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Abstract. Recently there has been a great deal of work on noncom-
mutative algebraic cryptography. This involves the use of noncom-
mutative algebraic objects as the platforms for encryption systems.
Most of this work, such as the Anshel-Anshel-Goldfeld scheme, the
Ko-Lee scheme and the Baumslag-Fine-Xu Modular group scheme
use nonabelian groups as the basic algebraic object. Some of these
encryption methods have been successful and some have been bro-
ken. It has been suggested that at this point further pure group
theoretic research, with an eye towards cryptographic applications,
is necessary.In the present study we attempt to extend the class of
noncommutative algebraic objects to be used in cryptography. In
particular we explore several different methods to use a formal power
series ring R << x1, ..., xn >> in noncommuting variables x1, ..., xn

as a base to develop cryptosystems. Although R can be any ring we
have in mind formal power series rings over the rationals Q. We use
in particular a result of Magnus that a finitely generated free group F
has a faithful representation in a quotient of the formal power series
ring in noncommuting variables.

1. Introduction

Most common public key cryptosystems and public key exchange proto-
cols presently in use, such as the RSA algorithm, Diffie-Hellman, and elliptic
curve methods are number theory based and hence depend on the structure
of abelian groups. The strength of computing machinery has made these
techniques theoretically susceptible to attack and hence recently there has
been an active line of research to develop cryptosystems and key exchange
protocols using noncommutative cryptographic platforms. This line of in-
vestigation has been given the broad title of noncommutative algebraic
cryptography.

This paper was initiated while one of the authors (B.Fine) was a visitor at the CRM.
We’d like to thank the CRM for its hospitality.
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Up to this point the main sources for noncommutative cryptographic
platforms has been nonabelian groups. In cryptosystems based on these
objects algebraic properties of the platforms are used prominently in both
devising cryptosystems and in cryptanalysis. In particular the nonsolvabil-
ity of certain algorithmic problems in finitely presented groups, such as the
conjugator search problem, has been crucial in encryption and decryption.

The important sources of nonabelian groups that can be used in cryp-
tosystems are combinatorial group theory and linear group theory. Braid
group cryptography, where encryption is done within the classical braid
groups, is one prominent example. The one way functions in braid group
systems are based on the difficulty of solving group theoretic decision prob-
lems such as the conjugacy problem. Although braid group cryptography
had initial spectacular success, various potential attacks have been iden-
tified. Borovik, Myasnikov, Shpilrain [BMS] and others have studied the
statistical aspects of these attacks and have identitifed what are termed
black holes in the platform groups outside of which present cryptographic
problems. In [BFX] and [X] potential cryptosystems using a combination
of combinatorial group theory and linear groups were suggested and a gen-
eral schema for the these types of cryptosystems was given. In [BFX 2]
a public key version of this schema using the classical modular group as
a platform was presented. A cryptosystem using the the extended modu-
lar group SL2(Z) was developed by Yamamura ([Y]) but was subsequently
shown to have loopholes ([BG],[S],[HGS]). In [BFX 2] attacks based on these
loopholes were closed.

It has been suggested that at this point further pure group theoretic re-
search, and algebraic reserach in general, with an eye towards cryptographic
applications, is necessary. In particular, although the present braid group
cryptosystems may be attackable the basic group theoretic ideas are im-
portant. What is then necessary is to look at other (nonabelian) group
theoretical methods as well as additional potential platform groups. Along
these line in [BCFRX] an approach was followed based on a nonabelian
group having either a large abelian subgroup or two large subgroups which
elementwise commute. Using this idea a general key transport protocol
modeled on the classical Diffie-Hellman technique but using a nonabelian
group was developed. Several potential groups that could be used as plat-
forms were described there, in particular the automorphism group of a free
group.

In the present study we attempt to extend the class of noncommutative
algebraic objects to be used in cryptography. In particular we explore sev-
eral different methods to use a formal power series ring R << x1, ..., xn >>
in noncommuting variables x1, ..., xn as a base to develop cryptosystems.
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Although R can be any ring we have in mind formal power series rings over
the rationals Q. We use in particular a result of Magnus that a finitely
generated free group F has a faithful representation in a quotient of the
formal power series ring in noncommuting variables.

After describing the Magnus representation and some necessary proper-
ties we first show how to develop a Diffie-Hellman–RSA type of encryption
system within the formal power series ring using the Magnus representation.
In a different direction we describe the algorithm to rewrite an element of
the free group in terms of the generators given its image in the power series
ring. Using this we show how we can use the free groups within the formal
power series ring as a platform group for the free group polyalphabetic ci-
pher developed in [BFX]. The only previous examples were matrix groups
over number rings. Under devlopment is a method to impose relations on
the noncommutting variables to develop further types of secure encryptions.

2. Formal Power Series Rings and the Magnus Representation

Our encryption methods will use the ring of formal power series

R << x1, ..., xn >>

over a ring R in noncommuting variables x1, ..., xn. Although this can be
done in an even more general context, for this study we will concentrate on
rational formal power series, that is we consider the ring R to be the field
of rational numbers Q.

Throughout the rest of this paper we let

H = Q << x1, ..., xn >>

be the formal power series ring in noncommuting variables x1, ..., xn over
Q. One of our primary tools for developing encryption methods will be
based upon a faithful representation of a finitely generated free group within
a quotient of H. This representation was developed was introduced by
W.Magnus [M] and is now known as the Magnus representation. If
n ≥ 2 this then provides free subgroups of all countable ranks within this
quotient of H. Further by imposing additional relations we can obtain
representations of free nilpotent groups.

We first describe the Magnus representation and give a proof. The proof
will lead us to two algorithms for describing when certain polynomials lie
in the image of this representation. Further we describe the unit group of
this quotient.

First let d > 1 be an integer and impose the relations

xd
1 = xd

2 = ... = xd
n = 0

on H. We call the resulting quotient H.
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Notice that the elements of H are polynomials of degree < d in the
noncommuting variables x1, ..., xn. The faithful representation of a free
group is given in terms of the monomials

α1 = 1 + x1, α2 = 1 + x2, ..., αn = 1 + xn.

Notice that in the formal power series ring H we have the well known
expansion

1
1 + xi

= 1− xi + x2
i − x3

i + ......

Therefore each αi is invertible within H and hence invertible in H. Within
H however the inverse is a polynomial of degree < d and so within H

1
1 + xi

= 1− xi + x2
i − x3

i + ... + (−1)d−1xd−1
i .

Therefore each αi is in the unit group U(H) of H and therefore the set
{α1, ..., αn} generates a multiplicative subgroup of U(H). Note also that if
d, the defining power, is kept secret, then inverses are unknown.

Magnus’s result is the following.

Theorem 2.1. The elements

α1 = 1 + x1, ..., αn = 1 + xn

freely generate a subgroup of U(H). Therefore the map given by

y1 → α1, ...., yn → αn

provides a faithful representation of the free group on y1, ..., yn into H.

We present a proof, since as mentioned the proof will lead us to an
algorithm necessary for our encruption methods.

Proof. Notice from the comment above that each αi is invertible within H.
Therefore each αi is in the unit group U(H) of H and therefore the set
{α1, ..., αn} generates a multiplicative subgroup of U(H). We show that no
nontrivial freely reduced word in the αi can be the identity and hence the
group they generate must be a free group.

From the binomial expansion we have for any non-zero integer n, positive
or negative,

(1 + αi)n = 1 + nαi + terms in higher powers .

Now let
W (α1, ..., αn) = αn1

i1
αn2

i2
. . . αnk

ik
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be a freely reduced word in the αi with each |ni| ≥ 1 and αij 6= αij+1 for
j = 1, ..., k − 1. For later reference we call k the block length. In the ring
H we then have

W (α1, ..., αn) = (1 + xi1)
n1 ....(1 + xik

)nk

and hence
W (α1, ..., αn) =

= (1 + n1xi1 + higher powers in xi1) . . . (1 + nkxik
+ higher powers in xik

)

The variables are noncommuting, so that in analyzing this product we
see that there is a unique monomial term of maximal block length k where
each xij appears to the power 1. That is there is a unique monomial term

n1n2...nk(xi1xi2 ...xik
).

We stress here that this is of maximal block length since this will be impor-
tant in the subsequent algorithm.

Since each ni 6= 0 this term must appear and therefore W (α1, ..., αn) 6= 1.
It follows that the group generated by α1, .., αn is freely generated by them.

¤

The proof of the faithfulness of the Magnus representation leads us to
several algorithms for dealing with the image in the power series ring. We
will employ these algorithms in our cryptosystems. For the remainder of
this section we will let F denote the free subgroup of H generated by the
αi.

The first algorithm provides a method, given a polynomial in H, which
is written in polynomial form, that we know to be in F , to write its unique
free group decomposition. That is given

f = f(x1, ..., xn)

a polynomial in the noncommuting variables x1, .., xn that we know to be
in F to rewrite f as

f = W (α1, ..., αn).

In general there is no factoring algorithm in H.
For any monomial xi1 · · ·xik

in H we call k the block length of the mono-
mial in analogy with that of a free group word.

Theorem 2.2. (Algorithm to Recover the Free Group Decomposition of
Elements in F ). Suppose f = f(x1, ..., xn) ∈ H and it is known that f ∈
F . There is an algorithm that rewrites f in terms of the free generators
α1, ..., αn, that is the algorithm uniquely expresses f as a free group word

f = W (α1, ..., αn).
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The algorithm works as follows:
Step 1: In f locate the monomial nxi1 · · ·xik

of maximal block length
where n ∈ Z\{0}, each variable that appears in f appears in this monomial,
and each variable is to the power 1. This k gives the block length for the
corresponding free group word. Further the free group word must have the
form

αn1
i1
· · ·αnk

ik

with each ni a divisor of n.
Step 2: For each divisor ni of n both positive and negative sequentially

form (1 + xi1)
−n1f . In exactly one such product the maximal block length

will be k − 1 and there will be a unique monomial of block length k − 1
containing each variable in f except perhaps xi1 and each to the power 1.
We then have

f = (1 + xi1)
n1f1

where f1 is also in F .
Step 3: Continue in this manner until we reach the identity. The free

group decomposition of f is then

f = (1 + xi1)
n1 · · · (1 + xik

)nk = αn1
i1
· · ·αnk

ik
.

Proof. Since we know that f ∈ F we know that there is a unique free group
decomposition

f = αn1
i1
· · ·αnk

ik
= (1 + xi1)

n1 · · · (1 + xik
)nk .

Hence, as in the proof that the representation is faithful, there is a unique
monomial nxi1 · · ·xik

of maximal block length where n ∈ Z \ {0}, each
variable that appears in f appears in this monomial, and each variable is to
the power 1. Again as in the proof of Theorem 2.2, k gives the block length
for the corresponding free group word.

Now, since the free group representation is unique we have for each divisor
ni of n

(1 + xi1)
−nif = (1 + xi1)

n1−ni · · · (1 + xik
)nk .

Hence only for ni = n1 will this term cancel. Hence there is exactly one
such divisor such that (1 + xi)−niF will now have maximal block length
k − 1 and have a unqiue monomial of the prescribed type. It follows then
that one and only one such product will reduce f to a word of shorter block
length.

¤

A modification of the above algorithm can be used to determine if a
general element of H is actually in F .
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Theorem 2.3. (Algorithm to Determine if f ∈ H is in F ). Suppose

f = f(x1, ..., xn) ∈ H.

There is an algorithm that determines whether or not f ∈ F and if it is,
rewrites f in terms of the free generators α1, ..., αn. The algorithm works
as follows:

Step 1: If the constant term of f 6= 1 then f /∈ F . Further if f has
any nonintegral coefficients then f /∈ F .

Step 2: Assume f passes Step 1. If f does not contain a unique
monomial nxi1 · · ·xik

of maximal block length in f where n ∈ Z \ {0}, each
variable that appears in f appears in this monomial, and each variable is to
the power 1 then f /∈ F .

Step 3: Suppose f passes Steps 1 and 2. Then in f locate the mono-
mial with the characteristics described in Step 2. If f ∈ F then k gives the
block length for the corresponding free group word. Further the free group
word must have the form

αn1
i1
· · ·αnk

ik

with each ni a divisor of n.
Step 4: For each divisor ni of n both positive and negative sequentially

form (1+xi1)
−n1f . If in such product the maximal block becomes k−1 and

there is a no new monomial having the descrined characteristics above then
f /∈ F . Otherwise continue.

Step 5: If evenutally we arrive at the identity then f ∈ F and the
procedure yields the free product decomposition of f .

Proof. The proof follows in exactly the same manner as the proof of Theo-
rem 2.2.

¤

For certain cryptographic applications we need the full unit group U(H)
of H. OverQ it can be described as those polynomials with nonzero constant
term.

Theorem 2.4. The unit group U(H) over Q consists precisely of those
polynomials with nonzero constant term.

Proof. There are two ways to look at the proof of this. Algebraically, sup-
pose that the defining power is d > 1 and P (x) ∈ H with nonzero constant
term. Then P (x) is relatively prime to the polynomials xd

i and so is invert-
ible in the factor ring in the standard way.

Analytically if P (x) ∈ H with nonzero constant term let P ?(x) be the
correpsoning polynomial in H. Then P ?(x) can be made into part of a
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convergent power series P ??(x) in

C << x1, ..., xn >> .

Since P ??(0) 6= 0 this power series is analytic at 0 and so its inverse is
analytic at ) and so has a convergent power series around 0 say Q??(x).
The image of Q??(x) in H would then be the inverse of P (x).

Conversely if P (x) ∈ H is invertible it must have nonzero constant term.
¤

Before we continue we mention one final item concerning multiplication
within H. In general there is no factoring algorithm. However if f ∈ H is
known and g = fe with e ∈ F is known then we can find e. We say that
e can be peeled off fe. The algorithm to do this is essentially the same as
the above two algorithms. We briefly explain. Suppose we are given f and
fe. Then in fe there is a unique monomial extending the monomials in f
exactly as in the proof of theorem 2.2. By identifying this monomial we can
find the free group decomposition of e and hence find e.

3. Cryptosystems Using the Formal Power Series Rings

We now provide several methods for developing cryptosystems using the
formal power series rings and the above quotients -together with the Magnus
representation. The first method is a further extension to the nonabelian
group setting of the Diffie-Hellman system.

3.1. A General Schema for Nonabelian Group Diffie-Hellman. In
[BCFRX] a group theoretic encryption protocol analogous to the standard
Diffie-Hellman scheme and generalizing RSA was described in the following
manner. Suppose that G is a finitely presented group that can be repre-
sented in a nice way - either as a matrix group or as words relative to a
nice presentation. Further suppose that G has two large subgroups A1,A2

that commute elementwise. Alternatively we could use one large abelian
subgroup A of G. The meaning of large is of course hazy but relative to the
encryption scheme means that within G it is difficult to determine when an
arbitrary element is in A1 or A2 (or A) and further A1 and A2 (or A) is
large enough so that random choices can be made from them.

Now suppose that Bob wants to communicate with Alice via an open
airway. The message (or the secret key telling them which encryption system
to use) is encoded within the finitely generated group G with the properties
given above. The two subgroups A1, A2 which commute elementwise are
kept secret by Bob and Alice. A1 is the subgroup for Bob and A2 the
subgroup for Alice. Bob wants to send the key W ∈ G to Alice. He
chooses two random elements B1, B2 ∈ A1 and sends Alice the message
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( in encrypted form) B1WB2. Alice now chooses two random elements
C1, C2 ∈ A2 and sends C1B1WB2C2 back to Bob. These messages appear
in the representation of G and hence for example as matrices or as reduced
words in the generators so they don’t appear as solely concatenation of
letters. Since A1 commutes elementwise with A2 we have

C1B1WB2C2 = B1C1WC2B2.

Further since Bob knows his chosen elements B1 and B2 he can multiply by
their inverses to obtain C1WC2 which he then sends back to Alice. Since
Alice knows her chosen elements C1, C2 she can multiply by their inverses
to obtain the key W . It is assumed that for each message Bob and Alice
would choose different pairs of random elements from either A1 or A2.

This method is a generalization of the Anshel, Anshel, Goldfeld and
Ko-Lee schemes which used the classical Braid groups as platforms (see
[BCFRX]). In [BCFRX] several additional potential platform groups are
suggested.

We now present an alternative version of this method which can use the
formal power series ring and its quotients as platforms. The general schema
goes as follows:

We suppose that we have a ring R with a large unit group U(R). By
large we mean that U(R) contains a nonabelian free subgroup so that ran-
dom choices can be made from U(R). We suppose further that there is no
factoring algorithm in R. Suppose that Bob wants to send a message to
Alice. Encoding is done within R so that elements of R represent messages.
Bob wants to send the message r ∈ R to Alice. He randomly chooses an
e ∈ U(R) and sends Alice re. Alice randomly chooses f ∈ U(R) and sends
back fre. Bob knows (but presumably an attacker can’t figure out) e−1 so
forms free−1 = fr and sends this back to Alice. Alice applies f−1 to get
the message r.

This method can be applied using the ring H as the platform. The power
d defining H is a shared secret. Encryption is done in a polynomial in the
noncommuting variables. This encryption can be done in a variety of ways.
The simplest is perhaps the following. The coefficients of our polynomials
are rational numbers. Codethe plaintext letters by rational numbers and
then the message can be read off form the coefficients.

Bob wants to send Alice the message T ∈ Q[[x1, .., xn]] where xd
i = 0

for all i. Let R = T + S where S is an arbitrary polynomial with only
powers higher than d. Bob chooses a random element of the unit group W .
He sends Alice RW . Bob knows the inverse of W . Alice chooses another
random V of the unit group and sends Bob back V RW . Bob multiplies by
W−1 and sends Alice V R from which Alice recovers R. Since she knows d
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she cancels all powers higher than d to obtain the message T . An attacker
would need to factor RW and know the defining power d to attack the
message. Notice that this scheme would not work if we restrcited W to be
in the Magnus free group since if Bob sens RW and Alice sends back V RW
then as explained V can be peeled off and subsequently W can be peeled
off so the attacker can get the message R.

3.2. Free Group Cryptosystems in Formal PowerSeries. In [BFX]
the following general encryption scheme using free group cryptography was
described.

We start with a finitely presented group

G =< X|R >

where X = {x1, ....xn} and a faithful representation

ρ : G → G.

G can be any one of several different kinds of objects - linear group,
permutation group, power series ring etc.

We assume that there is an algorithm to re-express an element of ρ(G)
in G in terms of the generators of G. That is is g = W (x1, ....xn...) ∈ G
where W is a word in the these generators and we are given ρ(g) ∈ G we
can algorithmically find g and its expression as the word W (x1, ..xn).

Once we have G we assume that we have two free subgroups K, H with

H ⊂ K ⊂ G.

We assume that we have fixed Schreier transversals for K in G and for H in
K both of which are held in secret by the communicating parties Bob and
Alice (see [GB 1] for a description of Reidemeister-Schreier). Now based on
the fixed Shreier transversals we have sets of Schreier generators constructed
from the Reidemeister-Schreier process for K and for H.

k1, ...km, ... for K

and
h1, ....ht, ... for H.

Notice that the generators for K will be given as words in x1, ....xn the
generators of G while the generators for H will be given as words in the
generators k1, k2, .... for K. We note further that H and K may coincide
and that H and K need not in general be free but only have a unique set of
normal forms so that the representation of an element in terms of the given
Schreier generators is unique.

We will encode within H, or more precisely within ρ(H). We assume that
the number of generators for H is is larger than the set of characters within
our plaintext alphabet. Let A = {a, b, c...} be our plaintext alphabet. At
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the simplest level we choose a starting point i, within the generators of H,
and enclode

a → hi, b → hi+1, .... etc.

Suppose that Bob wants to communicate the message W (a, b, c...) to Alice
where W ia a word in the plaintext alphabet. Recall that both Bob and
Alice know the various Schreier transversals which are kept secret between
them. Bob then encodes W (hi, hi+1...) and computes in G the element
W (ρ(hi), ρ(hi+1), ..) which he sends to Alice. This is sent as a matrix if G
is a linear group or as a permutation if G is a permutation group and so on.

Alice uses the algorithm for G relative to G to rewrite W (ρ(hi), ρ(hi+1), ..)
as a word W ?(x1, ...xn) in the generators of G. She then uses the Shreier
transversal for K in G to rewrite using the Reidemeister-Schreier process
W ? as a word W ??(k1, ....ks..) in the generators of K. Since K is free or has
unique normal forms this expression for the element of K is unique. Once
she has the word written in the generators of K she uses the transversal for
H in K to rewrite again, using the Reidemeister-Schreier process, in terms
of the generators for H. She then has a word W ???(hi, hi+1, ...) and using
hi → a, hi+1 → b, ... decodes the message.

In actual implementation an additional random noise factor is added (see
[FBX 1,2])

In [FBX 1,2] an inplementation of this process was presented that used
for the base group G the classical modular group M = PSL(2,Z). Further
it was a polyalphabetic cipher which was secure.

The Magnus representation within the quotient H can now be used as
the platform for this system. In particular we follow the oultine in [BFX
1,2] but now applied to F the faithful representation of a rank n free group
in H.

Witnin F we develop a list of finitely generated free subgroups H1, .....Hm.
In a practical implementation we assume that m is large. For each Hi we
have a Schreier transversal

h1,i, ....ht(i),i

and a corresponding ordered set of generators

W1,i, ....Wm(i),i

constructed from the Schreier transversal by the Reidemeister-Schreier
process. It is assumed that each m(i) >> l where l is the size of the
plaintext alphabet, that is each subgroup has many more generators than
the size of the plaintext alphabet. Although Bob and Alice know these sub-
groups in terms of free group generators what is made public are generating
systems given in terms of the polynomials in noncommuting variables.
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The subgroups on this list and their corresponding Schreier transversals
can be chosen in a variety of ways. For example the commutator subgroup
of the Modular group is free of rank 2 and some of the subgroups Hi can
be determined from homomorphisms of this subgroup onto a set of finite
groups. Finding a free subgroup and a representation was described in part
in [6].

Suppose that Bob wants to send a message to Alice. Bob first chooses
three integers (m, q, t) where

m = choice of the subgroup Hm

q = starting point among the generators of Hm

for the substitution of the plaintext alphabet

t = size of the message unit .

We clarify the meanings of q and t. Once Bob chooses m, to further clarify
the meaning of q, he makes the substitution

a → Wm,q, b → Wm,q+1, .....

Again the assumption is that m(i) >> l so that starting almost anywhere in
the sequence of generators of Hm will allow this substitution. The message
unit size t is the number of coded letters that Bob will place into each coded
integral matrix.

Once Bob has made the choices (m, q, t) he takes his plaintext message
W (a, b, ...) and groups blocks of t letters. He then makes the given sub-
stitution above to form the corresponding polynomials in H the restricted
power series ring;

T1, ....Ts.

We now introduce a random noise factor. After forming T1, ....Ts Bob then
multiplies on the right each Ti by a random polynomial in F say RTi (
different for each Ti). The only restriction on this random polynomial RTi

is that there is no free cancellation in forming the product TiRTi . This can
be easily checked and ensures that the freely reduced form for TiRTi is just
the concatenation of the expressions for Ti and RTi . Next he sends Alice
the integral key (m, q, t) by some public key method (RSA, Anshel-Goldfeld
etc.). He then sends the message as s random polynomials

T1RT1 , T2RT2 , ....TsRTs .

Hence what is actually being sent out are not elements of the chosen sub-
group Hm but rather elements of random right cosets of Hm in F . The
purpose of sending coset elements is two-fold. The first is to hinder any
geometric attack by masking the subgroup. The second is that it makes the
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resulting words in the the Modular Group generators longer - effectively
hindering a brute force attack.

To decode the message Alice first uses public key decryption to obtain
the integral keys (m, q, t). She then knows the subgroup Hm, the ciphertext
substitution from the generators of Hm and how many letters t each matrix
encodes. She next uses the algorithms described in section 2 to express
each TiRTi

in terms of the free group generators of F say WTi
(y1, .., yn).

She has knowledge of the Schreier transversal, which is held secretly by
Bob and Alice, so now uses the Reidemeister-Schreier rewriting process to
start expressing this freely reduced word in terms of the generators of Hm.
Recall that Reidemeister-Schreier rewriting is done letter by letter from left
to right. Hence when she reaches t of the free generators she stops. Notice
that the string that she is rewriting is longer than what she needs to rewrite
in order to decode as a result of the random polynomial RTi . This is due to
the fact that she is actually rewriting not an element of the subgroup but
an element in a right coset. This presents a further difficulty to an attacker.
Since these are random right cosets it makes it difficult to pick up statistical
patterns in the generators even if more than one message is intercepted. In
practice the subgroups should be changed with each message.

The initial key (m, q, t) is changed frequently. Hence as mentioned above
this method becomes a type of polyalphabetic cipher. Polyalphabetic ci-
phers have historically been very difficult to decode (see [H]).

4. Relations on the Variables

It was shown in [GB 2] that by imposing further relations on the vari-
ables, free nilpotent groups of all possible class size can also be embedded
in quotients of H. This was used in [GB 2] to prove certain results con-
cerning equations in free groups. This can be used further for encryption
purposes. By imposing nilpotency relations on some of the variables in the
power series, but not all, and keeping the relations secret a further level of
seurity is imposed. This procedure is under development ([BBFGR]).
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