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Abstract. Discriminating groups were introduced by G.Baumslag,
A.Myasnikov and V.Remeslennikov as an outgrowth of their theory
of algebraic geometry over groups. However they have taken on a life
of their own and have been an object of a considerable amount of
study. In this paper we survey the large array results concerning the
class of discriminating groups that have been developed over the past
decade.
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1. Discrimination and Discriminating Groups

If G and H are groups then G separates H provided that to every
nontrivial element h of H there is a homomorphism ϕh : H → G such
that ϕh(h) 6= 1. G discriminates H if to every finite nonempty set S of
nontrivial elements of H there is a homomorphism ϕS : H → G such that
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ϕS(s) 6= 1 for all s ∈ S. The group G is discriminating provided that it
discriminates every group it separates.

Discriminating groups were invented by Baumslag, Myasnikov and
Remeslennikov in [BMR 2] as a spin-off of their theory of algebraic geom-
etry over groups [BMR 1]. Algebraic geometry over groups was created as
a tool to attack the celebrated Tarski conjectures on the elementary theory
of free groups. By analogy with classical algebraic geometry we may view
the discrimination of H by G as an approximation to H much like the lo-
calization of a ring at a prime. (Think of a set of generators for H as a set
of variables.)

The following is the main criterion for determining whether a group is
discriminating.

Lemma 1.1. ([BMR 2]) A group G is discriminating if and only if G
discriminates G×G.

Since this is fundamental we will give the proof which is very easy:
Since G clearly separates G×G if it is discriminating it will discriminate

G×G.
Conversely suppose G discriminates G × G. By induction then G will

discriminate Gn. Suppose that G separates a group H; we want to show
that it discriminates H. Let h1, ..., hn be nontrivial elements in H. Then
for each there is a homomorphism φi : H → G such that φi(hi) 6= 1. Taking
φ = φ1 × ... × φn and using the assumption that G discriminates Gn gives
us that G discriminates H.

It is clear from the Lemma that if G × G embeds in G, then G is dis-
criminating. If this is the case we say that G is trivially discriminating
which we abbreviate as TD. In [FGMS 1] the question was asked if there
are finitely generated non-trivially discriminating groups. We will give some
examples of these later in the survey.

1.1. Some Ties to Logic. We now present some ties between discriminat-
ing groups and logic.

A universal sentence is one of the form ∀xϕ(x) where x is a tuple of
distinct variables and ϕ(x) is a quantifier-free formula containing at most
the variables in x. Similarly, an existential sentence of L is one of the form
∃xϕ(x) where x and ϕ(x) are as before. Vacuous quantifications are per-
mitted and a quantifier-free sentence of L is considered a special case both
of universal sentences and existential sentences. Observe that the nega-
tion of a universal sentence is logically equivalent to an existential sentence
and vice-versa. If G is a group, then the universal theory of G, written
Th∀(G), is the set of all universal sentences of L true in G. Two groups G
and H are universally equivalent or have the same universal theory,
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written G ≡∀ H, provided Th∀(G) = Th∀(H). Observe that two groups
satisfy precisely the same universal sentences if and only if they satisfy pre-
cisely the same existential sentences. Notice that it is easy to prove that all
finitely generated free groups have the same universal theory.

Theorem 1.1. ([FGMS 1]): If G is discriminating, then G×G ≡∀G.

In order to better capture the axiomatic properties of discriminating
groups we define.

Definition 1.1. ([FGMS 2]): The group G is squarelike provided G×G
≡∀ G.

Hence, every discriminating group is squarelike (but, as we shall see, not
conversely).

1.1 Some Ties to the Algebraic Geometry of Groups. As mentioned
discriminating groups arose out of the study of the algebraic geometry over
gorups. Here we present some of the ties.

A first order expression

∀x ∧i (wi(x) = 1) → (u(x) = 1))

where u((x)) and the wi(x) are words on the variables and their formal
inverses is called a quasi-identity

Observe that every identity ∀x(A(x) = a(x)) is equivalent to a quasi-
identity ∀x((1 = 1) → (A(x) = a(x))). So laws and the group axioms
themselves may be viewed as instances of quasi-identities.

Definition 1.2. The model class of a set of quasi-identities including the
group axioms is a quasivariety of groups. If G is a group the quaivariety
generated by G is denoted qvar(G)

Quasivarieties are examples of axiomatic classes. That is, they are
model classes of sets of sentences of L, the language of group theory. Qua-
sivarieties are closed under (unrestricted) direct products. They are also
closed under subgroups since they have a set of universal axioms. Put an-
other way, quasivarieties are axiomatic prevarieties. The class of all groups
is a quasivariety of groups and the intersection of any family of quasivari-
eties is again a quasivariety. For that matter, the intersection of any family
of universally axiomatizable model classes (i.e. axiomatic classes having a
set of universal axioms) is again a universally axiomatizable model class. It
follows that if X is any class of groups there is a least quasivariety, denoted
qvar(X ), containing X and a least universally axiomatizable model class,
denoted ucl(X ), containing X . We call qvar(X ) the quasivariety generated
by X and we call ucl(X ) the universal closure of X . If X = {G} is a singleton
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we write qvar(G) and ucl (G) for qvar(X ) and ucl(X ) respectively. qvar(G)
is the model class of the quasi-identities satisfied by G and ucl(G) is the
model class of the universal sentences satisfied by G. In general ucl(G) is a
proper subclass of qvar(G). (The more properties a structure is required to
satisfy the fewer structures can satisfy them in general.)

One final concept and then the result.

Definition 1.4. The group G is equationally Noetherian provided for
every nastural number n ∈ N and every system S = 1 of equations in n
unknowns there is a finite subset S0 ⊆ S such that VG(S) = VG(S0).

Examples of equationally Noetherian groups are groups linear over a
commutative Noetherian ring with 1. In particular, every group linear over
a field is equationally Noetherian.

Tying all of these together is:

Theorem 1.3 (FGMS 1). Let G be a finitely generated equationally Noe-
therian group. Then G is discriminating if and only if qvar(G) = ucl(G).

1.3 Abelian Discriminating Groups. In the original paper by Baum-
slag,Myasnikov and Remeslennikov [BMR 2] the question was raised as to
whether the abelian discriminating groups can be characterized. In [FGMS
1] this was extended to ask whether the abelian squarelike groups could be
characterized. If there is any torsion this can be answered imeediately.

Lemma 1.3.1. Suppose the set of nontrivial elements of finite order in the
group G is finite and nonempty. Then G is not squarelike. Hence, G is not
discriminating.

We immediately deduce that no nontrivial finitely generated nilpotent
group with torsion can be squarelike. In particular, no nontrivial finitely
generated abelian group with torsion and no nontrivial finite group can be
squarelike. In the torsion-free case we always get discrimination.

Lemma 1.3.2. Every torsion free abelian group is discriminating. Hence,
every torsion free abelian group is squarelike.

So, among finitely generated abelian groups, the discriminating groups
and the squarelike groups are precisely the torsion-free ones. A moment’s
reflection produces nontrivial discriminating abelian groups ( necessarily not
finitely generated) with torsion. For example, every group free of infinite
rank in the variety of abelian groups of exponent dividing n for any fixed
integer n > 1 is trivially discriminating.

Baumslag, Myasnikov and Remeslennikov in [BMR 2] give a partial an-
swer to the total characterization of abelian discriminaitng groups. We
must introduce the Szmielew invariants of an abelian group. Given an
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integer m > 0 and a family of elements (ai) in an additively written abelian
group A, (ai) is linearly independent modulo m provided Σiniai = 0
implies ni ≡ 0(mod m) for all i; (ai) is linearly independent modulo
m in the stronger sense provided Σiniai ∈ mA implies the coefficients
ni ≡ 0(mod m) for all i. For each prime p and positive integer k we define
three ranks each of which is a nonnegative integer or the symbol ∞.

(1) ρ(1)[p, k](A) is the maximum number of elements of A of order pk

and linearly independent modulo pk

(2) ρ(2)[p, k](A) is the maximum number of elements of A linearly in-
dependent modulo pk in the stronger sense.

(3) ρ(3)[p, k](A) is the maximum number of elements of A of order pk

and linearly independent modulo pk in the stronger sense.

Proposition 1.3.1. (Szmielew [S]) Let A and B be abelian groups. Then A
and B are elementarily equivalent if and only if the following two properties
are satisfied.

(1) A and B either both have finite exponent or both have infinite expo-
nent.

(2) For all primes p and positive integers k, ρ(i)[p, k](A) = ρ(i)[p, k](B))
for i = 1, 2, 3.

Proposition 1.3.2. ([BMR 2]) Let A be a torsion abelian group such that,
for each prime p, the p-primary component of A modulo its maximal divisible
subgroup contains no nontrivial elements of infinite p-height. Then A is
discriminating if and only if, for each prime p, the following two properties
are satisfied.

(1) For all positive integers k, ρ(1)[p, k](A) is either 0 or ∞.
(2) The rank of the maximal divisible subgroup of the p-primary compo-

nent of A is either 0 or infinite.

Extending the ideas of the [BMR 2] paper, Fine, Gaglione,Mayasnikov
and Spellman [FGMS 2] developed a complete characterization of abelian
squarelike groups.

Proposition 1.3.3. ([FGMS 2]) Let A be an abelian group. Then A is
squarelike if and only if, for each prime p and positive integer k, ρ(1)[p, k](A)
is either 0 or ∞.

2. Positive Examples of Discrimninating Groups

In the theory as applied to the algebraic geometry of groups it is impor-
tant to know both positive examples of discriminating groups and negative
examples. The original positive examples of discriminating groups were
either abelian or trivially discriminating. Recall that a group is trivially
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discriminating if it embeds its direct square. In this section we present
these positive examples. We will return later to examples of nontrivailly
discriminating groups.

Most of the early discovered postive examples were also “universal type
groups”

(1) EXAMPLE 1: Abelian Groups:
Torsion-free abelian groups and the torsion abelian groups de-

scribed above. ([BMR 2]. )

(2) EXAMPLE 2: Higman’s universal group H.
Higman constructed this group H [Hi] which is a finitely presented group

which embeds every other finitely presented group.
Since this group is finitely presented its direct square is also finitely pre-

sented. Therefore it embeds its direct square and hence is trivially discrim-
inating.

(3) EXAMPLE 3: Thompson’s Group F .
This group consists of all orientation preserving piecewise linear home-

omorphisms from the unit interval [0,1] onto itself that are differentiable
except at finitely many dyadic rational numbers and such that on intervals
of differentiability the derivatives are powers of 2 is finitely presented. As in
Higman’s group, this group embeds its direct square and hence is trivially
discriminating. This is also finitely presented.

(4) EXAMPLE 4: The commutator subgroup of the Gupta-Sidki-Grigorchuk
Group.

For each odd prime p, Gupta and Sidki and independently Grigorchuk
constructed a group Hp which is a subgroup of the group of automorphisms
of a rooted tree. Hp is a 2-generator infinite p-group. Consider the commu-
tator subgroup H ′

p of Hp. It can be shown that H ′
p, while finitely generated,

is not finitely presentable. It can be shown that H ′
p is trivially discriminat-

ing.

(5) EXAMPLE 5: Groups which are isomorphic to their direct squares.
Examples of nontrivial finitely generated groups isomorphic to their di-

rect squares were first constructed by Tyrer Jones [J] and subsequently by
Hirshon and Meier [HM]. The question of whether or not there exists a
finitely presented group isomorphic to its direct square remains open.

(6) EXAMPLE 6: The Grigorchuk group of intermediate growth. Grig-
orchuk developed a group of intermediate growth (see [FGMS 1]). It was
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shown in that paper, due to conversations with Grigorchuk, that this group
is discriminating. Whether is is trivially discriminating or not is open.

(7) EXAMPLE 7: It was shown in [BFGS 1] that

Lemma 2.1. A simple discriminating group is trivially discriminating.

Then: For each integer n ≥ 2 and each integer r ≥ 1, Higman defined a
group Gn,r (see [Hi 2])as follows. Let Vn be the variety of all algebras with
one n-ary operation λ and n unary operations α1, . . . , αn subject to the
laws λ(α1(x), . . . , αn(x)) = x and αi(λ(x1, . . . , xn)) = xi, i = 1, . . . , n. If
Vn,r is an algebra free on r generators in Vn, then we let Gn,r = Aut(Vn,r)
be its group of automorphisms. Higman proved that the Gn,r are finitely
presented, when n is even Gn,r is simple and when n is odd Gn,r contains
a simple subgroup G+

n,r of index 2. Setting G+
n,r = Gn,r when n is even, he

showed that, for fixed r, G+
m,r

∼= G+
n,r implies m = n. Thus he found an

infinite family of finitely presented infinite simple groups. The Gn,r are all
trivially discriminating.

(8) EXAMPLE 8: The group Sω of all permutations of N which move
only finitely many integers and the subgroup Aω of even permutations are
each trivially discriminating

(9) EXAMPLE 9: The existence of a finitely generated but not finitely
presentable trivially discriminating group G1 (e.g. the commutator sub-
group of a Gupta-Sidki-Grigorchuk group) together with the existence of a
universal finitely presented group (Higman’s Group G2) allowed us to con-
struct in [FGS 4] a group G = G1×G2 which is proven in that paper to be
a finitely generated discriminating group which is neither finitely presented
nor equationally Noetherian.

This led to the obvious question:

DOES THERE EXIST A FINITELY PRESENTED NONTRIVIALLY
DISCRIMINATING GROUP?

We will return to this shortly.
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3. Negative Examples: Examples of Nondiscriminating Groups

In the application of algebraic geometry it is as important to know both
whther a group is discriminating and whether it is not discriminating. This
further raised general questions on nondiscrimination of various classes of
groups in particular groups in various varieties.

The general idea to show nondiscrimination of a group is to show some
universal property which is true in G but cannot be true in G×G or to find
a number - dimension etc. - which is additive so cannot hold in G×G and
in G.

Definition 3.1. The group G is commutative transitive or CT provided
the centralizer of every nontrivial element is abelian.

We observe that the group G is CT if and only if it satisfies the universal
sentence

∀x, y, z(((y 6= 1) ∧ (xy = yx) ∧ (yz = zy)) → (xz = zx)).

If G is non-abelian then G × G cannot satisfy this sentence. Therefore
the following lemma follows directly.

Lemma 3.1. A nonabelian CT group is nondiscriminating.

In particular we obtain the negative examples.

(1) Any torsion-free hyperbolic group and in particular any non-
abelian free group is nondiscriminating

(2) Nonabelian free solvable groups and their nonabelian subgroups
are nondiscriminating.

(3) The free product of two nondiscriminating groups is nondis-
criminating.

In another direction, if we think of discrimination as having the direct
square G×G almost embedding in the group G, then this would be impos-
sible for a finite group. In particular it is impossible if the torsion elements
form a finite subgroup.

Lemma 3.2. If the torsion elements of a group G form a finite subgroup
then G is nondiscriminating.
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This leads to the further negative examples.

(4) Any finitely generated nilpotent group with nontrivial torsion
is nondiscriminating

(5) Any finite group is nondiscriminating.

One of the major questions raised in the early work on discriminating
groups ([BMR 2], [FGMS ]) was whether of not a nonabelian nilpotent
group can be discriminating. The full result was:

Theorem 3.1. A finitely generated nilpotent group is discriminating if and
only if it is torsion–free abelian.

There were several stages to obtaining the total final result (Theorem
3.1) although the final proof was rather direct. In [FGMS 1] it was shown
that nonabelian finitley generated free nilpotent groups are nondiscriminat-
ing. To do this an extension of commutative transitivity was introduced.
Myasnikov and Shumyatsky ([MS]) introduced the concept of centralizer di-
mensions (see [MS]) and showed that a group with finite centralizer dimen-
sion is nondiscriminating. As a consequence of this if follows that a finitely
generated nilpotent group is discriminating if and only if it is torsion–free
abelian. Their method yileded the following further result.

Theorem 3.2. A finitely generated linear group is discriminating only if it
is torsion–free abelian.

Independently Baumslag,Fine,Gaglione and Spellman using vector space
dimension proved that a nilpotent group is discriminating if and only if its
Malcev completion is discriminating. Theorem 3.1 can then be recovered
from this result.

Theorem 3.3. ([BFGS 2]) The Malcev completion of a finitely generated
torsion-free nilpotent group is discriminating if and only if it is abelian.

The nondiscrimination of nonabelian nilpotent groups leads to the ques-
tion as to whether any nonabelian group in a variety must be nondiscrimi-
nating. There is some further evidence for this. Kassabov [K] proved it for
solvable groups.

Theorem 3.4. ([K]) A finitely generated solvable group is discriminating
only if it is torsion–free abelian.

Further in this direction, Baumslag, Fine, Gaglione and Spellman [BFGS
1]n proved some general results on nondiscrimination of relatively free groups.
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Theorem 3.5 (BFGS 1). Let F be a non–abelian free group and let R be a
non–trivial, normal subgroup of F such that F/R is torsion–free and con-
tains a free abelian group of rank two. Then F/V (R) is not discriminating.

Theorem 3.6 (BFGS 1). Let V and U be two varieties. If the variety V
contains the infinite cyclic group, then the non-abelian free groups in the
product variety UV are not discriminating.

Theorem 3.7 (BFGS 1). For all sufficiently large primes p, the non–abelian
free groups G in the variety of all groups of exponent p are not discriminat-
ing.

We pose the following question:

DOES THERE EXIST A NONABELIAN, DISCRIMINATING, RELA-
TIVELY FREE GROUP?

4. Nontrivially Discriminating Groups

Recall the quesion of whether there exists a finitely generated nontriv-
ially discriminating group. That is a finitely generated discriminating group
which does not embed its direct square. One possibility (still open) was the
Grigorchuk groups of intermediate growth. Here we give other examples -
done with Peter Neumann and Gilbert Baumslag. We present two classes
of examples. The groups in the first class are finitely presented. The sec-
ond is a class of groups studied by B.H. Neumann which are non-trivally
discriminating and finitely generated but probably not finitely presented.

EXAMPLE 1: To describe the first class of groups let X be a non-
abelian, finitely generated, torsion free, nilpotent group and let Y be one
of the infinite simple groups, Gn,r as described by Higman. The following
properties of X and Y are needed:

(a) X and Y are finitely presented;
(b) X is residually finite;
(c) every finite group is embeddable in Y ;
(d) X is not embeddable in Y ; in fact, a torsion free nilpotent subgroup

of Y is abelian;
(e) Y × Y × Y is embeddable in Y. (This follows from the fact that

Vn,r
∼= Vn,s in the notation of [GH2] if and only if r ≡ smod(n−1).)

Our class G1 consists of the groups X × Y .

Theorem 4.1 (FGS 4). Each group G ∈ G1 is a nonabelian, finitely pre-
sented non-trivially discriminating group.

We present the proof to exhibite the techniques involved.



DISCRIMINATING GROUPS 11

Proof. Clearly each group G ∈ G1 is non-abelian and finitely presented.
Then suppose G ∈ G1. We must show show that G is discriminating but
that G does not embed its direct square.

Since G = X × Y with X and Y as described above to prove that G
is discriminating it suffices to show that Y discriminates any group of the
form W × Y × Y where W is residually finite. This is sufficient for then
G = X × Y will discriminate its direct square and hence be discriminating.
For this purpose, let h1, ..., hn be finitely many non-identity elements of
W × Y × Y Write hi = (ai, bi) where ai ∈ W and bi ∈ Y × Y . Without
loss of generality, we may suppose that ai 6= 1 for 1 ≤ i ≤ m and ai = 1
for m + 1 ≤ i ≤ n. Since W is residually finite, there exists a finite group
V and a homomorphism α : W → V such that α(ai) 6= 1 for 1 ≤ i ≤ m.
By (c) above we may embed V into Y and so we get a homomorphism
β : W → Y such that β(ai) 6= 1 for 1 ≤ i ≤ m. Let γ be the homomorphism
γ : W × Y × Y → Y × Y × Y defined by (w, y, y))

γ→ (β(w), y, y). By (e)
above let δ be an embedding of Y ×Y ×Y into Y . If we put ϕ = δ ◦γ , then
clearly ϕ is a homomorphism such that ϕ(hi) 6= 1 for all i = 1, ..., n. Thus
Y discriminates W × Y × Y and therefore it follows that G discriminates
G×G. Thus G is discriminating.

To show that is nontrivially discriminating we must show that G×G is
not embeddable into G. Assume to deduce a contradiction that G×G ↪→ G.
Restricting the embedding we get an embedding X×X ↪→ X×Y . Letting A
be the projection of X×X into Y , then X×X ≤ X×A, so X ′×X ′ ≤ X ′×A′.
But this tells us that if h = the Hirsch length of the commutator subgroup
X ′, then h ≤ 2h ≤ h since A′ is finite. This contradicts the fact that X is
non-abelian and torsion free nilpotent. Therefore G×G is not embeddable
into G and hence is nontrivially discriminating.

¤

EXAMPLE 2: The second class of non-trivally discriminating groups,
which we will denote G2 was introduced by B.Neumann in a different con-
text. Let n1, n2, ... be a strictly increasing sequence of odd positive integers
with n1 ≥ 5. Let Λr = {1, 2, ..., nr} and let Gr be the alternating group on
Λr. In Gr consider the two elements

xr = (123), yr = (12...nr).
In the unrestricted direct product

∏
r Gr define

x = (x1, x2, ...) , y = (y1, y2, ...)

and let
G =< x, y >⊆

∏
r

Gr.
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B.H. Neumann proved that the restricted direct product D = G1×G2×
· · · is a subgroup of G. The class G2 consists of all the groups G constructed
as above.

Theorem 4.2. Each group G ∈ G2 is a finitely generated non-trivially
discriminating group.

The methods used in constructing these non-TD examples can be gener-
alized via the use of ascending chains of subgroups.

Theorem 4.3 (BFGS 1). Let U be the union of a properly ascending chain
of subgroups

U1 < U2 < · · · < Un < . . .

and let P be the unrestricted direct product of the Ui:

P =
∏∞

i=1
Ui

Furthermore let Q be the restricted direct product

Q =
∞∏

i=1

Ui

Then every subgroup G of P containing Q is discriminating (where here we
view Q as a subgroup of P ).

Proof. The proof of this result is straightforward. To this end, let D = G×G
and let d1 = (a1, b1), . . . , dk = (ak, bk) be finitely many non-trivial elements
of D. Each of the elements of G can be viewed as a sequence of elements
whose n − th term is contained in Un. Since G contains Q and the the
series of subgroups Uj is increasing, there exists an integer α such that
all of a1, b1, . . . , ak, bk ∈ Uα. We define now a homomorphism of D into
G by projecting the first coordinates of the elements of D to Uα and the
second coordinates to Uα+1. The upshot of this is that we have defined a
homomorphism θ of G × G into Uα × Uα+1 . If we view Uα × Uα+1 as a
subgroup of G, it follows that θ is a homomorphism of G×G into G mapping
the given elements d1, . . . , dk non-trivially. This completes the proof. ¤

This final theorem can be used to recover the proofs of the preceding
examples and to obtain the fact that there exists continuously many 2-
generator non-TD discriminating groups. In particular let Ai denote the
alternating group of degree i and let Gr be the subgroup defined in the
proof of Theorem 4.2. Then Gs contains the restricted direct product of
the Ani and that

Gs
∼= Gt if and only if s = t
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This implies that there are continuously many non–isomorphic 2-generator
groups. Theorem 4.3 then applies to these groups. Further B.H. Neumann
proved that the only finite normal subgroups of Gr are direct products of
finitely many of the Ani . This implies, remembering that the alternating
groups involved here are all simple, that none of the Gr are TD. We remark
here that it has recently been proved that none of the groups Gs is finitely
presented ( G.Baumslag and C.F. Miller).

Corollary 4.1. The groups Gr are discriminating and further are not TD.
Thus there exist continuously many 2-generator nontrivially discriminating
groups.

5. Squarelike Groups

In order to better capture the axiomatic properties of discriminating
groups the class of squarelike groups were introduced. These are groups
which share the same universal theory as their direct squares.

Definition 5.1. ([FGMS 2]): The group G is squarelike provided G×G
≡∀ G.

Hence, every discriminating group is squarelike (but, as we shall see),
not conversely).

Theorem 5.1. The class of discriminating groups is a proper subclass of
the class of squarelike groups.

To prove this we explicitly construct a discriminating group which is
provably non-squarelike. This can also be proved with an axiomatic ar-
gument done below.

EXAMPLE: Let H be the subgroup of the group of all permutations of
the set Z of integers generated by the 3-cycle ξ = (012) and the translation
η(n) = n + 1 for all n ∈ Z. H = < ξ, η > can also be described as the
semidirect product of the group M , of all even parity permutations within
the group N of all permutations of the set Z of integers which move only
finitely many integers, by an infinite cyclic group C =< c; > where the
automorphism α(c) : M → M acts by α(c)(π)(n) = π(n− 1) + 1. (We say
that α(c) acts by translation by 1.) Note that any bijection between N and
Z induces an isomorphism between the infinite alternating group Aω and M .
H first appeared in print in the same paper of B.H. Neumann in which the
uncountably many nontrivially discriminating groups Gn exhibited before
were introduced. B.H. Neumann observed that (independent of n) if K0 is
the restricted direct product of the family (An(r))r∈N of alternating groups,
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then the quotient of G = Gn modulo K0 is isomorphic to H. It can be
proved that H is nondiscriminating however H is squarelike.

In an earlier paper this was done differently. Recall that a class of groups
is axiomatic if it is the model class of a set of first order sentences (axioms).
It can be shown that a class of groups is axiomatic if it is closed under
ultraproducts and elementary equivalence.

Theorem 5.2. ([FGMS 2]) The class of squarelike groups is axiomatic but
the class of discriminating groups is not axiomatic.

To prove that the discriminating groups are nonaxiomatic a specific ex-
ample of a nondiscriminating group (however squarelike) was constructed
which was elementarily equivalent to a discriminating group. Hence the
discriminating groups are not closed under elementary equivalence.

Originally the fact that the squarelike groups are axiomatic was proved by
using the closure properties noted above. However subsequently V.H.Dyson
[D] discovered an explicit axiom schema for the class of squarelike groups.
To each ordered pair (w,u) of finite tuples of words on a fixed but arbitrary
finite set {x1, . . . , xn}of distinct variables and their formal inverses we assign
the following sentence σ(w,u) of L.

∀x(
∧

i

(wi(x) = 1) →
∨

j

(uj(x) = 1)) →
∨

j

∀x((
∧

i

wi(x) = 1) → (uj(x) = 1)).

The contrapositive of σ(w,u) is (up to logical equivalence) the sentence
τ(w,u) asserting
∧

j

∃x(
∧

i

wi(x) = 1) ∧ (uj(x) 6= 1)) → ∃x(
∧

i

wi(x) = 1) ∧
∧

i

(uj(x) 6= 1)).

Theorem 5.3. (Huber-Dyson [D]) The class of squarelike groups is the
model class of the group axioms and the sentences σ(w,u). Hence, the class
of squarelike groups is axiomatic.

Although the squarelike groups properly contain the discriminating groups
they are very close and in fact correspond in the presence of finite presen-
tation. In particular:

Theorem 5.4. ([FGMS 2]) Let G be a finitely presented group. Then G is
discriminating if and only if G is squarelike.

We give the proof because its very pretty

Proof. Suppose G is a finitely presented group. If it is discriminating, it is
squarelike. Now we suppose that G is squarelike and we must show that it
is discriminating.
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Let
G =< x1, ..., xn;R1, ..., Rm >

be a finite presentation for G where Ri = Ri(x1, ..., xn) are words in x1, .., xn.
To show that G is discriminating we must show that G discriminates G×G.

A finite presentation for G×G is then given by

G×G =< x1, ..., xn, y1, ..., yn; R1(x1, ...xn) = 1, ..., Rm(x1, .., xn) = 1,

R1(y1, ...yn) = 1, ..., Rm(y1, .., yn) = 1, [xi, yj ] = 1, i, j = 1, .., n > .

Now suppose W1, ..., Wk are non-trivial elements of G × G. Then each
Wi, i = 1, ...k is given by Wi = Wi(x1, ..., xn, y1, ..., yn), a word in the given
generators of G×G. Consider now the existential sentence

∃x1, ..., xn, y1, .., yn((
m∧

i=1

Ri(x1, .., xn) = 1) ∧ (
m∧

i=1

Ri(y1, .., yn) = 1)

∧(
∧

i,j

[xi, yj ] = 1) ∧ (
k∧

i=1

Wi(x1, ..., xn, y1, ..., yn) 6= 1))

This existential sentence is clearly true in G×G. Since G is squarelike, G and
G×G have the same universal theory. Hence they have the same existential
theory and therefore the above existential sentence is true in G. Therefore
there exists elements a1, ..., an, b1, ..., bn in G such that Ri(a1, ..., an) = 1 for
i = 1, ..., m; Ri(b1, ..., bn) = 1 for i = 1, ..., m; [ai, bj ] = 1 for i, j = 1, ..., n
and Wi(a1, ..., an, b1, ..., bn) 6= 1 for i = 1, ..., k. The map from G × G
to G given by mapping xi to ai and yi to bi for i = 1, ..., n defines a
homomorphism for which the images of W1, ..,Wk are non-trivial. Hence G
discriminates G×G and therefore G is discriminating. ¤

Finally recall that

Theorem (FGMS 1). Let G be a finitely generated equationally Noetherian
group. Then G is discriminating if and only if qvar(G) = ucl(G).

For squarelike groups we do not need the equationally noetherian condi-
tion.

Theorem 5.5. ([FGMS 2]) Let G be a group. The following three condi-
tions are pairwise equivalent.

• G is squarelike.
• ucl(G) = qvar(G).
• There is a discriminating group H such that G ≡∀ H.

Therefore the squarelike groups are the universal closure of the discrim-
inating groups. In fact they are the axiomatic closure.
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6. Axiomatics and the Axiomatic Closure Property

The least axiomatic class containing the discriminating groups is the
class of those groups G for which there exists a discriminating group H
with G ≡ H. Here ≡ denotes elementary equivalence. We call this class the
axiomatic closure of G.

In [FGS 2] it was established that the squarelike groups are precisely the
axiomatic closure of the discriminating groups.

Theorem 6.1. ([FGS 2]) Let G be a group. Then G is squarelike if and
only if there is a discriminating group H with G ≡ H. Hence the class
of squarelike groups is the axiomatic closure of the class of discriminating
groups.

Proof. We outline the proof which uses ultrapowers and ultralimits.
If G ≡ H, then G ≡∀ H; so, G elementarily equivalent to a discriminating

group implies G is squarelike.
Assume now that G0 is a squarelike group. Then G0∀(G0×G0) so there

is an ultrapower G1 = GI
0/D admitting an embedding ϕ1 : G0 ×G0 → G1.

Let d0,1 : G0 → G1 be the canonical embedding and let G2 = GI
1/D. Then

ϕ1 induces ϕ2 : G1 ×G1 → G2 and a diagram chase convinces one that the
square

φ1

G0 ×G0 → G1

d0,1 × d0,1 ↓ ↓ d1,2

G1 ×G1 → G2

φ2

is commutative where d1,2 : G1 → G2 is the canonical embedding.
We may iterate a countable infinity of times. Taking Gω to be the ultra-

limit of G0 with respect to the constant sequence of ultrafilters (D, D, ..., D, ...),
we get an embedding Gω×Gω → Gω so that Gω is discriminating. But the
limit map d0,ω : G0 → Gω is elementary. Hence, G0 ≡ Gω. ¤

There is a great deal of further axiomatic information about both square-
like and discriminating groups (see [FGS 3]). As we have seen in the previous
sections the class of squarelike groups is axiomatic, that is is given by a set
of first -order axioms while the class of sqarelike groups is not. Originally
this was proved in [FGMS 2] using Malcev’s conditon for axiomability. Sub-
sequently an explicit set of axioms was given by V.H. Dyson (see [FGS 3]).
P. Schupp rasied the question of whether the theory of squarelike groups
was finitely aximomatizable, that is the axiom set can be taken to be finite.
This was shown to be negative ([FGS 3]).
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Theorem 6.2. ([FGS 3]) The theory of squarelike groups is not finitely
axiomatizable.

Recall that if X is a class of groups then the first-order theory of X is
decidable if there exists a recursive algorithm which, given a sentence φ of
L0 decides whether or not φ is true in every group in X . As a consequence
of the undecidability of the word problem (see [FGS 3]) it was shown that
the theory of the squarelike groups is undecidable.

Theorem 6.3. ([FGS 3]) The theory of squarelike groups is undecidable.

7. Varietal Discrimination

There is an older notion of discrimination, which we call varietal dis-
crimination, that was also introduced by G. Baumslag jointly with Bernard,
Hanna and Peter Neumann (see [N]). The properties of this type of discrim-
ination are described in the book of Hanna Neumann [N] and play a role in
the structure of product varieties.

In [FGS 5] the relationship between these various notions of discrimina-
tion was examined. If we let D denote the class of discriminating groups, S
the class of squarelike groups and VD the class of varietally discriminating
groups the main result is that

D ⊂ S ⊂ VD

and all inclusions are proper.
In order to prove that S ⊂ VD a further notion of discrimination called

q-discriminating was introduced and then it was proved that a group is
squarelike if and only if it is q-discriminating.

Definition 7.1. (see [N]) Let V be a variety of groups and G ∈ V. G
discriminates V provided to every finite set wi(x) of words in the varibales
X ∪X−1 with none of the equations wi(x) = 1 a law in V there is a tuple g
of elements of G such that simultaneously wi(g) 6= 1 in G for all i. Further
a group G is varietally discriminating if it discriminates the variety it
generates.

Theorem 7.1. D ⊂ S ⊂ VD and all inclusions are proper.

The proper inclusion D ⊂ S was described already. The proper inclusion
D ⊂ VD can be proved independently of the middle. In order to prove the
proper inclusion S ⊂ VD we introduce a quasivarietal version of varietal
discrimination.
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Definition 2.1. Let Q be a quasivariety and let G ∈ Q. Then G q-
discrimina-tes Q provided that given finitely many quasilaws

∀x((
∧

i

ui(x = 1) → (wj(x) = 1)

with the same antecedents and none of which holds in Q there exists a tuple
g from G such that simultaneously ui(g) = 1 and wj(g) 6= 1 for all i, j. A
group G is q-discriminating if G q-discriminates qvar(G).

This almost, except for having the same antecedents, appears to be the
translation of varietal discrimination in terms of quasivarieties. The con-
dition of having the same antecedents is necessary for the next theorem.
Without this restriction the only q-discriminating group would be the triv-
ial group. The above notion of q-discrimination characterizes squarelike
groups. We introduce one more idea.

Definition 7.2. A group G is q-algebraically closed if and only if when-
ever a finite system

ui(x1, ..., xn) = 1
wj(x1, ..., xn) 6= 1

of equations and inequations has a solution in some group H ∈ qvar(G) it
also has a solution in G.

We can now characterize squarelike groups in terms of q-discrimination.

Theorem 7.3. ([FGS 5]) Let G be a group. The following are pairwise
equivalent.

(1) G is q-discriminating
(2) G is q-algebraically closed
(3) G is squarelike

G is q-discriminating
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