
RANDOM GRAPHS ON SURFACES

COLIN MCDIARMID

Abstract. Counting labelled planar graphs, and typical properties
of random labelled planar graphs, have received much attention re-
cently. We start the process here of extending these investigations to
graphs embeddable on any fixed surface S. In particular we show that
the labelled graphs embeddable on S have the same growth constant
as for planar graphs, and the same holds for unlabelled graphs. Also,
if we pick a graph uniformly at random from the graphs embeddable
on S which have vertex set {1, . . . , n}, then with probability tending
to 1 as n → ∞, this random graph either is connected or consists
of one giant component together with a few nodes in small planar
components.

1. Introduction

For any surface S, let GS be the class of graphs which can be embedded
in S, and let GS

n be the set of graphs in GS on the vertex set {1, . . . , n}.
(See [21] for a discussion of embeddings in a surface.)

We consider two related questions. Firstly, how large is GS
n ? Secondly, let

Rn ∈U GS
n , that is let Rn be a graph picked uniformly at random from GS

n .
What are typical properties of Rn for large n? Does Rn behave similarly
to the planar case? For example, does Rn usually have a giant component,
does it have many vertices of degree 1, and so on? To proceed with the
second question we need to consider the first one.

Such questions, together with that of how to generate Rn quickly, have
received much attention recently for the case when S is the sphere (or the
plane), see for example [2, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 18, 19, 20, 23].
Let us write P for GS in this case. A key part of the investigations involve
estimating |Pn|. It is shown in [19] that

(|Pn|/n!)
1/n → γℓ as n→ ∞,

where γℓ is the planar graph growth constant, with bounds known on γℓ.
Giménez and Noy [16] improve greatly on this: they give an explicit analytic
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expression for γℓ, showing that γℓ ≈ 27.2269 (correct to 6 significant figures),
and further show that

|Pn| ∼ g · n− 7

2 γn
ℓ n! (1)

where the constant g ≈ 4.2609·10−6 (correct to 5 significant figures) also has
an explicit analytic expression. They also give a corresponding expression
for the number of connected graphs in Pn which differs only in that the
leading constant is not g but c ≈ 4.1044 · 10−6 (correct to 5 significant
figures),

P[Rn is connected ] → c/g ≈ 0.96325 (2)

(correct to 5 significant figures).
The plan of the paper is as follows. In the next section we introduce

our new general results. Then we give results assuming ‘smoothness’: for
example the class of planar graphs is known to have this property, and some
of these results are new even when specialised to planar graphs. In the next
two sections we prove first the general results and then the results assuming
smoothness, and finally we make some concluding remarks.

2. General results

The crucial step to get started on investigating Rn ∈U GS
n is to estimate

|GS
n |. Clearly |GS

n | is in general bigger than |Pn|, but how much? Since GS

is minor-closed it follows [22] that it is ‘small’, that is for some constant c
we have |GS

n | ≤ cnn! for all n. The first new result shows that GS has a
growth constant, and indeed it is the planar graph growth constant γℓ.

Theorem 2.1. For any fixed surface S, as n→ ∞
(|GS

n |/n!)1/n → γℓ as n→ ∞;

that is, GS has growth constant γℓ.

The same result holds for connected graphs (since the number of con-
nected graphs in GS

n is clearly at least |GS
n−1|). We do not approach the

accuracy of the Giménez and Noy result (1).
Let us briefly consider unlabelled graphs. Let UGS

n denote the set of
unlabelled n-vertex graphs embeddable in S; that is, the set of isomorphism
classes of graphs in GS

n . When S is the sphere (or the plane), let us write
UPn for UGS

n . It was shown in [10] by a supermultiplicativity argument that
there is a constant γu, the unlabelled planar graph growth constant, such that
if un is the number of connected unlabelled planar graphs on n vertices,

then u
1/n
n → γu as n → ∞. Since un−1 ≤ |UPn−1| ≤ nun (by considering

adding a distinguished vertex joined to each component) it follows that
|UPn|1/n → γu as n → ∞. It is known also that γℓ < γu ≤ 30.061,
see [8, 19].
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Theorem 2.2. For any fixed surface S, as n→ ∞
(|UGS

n |)1/n → γu as n→ ∞.

The same result holds for connected unlabelled graphs.

Now let us return to labelled graphs. Since GS has a growth constant
there are many results which we can read off from [19] or [20]. In particular
there is an ‘appearances’ theorem - see Theorem 4.1 in [19].

Let H be a graph with vertex set {1, . . . , h}, and let G be a graph on the
vertex set {1, . . . , n} where n > h. Let W ⊂ V (G) with |W | = h, and let
the ‘root’ rW denote the least element in W . We say that H appears at W
in G if (a) the increasing bijection from {1, . . . , h} to W is an isomorphism
from H to the induced subgraph G[W ] of G; and (b) there is exactly one
edge in G between W and the rest of G, and this edge is incident with the
root rW .

Theorem 2.3. Let S be a fixed surface and let Rn ∈U GS
n . Let H be a fixed

connected planar graph on vertices 1, . . . , h. Then there exists a constant
α > 0 such that, with probability 1 − e−Ω(n), there are at least αn pairwise
node-disjoint appearances of H in Rn.

By applying Theorem 2.3 to appropriately chosen graphs H , for example
to a star or cycle on k vertices, we can deduce from it various results about
vertex degrees, face sizes and numbers of automorphisms in a random graph
Rn, arguing as in [19, 20].

Corollary 2.4. (a) For each positive integer k, there is a constant α > 0
such that, with probability 1 − e−Ω(n), there are at least αn nodes of degree
k in Rn.

(b) For each integer k ≥ 3, there is a constant α > 0 such that, with
probability 1 − e−Ω(n), in each embedding of Rn in S there are at least αn
facial walks of length k.

(c) There are positive constants α and β such, with probability 1−e−Ω(n),
the number aut(Rn) of automorphisms of Rn satisfies 2αn ≤ aut(Rn) ≤ 2βn.

Let us briefly consider again the unlabelled random graph Un ∈U UGS
n .

It is known [2] that aut(Un) stochastically dominates aut(Rn) (we give a
full proof later for completeness, see Lemma 5.3 below). Thus, with the
same α > 0 as above, with probability 1 − e−Ω(n) we have aut(Un) ≥ 2αn.

The behaviour of the maximum degree in a random planar graph was
an open problem until recently, see [20], and similarly for the maximum
size of a face. However, it was very recently shown [18] that for Rn ∈U GS

n

the maximum degree ∆(Rn) is Θ(lnn) whp; and similarly, whp in each
embedding the maximum length of a facial walk is Θ(lnn).



4 COLIN MCDIARMID

Our last general result here concerns connectedness and components. We
need some definitions and notation. The big component Big(G) of a graph
G is the (lexicographically first) component with the most vertices, and
Miss(G) is the subgraph induced on the vertices not in (missed by) the big
component. We denote the numbers of vertices in Big(G) and Miss(G) by
big(G) and miss(G) respectively, so big(G) + miss(G) equals the number of
vertices of G. (We allow Miss(G) to be empty, with miss(G) = 0.)

Given λ > 0 we let Po(λ) denote the Poisson distribution with mean
λ, or a random variable with this distribution. Also, we say that S′ is a
simpler surface than S if S can be obtained from S′ by adding one or more
handles or crosscaps. In the theorem below, part (a) follows immediately
from Theorem 2.2 of [19] or [20], parts (b) and (c) are similar to and extend
Theorems 6.2 and 6.4 respectively of [20], and part (d) is new.

Theorem 2.5. Let S be a fixed surface and let Rn ∈U GS
n . Then

: (a) the number of components κ(Rn) is stochastically at most 1 +
Po(1), and thus the probability that Rn is connected is at least 1/e;

: (b) for any fixed planar graph H,

lim inf
n→∞

Pr [Miss(Rn) ≈ H] > 0

and thus lim supn→∞ Pr [Rn is connected ] < 1;
: (c) E[miss(Rn)] ≤ 6+o(1) (so the big component Big(Rn) is ‘giant’);

and
: (d) whp Miss(Rn) is planar and Big(Rn) is not embeddable on any

simpler surface.

Let us close this section by trying to set the basic result Theorem 2.1
in relief, by giving a contrasting result. Consider two proper minor-closed
classes of graphs A and B for which each excluded minor is 2-edge-connected.
[For example, the class of planar graphs has this property, as the excluded
minors are the complete graph K5 and the complete bipartite graph K3,3;
but this is not true for the class GS of graphs embeddable on any other
surface S, as there will be some disconnected excluded minors.] By [22] A
and B are ‘small’, and since they are also ‘addable’ it follows from Theorem
3.3 of [19] that they have growth constants γA and γB respectively. In
contrast to Theorem 2.1, if A ⊂ B then γA < γB. For if H is a connected
graph in B \A and Rn ∈U B, then by the ‘appearances’ theorem in [20] the
probability that Rn has no subgraph isomorphic to H is e−Ω(n).
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3. Results assuming smoothness

Consider the ratio rn = n|GS
n−1|/|GS

n |. It is straightforward to see that
rn is the expected number of isolated vertices in Rn, see [19], and that

lim inf
n→∞

rn ≤ ρ ≤ lim sup
n→∞

rn

where ρ = γ−1
ℓ = 0.0367 to four decimal places. It follows from the as-

ymptotic result (1) that for planar graphs, we have rn → ρ as n → ∞.
For surfaces S other than the sphere we do not know if rn tends to a limit
(which would have to be ρ). If this happens for a class A of graphs (that
is, if the ratio n|An−1|/|An| tends to a limit as n → ∞) we say that the
class of graphs is smooth. Some other classes of graphs known to be smooth
include forests and trees, outerplanar graphs [4], series parallel graphs [4],
and cubic planar graphs (if we consider only even n) [7]. (In each case this
is because we know a precise asymptotic counting formula.)

Now let S be any fixed surface. It seems reasonable to conjecture that
the class GS is smooth. If we assume that this is the case then we can
say much more about Rn ∈U GS

n , and we find much behaviour like that for
planar graphs. To show this we give four theorems below, some of which
extend what was previously known for the planar case.

Given a graph G we let v(G) denote the number of vertices and aut(G)
denote the number of automorphisms of G. For the following result, we
shall need little work to extract it from section 5 of [19].

Theorem 3.1. Let S be a fixed surface, assume that the class GS is smooth,
and let Rn ∈U GS

n . For each graph H let λ(H) = ρv(H)/aut(H), and let
Xn(H) be the number of components of Rn isomorphic to H. Let H1, . . . , Hk

be a fixed family of pairwise non-isomorphic connected planar graphs. Then
as n → ∞ the joint distribution of Xn(H1), . . . , Xn(Hk) converges to the
product distribution Po(λ(H1))⊗· · ·⊗Po(λ(Hk)) in total variation distance.
Thus in particular for each graph H

Pr [Rn has no component isomorphic to H] → e−λ(H) as n→ ∞.

Further, we also have convergence for all moments; that is, for each positive
integer j we have E[Xn(H)j ] → λ(H)j as n→ ∞.

[Recall that the total variation distance between discrete distributions
(pi) and (qi) is 1

2

∑

i |pi − qi|.]
For the next two results, we need to introduce the exponential generating

function A(z) for the class P of planar graphs, and C(z) for the class C of
connected planar graphs. Thus A(z) =

∑

n≥0 |Pn| zn/n! (where |P0| =

1); and C(z) =
∑

n≥0 |Cn| zn/n! where Cn is the set of connected graphs

G ∈ Pn (and C0 = ∅). It is well known that A(z) = eC(z). The quantity
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ρ = γ−1
ℓ which we met earlier is the radius of convergence of these generating

functions. Two related important constants which we shall meet below
are λ = C(ρ) which equals 0.03744 to four significant figures, and e−λ =
e−C(ρ) = A(ρ)−1 which equals 0.9633 to four significant figures. Observe
from (1) that A(ρ), A′(ρ) and A′′(ρ) are finite but A′′′(ρ) is infinite, and
using also (2) that the corresponding result holds for C(z) and its derivatives
at z = ρ.

Theorem 3.2. Let S be a fixed surface, assume that the class GS is smooth,
and let Rn ∈U GS

n .
(a) As n → ∞, κ(Rn) converges to 1 + Po(λ) in total variation distance
and for all moments, where λ = C(ρ) ≈ 0.03744; and in particular

Pr [Rn is connected] → e−λ ≈ 0.9633

and

E[κ(Rn)] → 1 + λ ≈ 1.03744.

(b) More generally, let D ⊆ C be a non-empty class of connected planar
graphs, and let D(z) be the exponential generating function for D. Then as
n → ∞ the number of components of Miss(Rn) in D tends to Po(D(ρ)) in
total variation distance and for all moments.

The planar case of part (a) of Theorem 3.2 above is essentially Theorem
6 of [16]; and the planar case of part (b) is a slight extension of Theorem 7
in that paper. In some cases it is easy to consider Big(Rn) too in part (b).
For example, if S is any surface other than the sphere, then whp Big(Rn) is
not planar (by part (d) of Theorem 2.5): and so the number of components
of Rn in D tends to Po(D(ρ)) in distribution.

Next we consider limiting distributions related to the random graph
Miss(Rn). We have already seen in Theorem 2.5 that whp Miss(Rn) is
planar. It is convenient to deal with UMiss(Rn), the unlabelled graph cor-
responding to Miss(Rn). In the next theorem we shall meet what we call
the Miss distribution on the class UP of unlabelled planar graphs, and the
miss distribution on the non-negative integers.

Theorem 3.3. Let S be a fixed surface, assume that the class GS is smooth,
and let Rn ∈U GS

n . Then the random unlabelled graph UMiss(Rn) converges
in total variation distance to the Miss distribution (pM ) on UP, where for
H ∈ UP

pM (H) =
1

A(ρ)

ρvH

aut(H)
;
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and miss(Rn) converges in total variation distance to the miss distribution
(qm) on the non-negative integers, where for n ≥ 0

qm(n) =
1

A(ρ)
|Pn|

ρn

n!
.

Further the miss distribution has probability generating function G(x) =
A(ρx)/A(ρ) = eC(ρx)−C(ρ), it has mean equal to the radius of convergence R
of the exponential generating function for 2-connected planar graphs (where
R = 0.03819 to four significant figures) it has variance 0.03979 to four
significant figures, and it is a compound Poisson distribution.

Let us make some observations concerning this last result. There seems
no obvious reason why the expected value of the miss distribution should
be R. Under the Miss distribution, the expected number of isolated vertices
is ρ, so the expected number of non-isolated vertices is R − ρ ≈ 0.001463
to four significant figures. We saw in Theorem 3.2 that the probability that
Rn is connected (and so Miss(Rn) is empty) tends to e−C(ρ) = A(ρ)−1 as
n→ ∞. From the last theorem we may see for example that the probability
that Miss(Rn) has no edges tends to eρ−C(ρ) = 0.99929 to five significant
figures as n → ∞. [To see this, note that for a random H from the Miss
distribution, the probability that H has no edges equals

∑

k≥0

P[H ∼= Kk] = e−C(ρ)
∑

k≥0

ρk

k!
= eρ−C(ρ),

where Kk denotes the k-vertex graph with no edges.] Similarly the proba-
bility that Miss(Rn) has exactly one edge tends to 1

2ρ
2eρ−C(ρ) = 0.00067 to

two significant figures; and so the probability that Miss(Rn) has more than
one edge is about 4 × 10−5.

The above results on Miss(Rn) are new even for planar graphs (which
form a smooth class), but for planar graphs we can say more, for example
that the mean and variance of miss(Rn) converge to those of the limiting
distribution. Indeed, in this case, for t < 5

2 the t-th moment of miss(Rn)
converges to the tth moment of the limiting miss distribution (which is
finite), and for t ≥ 5

2 it tends to ∞ – see Proposition 5.2 below. In particular,
for a random planar graph the expected number of vertices not in the big
component tends to R as n→ ∞.

Finally here let us go back to appearances, and give one last result.

Theorem 3.4. Let S be a fixed surface, assume that the class GS is smooth,
and let Rn ∈U GS

n . Let H be a connected planar graph on the vertex set
{1, . . . , h}, and let Xn(H) be the number of appearances of H in Rn. Then
Xn(H)/n→ ρh/h! in probability as n→ ∞.
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In the planar case much fuller results are known, for example that Xn(H)
is asymptotically normally distributed with a given mean and variance, see
Theorem 4 in [16].

4. Proofs for general results

First we give proofs of Theorems 2.1 and 2.2. We need some lemmas to
prove these results. The first is the key one.

Lemma 4.1. ([9]) For any surface S and any graph G ∈ GS(n) embedded
in S, there is a noncontractible cycle C in S which meets the graph in at
most k = ⌊

√
2n⌋ + 2 vertices (and nowhere else).

The orientable case of this lemma was proved in [1] (with k = ⌊
√

2n⌋),
with ‘noncontractible’ strengthened to ‘non-surface-separating’. It is shown
in [9] that if each noncontractible cycle meets the graph G at least k times
then there is a family of at least ⌊k−1

2 ⌋ pairwise disjoint (homotopic) non-

contractible cycles in G, and so G must have at least k⌊k−1
2 ⌋ ≥ k(k/2 − 1)

vertices. But this number is > n if k ≥
√

2n+ 2, which yields the lemma.

For each non-negative integer g, let A(g) denote the class of graphs em-
beddable on a surface of Euler genus g, and let B(g) denote the class of
graphs G such that either G ∈ A(g), or G ∈ A(g+1) and G has a component
H such that both H and G−H are in A(g).

Lemma 4.2. Let g be a non-negative integer, let n be a positive integer
and let k = k(n) be as in Lemma 4.1. Let S be the set of k-tuples x =

(x1, . . . , xk) of distinct vertices in {1, . . . , n}. Given a graph G ∈ B(g)
n+k and

a list x ∈ S, let ψ(G, x) denote the (multi-) graph obtained by starting with
G and identifying vertices xj and n+ j for each j = 1, . . . , k. Then for each

graph G ∈ A(g+1)
n there is a graph G̃ ∈ B(g)

n+k and a list x ∈ S such that

ψ(G̃, x) = G; and thus

|A(g+1)
n | ≤ |B(g)

n+k| · nk.

Proof Let G ∈ A(g+1). Let G be embedded in a surface S of Euler genus at
most g+1. By Lemma 4.1, there is a non-contractible cycle C in S meeting
G in k′ vertices, for some 0 ≤ k′ ≤ k.

List the vertices along C as v1, . . . , vk′ . The cycle may be one-sided or
two-sided, but in either case we form a graph G′ by cutting the surface
along C, splitting vi into two vertices vi and n + i, with edges incident to
the original vi set incident to either the new vi or to n+ i (see for example
section 4.2 of [21]). (If k′ = 0 then G′ is just G.) Observe that, from the
graph G′ together with the list x′ = (v1, . . . , vk′) of vertices, we recover G
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when we identify vi and n+ i for each i = 1, . . . , k; that is, ψ(G′, x′) = G. If
C is non-surface-separating then G′ ∈ A(g), and otherwise G′ ∈ B(g). Thus

in either case we have G′ ∈ B(g)
n+k′ . By adding isolated vertices if necessary

we can construct G̃ ∈ B(g)
n+k together with a list x of exactly k distinct nodes

in G such that ψ(G̃, x) = G. 2

Proof of Theorem 2.1 We wish to show that A(g) has growth constant
γℓ for each integer g ≥ 0. From [19] we know the result for g = 0. Let g ≥ 0
be an integer and suppose that we know A(g) has growth constant γℓ. We
must show that A(g+1) also has growth constant γℓ.

Let us show first that B(g) has growth constant γℓ. Let ǫ > 0. Let c be

such that |A(g)
n | ≤ c(1 + ǫ)nγn

ℓ n! for each n. Then

|B(g)
n | ≤

n−1
∑

k=0

(

n

k

)

|A(g)
k | · |A(g)

n−k|

= n!

n−1
∑

k=0

|A(g)
k |
k!

· |A(g)
n−k|

(n− k)!

≤ n! c2n(1 + ǫ)nγn
ℓ ,

and since A(g) ⊆ B(g) it follows that B(g) has growth constant γℓ, as desired.
(Indeed the class of all graphs such that each component is in A(g) has
growth constant γℓ.)

Let ǫ > 0. Since A(g) ⊆ A(g+1), it suffices to show that for n sufficiently
large we have

|A(g+1)
n |/n! ≤ γn

ℓ · (1 + ǫ)2n. (3)

Since B(g) has growth constant γℓ, there exists n0 such for all n ≥ n0 we
have

|B(g)
n |/n! ≤ γn

ℓ · (1 + ǫ)n.

Let n1 ≥ n0 be sufficiently large that (γℓ(1 + ǫ)(n+ k)n)
k ≤ (1 + ǫ)n for all

n ≥ n1. For n ≥ n1, by Lemma 4.2

|A(g+1)
n |/n! ≤ |B(g)

n+k|/(n+ k)! (n+ k)k n
k

≤ γn+k
ℓ (1 + ǫ)n+k (n+ k)knk

= γn
ℓ (1 + ǫ)n (γℓ(1 + ǫ)(n+ k)n)

k

≤ γn
ℓ (1 + ǫ)2n.

Thus (3) holds, and we have established the induction step. This completes
the proof. 2

The next lemma will be useful for proving Theorem 2.2 on unlabelled graphs.
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Lemma 4.3. For each integer g ≥ 0, and each positive integer n

|UA(g+1)
n | ≤ |UB(g)

n+k| · (n+ k)2k

where k = k(n) is as in Lemma 4.1.

Proof Let t = |UA(g+1)
n | and list these unlabelled graphs as U1, . . . ,U t.

Thus we have partitioned A(g+1)
n into the t equivalence classes U1, . . . ,U t

(where equivalence corresponds to isomorphism). For each i = 1, . . . , t fix
one graph Gi in U i; and for each graph H ∈ U i fix an isomorphism φH from
H to Gi.

Given an unlabelled graph U in UB(g)
n+k, and k-tuples y and z formed

from 2k distinct elements in {1, . . . , n+ k}, let

T (U , y, z) = {(H,x) ∈ U × S : φH((n+ 1, . . . , n+ k)) = y, φH(x) = z}.
[We use notation from the last lemma, and we use the natural convention
that φH(x) denotes the k-tuple with jth co-ordinate φH(xj).] Fix such a U ,
y and z, and let (H,x) and (H ′, x′) be in T (U , y, z). Then the graphs ψ(H,x)
and ψ(H ′, x′) are isomorphic. To see this, observe that the permutation
φ = φ−1

H′ ◦φH is an isomorphism fromH to H ′; φ fixes each of n+1, . . . , n+k;
and φ(x) = x′.

By Lemma 4.2, for each i ∈ {1, . . . , t}, there is a graph G̃i ∈ B(g)
n+k and

a list xi ∈ S such that ψ(G̃i, xi) = Gi. But if i 6= j then by the above, the

pairs (G̃i, xi) and (G̃j , xj) cannot be in the same set T (U , y, z). Thus t is
at most the number of triples U , y, z; and the lemma follows. 2

Proof of Theorem 2.2 We must show that for each integer g ≥ 0 we have

|UA(g)
n |1/n → γu as n→ ∞. (4)

From [19] we know the result for g = 0. Let g ≥ 0 be an integer and
suppose that we know (4) for g: we must prove it for g + 1. Let us show
first that UB(g) has growth constant γu. Let ǫ > 0 and let c be such that

|UA(g)
n | ≤ cγn

u (1 + ǫ)n for all n. Then

|UB(g)
n | ≤

n−1
∑

k=0

|UA(g)
k | · |UA(g)

n−k|

≤ n c2γn
u (1 + ǫ)n,

and it follows that UB(g) has growth constant γu.
Let ǫ > 0. Since UA(g) ⊆ UA(g+1) it suffices to show that for n suffi-

ciently large we have

|UA(g+1)
n | ≤ γn

u · (1 + ǫ)2n. (5)
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Since UB(g) has growth constant γu, there exists n0 such for all n ≥ n0 we
have

|UB(g)
n | ≤ γn

u · (1 + ǫ)n.

Let n1 ≥ n0 be sufficiently large that 2
(

γu(1 + ǫ)n2
)k ≤ (1 + ǫ)n for all

n ≥ n1. For n ≥ n1, by Lemma 4.3

|UA(g+1)
n | ≤ |UB(g)

n+k| (n+ k)2k

≤ γn+k
u (1 + ǫ)n+k 2n2k

= γn
u (1 + ǫ)n 2

(

γu(1 + ǫ)n2
)k

≤ γn
u (1 + ǫ)2n.

Thus (5) holds, and the theorem follows. 2

The next result that needs proof here is Theorem 2.5. Recall that part
(a) follows directly from Theorem 2.2 of [19] or [20]. For part (b) we can
follow the lines of the proof of Theorem 5.2 of [19], see also Theorem 6.2
of [20].

Proof of Theorem 2.5 part (b)
Let H be any fixed planar graph, on vertices 1, . . . , h. By Theorem 2.3

there is an α > 0 such that whp Rn has at least αn pendant vertices. Let
Bn be the set of connected graphs G ∈ GS

n with at least αn pendant vertices.
Then using also part (a) of this theorem, we see that |Bn| ≥ (1

e + o(1))|GS
n |.

For each graph G ∈ Bn and each set W of h pendant vertices of G, we
delete the edges incident with the vertices in W and put a copy of H on
W , where (for definiteness) we insist that the increasing bijection between
{1, . . . , h} and W is an isomorphism. Clearly each graph G′ constructed
is in GS

n and satisfies Miss(G′) ≈ H. But for n > 2h each graph G′ can
be constructed at most nh times (since that bounds the number of ways to
reattach the vertices in W ), and then

|{G ∈ GS
n : Miss(G) ≈ H}| ≥ |Bn|

(⌈αn⌉
h

)

/nh = Ω(|GS
n |),

which completes the proof. 2

To prove part (c) of Theorem 2.5 we first give a general lemma. We call
a hereditary class A of graphs weakly addable if whenever a graph G ∈ A
and e is an edge between different components of G then G+ e ∈ A.

Lemma 4.4. Let the class A of graphs be weakly addable, and let Rn ∈u An.
Then

E[miss(Rn)] ≤ (2/n) E[|E(Rn)|].
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Proof An easy convexity argument shows that if x, x1, x2, . . . are positive
integers such that each xi ≤ x and

∑

i xi = n then
∑

i

(

xi

2

)

≤ 1
2n(x − 1).

For if n = ax+ y where 0 ≤ y ≤ x− 1 then
∑

i

(

xi

2

)

≤ a

(

x

2

)

+

(

y

2

)

≤ a

(

x

2

)

+
y(x− 1)

2
=

1

2
n(x− 1).

Hence ifG ∈ An has maximum component order x and thus miss(G) = n−x,
then the number of edges between components is at least

(

n

2

)

− 1

2
n(x− 1) =

1

2
n(n− x) =

1

2
n miss(G).

For each graph G ∈ A let add(G) be the number of edges e 6∈ G such that
G+ e ∈ A. By counting the pairs (G,G + e) such that G+ e ∈ An we see
that

∑

G∈An

add(G) =
∑

G∈An

|E(G)|,

and so E[add(Rn)] = E[|E(Rn)]. Hence

1

2
nE[miss(Rn)] ≤ E[add(Rn)] = E[|E(Rn)|],

and the lemma follows. 2

The next lemma follows immediately from the last lemma, since if G ∈ GS
n

(and n ≥ 2) then G has at most 3n+ 6g − 6 edges.

Lemma 4.5. Let the surface S have Euler genus g, and let Rn ∈U GS
n .

Then
E[miss(Rn)] ≤ 6 + 12(g − 1)/n.

The above lemma gives part (c) of Theorem 2.5, and we may use it also
to show that it is unlikely that there will be small non-planar components,
which is needed for part (d).

Lemma 4.6. For Rn ∈U GS
n , the probability that Rn has a non-planar

component of order at most n
2 is O( ln n

n ).

Proof Let g be the Euler genus of the surface S. Let Gn be the set of
graphs in GS

n such that there is a (giant) component of order > n/2. For

positive integers k ≤ n/2, let B(k)
n be the set of graphs in Gn which have a

non-planar component of order k. We claim that

|B(k)
n | ≤ 2g

nk
|Gn|. (6)

To see this note that given a graph G ∈ B(k)
n we can construct at least kn/2

graphsG′ ∈ Gn by adding an edge between a non-planar component of order
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k and the giant component. How often can a graphG′ ∈ Gn be constructed?
In the giant component of G′ there must be a bridge e such that deleting
e cuts off a set W of exactly k nodes where the induced subgraph on W
is nonplanar. Any two such sets W must be disjoint, and so there can be
at most g such sets W . Thus G′ can be constructed at most g times. The
claim (6) follows.

By Lemma 4.5 we have E[miss(Rn)] ≤ 7 for n sufficiently large, and then
P[Rn 6∈ Gn] ≤ 14/n. Thus by (6) the probability that Rn has a non-planar
component of order at most n

2 is at most

⌊n/2⌋
∑

k=1

2g

nk
+ P[Rn 6∈ Gn] = O(

lnn

n
).

2

In order to complete the proof of part (d) of Theorem 2.5 we need one more
lemma, which shows for example that if S is any surface other than the
sphere then |GS

n | is much larger than |Pn|.
Lemma 4.7. If S is simpler than S′ then

|GS′

n | = Ω(n) · |GS
n |.

Proof Let Bn be the set of graphs G ∈ GS
n such that Miss(G) consists of

5 isolated nodes. For Rn ∈U GS
n , let δ = lim infn→∞ P[Rn ∈ Bn]. Then by

Theorem 2.5 (b) we have δ > 0. Thus |Bn| ≥ (δ + o(1))|GS
n |.

From each graph G ∈ Bn we can construct at least n − 5 graphs G′

by forming a complete graph K5 on the 5 isolated nodes, letting the root
vertex be the smallest of these vertices, and adding an edge between the
root vertex and the rest of the graph, thus building an appearance of K5.
Note that each graph G′ constructed is in GS′

n .

How often can a graph G′ ∈ GS′

n be constructed? If S′ has Euler genus
g′ then G′ can have at most g′ appearances of K5, so G′ can be constructed
at most g′ times. Hence

|GS′

n | ≥ (n− 5)|Bn|/g′ = Ω(n) · |GS
n |,

as required. 2

Results for maps might suggest that the ‘right’ bound above is not Ω(n) but
Ω(n1+δ) where δ is 5

4 or 3
2 . Also, adding a handle should lead to a factor of

order n2+2δ?

Proof of Theorem 2.5 part (d) Observe first that the probability that
Miss(Rn) is non-planar is at most the probability that Rn has a non-planar
component with at most n/2 vertices, which is O(lnn/n) by Lemma 4.6.
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Let S′ be any surface simpler than S. Then the probability that Big(Rn) is
embeddable in S′ and Miss(Rn) is planar is at most the probability that Rn

is embeddable in S′, which is O(1/n) by Lemma 4.7. Hence the probability
that Big(Rn) is embeddable in S′ is O(lnn/n). 2

5. Proofs for results assuming smoothness

We start with a general lemma taken from Lemma 5.3 of [19] and its
proof, see also the discussion in the last section of [20]. Let the non-empty
classes A and B of graphs be such that, given any two disjoint graphs G
and H with H in B, the union of G and H is in A if and only if G is in
A. (Clearly this holds if A is GS for some surface S and B is P .) Let
rn = nan−1/an. Recall that given a graph H we let v(H) = |V (H)|; let
aut(H) be the number of automorphisms of H ; let λ(H) = ρv(H)/aut(H);
and let Xn(H) be the number of components isomorphic toH in the random
graph Rn ∈u An.

Lemma 5.1. Let H1, . . . , Hm be a fixed collection of pairwise non-isomo-
phic connected graphs in B. Let k1, · · · , km be non-negative integers, and
let K =

∑m
i=1 kiv(Hi). Then for Rn ∈u An,

E[

m
∏

i=1

Xn(Hi)ki
] =

m
∏

i=1

λ(Hi)
ki

K
∏

j=1

(rn−j+1/ρ).

Proof Let vi = v(Hi) for i = 1, . . . ,m; and let an = |An|. We may construct
a graph G in An with at least ki components isomorphic to Hi as follows:
choose the vertices of the different components, then insert appropriate
copies of Hi on the vertices of each component; and finally choose any
graph H of order n−K in A on the remaining n−K vertices. The number
of such constructions is

m
∏

i=1

ki
∏

j=1

(

(

n−∑i−1
s=1 ksvs − (j − 1)vi

vi

)

· vi!

aut(Hi)

)

· an−K .

How often is a specific G ∈ An constructed? This depends on the number
of components of G that are isomorphic to some Hi. If G contains exactly
ti components isomorphic to Hi for each i, then Rn is constructed exactly
∏m

i=1(ti)ki
times. Denote by a(n; t1, . . . , tm) the number of graphs in An

with exactly ti components isomorphic to Hi. Then the definition of the
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expectation implies:

E[

m
∏

i=1

Xn(Hi)ki
]

=
∑

t1,...,tm≥0

m
∏

i=1

(ti)ki

a(n; t1, . . . , tm)

an

=

m
∏

i=1

ki
∏

j=1

(

(

n−∑i−1
s=1 ksvs − (j − 1)vi

vi

)

· vi!

aut(Hi)

)

· an−K

an

=
m
∏

i=1

aut(Hi)
−ki ·

K
∏

j=1

(n− j + 1)
an−j

an−j+1

=

m
∏

i=1

λ(Hi)
ki ·

K
∏

j=1

(rn−j+1/ρ).

2

Proof of Theorem 3.1 Since rn → ∞ as n→ ∞, by the last lemma

E[

m
∏

i=1

Xn(Hi)ki
] →

m
∏

i=1

λ(Hi)
ki

as n → ∞, for all non-negative integers k1, . . . , km. A standard result on
the Poisson distribution now shows that the joint distribution of the ran-
dom variables Xn(H1), . . . , Xn(Hm) tends to that of independent random
variables Po(λ(H1)), . . . ,Po(λ(Hm)), see for example Lemma 5.4 of [19] or
see [17]. Finally note that, since 0 ≤ Xn(H) ≤ κ(Rn) ≤ Y in distribution,
where Y ∼ 1 + Po(1) and so Y has finite jth moment, convergence in total
variation distance and for the jth moment follow from convergence in dis-
tribution. 2

Proof of Theorem 3.2 We prove part (b). Let Xn be the number of
components of Miss(Rn) in D. We consider convergence in distribution
first. Let k be a fixed positive integer and let ǫ > 0. We want to show that
for n sufficiently large we have

|P(Xn = k) − P(Po(λ) = k)| < ǫ. (7)

By Lemma 4.4 there is an n0 such that

P[miss(Rn) > n0] < ǫ/3. (8)
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List the unlabelled graphs in D in non-decreasing order of the number of
nodes as H1, H2, . . .. For each positive integer m let λ(m) =

∑m
i=1 λ(Hi).

Let n1 ≥ n0 be sufficiently large that, if m is the largest index such that
Hm has at most n1 nodes, then

|P[Po(λ) = k] − P[Po(λ(m)) = k]| < ǫ/3. (9)

Let X
(m)
n denote the number of components of Rn isomorphic to one of

H1, . . . , Hm, that is, with order at most n1. Let n > 2n1. Then

|P[Xn = k] − P[X(m)
n = k]| ≤ P[miss(Rn) > n1] < ǫ/3. (10)

But by Theorem 3.1, for n sufficiently large,

|P[X(m)
n = k] − P[Po(λ(m)) = k]| < ǫ/3,

and then by (9) and (10) the inequality (7) follows.
Finally note that the convergence in total variation distance and for any

moment follow as in the proof of Theorem 3.1. 2

Proof of Theorem 3.3 We have already seen in Theorem 2.5 that whp
Miss(Rn) is planar. Let an = |GS

n | and let cn be the number of connected
graphs in GS

n . By Theorem 3.2,

cn/an → 1/A(ρ) = e−C(ρ) as n→ ∞. (11)

Given a graph G on a finite subset V of the positive integers let φ(G) be
the natural copy of G moved down on to {1, . . . , |V |}; that is, let φ(G) be
the graph on {1, . . . , |V |} such that the increasing bijection between V and
{1, . . . , |V |} is an isomorphism between G and φ(G).

Let H be any planar graph on {1, . . . , h}. Then

P[φ(Miss(Rn)) = H] =

(

n

h

)

cn−h

an

=
cn−h

an−h

1

h!

(n)han−h

an

=
cn−h

an−h

1

h!

h−1
∏

i=0

rn−i

→ e−C(ρ) ρ
h

h!

as n→ ∞ by (11) and the assumption of smoothness. Now by symmetry

P[Miss(Rn) ∼= H] =
h!

aut(H)
P[φ(Miss(Rn)) = H]
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and hence as n→ ∞

P[Miss(Rn) ∼= H] → e−C(ρ) ρh

aut(H)
= pM(H).

Observe that
∑

H∈UP

pM (H) =
1

A(ρ)

∑

n≥0

∑

H∈UPn

ρn

aut(H)
=

1

A(ρ)

∑

n≥0

∑

G∈Pn

ρn

n!
= 1,

so that we do indeed have a distribution. Note that we are including the
empty graph ∅ with pM (∅) = 1

A(ρ) . Further, as n→ ∞

P[miss(Rn) = h] =
∑

H∈GS

h

P[φ(Miss(Rn)) = H] → e−C(ρ) ρ
h

h!
ah = qm(h).

Since E[miss(Rn)] = O(1) by part (c) of Theorem 2.5, convergence in total
variation follows from convergence in distribution. By definition, the miss
distribution has probability generating function

G(x) =
∑

h≥0

qm(h)xh = e−C(ρ)
∑

h≥0

ρhxh

h!
= e−C(ρ)A(ρx)

and since A(x) = eC(x) we have

G(x) = A(ρx)/A(ρ) = eC(ρx)−C(ρ).

From the probability generating function G(x) we may obtain the moments
of the miss distribution: the mean is ρC′(ρ) and the variance is ρ2C′′(ρ) +
ρC′(ρ). From equation (4.5) in [16] we see that ρC′(ρ) equals the radius of
convergenceR of the exponential generating function for 2-connected planar
graphs, which equals 0.03819 to four significant figures. Also from that same
equation, ρ2C′′(ρ) = 2C4 where 2C4 = −R − F2 and F2 = R2/(2B4 − R),
and from the value for B4 in the appendix of [16] ρ2C′′(ρ)+ρC′(ρ) = 0.03979
to four significant figures. 2

Next we restrict our attention to the planar case, and consider the mo-
ments of miss(Rn).

Proposition 5.2. Consider the planar case, and let Rn ∈U Pn. For k =
0, 1, . . . let

pk = e−C(ρ) akρ
k

k!
.

For any ǫ > 0 there is an n0 and δ > 0 such that for all n ≥ n0 and all
0 ≤ k ≤ δn we have

(1 − ǫ)pk ≤ P[miss(Rn) = k] ≤ (1 + ǫ)pk. (12)
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Also,

P[miss(Rn) ≥ δn] = O(n−5/2).

Let the random variable X have the miss distribution. Then as n → ∞,
E[miss(Rn)t] → E[Xt] < ∞ for 0 ≤ t < 5

2 , and E[miss(Rn)t] → ∞ for

t ≥ 5
2 .

Note that we already know from Theorem 3.3 that miss(Rn) tends to X
in total variation distance.

Proof We may prove (12) by arguing as in the proof of the last theorem.
Let ǫ > 0. Let δ > 0 be such that (1 − δ)−7/2 ≤ 1 − ǫ/2. For n → ∞,
uniformly over 0 ≤ k ≤ n/2 we have

P[miss(Rn) = k] =

(

n

k

)

akcn−k

an

=
cn−k

an−k

ak

k!

an−k/(n− k)!

an/n!

= (1 + o(1)) (
n

n− k
)7/2 pk.

But for 0 ≤ k ≤ δn the term ( n
n−k )7/2 is at least 1 + o(1) and at most

1 + ǫ/2 + o(1), and the result (12) follows.
For larger k we shall be less precise. First note that, in much the same

way as above, we may show that there is a constant c0 such that for all
n and all k ≤ n/2 the probability that some union of components of Rn

has order k is at most c0k
−7/2. Thus the probability that some union of

components of Rn has order k such that δn/2 ≤ k ≤ n/2 is O(n−5/2).
Now we need a result on graphs. We claim that, given a graphG = (V,E)

of order n and with miss(G) = m, there is a union of components which has
order k for some k with m/2 ≤ k ≤ n/2. Let s = n −m, so that s is the
largest order of a component. Note that there are at least s− 1 integers in
⌈n−s+1

2 ⌉, .., ⌊n+s−1
2 ⌋. Thus by adding components one at a time we see that

there is a union of components, with vertex set W say, such that |W | is in
this set. Then |W | ≥ ⌈n−s+1

2 ⌉ ≥ m/2, and n− |W | ≥ n− ⌊n+s−1
2 ⌋ ≥ m/2.

Thus W or V \W is as required.
It follows that if miss(G) ≥ δn then there is a union of components with

order k such that δn/2 ≤ k ≤ n/2. Hence by the earlier bound,

P(miss(Rn) ≥ δn) = O(n−5/2) (13)

as required.
Now consider expected values. Since pk ∼ gk−7/2 as k → ∞, E[Xt] <∞

for 0 ≤ t < 5/2 and E[Xt] = ∞ for t ≥ 5/2.
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First let 0 ≤ t < 5/2. By (12) and (13), for n ≥ n0

E[miss(Rn)t] ≤ (1 + ǫ)

⌊δn⌋
∑

k=1

ktpk + nt
P[miss(Rn) ≥ δn] ≤ (1 + ǫ)E[Xt] + o(1),

and

E[miss(Rn)t] ≥ (1 − ǫ)

⌊δn⌋
∑

k=1

ktpk ≥ (1 − ǫ)E[Xt] + o(1);

and so E[miss(Rn)t] → E[Xt] as n→ ∞. For t ≥ 5/2, as above we find that
for n ≥ n0

E[miss(Rn)t] ≥ (1 − ǫ)

⌊δn⌋
∑

k=1

ktpk → ∞ as n → ∞.

2

The following result essentially appears in [2]: we give a full proof here
for completeness.

Lemma 5.3. Let Un be a set of unlabelled n-node graphs, and let An be the
set of graphs on nodes 1, . . . , n which are isomorphic to some graph in Un.
Let Un ∈U Un and Rn ∈U An. Then aut(Rn) ≤s aut(Un).

Proof Let m = |Un| and an = |An|. List the graphs in Un as H1, . . . , Hm

where aut(H1) ≤ · · · ≤ aut(Hm). Let pi = n!
aut(Hi)an

. Let t ≥ 0 and

let xi = 1 if aut(Hi) ≥ t and = 0 otherwise. Then p1 ≥ · · · ≥ pm and
x1 ≤ · · · ≤ xm, and so

0 ≥
∑

i

∑

j

(pi − pj)(xi − xj) = 2m
∑

i

pixi − 2
∑

i

xi

yielding the standard inequality

∑

i

pixi ≤
1

m

∑

i

xi.

But now

P[aut(Rn) ≥ t] =
∑

i

pixi ≤
1

m

∑

i

xi = P[aut(Un) ≥ t].

2

Proof of Theorem 3.4 We have

E[Xn(H)] =

(

n

h

)

(n− h)|GS
n−h|/|GS

n | ∼ nρh/h!,
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and similarly

E[Xn(H)(Xn(H) − 1)] =

(

n

h

)(

n− h

h

)

(n− 2h)2|GS
n−2h|/|GS

n | ∼ (nρh/h!)2.

The result now follows by Chebyshev’s inequality. 2

6. Concluding remarks

We have seen that for each surface S, the labelled graphs embeddable
in S have the same growth constant as for the planar case, and the same
holds for unlabelled graphs. The same proof idea also works for two other
cases of interest (as will be spelled out elsewhere), concerning 2-connected
graphs embeddable in S and concerning graphs embeddable in S and with
a given average degree.

We have found various properties of the random graph Rn ∈U GS
n , but

many questions are left open. For example, for Rn ∈U Pn, the expected
value of the maximum order of a block is Ω(n), and whp there is at most

one block of order n
2

5ω(n) for any function ω(n) → ∞ as n → ∞ (see [?]).
Are there similar results for any surface S?

Now suppose that S is not the sphere. Is Rn usually 4-colourable? We
know that whp just the one component Big(Rn) is non-planar. What is the
least order of a non-planar subgraph? Is it true that whp just one block is
non-planar? How far is Rn from being planar: in particular, how large is
the minimum face-width of Rn over all embeddings in S (see [3] concerning
the face-width of maps)? If T denotes the torus and K the Klein bottle, the
orientable and non-orientable surfaces of Euler genus 2 respectively, how do
|GT

n | and |GK
n | compare?

When we made the assumption that the class GS was smooth we obtained
more refined results concerning the random graph Rn. It is plausible that
even more may be true, and that some result like the precise asymptotic
counting formula (1) holds for GS .
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[4] M. Bodirsky, O. Giménez, M. Kang and M. Noy, On the number of series-parallel and
outerplanar graphs, Proceedings of European Conference on Combinatorics, Graph
Theory, and Applications (EuroComb 2005), Discrete Mathematics and Theoretical
Computer Science Proceedings Volume AE, (2005) 383 – 388.
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[15] O. Giménez and M. Noy, Estimating the growth constant of labelled planar graphs,
manuscript, 2004.
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