φ-twisted conjugate to each other
in G. This is part of a more general problem posted by G. Makanin
in Question 10.26(a) of [23]. Obviously, a solution for the TCP(G)
immediately gives a solution for the TCPφ(G) for all φ ∈ Aut(G) (in
particular, CP(G) and WP(G)). In section 4.1, we give an example
of a finitely presented group with solvable conjugacy problem but
unsolvable twisted conjugacy problem.

• the membership problem for F in G, denoted MP(F, G): given
an element w ∈ G decide whether it belongs to F or not. There are
well-known pairs (F,G) with unsolvable MP(F,G) (see [29] or [30]).

Conjugacy and twisted conjugacy problems have the “search” variants,
respectively called the conjugacy search problem, CSP(G), and the
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twisted conjugacy search problem, TCSP(G), for G. They consist on
additionally finding a conjugator (or twisted-conjugator) in case it exists.

When groups are given by finite presentations and morphisms by images
of generators, the “yes” parts of the listed problems are always solvable.
Let G = 〈x1, . . . , xn | r1, . . . , rm〉 and H = 〈y1, . . . , yn′ | s1, . . . , sm′〉 be
two finitely presented groups, φ : G → H be a morphism (given by xi 7→
wi(y1, . . . , yn′), i = 1, . . . , n), and let F 6 G be a subgroup given by a finite
set of generators {f1(x1, . . . , xn), . . . , ft(x1, . . . , xn)}. We have:

• the “yes” part of the word problem for G, denoted WP+(G):
given an element of G as a (reduced) word on the generators,
w(x1, . . . , xn) ∈ G, which is known to be trivial in G, find an expres-
sion of w as a product of conjugates of the relations ri. No matter
if WP(G) is solvable or not, WP+(G) is always solvable by brute
force: enumerate the normal closure R = 〈〈r1, . . . , rm〉〉 in the free
group 〈x1, . . . , xn | 〉, and check one by one whether its elements
equal w as a word after reduction; since we know that w =G 1,
the process will eventually terminate. Note that, without the as-
sumption, this is not an algorithm because if w 6=G 1 then it works
forever without giving any answer.

• the “yes” part of the conjugacy problem for G, denoted
CP+(G): given two elements u(x1, . . . , xn), v(x1, . . . , xn) ∈ G which
are known to be conjugate to each other in G, find w(x1, . . . , xn)
such that w−1uw =G v. Again, no matter if CP(G) or even WP(G)
are solvable or not, CP+(G) is always solvable by brute force: enu-
merate the elements in the free group F = 〈x1, . . . , xn | 〉 and for
each one w(x1, . . . , xn) apply WP+(G) to v−1w−1uw. We know
that if v−1w−1uw 6=G 1 this process will never terminate. But we
can start them for several w’s and, while running, keep opening sim-
ilar processes for new w’s; eventually, one of them will stop telling
us which w satisfies w−1uw =G v. As before, note that, without
the assumption, this is not an algorithm because if u and v are not
conjugate to each other in G then it works forever without giving
any answer.

• the “yes” part of the twisted conjugacy problem for G, de-
noted TCP+(G): it is defined, and solved by brute force, in the
exact same way as CP+(G).

• the “yes” part of the membership problem for F in G, denoted
MP+(F, G): given an element w(x1, . . . , xn) ∈ G known to belong
to F , express w as a word on the fi’s. In a similar way as above,
even if MP(F,G) is unsolvable, MP+(F, G) is always solvable by
brute force.
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Note that, using these brute force arguments, the conjugacy problem is
solvable if and only if the conjugacy search problem is solvable. Similarly,
the twisted conjugacy problem is solvable if and only if the twisted conjugacy
search problem is solvable. However, the corresponding complexities may
be rather different.

Finally, let us state few more problems, which will be considered in the
present paper. We have:

• the coset intersection problem for G, denoted CIP(G): given
two finite sets of elements {a1, . . . , ar} and {b1, . . . , bs} in G, and
two elements x, y ∈ G decide whether the coset intersection xA∩yB
is empty or not, where A = 〈a1, . . . , ar〉 6 G and B = 〈b1, . . . , bs〉 6
G.

Let F £G be a normal subgroup of G. By normality, two elements u, v ∈ G
conjugate to each other in G, either both belong to F or both outside
F . Accordingly, CP(G) splits into two parts, one of them relevant for our
purposes:

• the conjugacy problem for G restricted to F , denoted CPF (G):
given two elements u, v ∈ F , decide whether they are conjugate to
each other in G. Note that a solution to CP(G) automatically gives
a solution to CPF (G), and that this is not, in general, the same
problem as CP(F ).

Now, let F be a group given in an algorithmic way, and A be a subgroup of
Aut(F ). We have:

• the orbit decidability problem for A, denoted OD(A): given two
elements u, v ∈ F , decide whether there exists ϕ ∈ A such that uϕ
and v are conjugate to each other in F . As will be seen in Section 7,
there are finitely generated subgroups A 6 Aut(F ) with unsolvable
OD(A).

Note that orbit decidability for A 6 Aut(F ) is equivalent to the existence
of an algorithm which, for any two elements u, v ∈ F , decides whether there
exists ϕ ∈ A · Inn(F ) such that uϕ = v. In particular, if two subgroups
A,B 6 Aut(F ) satisfy A · Inn(F ) = B · Inn(F ) then OD(A) and OD(B)
are the same problem (in particular, A is orbit decidable if and only if B is
orbit decidable). This means that orbit decidability is, in fact, a property
of subgroups of Out(F ). However, we shall keep talking about Aut(F ) for
notational convenience.

To finish the section, let us consider an arbitrary short exact sequence of
groups,

1 −→ F
α−→ G

β−→ H −→ 1.
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Such a sequence is said to be algorithmic if: (i) the groups F , G and H and
the morphisms α and β are given to us in an algorithmic way, i.e. we can
effectively operate in F , G and H, and compute images under α and β, (ii)
we can compute at least one pre-image in G of any element in H, and (iii)
we can compute pre-images in F of elements in G mapping to the trivial
element in H.

The typical example (though not the unique one) of an algorithmic short
exact sequence is that given by finite presentations and images of generators.
In fact, (i) is immediate, and we can use MP+(Gβ,H) to compute pre-
images in G of elements in H, and use MP+(Fα, G) to compute pre-images
in F of elements in G mapping to 1H .

3. Orbit decidability and the conjugacy problem

Consider a short exact sequence of groups,

1 −→ F
α−→ G

β−→ H −→ 1.

Since Fα is normal in G, for every g ∈ G, the conjugation γg of G induces
an automorphism of F , x 7→ g−1xg, which will be denoted ϕg ∈ Aut(F )
(note that, in general, ϕg does not belong to Inn(F )). It is clear that the
set of all such automorphisms,

AG = {ϕg | g ∈ G},
is a subgroup of Aut(F ) containing Inn(F ). We shall refer to it as the
action subgroup of the given short exact sequence.

Assuming some hypothesis on the sequence and the groups involved on it,
the following theorem shows that the solvability of the conjugacy problem
for G is equivalent to the orbit decidability of the action subgroup AG 6
Aut(F ).

Theorem 3.1. Let

1 −→ F
α−→ G

β−→ H −→ 1.

be an algorithmic short exact sequence of groups such that
(i) F has solvable twisted conjugacy problem,
(ii) H has solvable conjugacy problem, and
(iii) for every 1 6= h ∈ H, the subgroup 〈h〉 has finite index in its cen-

tralizer CH(h), and there is an algorithm which computes a finite
set of coset representatives, zh,1, . . . , zh,th

∈ H,

CH(h) = 〈h〉zh,1 t · · · t 〈h〉zh,th
.

Then, the following are equivalent:
(a) the conjugacy problem for G is solvable,
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(b) the conjugacy problem for G restricted to F is solvable,
(c) the action subgroup AG = {ϕg | g ∈ G} 6 Aut(F ) is orbit decidable.

Proof. As usual, we shall identify F with Fα 6 G. By definition, xϕg =
g−1xg for every g ∈ G and x ∈ F . So, given two elements x, x′ ∈ F , finding
g ∈ G such that x′ = g−1xg is the same as finding ϕ ∈ AG such that
x′ = xϕ. Since AG = AG · Inn(F ), this is solving OD(AG). Hence, (b) and
(c) are equivalent. It is also obvious that (a) implies (b). So, the relevant
implication is (b) ⇒ (a).

Assume that (b) holds, let g, g′ ∈ G be two given elements in G and let
us decide whether they are conjugate to each other in G.

Map them to H. Using (ii), we can decide whether gβ and g′β are
conjugate to each other in H. If they are not, then g and g′ cannot either
be conjugate to each other in G. Otherwise, (ii) gives us an element of H
conjugating gβ into g′β. Compute a pre-image u ∈ G of this element. It
satisfies (gu)β = (gβ)uβ = g′β. Now, changing g to g u, we may assume that
gβ = g′β. If this is the trivial element in H (which we can decide because
of (ii)) then g and g′ lie in the image of α, and applying (b) we are done.
Hence, we are restricted to the case gβ = g′β 6=H 1.

Now, compute f ∈ F such that g′ = gf (this is the α-pre-image of g−1g′).
Since gβ 6=H 1, we can use (iii) to compute elements z1, . . . , zt ∈ H such
that CH(gβ) = 〈gβ〉z1 t · · · t 〈gβ〉zt, and then compute a pre-image yi ∈ G
for each zi, i = 1, . . . , t. Note that, by construction, the β-images of g
and yi (respectively gβ and zi) commute in H so, y−1

i gyi = gpi for some
computable pi ∈ F .

Since gβ = g′β, every possible conjugator of g into g′ must map to
CH(gβ) under β so, it must be of the form gryix for some integer r, some
i ∈ {1, . . . , t}, and some x ∈ F . Hence,

gf = g′ = (x−1y−1
i g−r)g(gryix) = x−1(y−1

i gyi)x = x−1gpix.

Thus, deciding whether g and g′ are conjugate to each other in G amounts
to decide whether there exists i ∈ {1, . . . , t} and x ∈ F satisfying gf =
x−1gpix, which is equivalent to f = (g−1x−1g)pix and so to f = (xϕg)−1pix.
Since i takes finitely many values and the previous equation means precisely
f ∼ϕg pi, we can algorithmically solve this problem by hypothesis (i). This
completes the proof. ¤
Remark 3.2. Note that in the proof of Theorem 3.1 we did not use the
full power of hypothesis (i). In fact, we used a solution to TCPφ(F ) only for
the automorphisms in the action subgroup, φ ∈ AG. For specific examples,
this may be a weaker assumption than a full solution to TCP(F ).

Theorem 3.1 gives us a relatively big family of groups G for which the
conjugacy problem reduces to its restriction to a certain normal subgroup.
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Now, we point out some examples of groups F and H satisfying hypotheses
(i)-(iii) of the Theorem, and hence providing a family of groups G for which
the characterization is valid.

Suppose that F is a finitely generated abelian group. For any given
φ ∈ Aut(F ) and u, v ∈ F , we have u ∼φ v if and only if u ≡ v modulo
Im(φ−Id). Hence, TCP(F ) reduces to solving a system of linear equations
(some over Z and some modulo certain integers). So it is solvable. On the
other hand, Theorem 1.5 in [6] states that TCP(F ) is also solvable when F
is finitely generated free. So, finitely generated abelian groups, and finitely
generated free groups satisfy (i).

With respect to conditions (ii) and (iii), it is well known that in a free
group H, the centralizer of an element 1 6= h ∈ H is cyclic and generated
by the root of h (i.e., the unique non proper power ĥ ∈ H such that h is a
positive power of ĥ), which is computable. Clearly, then, finitely generated
free groups satisfy hypotheses (ii) and (iii).

Focusing on these families of groups, Theorem 3.1 is talking about solv-
ability of the conjugacy problem for [f.g. free]-by-[f.g. free] and [f.g. abelian]-
by-[f.g. free] groups, and can be restated as follows.

Theorem 3.3. Let F = 〈x1, . . . , xn | R〉 be a (finitely generated) free
or abelian group, and let ϕ1, . . . , ϕm ∈ Aut(F ). Then, the [f.g. free]-by-
[f.g. free] or [f.g. abelian]-by-[f.g. free] group

G = 〈x1, . . . , xn, t1, . . . , tm | R, t−1
j xitj = xiϕj , i = 1, . . . , n, j = 1, . . . , m〉

has solvable conjugacy problem if and only if 〈ϕ1, . . . , ϕm〉 6 Aut(F ) is orbit
decidable. ¤

In the following section, applicability of Theorem 3.1 will be enlarged by
finding more groups with solvable twisted conjugacy problem (see Subsec-
tion 4.1), and finding more groups which satisfy condition (iii) (see Subsec-
tion 4.2).

At this point, we want to remark that the study of the conjugacy prob-
lem in the families of [f.g. free]-by-[f.g. free] and [f.g. free abelian]-by-[f.g. free]
groups was the authors’ original motivation for developing the present re-
search. One can interpret Theorem 3.3 by saying that orbit decidability is
the unique possible obstruction to the solvability of the conjugacy problem
within these families of groups. So, by finding examples of orbit decidable
subgroups in Aut(Fn) or Aut(Zn) = GLn(Z) one is in fact solving the conju-
gacy problem in some [f.g. free]-by-[f.g. free] or [f.g. free abelian]-by-[f.g. free]
groups; we develop this in Section 6.

But in the literature there are known examples of [f.g. free]-by-[f.g. free]
groups with unsolvable conjugacy problem: Miller’s example of such a group
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(see Miller [30]) automatically gives us an example of a finitely generated
subgroup of the automorphism group of a free group, which is orbit unde-
cidable. We discuss this in Section 7, where we also find orbit undecidable
subgroups in GLn(Z) for n > 4; these last examples correspond to the
first known [f.g. free abelian]-by-[f.g. free] groups with unsolvable conjugacy
problem.

To conclude the section, we point out the following consequence of The-
orem 3.1.

Corollary 3.4. Consider two algorithmic short exact sequences

1 −→ F −→ G1 −→ H1 −→ 1

1 −→ F −→ G2 −→ H2 −→ 1
both satisfying the hypotheses of Theorem 3.1, and sharing the same first
term. If the two action subgroups coincide, AG1 = AG2 6 Aut(F ), then
G1 has solvable conjugacy problem if and only if G2 has solvable conjugacy
problem. ¤

Note that, in the situation of Corollary 3.4, AG1 and AG2 can be equal,
even with G1 and G2 being far from isomorphic (for example, choose two
very different sets of generators for A 6 Aut(F ), and consider two exten-
sions of F by a free group with free generators acting on F as the chosen
automorphisms). A nice example of this fact is the case of doubles of groups:
the double of G over F 6 G is the amalgamated product of two copies of G
with the corresponding F ’s identified in the natural way.

Corollary 3.5. Let 1 → F → G → H → 1 be a short exact sequence
satisfying the hypotheses of Theorem 3.1. Then G has solvable conjugacy
problem if and only if the double of G over F has solvable conjugacy problem.

Proof. Let 1 → F ′ → G′ → H ′ → 1 be another copy of the same short
exact sequence, and construct the double of G over F , say G ∗G′

F=F ′
. We have

the natural short exact sequence for it,

1 −→ F = F ′ −→ G ∗G′
F=F ′

−→ H ∗H ′ −→ 1,

whose action subgroup clearly coincides with AG 6 Aut(F ). So, Corol-
lary 3.4 gives the result. ¤

4. Enlarging the applicability of Theorem 3.1

In this section we shall enlarge the applicability of Theorem 3.1, by solv-
ing the twisted conjugacy problem for more groups F other than free and
free abelian (Subsection 4.1), and by finding more groups H with conditions
(ii) and (iii), other than free (Subsection 4.2).



12 O. BOGOPOLSKI, A. MARTINO AND E. VENTURA

4.1. More groups with solvable twisted conjugacy problem. Let us
begin by proving a partial converse to Theorem 3.1, in the case where H =
Z. In this case, conditions (ii) and (iii) are obviously satisfied, and the
relevant part of the statement says that, for ϕ ∈ Aut(F ), solvability of
TCPϕr (F ) for every r ∈ Z and of OD(〈ϕ〉) does imply solvability of CP(Foϕ

Z), see Remark 3.2. A weaker version of the convers is true as well.

Proposition 4.1. Let F be a finitely generated group and let ϕ ∈ Aut(F ),
both given in an algorithmic way (and so FoϕZ). If CP(FoϕZ) is solvable
then TCPϕ(F ) is solvable, and 〈ϕ〉 6 Aut(F ) is orbit decidable.

Proof. Let us assume that F oϕ Z has solvable conjugacy problem. Then,
〈ϕ〉 6 Aut(F ) is orbit decidable by Theorem 3.1 (a) ⇒ (c) (which uses
non of the hypothesis there) applied to the short exact sequence 1 → F →
F oϕ Z→ Z→ 1.

On the other hand, let u, v ∈ F . For x ∈ F , the equality (xϕ)−1ux = v
holds in F if and only if x−1(tu)x = tv holds in F oϕ Z. So, u ∼ϕ v if and
only if tu and tv are conjugated to each other in F oϕZ by some element of
F . By hypothesis, we know how to decide whether tu and tv are conjugated
to each other in F oϕ Z by an arbitrary element, say tkx. And,

(tkx)−1(tu)(tkx) = x−1t−ktutkx = x−1t(uϕk)x.

Hence, tu and tv are conjugated in F oϕ Z if and only if, for some integer
k, t(uϕk) and tv are conjugated to each other in F oϕZ by some element of
F . That is, if and only if, uϕk ∼ϕ v for some integer k. But equation u =
(uϕ)−1(uϕ)u tells us that u ∼ϕ uϕ (see Lemma 1.7 in [6]). So, solving the
conjugacy problem in F oϕZ for tu and tv, is the same as deciding whether
u ∼ϕ v in F . Thus, F has solvable ϕ-twisted conjugacy problem. ¤

Combining Theorem 3.1 and this weak convers, we have the following
remarkable consequence.

Corollary 4.2. Let F be a finitely generated group given in an algorithmic
way. All cyclic extensions F oϕ Z have solvable conjugacy problem if and
only if both F has solvable twisted conjugacy problem and all cyclic subgroups
of Aut(F ) are orbit decidable. ¤

This corollary is useful in order to find more groups with solvable twisted
conjugacy problem. For example, using a recent result by J.P. Preaux,
we can easily prove that surface groups have solvable twisted conjugacy
problem, and that Brinkmann’s result (see [10] or Theorem 6.17 in sec-
tion 6.2 below) is also valid for surface groups.

Theorem 4.3. Let F be the fundamental group of a closed surface. Then,
TCP(F ) is solvable and all cyclic subgroups of Aut(F ) are orbit decidable.
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Proof. By Theorem 1.6 in [34], F oϕ Z has solvable conjugacy problem for
every automorphism ϕ ∈ Aut(F ). Now, Corollary 4.2 gives the result. ¤

The same argument also provides an alternative proof of the recent result
that polycyclic groups have solvable twisted conjugacy problem (see [18]).
We remind that a group F is called polycyclic when there exists a finite
sequence of subgroups F = K0 B K1 B · · · B Kn−1 B Kn = 1, each normal
in the previous one, and with every quotient Ki/Ki+1 being cyclic (finite
or infinite). If all these quotients are infinite cyclic we say that F is poly-Z.

Theorem 4.4. Let F be a polycyclic group. Then, F has solvable twisted
conjugacy problem, and all cyclic subgroups of Aut(F ) are orbit decidable.

Proof. Let ϕ be an arbitrary automorphism of F . Since F is normal in
F oϕ Z with cyclic quotient, the group F oϕ Z is again polycyclic. So, it
has solvable conjugacy problem (see [36]). Again, Corollary 4.2 gives the
result. ¤

Let us study now how the twisted conjugacy problem behaves under finite
index extensions. To do this, we shall need the classical Todd-Coxeter al-
gorithm, and a technical lemma about computing finite index characteristic
subgroups.

Theorem 4.5 (Todd-Coxeter, Chapter 8 in [22]). Let L = 〈X | R 〉 be
a finite presentation and K 6 L a finite index subgroup given by a finite
set of generators. There is an algorithm to compute a set of left coset
representatives {1 = g0, g1, . . . , gq} of K in L (so, L = Ktg1Kt· · ·tgqK),
plus the information on how to multiply them by generators of L on the left,
say xigj ∈ gd(i,j)K. Moreover, one can algorithmically write any given
g ∈ L in the form g = gpk for some (unique) p = 0, . . . , q, and some k ∈ K
expressed as a word on the generators of K. In particular, MP(K,L) is
solvable.

Lemma 4.6. Let F be a group given by a finite presentation 〈X | R 〉,
and suppose we are given a set of words {w1, . . . , wr} on X such that
K = 〈w1, . . . , wr〉 6 F is a finite index subgroup. Then, the finite index
characteristic subgroup K0 =

⋂
[F :K′]=s K ′ 6 F , where s = [F : K], has a

computable set of generators.

Proof. Think F as a quotient of the free group on X, π : F (X) ³ F (write
N = ker π). Using the elementary fact that, for every finite index subgroup
L 6 F (X), [F (X) : L] > [F : Lπ] with equality if and only if N 6 L, we
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have

K0 =
⋂

K′6F
[F :K′]=s

K ′ =
⋂

N6K′′6F (X)

[F (X):K′′]=s

(K ′′π) =




⋂

N6K′′6F (X)

[F (X):K′′]=s

K ′′


 π.

Hence, we can compute generators for K0 (as words in X) by first comput-
ing s (use Todd-Coxeter algorithm), and then listing and intersecting (and
finally projecting into F ) all of the finitely many subgroups K ′′ of index
s in F (X) which contain N : the listing can be done by enumerating all
saturated and folded Stallings graphs with s vertices, and then computing
a basis for the corresponding subgroup (see [39]); intersecting is easy using
the pull-back technique (again, see [39]); and deciding whether such a K ′′

contains N can be done, even without knowing explicit generators for N ,
by projecting K ′′ down to F , and using Todd-Coxeter again to verify if the
image has index exactly s, or smaller. ¤

A result by Gorjaga and Kirkinskii (see [19]) states the existence of a
group F with an index two subgroup K 6 F , such that the conjugacy
problem is solvable in K but unsolvable in F (two years later the same
was independently proved by Collins and Miller in [12], together with the
opposite situation, unsolvability for K and solvability for F ). In other
words, the conjugacy problem does not go up or down through finite index
extensions. In contrast with this, the following proposition shows that the
twisted conjugacy problem does (assuming the subgroup is characteristic).

Proposition 4.7. Let F be a group given by a finite presentation 〈X | R〉,
and suppose we are given a set of words {w1, . . . , wr} on X such that K =
〈w1, . . . , wr〉 6 F is a finite index subgroup.

(i) Suppose K is characteristic in F ; if TCP(K) is solvable then
TCP(F ) is also solvable.

(ii) Suppose K is normal in F ; if TCP(K) is solvable then CP(F ) is
solvable.

Proof. By Todd-Coxeter algorithm, we can compute a set {1=y1, y2,. . ., ys}
of left coset representatives of K in F , i.e. F = K t y2K t · · · t ysK, and
use them to write any u ∈ F (given as word in X) in the form yik for
some i = 1, . . . , s, and some k ∈ K (expressed as a word in the wi’s); in
particular, MP(K, F ) is solvable (see Theorem 4.5).

Suppose now that K is characteristic in F , and TCP(K) is solvable. Fix
ϕ ∈ Aut(F ), and let u, v ∈ F be two elements in F . With the previous
procedure, we can write them as u = yiz and v = yjz

′, for some i, j =
1, . . . , s and z, z′ ∈ K. Deciding whether or not u and v are ϕ-twisted
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conjugated in F amounts to decide whether there exist l = 1, . . . , s and
k ∈ K such that

((ky−1
l )ϕ)(yiz)(ylk

−1) = yjz
′

or, equivalently,

(ylϕ)−1yizyl = (kϕ)−1yjz
′k = yj [(y−1

j (kϕ)yj)−1z′k].

Now observe that, if K is characteristic in F , then the bracketed ele-
ment [(y−1

j (kϕ)yj)−1z′k] belongs to K. For every l = 1, . . . , s, compute
(ylϕ)−1yizyl and check if it belongs to the coset corresponding to yj . If non
of them do, then yiz and yjz

′ are not ϕ-twisted conjugated. Otherwise, we
have computed the non-empty list of indices l and elements k l ∈ K such that
(ylϕ)−1yizyl = yjk l. For each one of them, it remains to decide whether
there exists k ∈ K such that k l = (y−1

j (kϕ)yj)−1z′k = (kϕγyj )
−1z′k. This

is precisely deciding whether k l and z′ are (ϕγyj
)-twisted conjugated in K

(which makes sense because ϕγyj restricts to an automorphism of K). This
is doable by hypothesis, so we have proven (i).

The previous argument particularized to the special case ϕ = Id works
assuming only that K is normal in F . This shows (ii). ¤
Theorem 4.8. Let F be a group given by a finite presentation 〈X | R〉. If
either F is (finitely generated)

(i) virtually abelian, or
(ii) virtually free, or
(iii) virtually surface group, or
(iv) virtually polycyclic,

then TCP(F ) is solvable.

Proof. We first need to compute generators for a finite index subgroup K of
F being abelian, or free, or surface, or polycyclic (and so, finitely generated,
like F ). We shall identify such a subgroup by finding a special type of
presentation for it. In the first three cases, a finite presentation will be called
canonical if the set of relations, respectively, contains all the commutators
of pairs of generators, or is empty, or consists precisely on a single element
being a surface relator. For the polycyclic case, let L = 〈y1, . . . , yn | S〉 be a
given finite presentation and, for every automorphism ϕ ∈ Aut(L), consider
the cyclic extension LoϕZ, and its redundant presentation CEϕ(〈y1, . . . , yn |
S〉) given by L oϕ Z = 〈y1, . . . , yn, t | S, t−1yit = ui, tyit

−1 = vi (i =
1, . . . , n)〉, where ui and vi are words on the yi’s describing, respectively,
the images and preimages of yi under ϕ. The point of considering such
redundant presentations is that, once a particular presentation of this type
is given, one can easily verify whether yi 7→ ui defines an automorphism
of G (with inverse given by yi 7→ vi). Now every non-trivial, poly-Z group
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admits a presentation of the form CEϕn(· · · (CEϕ1(〈x | −〉)) · · · ), which we
shall call canonical (add to this definition that the canonical presentation
of the trivial group is the empty one). Observe that, given a presentation,
it can be verified whether it is canonical in any of the above four cases.

To prove the theorem, let us first enumerate the list of all subgroups of
finite index in F , say K1, K2, . . .. This can be done by following the strategy
in the proof of Lemma 4.6: enumerate all subgroups of the free group F (X)
of a given (and increasing) index, and project them into F . For every
i > 1, while computing Ki+1, start a new parallel computation following
Reidemeister-Schreier process (see Section 3.2 in [27]) in order to obtain a
finite presentation for Ki, say 〈Yi | Si〉. Then, start applying to 〈Yi | Si〉
the list of all possible sequences of Tietze transformations of any given (and
increasing) length. When one of the running processes finds a canonical
presentation (of an abelian, or free, or surface, or poly-Z group) then stop
all of them and output this presentation. Although many of these individual
processes will never end, one of them will eventually finish because we are
potentially exploring all finite presentations of all finite index subgroups of
F and, by hypothesis, at least one of them admits a canonical presentation
(we use here the fact that every polycyclic group is virtually poly-Z, see
Proposition 2 in Chapter 1 of [37]). The final output of all these parallel
processes is a canonical presentation for a finite index subgroup K of F
being abelian, or free, or surface, or poly-Z.

Now, apply Lemma 4.6 to compute generators of a finite index character-
istic subgroup K0 6 F inside K. Note that K0 (for which we can obtain an
explicit presentation by using Reidemeister-Schreier method) will again be
either abelian, or free, or surface, or polycyclic. So, TCP(K0) is solvable by
results above. Hence, TCP(F ) is also solvable by Proposition 4.7 (ii). ¤

The following results are two other interesting consequences of Proposi-
tions 4.7 and 4.1.

Corollary 4.9. There exists a finitely presented group G with CP(G) solv-
able, but TCP(G) unsolvable.

Proof. Consider a finitely presented group F with an index two subgroup
G 6 F , such that CP(G) is solvable but CP(F ) is unsolvable (see, for
example, Gorjaga-Kirkinskii [19] or Collins-Miller [12]). Since index two
subgroups are normal, Proposition 4.7 (ii) implies that TCP(G) must be
unsolvable. ¤

Corollary 4.10. There exists a finitely presented group G and an auto-
morphism ϕ ∈ Aut(G) such that CP(G) is solvable and CP(G oϕ Z) is
unsolvable. Conversely, there also exists a finitely presented group G and
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an automorphism ϕ ∈ Aut(G) such that CP(GoϕZ) is solvable and CP(G)
is unsolvable.

Proof. For the first assertion, consider a finitely presented group G like
in the previous theorem, with CP(G) solvable and TCP(G) unsolvable.
There must exist ϕ ∈ Aut(G) with TCPϕ(G) unsolvable. Then, by Propo-
sition 4.1, CP(Goϕ Z) is unsolvable too.

For the second assertion, start with Collins-Miller example of an index
two extension G 6 F with unsolvable CP(G) but solvable CP(F ). In this
construction, it is easy to see that F = G oϕ C2 for an order two auto-
morphism ϕ ∈ Aut(G). And solvability of CP(G oϕ C2) directly implies
solvability of CP(Goϕ Z) because the square of the stable letter belongs to
the center of this last group. ¤

4.2. Centralizers in hyperbolic groups. Hypotheses (ii) and (iii) in
Theorem 3.1 are also satisfied by a bigger family of groups beyond free,
including finitely generated torsion-free hyperbolic groups. All these groups
H provide new potential applications of Theorem 3.1.

Proposition 4.11. Let H be a finitely generated hyperbolic group given by
a finite presentation, and let h be an element of H.

(i) There is an algorithm to determine whether or not the centralizer
CH(h) is finite and, if it is so, to list all its elements.

(ii) If h has infinite order in H, then 〈h〉 has finite index in CH(h) and
there is an algorithm which computes a set of coset representatives
for 〈h〉 in CH(h).

Proof. From the given presentation, it is possible to compute a hyperbolicity
constant δ for H (see [32] or [16]). Now, in 1.11 of Chapter III.Γ of [9], the
authors provide an algorithm to solve the conjugacy problem in H (the
reader can easily check that the q.m.c. property used there, holds with
constant K = 4δ + 1 in our case). In fact, the same construction (with
u = v = h) also enables us to compute a finite set of generators for CH(h)
(as labels of the closed paths at vertex h in G). So, we have computed a
generating set {g1, . . . , gr} for CH(h).

On the other hand, by [5], each finite subgroup of H is conjugate to a
subgroup which is contained in the ball of radius 4δ+1 around 1, B(4δ+1).
In particular, if CH(h) is finite then CH(h)x ⊆ B(4δ + 1) for some x ∈ H.
We can apply a solution of the conjugacy search problem for H (which
is solvable) to h and each one of the members of B(4δ + 1), ending up
with a list of elements {x1, . . . , xs} such that {hx1 , . . . , hxs} are all the
conjugates of h belonging to B(4δ + 1). Now, CH(h) is finite if and only
if CH(h)x ⊆ B(4δ + 1) for some x ∈ H, and this happens if and only
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if CH(h)xi = 〈gxi
1 , . . . , gxi

r 〉 ⊆ B(4δ + 1) for some i = 1, . . . , s (because
if hy = h then CH(h)y = CH(h)). Furthermore, this last condition, for
a fixed i, is decidable in the following way: recursively, for l = 1, 2, . . .,
check whether the set Bl of all products of l or less (gxi

j )±1’s is contained
in B(4δ + 1); the process will eventually find a value of l for which either
Bl * B(4δ + 1) or Bl+1 = Bl ⊆ B(4δ + 1). In the first case CH(h)xi =
〈gxi

1 , . . . , gxi
r 〉 * B(4δ + 1) (and if this happens for every i then CH(h) is

infinite); and in the second case CH(h)xi = 〈gxi
1 , . . . , gxi

r 〉 ⊆ B(4δ + 1),
which means that CH(h) is finite and, conjugating back by x−1

i , we obtain
the full list of its elements. This concludes the proof of (i).

By Corollary 3.10 in Chapter III.Γ of [9], the group 〈h〉 has finite index
in CH(h). As explained in the proof of that corollary, different positive
powers of h are not conjugate to each other. Therefore, there exists a
natural number k 6 |B(4δ)| + 1, such that hk is not conjugate into the
ball B(4δ). In the proof it is claimed that each element of CH(h) lies at
distance at most 2|hk|+4δ of 〈hk〉 and hence of 〈h〉. This means that there
exists a set of coset representatives for 〈h〉 in CH(h) inside the ball of radius
K = 2(|B(4δ)|+ 1)|h|+ 4δ. List the elements of such ball, delete those not
commuting with h (use WP(H) here) and, among the final list of candidates
z1, . . . , zr, it remains to decide which pairs zi, zj satisfy 〈h〉zi = 〈h〉zj . This
is the same as z = zjz

−1
i ∈ 〈h〉 which can be algorithmically checked in the

following way. For every element w of any group, the translation number of
w is τ(w) = limn→∞

|wn|
n , where | · | denotes the word length with respect to

a given presentation (see Definition 3.13 in Chapter III.Γ of [9]). Obviously,
τ(w) 6 |w| and, for hyperbolic groups, there exists a computable ε > 0 such
that τ(w) > ε for every w of infinite order (see Proposition 3.1 in [13], or
Theorem 3.17 in Chapter III.Γ of [9]). Back to our situation, if z = hs for
some integer s, then τ(z) = |s|τ(h) and so, |s| = τ(z)

τ(h) 6 |z|
ε . Thus, the

exponent s has finitely many possibilities and so, we can algorithmically
decide whether z ∈ 〈h〉. ¤
Theorem 4.12. Consider a short exact sequence given by finite presenta-
tions,

1 −→ F −→ G −→ H −→ 1,

where F is (finitely generated) virtually free, or virtually abelian, or virtu-
ally surface, or virtually polycyclic group, and H is a (finitely generated)
hyperbolic group where every non-trivial element of finite order has finite
centralizer. Then, G has solvable conjugacy problem if and only if the cor-
responding action subgroup AG 6 Aut(F ) is orbit decidable.

Proof. We just need to check that hypotheses of Theorem 3.1 are satis-
fied. Certainly, (i) was already considered above, and (ii) is well known
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(see 1.11 in Chapter III.Γ of [9]). For (iii), apply the algorithm given in
Proposition 4.11 (i) to h 6= 1. If it answers that CH(h) is finite, then the
answer comes with the full list of its elements from which, using a solution to
WP(H), we can extract the required list of coset representatives for CH(h)
modulo 〈h〉. Otherwise, CH(h) is infinite; in this case, our hypothesis en-
sures that h has infinite order in H, and hence we can apply the algorithm
given in Proposition 4.11 (ii) to find the required list anyway. ¤

5. The conjugacy problem for Aut(F2)

The conjugacy problem for Aut(Fn) is a deep open question about free
groups (a possible plan to solve it has been indicated by M. Lustig in the
preprint [26], and some partial results already published by the same author
in this direction). Among other partial results, it is known to be solvable for
rank n = 2 (see [3] or [4]). As an illustration of the potential applicability
of Theorem 3.1, we dedicate this section to deduce from it another solution
to the conjugacy problem for Aut(F2).

Consider the standard short exact sequence involving Aut(F2),

1 → Inn(F2) → Aut(F2) → GL2(Z) → 1.

Although Inn(F2) is isomorphic to F2, which has solvable twisted conjugacy
problem (see [6]), Theorem 3.1 cannot be directly applied to this sequence
because some centralizers in GL2(Z) are too large. Specifically, this group
has a centre consisting of plus and minus the identity matrix. However, if
we quotient out by this order two subgroup, we obtain PGL2(Z) which will
turn out to satisfy our required hypotheses. Let us amend the short exact
sequence above as follows.

Choose a basis {a, b} for F2 and let σ be the (order two) automorphism
of F2 sending a to a−1 and b to b−1. Note that wσ = (w−1)R = (wR)−1,
where (·)R denotes the palindromic reverse of a word on {a, b}. Also, for
every φ ∈ Aut(F2), φR = σ−1φσ acts by sending a to (aφ)R and b to
(bφ)R. Consider the subgroup 〈Inn(F2), σ〉 6 Aut(F2). Since σ−1φ−1σφ
abelianizes to the identity, φ−1σφ = σγx for some x ∈ F2. This (together
with the elementary fact φ−1γwφ = γwφ) shows that 〈Inn(F2), σ〉 is normal
in Aut(F2). Moreover, it is isomorphic to F2 o C2, a split extension of F2

by a cyclic group of order 2. This gives us another short exact sequence as
follows

1 → F2 o C2 → Aut(F2) → PGL2(Z) → 1. (1)
From the computational point of view we can think of (1) as given by pre-
sentations of the involved groups and the corresponding morphisms among
them. But it is simpler to think of it as what is literally written: formal
expressions of the type σrw, where r = 0, 1 and w ∈ F2 (in one-to-one
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correspondence with σrγw ∈ 〈Inn(F2), σ〉 £ Aut(F2)); automorphisms of
F2 = 〈a, b | 〉; and two-by-two integral matrices modulo ±Id; all with the
obvious morphisms among them.

Let us see that (1) satisfies hypotheses (i)-(iii) of Theorem 3.1. It is
straightforward to show that F2 is characteristic in F2 o C2. Thus, by
Proposition 4.7 (i) and solvability of TCP(F2) (see [6]), we deduce that
TCP(F2oC2) is solvable. So, our short exact sequence (1) satisfies (i). On
the other hand, conditions (ii) and (iii) follow both from standard computa-
tions with two by two matrices, and also from considering the presentation
of PGL2(Z) as amalgamated product PGL2(Z) ∼= D2 ∗

D1
D3 (see, for exam-

ple, page 24 in [14]).
Hence, (1) is a short exact sequence satisfying the hypotheses of The-

orem 3.1. This way, the solvability of the conjugacy problem for Aut(F2)
is equivalent to the orbit decidability of the action subgroup A = {ϕφ |
φ ∈ Aut(F2)} 6 Aut(F2 o C2). Thus, the following proposition provides a
solution to CP(Aut(F2)):

Proposition 5.1. With the above notation, the action of Aut(F2) by right
conjugation on its normal subgroup 〈Inn(F2), σ〉 ∼= F2oC2 is orbit decidable.

Proof. The action of Aut(F2) on Inn(F2) is determined by the natural
action on F2, namely φ−1γwφ = γwφ, for every φ ∈ Aut(F2) and w ∈ F2.
So, by the classical Whitehead algorithm (see Proposition I.4.19 in [25]),
it is possible to decide whether two elements in Inn(F2) lie in the same
Aut(F2)-orbit (i.e. the action of Aut(F2) on Inn(F2) is orbit decidable).
But, Inn(F2) has index 2 in 〈Inn(F2), σ〉 so, it only remains to decide
whether two given elements of the form σγu, σγv ∈ 〈Inn(F2), σ〉, with u, v ∈
F2, lie in the same Aut(F2)-orbit or not.

Suppose then that σγu and σγv are given to us, and let us algorithmically
decide whether there exists φ ∈ Aut(F2) such that φ−1σγuφ = σγv.

Note that, if this is the case, then φ−1(σγu)2φ = (σγv)2, while (σγu)2

and (σγv)2 belong to Inn(F2). So, apply Whitehead algorithm to (σγu)2

and (σγv)2; if they are not in the same Aut(F2)-orbit, the same is true for
σγu and σγv, and we are done. Otherwise, we come up with a particular α ∈
Aut(F2) such that α−1(σγu)2α = (σγv)2; now, replacing σγu by α−1σγuα,
we can assume that (σγu)2 = (σγv)2. This means

γ(uσ)u = σγuσγu = (σγu)2 = (σγv)2 = σγvσγv = γ(vσ)v,

i.e. (uσ)u = (vσ)v. We can compute this element of F2 and distinguish two
cases depending whether it is trivial or not:

Case 1: (uσ)u = (vσ)v = 1. Note that, in this case, u and v are
palindromes (i.e. uR = u and vR = v). We shall show that σγu and σγv
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are always in the same Aut(F2)-orbit. In fact, notice that if x ∈ {a, b}±1 is
any letter then,

γ−1
x (σγu)γx = γx−1σγuγx = σγxux.

Hence, we can consecutively use conjugations of this type to shorten the
length of u (and v) down to 0 or 1; that is, σγu (and σγv) is in the
same Aut(F2)-orbit as at least one of σ, σγa, σγa−1 , σγb or σγb−1 . But,
γ−1

a σγa−1γa = σγa and γ−1
b σγb−1γb = σγb. Also, defining ρ ∈ Aut(F2) as

a 7→ b, b 7→ a, we have ρ−1σγaρ = σγb. Finally, defining χ ∈ Aut(F2) as
a 7→ ab, b 7→ b, we have χ−1σχ = σγb. Thus, σγu and σγv are always in the
same Aut(F2)-orbit in this case.

Case 2: (uσ)u = (vσ)v 6= 1. Let z be its root, i.e. (uσ)u = (vσ)v = zs

for some s > 1, with z not being a proper power. If some φ ∈ Aut(F2)
satisfies φ−1σγuφ = σγv then such φ must also satisfy

γzsφ = φ−1γzsφ = φ−1(σγu)2φ = (σγv)2 = γzs

and so, zφ = z. In other words, σγu can only be conjugated into σγv by au-
tomorphisms stabilizing z. Using McCool’s algorithm (see Proposition I.5.7
in [25]), we can compute a set of generators for this subgroup of Aut(F2),
say Stab(z) = 〈φ1, . . . , φk〉.

It remains to analyze how those φi’s act on σγu. We can compute
φ−1

i σγuφi and write this element of F2 o C2 in normal form, say σγwi .
We claim that wi = (zσ)niu for some ni ∈ Z. In fact, squaring φ−1

i σγuφi =
σγwi (and using that φi stabilize z) we obtain

γ(uσ)u = (σγu)2 = γzs = φ−1
i γzsφi = φ−1

i (σγu)2φi = (σγwi)
2 = γ(wiσ)wi

.

This implies zs = (uσ)u = (wiσ)wi and, applying σ to both sides, zsσ =
u(uσ) = wi(wiσ). Now observe that

(wiu
−1)γzsσ = (zsσ)−1(wiu

−1)(zsσ) = (w−1
i σ)w−1

i (wiu
−1)u(uσ)

= (w−1
i σ)(uσ) = wiu

−1,

which means that wiu
−1 commutes with zsσ = (zσ)s. Hence, wiu

−1 =
(zσ)ni and wi = (zσ)niu for some computable ni ∈ Z. We have shown that,
for i = 1, . . . , k,

φ−1
i σγuφi = σγ(zσ)niu.

Few more computations show that conjugating by φ−1
i makes the corre-

sponding negative effect on the exponent: from φ−1
i σγuφi = σγ(zσ)niu =

γzni σγu we deduce

φi(σγu)φ−1
i = φi(γz−ni φ

−1
i σγuφi)φ−1

i = γz−ni σγu = σγ(zσ)−ni u.
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And conjugating by another φj makes an additive effect on the exponent:

φ−1
j φ−1

i σγuφiφj = φ−1
j σγ(zσ)niuφj

= φ−1
j γzni σγuφj

= γzni φ
−1
j σγuφj

= γzni σγ(zσ)nj u

= σγ(zσ)ni+nj u.

So, conjugating by φ ∈ Stab(z) 6 Aut(F2), we can only move from σγu to
elements of the form σγ(zσ)λn0u, where n0 = gcd(n1, . . . , nk), and λ ∈ Z.
Thus, σγu and σγv belong to the same Aut(F2)-orbit if and only if v =
(zσ)λn0u for some λ ∈ Z, which happens if and only if vu−1 is a power of
(zσ)n0 . This is decidable in a free group. 2

Corollary 5.2. Aut(F2) has solvable conjugacy problem. 2

6. Positive results

In this section, positive results for the free and free abelian cases are ana-
lyzed. Along the two parallel subsections, we will give several examples of or-
bit decidable subgroups in Aut(Zn) = GLn(Z) and Aut(Fn), together with
the corresponding [f.g. free abelian]-by-[f.g. free] and [f.g. free]-by-[f.g. free]
groups with solvable conjugacy problem (see Theorem 3.3). The reader
can easily extend all these results to [f.g. free abelian]-by-[f.g. t.f. hyperbolic]
and [f.g. free]-by-[f.g. t.f. hyperbolic] groups, by direct application of Theo-
rem 4.12 (here, t.f. stands for torsion free).

As a technical preliminaries, we first need to solve the coset intersection
problem for free and virtually free groups, and to see that orbit decidability
goes up to finite index.

Proposition 6.1. Let K be the free group with basis X. Then, the coset
intersection problem CIP(K) is solvable.

Proof. Without loss of generality, we can assume that X is finite, since
CIP(K) only involves two finitely generated subgroups A,B 6 K and two
words x, y ∈ K. Now, using Stallings’ method (see [39]), we can construct
the corresponding core-graph ΓX(A) (resp. ΓX(B)) and attach to it, and
fold if necessary, a path labelled x (resp. y) from a new vertex vx (resp. vy)
to the base-point 1 in ΓX(A) (resp. 1 in ΓX(B)). Now, after computing the
pull-back of these two finite graphs, we can easily solve the coset intersection
problem: elements from xA ∩ yB are precisely labels of paths from (vx, vy)
to (1, 1) in the pull-back. So, xA ∩ yB 6= ∅ if and only if (vx, vy) and (1, 1)
belong to the same connected component of this pull-back. ¤
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Proposition 6.2. Let L be a group given by a finite presentation 〈X | R〉,
and let K be a finite index subgroup of L generated by a given finite set of
words in X. If CIP(K) is solvable then CIP(L) is also solvable.

Proof. By Todd-Coxeter algorithm (see Theorem 4.5), we can compute a
set of left coset representatives {1 = g0, g1, . . . , gq} of K in L (so, L =
K t g1K t · · · t gqK), plus the information on how to multiply them by
generators of L on the left, say xigj ∈ gd(i,j)K. This information can be
used to algorithmically write any given g ∈ L in the form g = gpk for some
(unique) p = 0, . . . , q, and k ∈ K. In particular, MP(K, L) is solvable.

Suppose now several elements x, y, a1, . . . , ar, b1, . . . , bs ∈ L are given;
we shall show how to decide whether xA ∩ yB is empty or not, where
A = 〈a1, . . . , ar〉 6 L and B = 〈b1, . . . , bs〉 6 L.

Let us compute a (finite) set of left coset representatives W of A modulo
A ∩ K in the following way. Enumerate all formal reduced words in the
alphabet {a1, . . . , ar}±1, say {w1, w2, . . .}, starting with the empty word,
w1 = 1, and in such a way that the length never decreases. Now, starting
with the empty set U = ∅, recursively enlarge it by adding wi whenever
wi(A ∩K) 6= wi′(A ∩K) for all wi′ ∈ U (use here MP(K,L)). Since K has
finite index in L, A ∩K has finite index in A and the set U can grow only
finitely many times. Stop the process at the moment when, for some l, no
word of length l can be added to U . At this moment we have exhausted the
search inside the Schreier graph of A modulo A ∩K, and the existing list
U = {1 = u1, . . . , um} is a set of left coset representatives of A∩K in A, say
A =

⊔m
i=1 ui(A∩K). Now, for every α = 1, . . . , r and i = 1, . . . , m, compute

d(α, i) such that aαui(A ∩ K) = ud(α,i)(A ∩ K) (again using MP(K,L)).
By the Reidemeister-Schreier method (see Theorem 2.7 in [27]), the set
{u−1

d(α,i)aαui | α = 1, . . . , r, i = 1, . . . , m} generates A∩K. Analogously, we
can compute a set V = {v1, . . . , vn} of left coset representatives for B ∩K
in B, say B =

⊔n
j=1 vj(B ∩K), together with a set of generators for B ∩K.

Clearly,

xA ∩ yB =

(
m⊔

i=1

xui(A ∩K)

)
∩




n⊔

j=1

yvj(B ∩K)




=
⊔

i,j

(xui(A ∩K) ∩ yvj(B ∩K)) .

Hence, xA ∩ yB 6= ∅ is equivalent to xui(A ∩K) ∩ yvj(B ∩K) 6= ∅ for
some i = 1, . . . , m and some j = 1, . . . , n. For each (i, j), consider the
element zi,j = v−1

j y−1xui and rewrite it in the form gpk for some (unique)
p = 0, . . . , q and k ∈ K. If p 6= 0 (i.e. if zi,j does not belong to K) then the
intersection xui(A∩K)∩ yvj(B ∩K) is empty. Otherwise, zi,j ∈ K and we
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are reduced to verify whether zi,j(A∩K)∩ (B ∩K) 6= ∅. This can be done
using CIP(K). ¤

Let us apply this result to GL2(Z). It is well-known that GL2(Z) admits
the following presentation

GL2(Z) ∼= D4 ∗
D2

D6 =

= 〈t4, x4 | t24, x4
4, (t4x4)2〉 ∗〈

t4 = t6
x2

4 = x3
6

〉 〈t6, x6 | t26, x6
6, (t6x6)2〉, (2)

where t4 = t6 = ( 0 1
1 0 ), x4 =

(
0 −1
1 0

)
and x6 =

(
1 −1
1 0

)
(see Example I.5.2

in [14]). Since one can algorithmically go from matrices to words in the
presentation, and viceversa, both models are algorithmically equivalent (and
we shall use one or the other whenever convenient).

Corollary 6.3. The problem CIP(GL2(Z)) is solvable.

Proof. There is a natural epimorphism ϕ : GL2(Z) ³ D12 = 〈t12, x12 |
t212, x12

12, (t12x12)2〉 given by t4 = t6 7→ t12, x4 7→ x3
12, x6 7→ x2

12. With a few
straightforward calculations, one can show that K = kerϕ is free of rank
2, with basis P = [x6, x4] = ( 1 1

1 2 ) and Q = [x2
6, x4] = ( 2 1

1 1 ). Since K has
index |D12| = 24 in L = GL2(Z), Propositions 6.1 and 6.2 conclude the
proof. ¤

Finally we see that, in general, orbit decidability goes up to finite index.

Proposition 6.4. Let F be a group given in an algorithmic way, and let
A 6 B 6 Aut(F ) be two subgroups given by finite sets of generators, such
that A has finite index in B and MP(A,B) is solvable. If A 6 Aut(F ) is
orbit decidable, then B 6 Aut(F ) is orbit decidable.

Proof. With a coset enumeration argument similar to that in the proof
of Proposition 6.2, we can compute a (finite) list, say {β1, . . . , βm}, of left
coset representatives of A in B, i.e. B = β1At · · ·tβmA (we formally need
MP(A,B) here, because B may have infinite index in Aut(F )). Now, for
any given u, v ∈ F , the existence of β ∈ B such that uβ is conjugate to v
is equivalent to the existence of i = 1, . . . , m and α ∈ A such that (uβi)α is
conjugate to v. Hence, orbit decidability for B 6 Aut(F ) follows from orbit
decidability for A 6 Aut(F ). ¤

6.1. The free abelian case. Let us concentrate on those short exact se-
quences in Theorem 3.1 with F being free abelian, say F = Zn, and look
for orbit decidable subgroups of Aut(Zn) = GLn(Z).

To begin, it is an elementary fact in linear algebra that two vectors
u, v ∈ Zn lie in the same GLn(Z)-orbit if and only if the highest common
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divisor of their entries coincide and, in this case, with the help of Euclid’s
algorithm, one can find an invertible matrix A such that uA = v. In other
words,

Proposition 6.5. The full automorphism group GLn(Z) of a finitely gen-
erated free abelian group Zn, is orbit decidable. ¤

Corollary 6.6. Let A1, . . . , Am ∈ GLn(Z). If 〈A1, . . . , Am〉 = GLn(Z),
then the Zn-by-Fm group G = ZnoA1,...,Am Fm has solvable conjugacy prob-
lem. ¤

It is also a straightforward exercise in linear algebra to see that cyclic
subgroups of GLn(Z) are orbit decidable. That is, given A ∈ GLn(Z)
and u, v ∈ Zn one can algorithmically decide whether uAk = v for some
integer k: in fact, think A as a complex matrix, work out its Jordan form
(approximating eigenvalues with enough accuracy) and then solve explicit
equations (with the appropriate accuracy). This provides a solution to the
conjugacy problem for cyclic extensions of Zn.

Proposition 6.7. Cyclic subgroups of GLn(Z) are orbit decidable. ¤

Corollary 6.8. Zn-by-Z groups have solvable conjugacy problem. ¤

However, this was already known via an old result due to V.N. Remeslen-
nikov, because Zn-by-Z groups are clearly polycyclic. In [36] it was proven
that polycyclic groups G are conjugacy separable. As a consequence, such
a group, when given by an arbitrary finite presentation, has solvable conju-
gacy problem (use a brute force algorithm for solving CP+(G), and another
for CP−(G) enumerating all maps into finite symmetric groups (i.e. onto
finite groups) and checking whether the images of the given elements are
conjugated down there). But, furthermore, this result can now be used to
prove a more general fact about orbit decidability in GLn(Z).

J. Tits [40] proved the deep and remarkable fact that every finitely gen-
erated subgroup of GLn(Z) is either virtually solvable or it contains a non-
abelian free subgroup. The following proposition says that the first kind
of subgroups are always orbit decidable, so forcing orbit undecidable sub-
groups of GLn(Z) to contain non-abelian free subgroups. This somehow
means that orbit undecidability in GLn(Z) is intrinsically linked to free-like
structures.

Proposition 6.9. Any virtually solvable subgroup of GLn(Z) is orbit de-
cidable.

Proof. Let B be a virtually solvable subgroup of GLn(Z), given by a fi-
nite generating set of matrices A1, . . . , Am. By a Theorem of A.I. Mal’cev
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(see [28], or Chapter 2 in [37]), every solvable subgroup of GLn(Z) is poly-
cyclic; so, B = 〈A1, . . . , Am〉 has a finite index subgroup C 6 B which is
polycyclic and, in particular, finitely presented.

Recurrently perform the following two lists: on one hand keep enumer-
ating all finite presentations of all polycyclic groups (use a similar strategy
as that in the proof of Theorem 4.8 above, enumerating first all canonical
presentations of such groups, and diagonally applying all possible Tietze
transformations to all of them). On the other hand, enumerate a set of
pairs (C,M), where C is a finite set of generators for a finite index sub-
group C of B, and M = {M1, . . . ,Mr} is a finite set of matrices such that
B = M1 · C ∪ · · · ∪Mr · C, and in such a way that C eventually visits all
finite index subgroups of B; we can do this in a similar way as in the proof
of Lemma 4.6: enumerate all saturated and folded Stallings graphs with
increasingly many vertices over the alphabet {A1, . . . , Am}, and map the
corresponding finite index subgroup and finite set of coset representatives
(one for each vertex) down to B, where possible repetitions may happen
(see [39]).

These two lists are infinite so the started processes will never end; but,
while running, keep choosing an element in each list in all possible ways,
say C ′ = 〈t1, . . . , tp | R1, . . . , Rq〉 and (C,M), and check whether there
is an onto map from {t1, . . . , tp} to C that extend to an (epi)morphism
C ′ → C (this just involves few matrix calculations in GLn(Z)). Stop all the
computations when finding such a map (which we are sure it exists because
some finite index subgroup C 6 B is polycyclic, and so isomorphic to one of
the presentations in the first list). When this procedure terminates, we have
got a finite presentation 〈t1, . . . , tp | R1, . . . , Rq〉 of a polycyclic group C ′

and a map C ′ → C onto a finite index subgroup C 6 B = 〈A1, . . . , Am〉 6
GLn(Z), for which we also know a finite set of coset representatives M,
with possible repetitions.

Now, write down the natural presentation of the group G = Zn oC C ′.
Since it is clearly polycyclic, Remeslennikov’s result [36] tells us that G has
solvable conjugacy problem (for instance, from the computed presentation).
Thus, by Theorem 3.1 (a) ⇒ (c), the corresponding group of actions, C 6
GLn(Z), is orbit decidable (note that hypothesis (iii) of Theorem 3.1 may
not be satisfied in this case, but it is not used in the proof of implication (a)
⇒ (c)). Finally, B 6 GLn(Z) is orbit decidable as well: given two vectors
u, v ∈ Zn, deciding whether v = uP for some P ∈ B is the same as deciding
whether v = uMiQ for some i = 1, . . . , r and Q ∈ C, which reduces to
finitely many claims to the orbit decidability of C 6 GLn(Z). ¤
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Corollary 6.10. Let A1, . . . , Am ∈ GLn(Z). If B = 〈A1, . . . , Am〉 6
GLn(Z) is virtually solvable, then the Zn-by-Fm group G = ZnoA1,...,Am

Fm

has solvable conjugacy problem. ¤

Let us consider now finite index subgroups of GLn(Z).

Proposition 6.11. Any finite index subgroup of GLn(Z) (given by gener-
ators) is orbit decidable.

Proof. Let B 6 GLn(Z) be a finite index subgroup generated by some given
matrices. Take your favorite presentation for GLn(Z) (see, for example,
Section 3.5 of [27]) and write them in terms of it. With a similar argument
as in the proof of Lemma 4.6, we can compute generators for the subgroup

A =
⋂

P∈GLn(Z)
(P−1 ·B · P ) = B ∩BP1 ∩ · · · ∩BPm £ GLn(Z),

where Id = P0, P1, . . . , Pm is a set of right coset representatives for B in
GLn(Z) (computable by Todd-Coxeter algorithm, see Theorem 4.5). By
Proposition 6.4, we are reduced to see that A £ GLn(Z) is orbit decidable.

Given u, v ∈ Zn, we have to decide whether some matrix of A sends u to v.
Clearly, we can assume u, v 6= 0 and check whether there exists M ∈ GLn(Z)
such that uM = v (see Proposition 6.5). Once we have such M , the set
of all those matrices carrying u to v is precisely M · Stab(v). And it is
straightforward to compute a finite generating set for the stabilizer of v (it is
conjugate to Stab(1, 0, . . . , 0) = {( 1 0 ··· 0

∗ ∗ ∗ ∗ )}). It remains to algorithmically
decide whether the intersection A ∩ (M · Stab(v)) is or is not empty; or,
equivalently, whether M ∈ A · Stab(v) holds or not. This is decidable
because A · Stab(v) is a finite index subgroup of GLn(Z) (here is where
normality of A is needed) with a computable set of generators; hence, MP(A·
Stab(v), GLn(Z)) is solvable, again by Todd-Coxeter algorithm. ¤

Corollary 6.12. Let A1, . . . , Am ∈ GLn(Z). If 〈A1, . . . , Am〉 has finite
index in GLn(Z) then the Zn-by-Fm group Zn oA1,...,Am Fm has solvable
conjugacy problem. ¤

Finally, let us concentrate on rank two.

Proposition 6.13. Every finitely generated subgroup of GL2(Z) is orbit
decidable.

Proof. Let A1, . . . , Ar ∈ GLn(Z) be some given matrices and consider the
subgroup they generate, 〈A1, . . . , Ar〉 6 GLn(Z). For n = 2, given u, v ∈
Zn, let us decide whether there exists A ∈ 〈A1, . . . , Ar〉 such that uA = v.
We can clearly assume u, v 6= 0.
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By Proposition 6.5, we can decide whether there exists M ∈ GLn(Z)
such that uM = v and, in the affirmative case, find such an M . And it is
straightforward to find a set of generators for the stabilizer of v, Stab(v) =
{B ∈ GLn(Z) | vB = v}, say {B1, . . . , Bs} (in the case n = 2, every such
stabilizer is conjugate to Stab(1, 0) = 〈( 1 0

1 1 ) ,
(

1 0
0 −1

)〉). Then, the matrices
sending u to v are precisely those contained in the coset M〈B1, . . . , Bs〉. So,
it remains to decide whether 〈A1, . . . , Ar〉∩M〈B1, . . . , Bs〉 is empty or not.

In the case n = 2, this can be done algorithmically (see Corollary 6.3). ¤
Note that the proof of Proposition 6.13 works for every dimension n

except at the end, when Corollary 6.3 is used. We shall refer to this fact
later.

Corollary 6.14. All Z2-by-[f.g. free] groups have solvable conjugacy prob-
lem. ¤
6.2. The free case. Following the same route as in the previous subsection,
let us concentrate now on those short exact sequences in Theorem 3.1 with F
being free, say F = Fn, and look for orbit decidable subgroups of Aut(Fn).

To begin, classical Whitehead algorithm (see Proposition I.4.19 in [25])
decides, given u, v ∈ Fn, whether there exists an automorphism of Fn send-
ing u to v up to conjugacy. In other words,

Theorem 6.15 (Whitehead, [41]). The full automorphism group Aut(Fn)
of a finitely generated free group Fn, is orbit decidable. ¤
Corollary 6.16. Let Fn be a finitely generated free group. If ϕ1, . . . , ϕm

generate Aut(Fn), then the Fn-by-Fm group G = Fnoϕ1,...,ϕm Fm has solv-
able conjugacy problem. ¤

Like in the abelian case, cyclic subgroups of Aut(Fn) are orbit decidable
by a result of P. Brinkmann. This is the analog of Proposition 6.7 for the
free case, but here the proof is much more complicated, making strong use
of the theory of train-tracks. This was already used to solve the conjugacy
problem for free-by-cyclic groups:

Theorem 6.17 (Brinkmann, [10]). Cyclic subgroups of Aut(Fn) are orbit
decidable. ¤
Corollary 6.18 (Bogopolski-Martino-Maslakova-Ventura, [6]). [f.g. free]-
by-cyclic groups have solvable conjugacy problem. ¤

The analog of Proposition 6.9 and Corollary 6.10 in the free setting is not
known, and seems to be an interesting and much more complicated problem.
See Question 5 in the last section for some comments about it, and a clear
relation with Tits alternative for Aut(Fn).

Let us now consider finite index subgroups of Aut(Fn).
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Proposition 6.19. Let Fn be a finitely generated free group. Any finite
index subgroup of Aut(Fn) (given by generators) is orbit decidable.

Proof. Let B 6 Aut(Fn) be a finite index subgroup generated by some given
automorphisms. Consider Nielsen’s presentation of Aut(Fn) (see Proposi-
tion N1 in Section 3.5 of [27]) and write them in terms of this presentation
(i.e. as products of Nielsen automorphisms). Then, with a similar argument
as in the proof of Lemma 4.6, we can compute generators for the subgroup

A =
⋂

φ∈Aut(Fn)

(φ−1Bφ) = B ∩Bφ1 ∩ · · · ∩Bφm £ Aut(Fn),

where Id = φ0, φ1, . . . , φm is a set of right coset representatives for B in
Aut(Fn) (computable by Todd-Coxeter algorithm, see Theorem 4.5). By
Proposition 6.4, we are reduced to see that A £ Aut(Fn) is orbit decidable.

Let u, v ∈ Fn. Using Whitehead’s algorithm, we can check whether there
exists an automorphism α ∈ Aut(Fn) carrying u to v. Once we have such α,
the set of all those automorphisms carrying u to a conjugate of v is precisely
α ·Stab(v) · Inn(Fn). By McCool’s algorithm (see Proposition I.5.7 in [25]),
we can compute a finite generating set for the stabilizer of v. It remains to
algorithmically decide whether the intersection A∩ (α ·Stab(v) ·Inn(Fn)) is
or is not empty; or, equivalently, whether α ∈ A ·Stab(v) · Inn(Fn) holds or
not. This is decidable because A·Stab(v)·Inn(Fn) is a finite index subgroup
of Aut(Fn) (here is where normality of A is needed) with a computable set
of generators; hence, MP(A · Stab(v) · Inn(Fn), Aut(Fn)) is solvable, again
by Todd-Coxeter algorithm. ¤
Corollary 6.20. Let Fn be a finitely generated free group. If ϕ1, . . . , ϕm

generate a finite index subgroup of Aut(Fn), then the Fn-by-Fm group G =
Fn oϕ1,...,ϕm Fm has solvable conjugacy problem. ¤

Now, let us concentrate on rank two. Like in the abelian case, we have

Proposition 6.21. Let F2 be the free group of rank two. Then every finitely
generated subgroup of Aut(F2) is orbit decidable.

Proof. Let A be a finitely generated subgroup of Aut(Fn) and let u, v ∈ Fn

be given. For n = 2, we have to decide whether there exists ϕ ∈ A such
that uϕ is conjugate to v.

Mimicking the proof of Proposition 6.13, let us apply Whitehead’s algo-
rithm to u, v (see Proposition I.4.19 in [25]). If there is no automorphism
in Aut(Fn) sending u to v then, clearly, the answer to our problem is also
negative. Otherwise, we have found α ∈ Aut(Fn) such that uα = v. Now,
the set of all such automorphisms of Fn is α · Stab(v). And the set of all
automorphisms of Fn mapping u to a conjugate of v is α ·Stab(v) ·Inn(Fn).
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By McCool’s algorithm (see Proposition I.5.7 in [25]), we can find a finite
system of generators for Stab(v) 6 Aut(Fn). Finally, all we need is to verify
whether A ∩ (α · Stab(v) · Inn(Fn)) is or is not empty.

In the case n = 2 this can be done algorithmically: since the kernel
of the canonical projection : Aut(F2) ³ GL2(Z) is Inn(F2) (which is a
very special fact of the rank 2 case), our goal is equivalent to verifying
whether A ∩ (α · Stab(v)) is or is not empty in GL2(Z). This can be done
by Corollary 6.3. ¤

Note that the proof of Proposition 6.21 works for every rank n except for
the last paragraph, exactly like in Proposition 6.13. We shall refer to this
fact later.

Corollary 6.22. All F2-by-[f.g. free] groups have solvable conjugacy prob-
lem. ¤

Another nice examples of orbit decidable subgroups in Aut(Fn) come
from geometry. Certain mapping class groups of surfaces with boundary
and punctures turn out to embed in the automorphism group of the free
group of the appropriate rank. The image of these embeddings are easily
seen to be orbit decidable in two special cases. From [15] we extract the
following two examples.

Let Sg,b,n be an orientable surface of genus g, with b boundary compo-
nents and n punctures. It is well known that its fundamental group has
presentation

Σg,b,n =
=〈x1, y1,. . ., xg, yg, z1,. . ., zb, t1,. . ., tn | [x1, y1]· · ·[xg, yg]z1· · ·zbt1· · ·tn =1〉,

and, except for b = n = 0, is a free group of rank 2g + b + n − 1. In
the following cases, the mapping class group of Sg,b,n can be viewed as a
subgroup of Aut(F2g+b+n−1), see [15] for details:

Proposition 6.23. (see [15]) Let Sg,b,n be an orientable surface of genus
g, with b boundary components, and with n punctures.

(i) (Maclachlan) The positive pure mapping class group of Sg,0,n+2

becomes (when the basepoint is taken to be the (n + 2)nd punc-
ture) the group Aut+

g,0,1⊥n+1 of automorphisms of Σg,0,n+1 ' F2g+n

which fix each conjugacy class [tj ], j = 1, . . . , n + 1 (the case g = 0
gives the pure braid group on n + 1 strings modulo the center,
Bn+1/Z(Bn+1)).

(ii) (A’Campo) The positive mapping class group of Sg,1,n becomes
(when the basepoint is taken to be on the boundary) the group
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Aut+
g,1̂,n

of automorphisms of Σg,1,n ' F2g+n which fix z and per-
mute the set of conjugacy classes {[t1], . . . , [tn]} (the case g = 0
gives the braid group on n strings, Bn).

A particularly interesting case is when g = 0 in (ii) above: Aut+
0,1̂,n

is
the image of classical Artin’s embedding of the braid group on n strings
into Aut(Fn), sending generator σi ∈ Bn (i = 1, . . . , n− 1) to σi : Fn → Fn,
ti 7→ titi+1t

−1
i , ti+1 7→ ti, tj 7→ tj for j 6= i, i + 1. The subgroup Aut+

0,1̂,n
=

〈σ1, . . . , σn−1〉 6 Aut(Fn) is then characterized as those automorphisms
ϕ ∈ Aut(Fn) for which (t1t2 · · · tn)ϕ = t1t2 · · · tn and there exist words
w1, . . . , wn ∈ Fn and a permutation σ of the set of indices such that tiϕ =
w−1

i tσ(i)wi.
All these groups of automorphisms, Aut+

g,0,1⊥n+1 6 Aut(F2g+n) and
Aut+

g,1̂,n
6 Aut(F2g+n), are easily seen to be orbit decidable because of

the following observation.

Proposition 6.24. Let Fn be a finitely generated free group, and let ui, vi ∈
Fn (i = 0, . . . ,m) be two lists of elements. Then,

(i) A = {ϕ | u0ϕ = v0, u1ϕ ∼ v1, . . . , umϕ ∼ vm} 6 Aut(Fn) and
(ii) B = {ϕ | u0ϕ = v0, u1ϕ ∼ vσ(1), . . . , umϕ ∼ vσ(m) for some σ ∈

Sym(m)} 6 Aut(Fn)
are orbit decidable.

Proof. For (i), given u, v ∈ Fn, we have to decide whether there exists an
automorphism ϕ ∈ Aut(Fn) such that u0ϕ = v0, [u1]ϕ = [v1], . . . , [um]ϕ =
[vm] and [u]ϕ = [v], where brackets denote conjugacy classes. This is the
same as deciding whether there exists ϕ such that [u0]ϕ = [v0], [u1]ϕ =
[v1], . . . , [um]ϕ = [vm] and [u]ϕ = [v] (and, in the affirmative case, compos-
ing ϕ by γw−1

0
, where w0 is the first conjugator, u0ϕ = w−1

0 v0w0). One can
make this decision by applying Proposition 4.21 in [25]. Finally, (ii) can be
solved by using up to m! many times the solution given for (i). ¤

It is worth mentioning that D. Larue in his PhD thesis [24] analyzed
the Aut+

0,1̂,n
-orbit of t1 in Σ0,1,n (i.e. the Bn-orbit of t1 in Fn) and he

provided an algorithm to decide whether a given word w ∈ Fn belongs to
this orbit (note that this is not exactly a special case of OD(Bn) because
Bn does not contain all inner automorphisms). Although working only for
the orbit of t1, the algorithm provided is faster and nicer than that provided
in Proposition 6.24.

Corollary 6.25. Let F2g+n be a finitely generated free group. If ϕ1,. . ., ϕm∈
Aut(F2g+n) generate the positive pure mapping class group Aut+

g,0,1⊥n+1 ,
or the positive mapping class group Aut+

g,1̂,n
then the F2g+n-by-Fm group
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G = F2g+n oϕ1,...,ϕm Fm has solvable conjugacy problem (a particular case
of this being when ϕ1, . . . , ϕm generate the standard copy of the braid group
Bn 6 Aut(Fn)). ¤

7. Negative results

Let us construct now negative examples, namely orbit undecidable sub-
groups of GLn(Z) and Aut(Fn) which, of course, will correspond to [f.g. free
abelian]-by-[f.g. free] and [f.g. free]-by-[f.g. free] groups with unsolvable con-
jugacy problem.

As mentioned above, Miller constructed a [f.g. free]-by-[f.g. free] group
with unsolvable conjugacy problem (see [30]); here, we have a first source
of examples of finitely generated subgroups of the automorphism group of
a free group, which are orbit undecidable. In the present section, we will
generalize this construction by giving a source of orbit undecidability in
Aut(F ) for more groups F . When taking F to be free, this will reproduce
Miller’s example; when taking F = Zn for n > 4, we will obtain orbit
undecidable subgroups in GLn(Z), which correspond to the first known
examples of [f.g. free abelian]-by-[f.g. free] groups with unsolvable conjugacy
problem.

Let us recall Miller’s construction. It begins with an arbitrary finite
presentation, H = 〈s1, . . . , sn | R1, . . . , Rm〉, where the Rj ’s are words on
the si’s. Let Fn+1 = 〈q, s1, . . . , sn | 〉 and Fm+n = 〈t1, . . . , tm, d1, . . . , dn | 〉
be the free groups of rank n + 1 and m + n, respectively, on the listed
generators. Consider now the m + n automorphisms of Fn+1 given by

αi : Fn+1 → Fn+1 βj : Fn+1 → Fn+1

q 7→ qRi q 7→ s−1
j qsj

sk 7→ sk sk 7→ sk

,

for i = 1, . . . , m and j, k = 1, . . . , n, and denote the group of automorphisms
they generate by A(H) 6 Aut(Fn+1). Next, consider the Fn+1-by-Fm+n

group defined by these automorphisms,

G(H) = Fn+1 oα1,...,αm,β1,...,βn Fm+n.

The following Theorem is Corollary 5 in Chapter III of [30]. Below, we shall
provide an alternative proof.

Theorem 7.1 (Miller, [30]). If H has unsolvable word problem then G(H)
has unsolvable conjugacy problem.

So, applying Miller’s construction to a presentation H with n generators,
m relations, and with unsolvable word problem, one obtains a (m + n)-
generated subgroup of Aut(Fn+1), namely A(H), which is orbit undecidable.
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In [8], V. Borisov constructed a group presented with 4 generators, 12
relations, and having unsolvable word problem. In order to reduce the
number of generators to 2 (and so have the corresponding orbit undecidable
subgroup living inside Aut(F3)) we can use Higman-Neumann-Neumann
embedding theorem, saying that any countable group can be embedded in
a group with two generators and the same number of relations (see [21]).
Since solvability of the word problem clearly passes to subgroups, we obtain
a group with n = 2 generators, m = 12 relations, and having unsolvable
word problem. Using Miller’s construction we conclude the existence of a
F3-by-F14 group with unsolvable conjugacy problem. In other words,

Corollary 7.2. There exists a 14-generated subgroup A 6 Aut(F3) which
is orbit undecidable. ¤

Let us now find a more general source of orbit undecidability that will
apply to more groups F other than free (and, in the free case, will coincide
with Miller’s example via Mihailova’s result).

Let F be a group. Recall that the stabilizer of a given subgroup K 6 F ,
denoted Stab(K), is

Stab (K) = {ϕ ∈ Aut(F ) | kϕ = k ∀k ∈ K} 6 Aut(F ).

For simplicity, we shall write Stab (k) to denote Stab (〈k〉), k ∈ F . Fur-
thermore, we define the conjugacy stabilizer of K, denoted Stab∗(K), to be
the set of automorphisms acting as conjugation on K, formally Stab∗(K) =
Stab (K) · Inn(F ) 6 Aut(F ).

Proposition 7.3. Let F be a group. Suppose we are given two subgroups
A 6 B 6 Aut(F ) and an element v ∈ F such that B ∩ Stab∗(v) = {Id}. If
A 6 Aut(F ) is orbit decidable then MP(A,B) is solvable.

Proof. Given ψ ∈ B 6 Aut(F ), let us decide whether ψ ∈ A or not. Take
w = vψ and observe that

{φ ∈ B | vφ ∼ w} = B ∩ (Stab∗(v) · ψ) = (B ∩ Stab∗(v)) · ψ = {ψ}.
So, there exists φ ∈ A such that vφ is conjugate to w in F , if and only if
ψ ∈ A. Hence, orbit decidability for A 6 Aut(F ) solves MP(A,B). ¤

One can interpret Proposition 7.3 by saying that if, for a group F , Aut(F )
contains a pair of subgroups A 6 B 6 Aut(F ) with unsolvable MP(A,B)
then A 6 Aut(F ) is orbit undecidable.

The most classical example of unsolvability of the membership problem
goes back to fifty years ago. In [29] (see also Chapter III.C of [30]) Mi-
hailova gave a nice example of unsolvability of the membership problem.
The construction goes as follows.



34 O. BOGOPOLSKI, A. MARTINO AND E. VENTURA

Like before, start with an arbitrary finite presentation, H = 〈s1, . . . , sn |
R1, . . . , Rm〉, and consider the subgroup A = {(x, y) ∈ Fn × Fn | x =H

y} 6 Fn×Fn. It is straightforward to verify that A = 〈(1, R1), . . . , (1, Rm),
(s1, s1), . . . , (sn, sn)〉 (and so it is finitely generated), and that MP(A, Fn×
Fn) is solvable if and only if WP(H) is solvable.

By Higman-Neumann-Neumann embedding theorem, we can restrict our
attention to 2-generated groups (take n = 2 in the above paragraph). From
all this, we deduce the following.

Theorem 7.4. Let F be a finitely generated group such that F2×F2 embeds
in Aut(F ) in such a way that the image intersects trivially with Stab∗(v),
for some v ∈ F . Then, Aut(F ) contains an orbit undecidable subgroup;
in other words, there exist F -by-[f.g. free] groups with unsolvable conjugacy
problem. ¤

In the rest of the section, we shall use Theorem 7.4 to obtain explicit
examples in the free abelian and free cases.

7.1. The free abelian case. It is well known that F2 embeds in GL2(Z)
and so, F2 × F2 embeds in GL4(Z). Hence, we can deduce the following
result.

Proposition 7.5. For n > 4, GLn(Z) contains finitely generated orbit
undecidable subgroups.

Proof. Consider the subgroup of GL2(Z) generated by P = ( 1 1
1 2 ) and Q =

( 2 1
1 1 ), which is free and freely generated by {P, Q} as discussed in the proof

of Corollary 6.3. We claim that 〈P, Q〉 ∩ Stab∗
(
(1, 0)

)
= 〈( 1 0

12 1 )〉. In fact,
it is clear that Stab∗

(
(1, 0)

)
= Stab

(
(1, 0)

)
=

{(
1 0
n ±1

) | n ∈ Z}
(and we

can forget the negative signum because we are interested in the intersection
with 〈P, Q〉 6 SL2(Z)). Now, the image of ( 1 0

1 1 ) = x−1
6 x4 under ϕ is

x−2
12 x3

12 = x12 ∈ D12 (see the proof of Corollary 6.3 for notation). So,

〈P, Q〉 ∩ Stab∗
(
(1, 0)

)
= kerϕ ∩ Stab

(
(1, 0)

)
= 〈(x−1

6 x4)12〉 = 〈( 1 0
12 1 )〉.

Choose now a (free) subgroup 〈P ′, Q′〉 6 〈P, Q〉 intersecting trivially with
the cyclic subgroup 〈( 1 0

12 1 )〉 (this always exists in non-cyclic free groups).
And, for n > 4, consider

B =
〈(

P ′ 0
0 Id

)
,

(
Q′ 0
0 Id

)
,

(
Id 0
0 P ′

)
,

(
Id 0
0 Q′

)〉
6

6 GL4(Z) 6 GLn(Z),
which is clearly isomorphic to F2×F2. By construction, B intersects trivially
with the (conjugacy) stabilizer of v = (1, 0, 1, 0, . . . , 0) ∈ Zn. Finally, using
Mihailova’s construction, find a finitely generated subgroup A 6 B with
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unsolvable MP(A, B). By Proposition 7.3 applied to F = Zn, A is a finitely
generated orbit undecidable subgroup of Aut(Zn) = GLn(Z). ¤

Corollary 7.6. There exist Z4-by-[f.g. free] groups with unsolvable conju-
gacy problem. ¤

While the constructions are quite different, these groups are reminiscent
of Miller’s examples, but with a free abelian base group. To the best of
our knowledge, they are the first known examples of [f.g. free abelian]-by-
[f.g. free] groups with unsolvable conjugacy problem. As a side consequence
of the previous reasoning, we also obtain the following corollary.

Corollary 7.7. For n > 4, CIP(GLn(Z)) is unsolvable.

Proof. As noted above, the proof of Proposition 6.13 works entirely for any
dimension n for which CIP(GLn(Z)) is solvable (for example, n = 2). But
Proposition 7.5 states the existence of finitely generated orbit undecidable
subgroups of GLn(Z), for n > 4. Hence, CIP(GLn(Z)) must be unsolvable
in this case. ¤

7.2. The free case. In order to apply Theorem 7.4 to the free group F3 =
〈q, a, b | 〉 of rank 3, we need to identify a copy of F2 × F2 inside Aut(F3).
For every w ∈ 〈a, b〉, consider the automorphisms wθ1 : F3 → F3, q 7→ wq,
a 7→ a, b 7→ b, and 1θw : F3 → F3, q 7→ qw, a 7→ a, b 7→ b. Clearly,
w1θ1 w2θ1 = w1w2θ1 and 1θw1 1θw2 = 1θw2w1 , which means that {wθ1 | w ∈
〈a, b〉} ' F2 and { 1θw | w ∈ 〈a, b〉} ' F op

2 ' F2. It is also clear that
w1θ1 1θw2 = w1θw2 = 1θw2 w1θ1 (with the natural definition for w1θw2).
So, we have an embedding F2 × F2 ' F op

2 × F op
2 → Aut(F3) given by

(w1, w2) 7→ w−1
1

θw2 , whose image is

B = 〈a−1θ1, b−1θ1, 1θa, 1θb〉 = {w1θw2 | w1, w2 ∈ 〈a, b〉} 6 Aut(F3).

In order to use Proposition 7.3, let us consider the element v = qaqbq.
We claim that B ∩ Stab∗(v) = {Id}. In fact, suppose w1, w2 ∈ 〈a, b〉 are
such that (v) w1θw2 = w1qw2aw1qw2bw1qw2 is conjugate to v = qaqbq in
F3. Since both words have exactly three occurrences of q, they must agree
up to cyclic reordering. That is, q(w2aw1)q(w2bw1)q(w2w1) equals either
qaqbq, or qbq2a, or q2aqb. From this, one can straightforward deduce that
w1 = w2 = 1 in all three cases. Thus, w1θw2 = Id proving the claim.

Now, let H = 〈a, b | R1, . . . , R12〉 be Borisov’s example of a group with
unsolvable word problem, embedded in a 2-generated group via Higman-
Neumann-Neumann embedding (see above and [21]). By Mihailova result
and Proposition 7.3, A = 〈 1θR1 , . . . , 1θR12 , a−1θa, b−1θb〉 6 Aut(F3) is orbit
undecidable. Hence, by Theorem 3.3, the F3-by-F14 group determined by
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the automorphisms 1θR1 , . . . , 1θR12 , a−1θa, b−1θb ∈ Aut(F3),

G=

〈 t−1
i qti =qRi,d

−1
1 qd1 =a−1qa,d−1

2 qd2 =b−1qb
q, a, b, t1,. . ., t12, d1, d2 t−1

i ati =a ,d−1
1 ad1 =a ,d−1

2 ad2 =a
t−1
i bti =b ,d−1

1 bd1 =b ,d−1
2 bd2 =b

〉
,

has unsolvable conjugacy problem. This is precisely Miller’s group G(H)
associated to H = 〈a, b | R1, . . . , R12〉 (see the beginning of the present
section). Thus, the argument just given provides an alternative proof of
Miller’s Theorem 7.1.

Corollary 7.8. For n > 3, CIP(Aut(Fn)) is unsolvable.

Proof. As noted above, the proof of Proposition 6.21 works entirely for any
rank n for which CIP(Aut(Fn)) is solvable. But, for n > 3, Aut(Fn) contains
finitely generated orbit undecidable subgroups. Hence, CIP(Aut(Fn)) must
be unsolvable in this case. ¤

8. Open problems

Finally, we collect several questions suggested by the previous results.

Question 1. Apart from finitely generated abelian, free, surface and poly-
cyclic groups, and virtually all of them (see Theorem 4.8), find more exam-
ples of groups F with solvable twisted conjugacy problem.

Commentary. As mentioned in Section 4, for every group F with solvable
twisted conjugacy problem, the study of orbit decidability/undecidability
among subgroups of Aut(F ) becomes interesting because it directly corre-
sponds to solving the conjugacy problem for some extensions of F . ¤

Question 2. Is the twisted conjugacy problem solvable for finitely gener-
ated hyperbolic groups ?

Commentary. The first step into this direction is the solvability of the
twisted conjugacy problem for finitely generated free groups, proven in [6].
However, there is no hope to extend that proof for hyperbolic groups because
we do not have enough control on the automorphism group of an arbitrary
hyperbolic group. ¤

Question 3. Let F be a group given by a finite presentation 〈X | R〉,
and suppose we are given a set of words {w1, . . . , wr} on X such that K =
〈w1, . . . , wr〉 6 F is a finite index subgroup. Does solvability of TCP(F )
imply solvability of TCP(K) ? Is it true with the extra assumption that K
is characteristic in F ?
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Commentary. The reverse implication is proved to be true in Proposi-
tion 4.7 (i), under the characteristic assumption for K. However, to go
down from F to K we would have to consider the apparently more compli-
cated problem of dealing with possible automorphism of K which do not
extend to automorphisms of F . Maybe this is a strong enough reason to
build a counterexample. Note that the answer to the non-twisted version of
the same question is no by a result of Collins-Miller (see [12]). ¤

Question 4. Let F be Zn or Fn, and let A 6 B 6 Aut(F ) be two subgroups
given by finite sets of generators, such that A has finite index in B, and
MP(A, B) is solvable. Is it true that orbit decidability for B 6 Aut(F )
implies orbit decidability for A 6 Aut(F ) ?

Commentary. The reverse implication is proven in Proposition 6.4. With
the first argument there, a finite list of left coset representatives of A in
B can be computed, say B = β1A t · · · t βmA. Then, given u, v ∈ F ,
and assuming we got β ∈ B such that v ∼ uβ, the set of all such β’s is
β · Stab(v) · Inn(F ). Since generators for Stab(v) · Inn(F ) are computable
(by straightforward matrix calculations in the case F = Zn, and by Mc-
Cool’s algorithm in the case F = Fn), it only remains to decide whether
the intersection β · Stab(v) · Inn(F ) ∩A is empty or not. This can be done
in the case n = 2 because CIP(GL2(Z)) is solvable (see the proof of Propo-
sition 6.21). However, this last part of the argument does not work in the
other cases, because CIP(Aut(F )) is unsolvable for F = Zn with n ≥ 4 (see
Corollary 7.7), and for F = Fn with n ≥ 3 (see Corollary 7.8).

As partial answers, note that Propositions 6.11 and 6.19 show that the
answer is yes in the special cases where F = Zn and B = GLn(Z), and
where F = Fn and B = Aut(Fn), respectively.

We formulate the question for free and free abelian groups because, if
one allows an arbitrary ambient F , then the answer is negative: consider
Collins-Miller example of a finitely presented group G with an index two
subgroup F 6 G such that CP(G) is solvable but CP(F ) is unsolvable
(see [12]); furthermore, G contains an element g0 ∈ G of order two which
acts on F as a non-inner automorphism γg0 ∈ Aut(F ). So, we have the
short exact sequence 1 → F → G → C2 → 1. Since CP(G) is solvable,
the action subgroup B = {Id, γg0} 6 Aut(F ) is orbit decidable; however,
CP(F ) is unsolvable meaning that the trivial subgroup A = {Id} 6 Aut(F )
is orbit undecidable. ¤

Question 5. Is any virtually solvable subgroup of Aut(Fn) orbit decidable?

Commentary. This is the analog of Proposition 6.9 in the free setting. How-
ever, it reduces to the same question for virtually free abelian subgroups. In
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fact, Bestvina-Feighn-Handel proved in [1] that every solvable subgroup of
Out(Fn) contains a finitely generated free abelian subgroup of index at most
35n2

(additionally, it is also known that free abelian subgroups of Out(Fn)
have rank at most 2n − 3). And the same if true for Aut(Fn) because one
can easily embed Aut(Fn) in Out(F2n) by sending α ∈ Aut(Fn) to the outer
automorphism of F2n which acts as α on both the first half and the sec-
ond half of the generating set. So, the situation is formally simpler than
in Proposition 6.9, but the argument there does not work here because we
cannot use the trick about polycyclic groups. Apart from the possible finite
index step, this question asks for a multidimensional version of Brinkmann’s
result (Theorem 6.17). So, due to the complexity of the proof and solution
for the cyclic case, it seems a quite difficult question.

It is worth remarking that Bestvina-Feighn-Handel also proved in [2] a
strong version of Tits alternative for Out(Fn): every subgroup of Out(Fn)
is either virtually solvable (and hence virtually free abelian) or contains a
non-abelian free group. Since the same is true for subgroups of Aut(Fn)
via the above embedding, an affirmative answer to Question 5 would then
force orbit undecidable subgroups of Aut(Fn) to contain non-abelian free
subgroups, like in the abelian context. This would intuitively confirm that,
again, orbit undecidability is intrinsically linked to free-like structures. ¤

Question 6. Is any finitely presented subgroup of Aut(Fn) orbit decidable?

Commentary. This question contains Question 5, so it is even more difficult
to be answered in the affirmative. Note that orbit undecidable subgroups
of the form A = 〈 1θR1 , . . . , 1θR12 , a−1θa, b−1θb〉 6 Aut(F3) correspond-
ing to Miller’s examples (see subsection 7.2) are not a counterexample to
this question because they are not finitely presented by Proposition B in
Grunewald [20] (there, F ×φ F corresponds to our A 6 B ' F2 × F2 6
Aut(F3), and H corresponds to Borisov’s group with two generators and un-
solvable word problem). Alternatively, A is not finitely presented because it
is not the direct product of finite index subgroups of F2 = {wθ1 | w ∈ 〈a, b〉}
and F2 = { 1θw | w ∈ 〈a, b〉} (see Short’s description of finitely presented
subgroups of F2 × F2 in [38]). ¤

Question 7. Are there more sources of orbit undecidability other than
exploiting the unsolvability of membership problem for certain subgroups ?

Commentary. In order to find new sources, one needs to relate orbit de-
cidability with some other algorithmic problem, for which there are known
unsolvable examples. ¤
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Question 8. Is it true that every finitely generated subgroup of GL3(Z)
is orbit decidable ? Or conversely, is it true that there exists a Z3-by-free
group with unsolvable conjugacy problem ? In close relation with this, is
CIP(GL3(Z)) solvable ?

Commentary. Propositions 6.13 and 7.5, and Corollaries 6.3 and 7.7 show
that the cases of dimension 2 and dimension bigger than or equal to 4 behave
oppositely with respect to these three questions (answers being yes, no, yes,
and no, yes, no, respectively). For the case of dimension 3, we point out
that GL3(Z) is not virtually free, so the argument given in Proposition 6.13
does not work in this case. But, on the other hand, F2 × F2 does not
embed in GL3(Z) either (in fact, only very simple groups G satisfy G×G 6
GL3(Z)), so the argument in Proposition 7.5 does not work in dimension
3 either (unless one can find other pairs of subgroups A 6 B 6 GL3(Z)
with unsolvable MP(A,B)). In the free context, the situation is easier, with
the difference in behavior happening between rank two and rank three (see
Propositions 6.21 and 7.2).

Also, it is interesting to remark that this situation is very similar (and
maybe related) to the coherence of linear groups: it is known that GL2(Z)
is coherent, because it is virtually free, and that GLn(Z) is not coherent for
n > 4, precisely because it contains F2 ×F2 (see for example [20] and [38]).
The question is still open in dimension 3, where none of the previous argu-
ments work. ¤

Question 9. Is it true that

(a) for every two finitely generated groups A and B (except for A =
1 and |B| < ∞), there exists a finitely presented group G such
that Aut(G) simultaneously contains an orbit decidable subgroup
isomorphic to A, and an orbit undecidable subgroup isomorphic to
B ?

(b) for every finitely generated group A, there exists a finitely presented
group G such that Aut(G) contains an orbit decidable subgroup
isomorphic to A ?

(c) for every finitely generated infinite group B, there exists a finitely
presented group G such that CP(G) is solvable, and Aut(G) contains
an orbit undecidable subgroup isomorphic to B ?

Commentary. Question (b) asks for a positive decisional condition, and
question (c) for the corresponding negative one, while question (a) asks
whether they are compatible within the same group G. Formally, (b) and
(c) are partial cases of (a) (note that CP(G) is equivalent to OD({Id})).
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However, an easy construction using the direct product shows that affir-
mative answers for (b) and (c) would imply an affirmative answer for (a)
too.

Before, note that A = 1 and |B| < ∞ is the only situation where the
copy of A will necessarily be a finite index subgroup of the copy of B and
so, Proposition 6.4 would then say that solvability for OD(A) implies solv-
ability for OD(B). In all other cases, even if B has a finite index subgroup
isomorphic to A, it is conceivable that Aut(G) could contain copies of A
and B apart enough to each other to fulfill the requirements of question (a).

Now, let G1 and G2 be two groups, let G = G1×G2 be its direct product,
and understand any subgroup of Aut(Gi) as a subgroup of Aut(G) acting
trivially on the other coordinate. It is easy to see that if the orbit decid-
ability for A 6 Aut(G1), and the conjugacy problem for G2 are solvable,
then the orbit decidability for A 6 Aut(G) is also solvable. And similarly,
if B 6 Aut(G2) is orbit undecidable then so is B 6 Aut(G). Hence, an-
swering question (a) in the affirmative reduces to answer in the affirmative
questions (b) and (c).

If A is finitely presented, has trivial center, and CP(A) is solvable, then
we can take G = A, and the copy of A in Aut(G) given by conjugations
is clearly orbit decidable. This answers (b) in the affirmative in this very
particular case.

Finally, let B be a finitely generated, recursively presented group. By
Higman’s embedding theorem (see [25]), B embeds in a finitely presented
group B′ 6= 1, which then embeds in G1 = B′∗Z. Since G1 has trivial center,
Aut(G1) contains a copy of B given by inner automorphisms, say B1 6
Aut(G1). Take now another finitely presented group G2 with unsolvable
conjugacy problem, and consider their free product, G = G1 ∗G2. Extend
the morphisms in B1 to automorphisms of G acting trivially on G2; this
way, we obtain B2 6 Aut(G), again isomorphic to B. Now, two given
elements u, v ∈ G2 lie in the same (B2 · Inn(G))-orbit if and only if they
are conjugate to each other in G2; thus, solvability of OD(B2) would imply
solvability of CP(G2). Hence, B ' B2 6 Aut(G) is orbit undecidable. But,
unfortunately, this does not solve question (c) because, by construction,
CP(G) is unsolvable, like CP(G2).

Additionally, note that the recursive presentability for B in the previous
paragraph, is an extra condition also satisfied in the main source of orbit
undecidability presented above. Namely, all orbit undecidable subgroups
coming from Theorem 7.4 are of Mikhailova’s type and so recursively pre-
sented (since they have solvable word problem). At the time of writing we
are not aware of any construction producing orbit undecidable subgroups
which are not recursively presented. ¤
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