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Abstract. We give a series of interesting subgroups of finite index in
Aut(Fn). One of them has index 42 in Aut(F3) and infinite abeliani-

zation. This implies that Aut(F3) does not have Kazhdan’s prop-

erty (T ) (see [3] and [6] for another proofs). We proved also that
every subgroup of finite index in Aut(Fn), n > 3, which contains the

subgroup of IA-automorphisms, has a finite abelianization.

1. Definitions, problems and motivations

The Kazhdan property (T ) was introduced by D. Kazhdan in 1967 in his
investigations on Lie groups.

Let H be a Hilbert space and U(H) be the group of unitary transforma-
tions of H.

Definition 1.1. A discrete group G has Kazhdan’s property (T ) if there
exists an ε > 0 and a finite subset S ⊂ G such that for all nontrivial
irreducible representations ρ : G → U(H) and for all vectors v ∈ H with
||v|| = 1 we have ||ρ(s)v − v|| > ε for some s ∈ S.

It is known, that in this case S generates G.

Definition 1.2. A group G has Serre’s property (FA) if acting simplicially
and without inversions of edges on any simplicial tree, G has a global fixed
point.

Theorem 1.3. (J.-P. Serre; 1974). A finitely generated group G has the
property (FA) if and only if the following two statements hold:

(1) G is not a nontrivial amalgamated product, that is G � A ∗B C with
B 6= A and B 6= C,

(2) G does not have a quotient which is isomorphic to Z,
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Theorem 1.4. (Y. Watatani; 1982). Let G be a countable group. If G has
the property (T ) of Kazhdan, then it has the property (FA) of Serre.

In the following table we summarize known facts on (T ) and (FA) prop-
erties for SLn(Z) and (S)Aut(Fn), n > 3.

(T ) ⇒ (FA)
SLn(Z), n > 3 + +

(Kazhdan, 1967) (Serre, 1974)
(S)Aut(F3) − +

(McCool, 1989) (Bogopolski, 1987)
(S)Aut(Fn), n > 4 ? +

(Bogopolski, 1987)

Remark 1.5. The property (T ) is preserved under taking subgroups of finite
index, the property (FA) is not preserved. Groups with the property (T ) have
no subgroups of finite index, which can be mapped onto Z.

Problems 1.6. 1) Does every finite index subgroup of SAut(Fn), n > 4,
have the (FA) property?

2) Characterize (in terms of actions on trees or algebraically) those fi-
nitely generated groups, whose subgroups of finite index have the (FA) prop-
erty.

3) Does every group SAut(Fn), n > 4, have Kazhdan’s property (T )?

In [10, Problems 15 and 14], K. Vogtmann formulated the Out-versions
of Problems 1) and 3).

Now we explain how the Kazhdan property (T ) can be used to construct
an infinite series of ε-expanders.

Definition 1.7. A finite graph Γ is called an ε-expander, if for each subset
B ⊂ Γ0 with |B| 6 |Γ0|/2 we have ∂B > ε|B|, where

∂B = {v ∈ Γ0 | v /∈ B, dist(v,B) = 1}.

Definition 1.8. (Graph Γn(G)) Fix a natural number n and a finite group
G, which can be generated by n elements. The vertices of the graph Γn(G)
are all tuples (g) = (g1, . . . , gn) such that 〈g1, . . . , gn〉 = G. Two tuples
(g) and (g′) are connected by an edge if (g′) can be obtained from (g) by
applying one of the following replacement operations:

R±
i,j : (g1, . . . , gi, . . . , gn) → (g1, . . . , gi · g±j , . . . , gn),
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L±i,j : (g1, . . . , gi, . . . , gn) → (g1, . . . , g
±
j · gi, . . . , gn).

Clearly the graph Γn(G) is 4n(n− 1)-regular.

Theorem 1.9. (A. Lubotzky, I. Pak; 2001). If Aut(Fn) (or SAut(Fn)) has
the property (T ), then there exists an ε > 0, such that the graph Γn(G) (if
connected) is an ε-expander for any n-generated finite group G.

However, the following two theorems state that Aut(F3) does not have
the Kazhdan property (T ). In this paper we suggest some approach towards
the solving Problem 1.6.3) for rank n > 4.

Theorem 1.10. (J. McCool; 1989) There is a subgroup of finite index in
Out(F3), which can be approximated by torsion-free nilpotent groups. In
particular, this subgroup can be mapped onto Z. Therefore Out(F3) and
Aut(F3) do not have the Kazhdan property (T ).

Theorem 1.11. 1 (F. Grunewald and A. Lubotzky; 2006) There exists a
subgroup of index 168 in Aut(F3) which can be mapped onto F2. In partic-
ular, Aut(F3) has no Kazhdan’s property (T ).

In the following section we give a sketch of the proof of this theorem.
In Section 5 we use a part of this proof to construct some interesting sub-
groups in Aut(F3). One of them, C(3) has index 42 in Aut(F3) and it
has infinite abelianization. In Section 6 we consider some generalizations
of these groups for ranks n > 4. We are especially interested in the sub-
group K(4) of Aut(F4). It has index 80640 and we conjecture that it has
infinite abelianization. In Section 4 we explain, why we should avoid the
so called IA-automorphisms in constructing subgroups of finite index in
Aut(Fn) with infinite abelianizations.

2. A sketch of the proof of
F. Grunewald and A. Lubotzky

that Aut(F3) has no Kazhdan’s property (T )

Let F3(a, b, c) be the free group on free generators a, b, c. There exist
exactly 7 nontrivial homomorphisms F3(a, b, c) → Z2. Therefore there ex-
ist exactly 7 subgroups of index 2 in F3. Denote them by F

(1)
5 , . . . , F

(7)
5 .

Clearly, every such subgroup has rank 5. We will work with one of them

1The proof of this theorem existed a long time in a folklore form, that is it was not

published. We know this proof from private talks with A. Casson (2000) and M. Bridson
(2004).
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F
(1)
5 = 〈a, b, c2, c−1ac, c−1bc〉. It is easy to check that Aut(F3) acts tran-

sitively on the set of these subgroups. Therefore the index of St(F (1)
5 ) in

Aut(F3) is 7, where we use the notation

St(G) = 〈α ∈ Aut(Fn) |α(G) = G〉

for G 6 Fn. Now we introduce an important inner automorphism τ :
x 7→ c−1xc, x ∈ F3. We use the following notation for the commutator:
[x, y] = x−1y−1xy.

The following claim can be verified straightforward.
Claim.
1) τ |

F
(1)
5

/∈ Inn(F (1)
5 ),

2) [τ, ϕ]|
F

(1)
5

∈ Inn(F (1)
5 ) for every ϕ ∈ St(F (1)

5 ).

Consider the canonical homomorphism Ψ : St(F (1)
5 ) → GL5(Z), which

sends an automorphism of F
(1)
5 to the automorphism induced on the abelian-

ization of F
(1)
5 (we identify the last automorphism with a matrix, using the

prescribed basis of F
(1)
5 ). Note, that Inn(F (1)

5 ) lies in the kernel of Ψ.
One can easily compute, that

Ψ(τ) =


0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

 .

Since (Ψ(τ))2 = Id, we have Z5 ⊃ V+ ⊕ V−, where

V+ = Ker(Ψ(τ) + Id), V− = Ker(Ψ(τ)− Id).

The Z-module V+ has the basis {(1, 0, 0,−1, 0)T , (0, 1, 0, 0,−1)T }. By the
statement 2) of the above Claim, V+ is Ψ(ϕ)-invariant for every ϕ∈ St(F (1)

5 ).
Thus, there exists the natural homomorphism

θ : St(F (1)
5 ) → GL(V+) ∼= GL2(Z).

One can easily verify that this homomorphism is onto.
Notice that GL2(Z) ∼= D4 ∗D2 D6, where Dm denotes the dihedral group

of order 2m. Therefore there exists an epimorphism µ : GL2(Z) → D12.
The kernel of µ is a free group of rank 2, denote it by F2. Thus we have the
following chain of embeddings and epimorphisms:

Aut(F3) > St(F (1)
5 ) θ→ GL2(Z)

µ→ D12. (1)
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Let H1 = Ker(θµ). Then H1 has index 24 in St(F (1)
5 ). Hence H1 has

index 168 in Aut(F3). Moreover, θ(H1) = Ker(µ) = F2. In particular, H1

can be homomorphically mapped onto Z. Hence Aut(F3) does not have the
Kazhdan property (T ).

Remark. The group H1 is not normal in Aut(F3).

The above construction can not be generalized for Aut(Fn) with n >4,
since in this case GLn−1(Z) (contrary to GL2(Z)) does not contain a sub-
group of finite index with infinite abelianization.

3. Some notations and useful automorphisms

Let Fn be the free group on free generators x1, x2, . . . , xn. First we define
some automorphisms of Fn. For easy we will write the image of xi only if it
differs from xi. Recall that the commutator of two elements x, y is defined
to be [x, y] = x−1y−1xy.

1) For any i, j, k ∈ {1, 2, . . . , n}, where i 6= k and j 6= k, we define the
automorphsm

αijk : xi → xi[xj , xk].

In particular,
αiik : xi → x−1

k xi, xk.

Note that αijk = α−1
ikj for distinct i, j, k.

2) For any i, j ∈ {1, 2, . . . , n}, where i 6= j, we define the automorphism

Eij : xi → xixj .

3) For any i ∈ {1, 2, . . . , n} we define the automorphism

ni : xi → x−1
i .

The kernel of the canonical epimorphism Aut(Fn) → GLn(Z) is denoted
by IA(Fn). It is known, that IA(F2) = Inn(F2) and IA(Fn) is strictly
larger than Inn(Fn) for n > 3. N. Nielsen (for n = 3) and W. Magnus (for
n > 3) proved that IA(Fn) is generated by all automorphisms αijk.

4. Finite index subgroups of Aut(Fn)
containing IA(Fn)

Theorem 4.1. Let n > 3. Any subgroup of finite index in Aut(Fn), con-
taining IA(Fn), has a finite abelianization.



6 O. BOGOPOLSKI AND R. VIKENTIEV

To prove this theorem we need to introduce more automorphisms of
Aut(Fn) and to formulate a theorem of B. Sury and T.N. Venkataramana
on generators of congruence subgroups of SLn(Z).

4) For any i ∈ {1, 2, . . . , n} we define the automorphism

Ti : xi 7→ x−1
i , xi+1 7→ x−1

i+1xi.

5) For any i, j ∈ {1, 2, . . . , n}, where i 6= j, we define the automorphism

Tij : xi 7→ xj , xj 7→ x−1
i .

Denote

T = {Tk | k = 1, . . . , n− 1} ∪ {Tij | i, j = 1, . . . , n; i 6= j} ∪ {Id}.
Let ¯ : Aut(Fn) → GLn(Z) be the canonical epimorphism. For any

α ∈ Aut(Fn) we denote by α its canonical image in GLn(Z).
Let m be a natural number. The kernel of the canonical epimorphism

SLn(Z) → SLn(Zm) is denoted by SLn(Z,mZ) and is called the congruence
subgroup of SLn(Z) modulo m. Of course, SLn(Z,mZ) is normal and
has a finite index in SLn(Z). The following famous theorem is called the
congruence subgroup theorem. It was proved by H. Bass, M. Lazard, and
J.-P. Serre in [1] and by J. Mennicke in [7]

Theorem 4.2. Let n > 3 be a natural number. Any subgroup of finite index
in SLn(Z) contains a congruence subgroup SLn(Z,mZ) for some m.

Theorem 4.3. (B. Sury and T.N. Venkataramana; 1994) Let n > 3, m >
2. The congruence subgroup SLn(Z,mZ) is generated by the following set
of matrices

{(α)(Eij)m(α)−1 |α ∈ T ; i, j ∈ {1, . . . , n}; i 6= j}.

Proof of Theorem 4.1. Let G be a subgroup of finite index in Aut(Fn)
containing IA(Fn). Let G be the image of G is GLn(Z). By the congruence
subgroup theorem, there exists an m > 2, such that SLn(Z,mZ) 6 G. Let
H be the preimage of SLn(Z,mZ) in G. Since H has a finite index in G,
it is sufficient to show that H/H ′ is finite. Since H contains IA(Fn), the
results of Nielsen – Magnus and Sury – Venkataramana imply that H is
generated by the union of two sets:

{αijk | i, j, k ∈ {1, . . . , n}; i, j 6= k},

{αEm
ij α−1 |α ∈ T ; i, j ∈ {1, . . . , n}; i 6= j}.

It is sufficient to prove that the m-th power of each of these generators
lies in [H,H]. But this follows from the next formulas (they can be checked
using the formulas in Appendix).
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1) [αiij , E
m
jk] = αm

iik for distinct i, j, k ∈ {1, . . . , n};
2) [αiij , E

m
ik ] = (αikjα

−1
jjk)m−1αikjα

m−1
jjk ≡ αm

ikj ( mod [IA(Fn), IA(Fn)])
for distinct i, j, k ∈ {1, . . . , n};

3) Em2

ik =
(∏m−2

s=0 [αs
iij , E

m2−(s+1)m
ik ][Em2−(s+1)m

ik , αs+1
iij ]

)
[Em

ij , Em
jk]. 2

Definition 4.4. Consider the chain of canonical epimorphisms

SAut(Fn) → SLn(Z) → SLn(Z2).

Let H(n) be the kernel of the composition of these epimorphisms. This is
an analogue of the congruence subgroup of SLn(Z) modulo 2.

Proposition 4.5. 1) H(n) is a normal subgroup in SAut(Fn) and even in
Aut(Fn).

2) H(n) contains IA(Fn). In particular, H(n) has a finite abelianization.
3) H(n) lies in St(N) for every subgroup N of index 2 in Fn.

Our aim is to find a subgroup K(n) of index 2 in H(n), which has an
infinite abelianization. By Theorem 4.1, K(n) can not contain IA(Fn).

5. New subgroups of small finite index in Aut(F3)
with infinite abelianization

Note that H(3) has index 2·168 in Aut(F3) and a finite abelianization. In
this section we will define subgroups K(3), A(3), B(3), and C(3) of Aut(F3),
which have indexes 4 · 168, 168, 84, and 42, and infinite abelianization.

Definition 5.1. By Proposition 4.5.3), the group H(3) lies in St(F (1)
5 ).

Using the chain of homomorphisms (1), one can verify that H(3) θµ ∼= D6.
Let K(3) be the subgroup of index 2 in H(3), such that K(3) θµ ∼= D3.

Using the Reidemeister–Schreier method and GAP, we proved the fol-
lowing theorem.

Theorem 5.2. The group K(3) is generated by the following 16 automor-
phisms:

(1) α112, α221, α331, α332, α123, α213, α312,
(2) E2

12, E
2
13, E

2
21, E

2
23, E

2
31, E

2
32,

(3) n1n2, α113α
−1
223, α113n2n3.

Theorem 5.3. 1) K(3) has index 4 · 168 in Aut(F3).
2) K(3) ∩ IA(F3) has index 2 in IA(F3).
3) K(3)/K(3)′ ∼= Z14

2 × Z× Z.
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Theorem 5.4. The 16 automorphisms from Theorem 5.2 form a minimal
generating set of K(3). All of them, except of α123, α213, E

2
12, E

2
21 have

finite order in K(3)/K(3)′. These four automorphisms have infinite order
in K(3)/K(3)′.

Moreover, E−4
12 ≡ α2

123( mod K(3)′) and E−4
21 ≡ α2

213( mod K(3)′). In
particular, the image of the group 〈E2

12, E
2
21〉 in K(3)/K(3)′ is isomorphic

to Z× Z. 2

Still, K(3) has the large index in Aut(F3). We will enlarge K(3) by
adding special generators. In this way we construct the following chain of
subgroups:

Aut(F3) > C(3) > B(3) > A(3) > K(3),

where
A(3) = 〈K(3), E31, E32〉,

B(3) = 〈K(3), E31, E32, E21〉,

C(3) = 〈K(3), E31, E32, E21, n3〉.

Theorem 5.5. 1) A(3) has index 168 in Aut(F3).
2) A(3)/A(3)′ ∼= Z7

2 × Z× Z.
3) A(3) has the following minimal set of generators:

α112, α221, α123, α213, E
2
13, E

2
23, E31, E32, n1n2.

Theorem 5.6. 1) B(3) has index 84 in Aut(F3).
2) B(3)/B(3)′ ∼= Z4

2 × Z.

Remark: we do not know a minimal generating set of B(3).

Theorem 5.7. 1) C(3) has index 42 in Aut(F3).
2) C(3)/C(3)′ ∼= Z3

2 × Z4 × Z.
3) C(3) has the following minimal set of generators:

α123, E
2
13, E21, E32, n3.

Corollary 5.8. The image of C(3) in Out(F3) has index 21 and it can be
mapped onto Z.

Conjecture 5.9. No one subgroup of Aut(F3) of index smaller than 42 can
be mapped onto Z. No one subgroup of Out(F3) of index smaller than 21
can be mapped onto Z.
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6. A conjecture for Aut(Fn), n > 4

Recall that we want to define a subgroup K(n) of index 2 in H(n) with
infinite abelianization. For n = 3 it was done in Definition 5.1 with the help
of the formula (1). But for n > 4 an analogue of this formula does not exist.
Therefore we will define K(n) for n > 3 in another way, which (magically)
gives us the same group for n = 3.

Let F
(1)
2n−1 be a subgroup of index 2 in Fn = F (x1, . . . , xn). Consider its

stabilizer and the natural homomorphism:

Aut(Fn) > St(F (1)
2n−1)

Ψ→ GL2n−1(Z).

Notice, that H(n) 6 St(F (1)
2n−1) and α11n ∈ H(n). One can compute,

that det(Ψ(α11n)) = −1. Therefore the full preimage (respective to Ψ) of
SL2n−1(Z) in H(n) has index 2 in H(n). Denote this preimage by K(n).

Claim. K(3) as defined in this section coincides with K(3) as defined in
Section 5.

Theorem 6.1. The subgroup K(4) has index 2 · |SL4(2)| = 80640 in
Aut(F4) and is generated by the following 38 automorphisms:

(1) αijk, where i, j, k ∈ {1, 2, 3, 4} are all distinct and j < k,
(12 elements)

(2) αiij, where i, j ∈ {1, 2, 3, 4} are distinct,
and the automorphisms α114, α224, α334 must be excluded,

(9 elements)

(3) E2
ij, where i, j ∈ {1, 2, 3, 4} are distinct,

(12 elements)

(4) exceptional automorphisms
α224α114, α334α114, α114n1n4, n1n2, n1n3.

(5 elements)

At present we can not verify, whether the group K(4) has infinite abelian-
ization. The obstacle is that the index of K(4) in Aut(F4) is too large. Let
us try to enlarge K(4) (that will decrease the index) by adding special
generators. In this way we construct the following chain of subgroups:

Aut(F4) > D(4) > C(4) > B(4) > A(4) > K(4),
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where
A(4) = 〈K(4), E41, E42, E43〉,

B(4) = 〈K(4), E41, E42, E43, E31, E32〉,

C(4) = 〈K(4), E41, E42, E43, E31, E32, E21〉.

D(4) = 〈K(4), E41, E42, E43, E31, E32, E21, n4〉.

Theorem 6.2. The indexes of the subgroups A(4), B(4), C(4), D(4) in
Aut(F4) are equal to 10080, 2520, 1260 and 630 respectively. These sub-
groups have finite abelianizations.

Conjecture 6.3. K(n)/K(n)′ is infinite for n > 4.

If this conjecture is true, then Aut(Fn) has no Kazhdan property (T ) for
n > 4.
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Appendix
E12α112E

−1
12 = α112,

E12α113E
−1
12 = α132α113,

E12α221E
−1
12 = α221α

−1
112,

E12α223E
−1
12 = α223α123,

E12α331E
−1
12 = α−1

332α331,

E12α332E
−1
12 = α332,

E12α123E
−1
12 = α−1

332α123α332,

E12α213E
−1
12 = α113α213α

−1
113α

−1
223α221α332α

−1
123α

−1
332α

−1
112α113α112α

−1
221

≡ α213α
−1
223α

−1
123α113 ( mod (IA(Fn)′)),

E12α312E
−1
12 = α312α

−1
112,

E12n12E
−1
12 = α112n12,

E13n12E
−1
13 = E2

13α
−1
113n12,

E21n12E
−1
21 = α221n12,

E23n12E
−1
23 = E2

23α
−1
223n12,

E31n12E
−1
31 = E2

31n12,

E32n12E
−1
32 = E2

32n12,

n12α112n
−1
12 = α−1

112,

n12α113n
−1
12 = α113,

n12α221n
−1
12 = α−1

221,

n12α223n
−1
12 = α223,

n12α331n
−1
12 = α−1

331,

n12α332n
−1
12 = α−1

332,

n12α123n
−1
12 = α−1

123α113α
−1
112α

−1
113α112α332α123α

−1
332α123

≡ α123 (mod (IA(Fn))′),
n12α213n

−1
12 = α−1

213α223α
−1
221α

−1
223α221α331α213α

−1
331α213

≡ α213 (mod (IA(Fn))′),
n12α312n

−1
12 = α−1

332α
−1
331α332α331α

−1
312α

−1
331α

−1
332α331α332α221α112α

2
312

≡ α221α112α312 (mod (IA(Fn))′).


