THE EXISTENCE OF PERIODIC SOLUTIONS OF A TWO
DIMENSIONAL LATTICE

JINGGANG TAN

ABSTRACT. We consider a two dimensional lattice coupled with near-
est neighbor interaction potential of power type. The existence of
infinite many periodic solutions is shown by using minimax methods.

1. INTRODUCTION AND MAIN RESULTS

In this paper we consider a two dimensional forced lattice coupled with
nearest neighbor interaction potential of power type (1 < p < ), i.e.,

(1.1) Ou = [+ —ad P~ (ut — o) — u! — a1 P — oY) + gz, t)
for z € (0,27),t € R,l € M, satisfying the periodic-Dirichlet conditions
(1.2) ul(0,t) =0 =ul(m,t) VteR,leN,

(1.3) ul(x,t) = ul(x,t +27) Vo € (0,7),t € R, 1N,

where Ou! = (ul, —ul,), M= {1,2,...,N}, N € N, uV*! = ! 00 = &

and g'(z,t+27) = g'(z,t) for | € M. We are looking for the solutions which
are periodic in time.

In last years a considerable effort has been devoted to mathematical study
of two dimensional lattice constituted by coupled flexible or elastic elements
as strings beams, membranes or plates, etc.. These systems are known as
multi-link or multi-body structures, which may generate new, unexpected
phenomena. Their practical relevance is huge. However, the mathematical
models describing their motions are quite complex. They can be view as
systems of partial differential equations on networks or graphs. For the
control problems of linear systems, wide information may be found in [5].

On the other hand, a one dimensional lattice takes the form as (1.1)-(1.3)
by replacing the operator [J with d?/dt?. Its completely integrability and
existence of periodic solutions are well established by [1][6][7][18]. In partic-
ular, the classical Toda lattice was shown to be completely integrable, with
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explicit periodic and soliton solutions in [18]. It is well known by the KAM
(Kolmogorov-Arnold-Moser) theory [1] that periodic and quasi-periodic so-
lutions of Toda lattice persist under small perturbations. A surprising re-
sult, the existence of soliton was got for the power type interaction in [6]. In
[7] travelling wave solutions (periodic oscillation and heteroclinic solutions)
were constructed on a lattice, corresponding to mass particles interacting
nonlinearly with their nearest neighbour (the Fermi-Pasta-Ulam model). It
had wide application in many physical systems and biology models.

For simplicity, here we only consider the simplified version of those models
to study a lattice coupled with nearest neighbor interaction on one line.
This may give us the way to later address more complex situations. To the
best of our knowledge, the nonlinear problem of 2-dimensional Toda lattice
like (1.1)-(1.3) was firstly introduced by Mikhailov in [10], which showed its
integrability by using inverse problem method. Then the reduction problem
about the two-dimensional generalized Toda lattice was considered in [11],
all involving exponential potentials. The existence of periodic solutions
for the 2-dim Toda lattice has been explored in [9] by nonlinear analysis
methods. Here we will use minimax methods to find the critical points which
correspond to the solutions of (1.1)-(1.3) but with power type interaction.
Our main goals are to prove that

Theorem 1.1. If ¢' =0 for all | € M, then lattice (1.1)-(1.3) has infinite
many solutions.

Theorem 1.2. Let A = Oy — Opp and Q = (0,7) x (0,27). If ¢ €
Lo/ (e=1)(Q) satisfies

/glgdxdtzo for all¢ € L®(Q) NkerA, 1€ N ={1,2,...,N},
Q

then lattice (1.1)-(1.3) has infinite many solutions, where {2,p} < o < p+1.
Remark. If g € kerA satisfies >, g’ # 0, then the problem (1.1)-(1.3) has

no periodic solution.

Since the null of the operator Ou = (ul, — !, );—1 . x is infinite di-

mensional and the embedding operator from vector space of p-integrable
functions to this null is not compact, we turn to study the functional I(y)
(see (2.8)) as Tanaka did in [17]. Firstly we shall apply linking theorem of
Benci and Rabinowtz in [4] to obtain Theorem 1.1, which is in section 2.
Theorem 1.2 is established from section 4 to section 7.

Theorem 1.2 will be proved with the aid of standard argument for a
perturbation from Z5 symmetry. Here our steps follow Tanaka’s framework
in [17]. Firstly we introduce a functional I of the problem (1.1)-(1.3), (see
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(2.8)) . X
() = 5lle*1* = Sl 11" - Q).

where [|-|| is the norm of the space E (see (2.5)), Q(¢) :=minyego [Fs 4(0+
Y)dxdt and

- 5 U
Fs (u) = —— wttt — et — g,u) + —— ulp'H,
o) = 57 2| P g+ 3o

for o = pt + 9~ € E := ET ® E~, which is strictly convex functional
(the term ¢ Zfil |u!| makes it strictly convex). Note that critical points of
I and weak solutions of (1.1)-(1.3) possess one-to-one correspondence after
taking limit 6 — 0 and that Q'(y) is compact in E. Since there is the force
term g # 0, the method, which is applicable to treat I, is to make a simple
modification: (see (4.1) in section 4),

T(6) = 5ot = 2o I — Qole) — X(@)(Q(0) — Qole).

Secondly in section 5 we apply the methods of Rabinowitz [14] to I(¢™+¢™)
and obtain the existence of infinitely many solutions of (1.1)-(1.3) under
some assumption

(1.4) by, > C’lq](-erl)/(Z)AF6 —Cy  for a large number g; € N,

where b, = inf,er, sup,ep, J(7(9)) (see (5.2)). This assumption will tell
us that the critical points, which we find by minimax methods, have large
critical values. To prove the assumption (1.4), we follow Tanaka’s steps
which were introduced by Bahri-Berestycki to find comparison value o,
such that o4 < by + Cy and

(1.5) oq; > C’lq§p+1)/(p_1)_5, for a large number ¢; € N,

q
a Morse index estimate and the spectral estimate play an essential role as

Tanaka in [17], which are in section 6 and finally we shall complete the proof
of Theorem 1.2 in section 7.

where g = Sup, ¢ 4» Minyegn-q K(o(y)) (see (5.7)). In the proof of (1.5),

2. PRELIMINARIES

For convenience, we use the following standard notations. Let E be a
Hilbert space, (-, ) be inner product in Hilbert space E or the dual bracket
between Hilbert space E and its dual space E*. (-,-) be inner product in
RY.

Let © = (0,7) x (0, 27). We firstly recall basic properties of the operator
A = Oy — Oz acting on integrable functions which are 2w —periodic and
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satisfy Dirichlet boundary conditions. It is well known that A =0 (in the
weak sense) if and only if

((z,t) =y(z +1t) —y(z—1)
for some v € L} (R), 2m-periodic and such that fo% ~v(s)ds = 0. Also, for

loc
a given integrable fy, we have that if

/ foCdxdt =0 for all { € L*=(2) NkerA,
Q

then there is a unique 27-periodic continuous function w® satisfying

(2.1) =l = fo

and the boundary condition w®(0,t) = w®(m,t) = 0 for all ¢. From here, it
is clear that if fy € kerA, then there is no solution for the equation (2.1).

Denote u(z,t) = (u'(z,t),...,u’ (x,t)) for (z,t) € Q. For p € [1,00) set
by L7 the vector of 2m-time periodic functions of ¢ whose p-th powers are
integrable, i.e.,

N
lully = ( / Sl (2, ) dedt) /7 < oo.
Q =1

The vector of smooth functions satisfying (1.2),(1.3) has a Fourier expansion
of the form

N oo [°S)
(2.2) u = Z Z aék sin jze'*te;, aé‘,—k = dék,

=1 j=1k=—00
where {e,--- ,exn} is the usual orthogonal basis in RY. We define

1 ; -
(u,vhw = 71920 Y 1K = 72 lagebly, Nullfy = (u,u),
l,j;k

for w=3Y", Dol Yo oo @y sin jzete  and
v= S 2 T bl sinjze*te;. We observe that || - [l is a norm

on the set {u] aé-k =01if j = |k|}. Let
W+ = span{(sin jze'™e)| j < |k[},
W~ = span{(sin jze™e;)| j > |k[},

W=wrew",
where the closures are taken under the norm | - |y and (sin jzei*te;) is the
vector (sinjxe*te;, ---  sinjxet*le;,- - sinjrettey). Note that (W, (,))
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is a Hilbert space. Further set
WO = LP*! — closure of span{(sinjze™te;)|j € N,1 € M}.

Then W+, W—,W©° are complementary subspaces of the vector space of
functions satisfying (1.2),(1.3). Moreover, the space W has the following
property (see Lemma 2.1):

(2.3) llull, < Cpllu|lw for allw € Wand p € [1, c0),
(2.4) the embedding W — LP is compact for all p € [1, 00),

where C), is positive constant. However the embedding WO :— LP is not
compact.

Now we are going to look for a subspace of W, which will be our work-
space, called E. For this purpose, we need some facts in RY. Given ¢ € RY
let [¢] = max{¢! — &N €2 — ¢ ... N —¢N=11 Denote 1 := (1,1,---,1) €
RY and its orthogonal space by {1}+. It known from [9] that

for & € 1+,

2 2
Let

N N
1 0
F50(8) = i1 Dol =gt 4 P SOIEPT, s e (o0,1),
=1 =1

where ENt!D = ¢1 €0 = ¢V Then we have that qualitative properties of
Fjs are as follows (see Lemma 2.2):
(F1) F5o € C?(RN {1}, R) is strictly convex and coercive.
(F2) There exists @ € (2,p + 1) such that (§, VF50(§)) > aFs50(§) > 0 for
¢ e RN N{1}+.

Let w be a function such that (w(zx, t)1):=(w(x, t),w(z,t), - ,w(x,t)) €
W @ WO Denote X; = {wll € W @ W%} and its orthogonal space by
Xo = Xi-. Tt is clear that Xy = {(u®, -+, u™)| Zi\io u! = 0}. Define

EtT=W'nX,, E =W NXy,
E=ET¢E-, E°=w'NX,.
Note that W & WO = (W e W) N X;] & (E @ E°).

(2.5)

On the other hand, it is easy to see that the solutions of problem (1.1)
satisfying conditions (1.2),(1.3) are corresponded to a critical points of the
functional

(2.6) Go(u) :== %/(|8tu|2 — |0z ul?) dedt — / Fy,q(u) dedt,
Q Q
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where
N
1
Fo,g(u):m [l Tt = P (g, u), uN T =t u® =W, ue W W,
=1

We can divide g = gll + § such that (gll) € (W e W NX,§€ E® E° =
(W @ W% N X,. Similarly we have w = w1l + . It is easy to see that the
problem (1.1)-(1.3) in (W @ W°) N X; becomes a scalar equation

Wit — Way = G,

where w be a 27 periodic function satisfying Dirichlet condition and g €
(WaeWnNX,. If g € L/@=D(Q) (a > 1)satisfies

/ g'Cdxdt =0 for all ¢ € L®(Q) Nkerd, €N,
Q

then we know from (2.1) that there is a unique solution w. Moreover, note
that if w is a critical point of Go(u) in E, u + w is a solution. To see that,
we know that for ¢ € (W & W) N X; and ( € E® E°,

((Go)' (u+ w) (C+¢) =
/ i Z uhCh 4+ wigt — upCh —whé — (Foo(u),¢) +9'¢' + glé} dt

1=0
= <(GO|QEE€BE°)/(U)a<>-

Without loss of generality, we may assume Zf\io g' =0, that is, the critical
points of Go in E @ E° are solutions for lattice (1.1)-(1.3).

To find the critical points of Gy, we introduce the aid of a modified
functional to treat the loss of compactness of the embedding E° — LPt! as
follows:

1
Goglu) = = / 1Oyul?2 — |Ouu|? dudt — / Fy,(u) dadt,
2 Q Q
for u € E @ E°, where

P
(2.7) Fs 4(u) = Fy g(u) + | Z lu![P*t for € (0,1),
=1

which is strictly convex. The wave form is positive definitely, negative
definitely and null on E+, E—, E° respectively.
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From the above properties of Fjo, we know that for p = p* + ¢~ € E
and ¢ € E°,

_ 1 1
Gog(u) = Gogle™ +¢~ +¢) = Sle™II* = Sl
—/ F5q4(pT + ¢~ +9)dadt € C2(EY @ E~ @ E°,R).
Q

Observe also that for fixed ¢, ¢, the functional Gs4(p" + ¢~ + ¢) is a
strictly concave function of 1 € E°. So there is one to one correspondence
between every critical point of G54 and that of I. Here I : E — R is a
functional for ¢ = T + ¢~ € E, defined by

_ _ 1 + 12 1 — 12
(28)  1(¢) = max Gs,y (o +4) = 50412 = 51 - Q)
where

(2.9) Q(¢) := min / Fs.4(p + ) dzdt for ¢ € E.
YeE° O N

We will treat the problem (1.1)-(1.3) by finding the critical points of the
functional I(p) in E and taking limit 6 — 0. Note that Q(¢) can be also
defined for all ¢ € LPT! by (2.9). Now we give the proof of some lemmas
that we mentioned above and also study the space E and treat Q(¢) as a
functional from LP*! to R at the end of this section.

Lemma 2.1. There is a positive constant Cy such that
llully < Cyllullw for allu € Wand q € [1, 00),
the embedding W — L7 is compact for all g € [1,00).

In particular, the Hilbert space E has the same compact embedding properties
of the space W.

Proof. Here we follow the steps in [16]. It is easy to see the case ¢ = 2,
so we can set ¢ > 2. Note that v € W have the form (j # |k|):

N oo 0o

U= E E aé-k sin jzette;, aé-ﬁk = dé-k.
=1 j=1k=—o00

Denote a;ji = (aj,--- ,ak,) with the modulus |a;;|. We first note that for
p>1

Z ‘j2 . kQ‘—p <4 Z(kQ _j2)—p+zj—2pzz l_p(Qj + Z)—p+zj—2p
J#k| J<|k| j21 Jil=1 j=1

<2y iy <3y < 3(1%)2.

Jl=1 Jj=1 Jj=1
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Then for ¢ > 2, by F. Riesz’s Theorem in [19], Holder’s inequality with

o\ (@—1)/q
Jullg < w0 (3 Jagel*/ V)

J#k|
. o\ (@—2)/2q
<7T2/q(z |] k:2 Nl | ) (Z |]2—k2| q/(q 2))
J#k| J#|k|
< Cyllulle.

The compactness of the embedding is a standard result. It is enough to
prove that there exist constants 0 < p,v < 1/2, C' > 0 such that

lu(x, t) —u(x’, )| < Clz — 2| + |t = t']).
Firstly we claim
|sin jze’™ — sin ja'e® | < ¢, lo— 2! |* + e |t — ).
In fact,
|etht — eikt/| = |eik(t*t/) — 1 <eult—t" for0<p<l.
Moreover, if jlz — 2’| <1 then

[sinjz —sinjz’| < jlo — 2’| < §¥|0 — 2|
if jlx — 2’| > 1, then

|sinjz — sinjz’| <2 < 25"z — 2'|".
Therefore, using
ikt ikt eikt"7

| sin jze™ — sin ja'e™*'| < 2|sin jx — sin jz’| + |e

we can get the claim. By the form of (2.2), we have
lu(x,t) —u(z', )| = | Z(aék(sinjxeiktel — sinjx/eikt’el)|
Jk,l
< Z | sin jze™ — sin jz' e ||az| < Z(cﬂ|x — '+t —t|")|ajxl
j Jik
20\ 1/2 j2v 1/2
pam J _ J .
< Clle—a (X |j2—k2\> =l (X 72 —k2|> ]
J.k J.k
) 1/2
(Z 52 = K?llasnl?)
2v

=1 (5 ) =0 ()l
7.k

gk
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Let u(z,t) € W+ that is j < |k|, and it is similar to W~. Then we have

ZU 2 g2 =2 Z

0<j<k

1
§22m Zkk 12M§Zm<°0~
( +J) —

0<j<k

k+])

Thus we can obtain the equi-continuous and the uniform bound for the
sequence {u,} in W+. It follows the compactness. O

Lemma 2.2. Let F50(§) = p—}H Zl]il |gT — glipHl 4 #11 Zl]\il |EY P+ and
§€(0,1). Then

(i) Fso € C2(RYN N {1}+,R) is strictly convexr and coercive.

(i1) There exists a € (2,p + 1) such that (§,VF50(§)) > aFso(€) > 0 for
Ee RN N{1}+.

(i4i) There is a positive constant Cy such that for ¢ € RN n{1}+

(2.10) Fso(§) > C1[¢]™
Proof. (i) Since %\5 0= Zz (S S L )T L (e

¢'=1)2 we see that Fj is strictly convex in {1}+.
(ii) It is clear that for a < p + 1,

(VF5,0(6),6) —aF50(€) = 1f— ZW ¢- 1|P“+6Z\sl|p“

Hence we have

(VF50(6),€) = aF50(§),
for a € (mo,p+1) and & € {1}+.
(iii) Let |¢| = s and é—l =1, so £ = sn and

(VEso(sn), sn) = aFs0(sn).
It directly follows
F§70<S77) Z C’lso‘.
O

Lemma 2.3. (i) For all ¢ € LP, there exists a unique (¢) € E° such that

(2.11) Q) = /Q Fyg(p + () dad.

(ii) (o) : LPTL — EO is continuous.
(iii) Q(y) is of class C* on E and

(2.12) (Q'(p),h) = /Q(VF&Q(QO + ), h)dzdt for all ¢,h € E.



10 JINGGANG TAN

In particular, Q'(p) : E — E* is compact and for all p € E.

Proof. The above lemma is a slight generalization of a result by Tanaka
[17].
(1) From the property (i) of Fi ¢ in Lemma 2.2, we can easily deduce assertion
(i) from the fact that

(2.13) Y — /QFa,g(tp + 1) dadt

is a strictly convex and coercive functional on E°.
(ii) Suppose that ¢; — ¢ in LPT1(Q). We will show that ¥ (¢;) — 1¥(p)
strongly in E°. By the definition of 1(,), we have

(2.14) / Fy o5 + (9)) dadt > / Fy o5 + 0(e0y)) davdt.

We find that {¢(¢;)}52, is bounded in EY (i.e., in LP*!). We extract a
subsequence—still denoted by 1 (p;)-converges weakly to ¢ in E°. Letting
j — oo in (2.14), by Fatou Lemma and the weak continuity we get

/ Fsg(p+1(p))dudt >limsup [ Fsg(pj+1)(p;))dudt > / Fs4(ip+1)dudt.
Q Q Q

Jj—00
By the uniqueness of (), we observe 1) = () and limsup Fs4(¢; +

;) = Fs4(p +1(p)). Thus we obtain ¢(p;) — ¥(¢) in E°.
(iii) By the convexity of (2.13), we find that for w € EY,

(2.15) w=1Y(p) iff /Q(VF&g(QO +w), ) dzdt = 0 for all ¢ € E°.

From the convexity of the function Fs, and minimality property of ¢ (y),
we have for all p,h € E and s > 0,

(216) Qo+ sh)=Q(e) > [ (VFiy (). sherblirsh)—o(s) dud
Since ¥(p + sh) — () € E°, we get by (2.15)

217) Qo+ sh)— Q(g) > /Q (VFsg(p + (), 5h) dadt.

Similarly we have

218 Qe+ sh) = Qo) < [ (Vag(o+ sh+ bl -+ sh).sh) ded.

Letting s — 01in (2.17) and (2.18), we obtain (2.12). Thus Q(¢) € C*(E,R).
Moreover from (2.4) and the continuity of () : LPT' — E° we deduce
that Q'(p) : E — E* is compact.

O
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3. CRITICAL POINTS AND PERIODIC SOLUTIONS IN THE AUTONOMOUS
CASE

In this section, we will go to prove the existence of infinite many solutions
for the autonomous case, i.e. g = 0. Therefore,

1 1 _
I(p) = 5lle™I* = Sl 11" = Qolp) forp =" +¢~ € E.

We use the notation B, for the open ball with radius r» and a;,r;,7 € N
denote nonnegative constants.

Lemma 3.1. [4] Let E be a real Hilbert space, F1 a closed subspace of E,
and Ey = Ei-. Denote I(u) = ®(u) + b(u). Suppose that I € C'(E,R) and
satisfies

(1) ®(u) = %(Lu,u> where u = uy +ug € By ® By, Lu = Lyuy + Lous and
L;: E; — E;;i=1,2 is a (bounded) lineal self adjoint mapping.

(I2) b is weakly continuous and uniformly differentiable on bounded subsets
of E.

(Is) If for a sequence {um }5°_1, I(unm ) is bounded from above and I' (un,) —
0 as m — oo then {un}22_, is bounded.

(1) There are constants r1,79,a, p,w with r1 > p,a > w and r1,79,p > 0
and there is an e € 0B N Ey such that (i) I > « on S := 0B, N Ey, (it)
I <w on 9% where ¥ :={re|0 <r <ri} @ (B,, N Ey).

Then I possesses a critical value ¢ > a.

Lemma 3.2. (see Proposition 3.12 in [4]) Let Q C R be a bounded domain
and for some s,5,g9 € C1(Q x R¥ R) where g = g(z,2) and
‘gz(‘raz)‘ <Ci+ 02|Z|sa 1<s<3s.
If E is a subspace of LY(Q)F with ||z]|, < arl|lz|z for all z € E and all
r € [2,5+1], then b(z) is uniformly differentiable on bounded subsets of E.
Proof of Theorem 1.1. We apply Lemma 3.1 to give the proof of

Theorem 1.1 as in [4]. Let By = ET and Ey = E~. Then Fy = Ei-, and J
satisfies (I;) with L;y; be defined for p; = ¢* € E; by

(Livs, Gi) = / 010i0:Ci — 02030, C; dxdt,
Q

for all (; € E;,7 =1,2. Hence for p € E,
1

1
B(p) = 5(Lo¢) = 5 [ 1006l 0ol dude
Q

and

b(p) = ~Qolg) = — /Q Fy o(p + () dardt.
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By Lemma 2.3 (ii) we get I € C1(E,R), It remains to prove I(y) satisfies
(I2)-(1a).

Step 1. We claim that b is weakly continuous. To prove this, let {p;} C E
and suppose ¢; converges weakly to ¢ in E. Then by (2.4), ¢; — ¢ in L
for all 5 € [1,00). Since

(3.1) Fso(p) < Clol™*,

choosing 3 =p+1, we see p; — ¢ in LPT! and b(p;) — b(y) as j — oo.
Step 2. The uniform differentiability of b on bounded subsets of F is
immediately from Lemma 3.2, the form of I and (2.4). Thus we complete

(I2).
Step 3. We claim that I(p) satisfies (I3). Let {¢;} be a sequence with
I(¢;) < M and I'(p;) — 0 as j — co. Then for large j we have

e 17 = lley 117 = (Qo(es), i)l < llgsl,

1 1, _
SIeT I = S 197 112 = Qoles) < M,

where M is a positive constant. It follows that

S (Qbl3), 23— @ols) < M+ gyl

(5= = DQo(0) < M+ gl
Hence
(3.2) Qo(pj) < C(M + [lgsD)-

On the other hand, by the assumption we also obtain for large j
(I'(5) 07 — 5] < llsll-
So

lesl1* = {Qolws)s 5 —¢7) < sl
(3.3) llesl1* < {Qo(ws), o ) + KQa(ws), 05| + lles -
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In the following, we will estimate [(Q(¢;), goj)\ and [(Qq(;), ¢; )| Firstly
N
(@0 )1 < (@ 8) [ 3716+ (eIl | dadt
=1

< ¢ /Q o5 + ()Pl | dadt

IN

O [ Tes-+ eI dadt!*( [ 163155 dat)e/
Q2 Q

(34) < Cf /Q 05+ (i5)|® dadt)?* o),

where C is independent of §. Similarly we have

(35) 1@l e < C( / s + ()| dudt)! o7 ||

Since (2.10) implies

/Q o + ()| dzdt < Cy /Q Fyole; + () dedt = C1Qo(py),
we obtain by (3.4)

Q0 (), 97| < C1Qo(wi)” Il Il
Also by (3.5)we get
(Q0(s), 7)1 < C1Qo(wi)” Nl |I.
Therefore, by (3.3),(3.2), we have
losll* < C1Qolw) sl + llesl
< [CullesllP’® + 1ligs ).

So [|¢;] is bounded because of a > p.
Step 4. We will verify that Fj ¢ satisfies (I4) (i). The form of Fj¢ and
the definition Q(p) imply

Qu(e) < [ Fuolp)dade < C [ ol <Cllpl,
Q Q
where C' is independent of §. Thus for ¢ € E;

I() 2 lell* = CllellP* = [lel* @ = CliglP~).
Choosing p so that CpP~! < % gives I(p) > %pQ on S=0B,NE.
Step 5. Assume that there exists a set ¥ with 1 and 7o such that I
satisfies (I4)(ii). In fact, let ¢ = ¢~ € B;, N Ey where r2 > 0 and consider

(36) I(p+re)=r>—|lo |? /Q Frole™ +re+ (o™ +re)) dudr,
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where e € 9B; N E7. Note that for r =0, I(¢) < 0 via Fso > 0. By (2.10),
/ Fso(p+re+ (o +re))dedt > Cy / lo + re+ (e + re)|* dedt
Q Q

> Cl(/ lo + re 4 (@ + re)|? dedt) ®

(3><n‘/ﬂwﬁ-FVd2+¢¢@p+4@n2dmﬁ )5 > L/|edeﬁ
Hence by (3.6)(3.7)

(3.8) I(p+re) <r? — o ||> = Crre.

Choosing r; so that

(3.9) h(r) :=7r%—Cir* <0

for r > rq, it then follows from (3.8)-(3.9) and Fj5o > 0 that ] <0 :=w on
ox.

Step 6. We go to complete the proof by convexity of Fso. We know that
for each § € (0,1), there exists a solution us = <,0;|r + @5 + 15 for lattice:

(3.10) Ou+ VE50(u) =0.

It follows from the same argument as in step 3 that also <pj{7 5 are bounded
uniformly for § in £. Hence there is a sequence d; tending to 0 such that
s, = ¢ in E and 95, — ¢ in LPHL,

Now we must show that ¢ is nontrivial critical point of I(y) . Recall
I(¢;) > a > 0. Since ¢ — Q(yp) is weakly semi-continuous, it follows from
(3.12) that

a < lim I(p;) < Ils=0(p)-
J—00

Hence @ # 0.

Finally we employ a standard monotonicity argument in order to show
that & = @ + ¢ is a weak solution of (1.1)-(1.3) when g' = 0. Set u; = us,.
Then u,; satisfies (3.10) with 6 = §,. The right hand side of (3.10) is bounded

in LP". Thus Uu; — Cin LP" | possibly after passing to a subsequence. Since
Ou; — Ou in the sense of distributions, we have ¢ = Ou. For each 7 € E,

/Q(DUJ + VFs; 0(7))(u;j — 7) dzdt

(3.11) _ /WﬁWM—V&mwmw—ﬂwﬁga
Q
Furthermore,

(3.12) /Dujuj dxdtH/Dﬂﬂdde
Q Q
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so we obtain
/ (D’l_l, + VFOV()(T))(I_L — T) dxdt <0,
Q

after passing to the limit in (3.11). Let 7 = u + sy, where s > 0 and
X € ENC*®(Q). Substituting this 7 in the inequality above and letting
s — 0 give

/(Dﬂ + VF(L()(Z_L))X dxdt < 0.
Q

Since x was chosen arbitrary, @ is a solution of (1.1)-(1.3).

Therefore there exists at least one solution u for the autonomous lattice.
To prove the existence of infinitely many periodic solutions one relies on the
following simple argument (see [12]): assume u is the solutions founded by
the preceding argument. Firstly we prove that v = (u,---,u”) depends
on the time ¢. Suppose that u is independent of ¢, then to multiplying the
lattice Ou+V Fs0(u) = 0 by u, we have [, u2 dedt+(p+1) [, Fso(u) dedt =
0. It is impossible. Therefore, assume that the solution w has a minimal
period < 27, say 27 /j for 7 € N. Now consider the same problem on the
space H'((0,7) x (0,27/5)), which yields a solution with minimal period
< 27/j. Repeating this procedure we find infinitely many distinct 27-
periodic solutions. O

4. A MODIFIED FUNCTIONAL

In the following sections, we will treat the non-autonomous case. I(p)
will be replaced by a modified functional J(¢) € C*(E,R).

Let x € C*(R,R) such that x(r) =1 for 7 < 1, x(7) = 0 for 7 > 2
and x'(7) < 0,0 < x <1 for 7 € R. Denote x(p) = X(%). For
p=pT+p- € ET®E" =F we set

(1) @) = 5let? ~ e 2~ Qole) ~ L) @2) — Qo))

where a = max{1,12/(p— 1)}, Q(¢) = minyepo [, Fs4(¢ +1(p)) dedt and
Qo(p) = mingepo [, Fsole +1¥(p)) dedt for p € E.

Proposition 4.1. The functional J(p) € C1(E,R) satisfies:
(i) There is a constant c1 = c1(||gla/@—1)) > 0 such that for p € E

(4.2) [7() = J(=p)| < er(IT ()| + 1).

(ii) If there is a constant Mo = Mo(||g|la/(a—1)) > 0 such that J(p) > My
and ||J' (p)||g~ <1, then J(p) = I(p).

To prove this proposition, we need some lemmas as follows:
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Lemma 4.2. There is a constant C = C(||glla/(a—1)) > 0 such that for
pEE,

(4.3) [Q(p)] < C(Qolp) + 1),
(4.4) Q%) = Qu(@)| < C(Qo(p)"* +1).
Proof. By the definition Qq(¢p),

Q) - Qole) = min / Fs oo+ ) dodt — / Fyolp + vo(p)) dadt
< |< L@+ %o(@)] < lgllas@—1)lle + Yo(©)la

(4.5) < C(Qolp) + Co)Y* < C(Qo(p)V* +1).

Similarly we have

Q(¥) — Qoly) = —=C(IQ(p)[V* +1).
Obviously (4.5) implies (4.3). By (4.3) we have
Q(p) = Qo() > —C(Qo()"/* +1).
Thus we get (4.4) from the above inequality and (4.5). O

Lemma 4.3. If there is a constant My = Mi(||glla/@—1)) > 0 such that
J(p) > My and ¢ € suppy, then I(p) > %J(gp).

Proof. Form the definition of J(y),

Jp) = I(p)+ (1 =x(@)(Q(») = Qolp))

< I(e) + C(Qo(p)V* +1).

By definition of ¥, we get for o € suppy ( i.e., Qo(¢) < a(I?(p)? 4+ 1)/?),

J(p) <I(p) + C(I(P)[V* +1) < I(p) + §|f(90)| +Ch.

Choosing M7 = 2C1, we get the desired result. O

Lemma 4.4. Forallp=p" +¢o- € E=ET®FE~ and h € E*,
(J'(),h) = A+ Ta(@) (0" = ¢ h) = (1+ Ta(9)){Qo (), b)

(4.6) —(X(2) + T (0))(Q' () — Qo(), h),
where T1(p), To(p) € C(E,R) are functionals satisfying
(4.7) sup{|Ti(¢)|| ¢ € E,J(¢) > Ms2,i=1,2} — 0 as My — oo.

Proof. For all p = ¢t + ¢~ € E, we have

(J'(0),h) = (¢ — ¢ h) —(Qo(p), h)
(4.8) —(X' (), h)(Q(¢) — Qo(¥)) — X(¢)(Q' () — Qo(¥), h),
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where

(X'(@), h) =
=X (Qo(w)a L (@)* + 172 (1()*+1) 72 Q@)1 (D) U (), )
+a~ (1(9)* +1)72(Qp (), b))

and

(I'(¢), h) = (¢F — 97, h) = (Q4(), h) — (Q'(¢) — Qo(e), ).
By regrouping terms, we get (4.6) for

Ti(p) = a X () (I () + 1) 7*21(0)Qo(¢)(Q(0) — Qo(#)),
Ta(p) = Ta(p) +a X' ()(I%(9) + 1)72(Q(¢) — Qo())-

Let us prove (4.7). Suppose that ¢ € E satisfies J(p) > M. Using (4.4)
we get

(
)

T3 ()] < CIX O () + 1) Qo(9)(Qu() /™ +1).
If ¢ & suppy, then T (¢) = 0. Otherwise, by the definition of ¥, we have
Qolp) < 2a(I*(p) +1)2.
On the other hand, we get from Lemma 4.3,

a(I2(0) + V2 > I(p) > %J(go) > éMz.

Hence we obtain
T (9)] < Cla(I*(p) + 1)V/2) "D/ < oMy @7V L0 as My — oo
Similarly we have Tz(p) — 0 as My — oco. Thus we get (4.7). O

Lemma 4.5. For all ¢ € E, there exists a constant C = C(||glla/a—1))
such that

(4.9) (i) [{Q'(p), %) — (P +1)Q(#)| < CUQAP)I* +1).
(4.10) (i) [(Qo(¢), 0" — 7)< ClQu(@)P/*llell,

(4.11) (iii) [{Q'(¢), 0" — )| < CUQMAIP* + 1)lell,
(4.12) (iv) [(Q'(¢) = Qo(),#) < CIQo(L)”* + el

(
Proof. (i) By (2.11)(2.12)(2.15),

0+ 1)Q(9) — (@), 0| <l / (9,0 + $(p)) dodt

< Cligllasa=plle + ¥ (0)a-
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Since
/ o+ $(p)|" dadt < C / Fiolio + (p)) dadt
Q Q
< o / Fr.glip + () dadt| + | / (9,0 + () dudt]
Q Q
< GO+ /Q (el + ()| + Celgl*/ D) dudt,
we have

le +4(@)lla < CUQP)IM* +1).
(ii) Note that

N
@) <C [ 16+ ube) et | duds
=1

< ([ lo+ (o) dedtp/o( [ 16757 dadpe-rle
Q Q

<o /Q o+ o) dedt)?/ ||t .

Similarly, we have

(@) ) < C / o+ to()|® dadt)?/* | .

Since

/ @ + o()|® dadt < Cy / Fio(p + Yo(p)) dzdt,
Q Q

we get [(Q4(1), o™ — )| < CQo(9)" ¢l
(iii) To prove the other one in similar way,

(Q'(9), 1) <O, N |G 4+ () [t | dadt+ [, (g, o+ (p))dxdt
<C([fole+i(p)dzdt)P/( [, o+ |77 dedt) P/ + |l glla@—n el
< Cl(Jq le + (@) dadt)?/> + 1] [l .

Similarly, we have

(Q'(p)¢7) < C[(/Q [ + ¥(p)|* dwdt)?/* + 1] |

Since

/ o ()P ddt < / Fr.g(p+16(9))dadt +C / (9, 0+ () )dads
Q Q Q
< CL1Q@)] + Cllglla st 19 + 0@ s
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by Young’s inequality, we have

/Q lp+ ()| dadt < C1|Q(@)|+ €l + ¥ ()12 + Ce(Crllgllaya—1))* @Y.

Therefore
/Q o+ ()| dadt < C1|Q(9),

we get [(Q'(¢), 9% — ¢7)| < C(IQ(p)IP/* + Dell-
(iv) The proof is similar to (ii)(iii). It is easy to get

(@ (9),9) < C(Qole)" ™ + 1),
(Q(9), ) < CQole)*[oll,

which implies (iv). O

Proof of Proposition 4.1 (i) From the definition of J(¢), we have

|J(p) = T (=) < X(9)|Q(¥) — Qo) + X(—»)|Q(—») — Qo(—¢)|-

Suppose that —p € suppy, i.e., Qo(¢) < 2a(I(—p)? + 1)/2. From the
definition of J(yp),

I(=p) = J() + Qo(v) — Q(=¢) = X(9)(Q() — Qo(p))-
By Lemma 4.2, we get that
(@)l < [T(@)] + C(Qu(w)/* +1) < [J(9)| + CI(=)* + 1)"/?*.

Using Young’s inequality, we deduce that

[I(—p)| < 2[J(p)| + C.
Hence we get for —¢ € suppy,

Qo(—¢) < 2a(I(=¢)* + 1)'/? < ClJ(¢)| + C.

Similarly we have for ¢ € suppy,

Qo(p) < ClJ(p)| + C.
Combining the above inequalities, we obtain for ¢ € FE,

() = T (=) < C(R(p) + X (~))(Qo() /).

This is the desired result.
(ii) Tt suffices to show that y = 1, that is, by the definition of ¥, to show
that

(4.13) Qo(p) < all(p)* +1)'/?
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for ¢ € E such that J(p) > My and ||J'(¢)|| < 1. For sufficiently large
My > 0 and we can assume by (4.7) that |T3(¢)| < 3,|T2(¢)| < 1 and

(p+ 1)1 +T2(p)) p—1 _
A D
From (4.6) we obtain
I(p) — mul(@’@ =
_ 1+T2( ) ( )+T1(80) -
— Q) + L Qb)) + (I11)

21+ T (9))
_ (DL D)
21+ Ti(p)
= (I) + (I) + (II).

1)Qo() = (QU) = Qo(9)) + (I11)

By (4.4)
(4.14) ((ID)] < C(Qole)"* +1).
Using (4.3)(4.4) we get
((IID)] < CHQ' () — Qole), @)
< p+DRp) = (Q'(9), ) + (p+ DIQ(p) — Qo()
(4.15) < C(Qo(9)" /' +1).

On the other hand, letting h = ¢ — ¢~ in (4.6) we get

(J'(@), 0T —07) = 1+ Ti(@)llell? = (1 + Ta(e))(Qo(¢), ¢+ — @)
(4.16) () + T1 () (Q' () — Qu(0), ™ — 7).

Therefore we get from (4.16) and Lemma 4.4, Ti(¢) < + and the
assumption: ||J'(p)||g- <1,

1
el < 17 (@)lls-llell + C(Qo(e)”* + Dliell < C(Qo()** + 1),

that is

(4.17) el < C(Qo(@)?™ +1).
We obtain by (4.14)(4.15),
I(p) — = (J(¢), ) > (I) — C(Qo() P + 1),

2(1+ Tu(p))
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It follows by (4.17) and ||J'(¢)|
(4.18)

I(g) > =C||lJ'(¢)|
We remark that
inf{Qo ()| |7 ()]

This follows from (4.17). In fact, J(¢) — oo implies ||¢| — oo. So it
follows Qo(p) — oo, by (4.17). Now we may assume that J(¢) > My
implies bQo(y)/6 — Cy > 0, i.e., I(p) > bQo(p)/3 by (4.18). Thus

Qolp) < al(y) < a(I(p)?+1)"/2.

E*S]w

ol + (I) = C(Qo(e)/ P + 1) > bQo () /2 — Co.

E*

g <land J(¢) > M} — o0 as M — occ.

a

Proposition 4.6. J(p) € CY(E,R) satisfies the following Palias-Smale
compactness condition (P.S.): Whenever a sequence {p;}32, in E satisfies
for a large My and some M3 > 0,

My < J(p;) < Mz for all j,
J'(p;) =0 in E* as j — oo,
there is a subsequence of {yp;} which is convergent in E.
Proof. Setting h = ¢; and h = @j —p; in (4.6)
|+ T (I6F 12 = 167 12) = (1 + Tale)) (@bl 03)
(419)  —(Xes) + Tile) ) (@ (25) = Qb(): 05)
|+ Tl lesll® = (L4 Talei)(@ils)s #F = 07)
(4200 —(Req) + Ta(en) ){Q (05) = Qulws) ¢ = #7)] < mllesll,
where m = sup ||J'(¢;)]
1 1
J(e5) = §||<P;r||2 - §||90j_||2 — Qole;) = X(9;)(Q(p;) — Qoly;)) < Ms,
it follows from (4.19)

L+To(py) X(p5) +Ti(e5) ,
m@o(%’)#ﬁﬁ — Qolp)) — 2@+—W<Q (¢5)
—Q0(%))s ) — X(9)(Qp5) — Qoly;)) < Mz +m|lp;].

- X
Hence for large Ms, T1(p;), T>(p;) are small. One can see that there is Cy
such that

< mllpjll;

E+. Since

14+ Ta(pj)

m(%(%)#ﬁﬁ — Qolp;) < CoQolw;).
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It follows by Lemma 4.2 and Lemma 4.5 that

CoQo(5) — C1(1Qu(w2)| + 1)/ < My +mllipy]|.

Hence by Young’s inequality,

(4.21) Qo) < Cr(1+ [lg;l) for all j.
Then, by (4.20) we obtain for large 7,

||2 < 1+T2(<Pj)

X(¢) T j / / -
X ) - Qe )] + o
< OlIQENP + gl lesllllesl + o)
< Gallesl + Dl

where C5 is independent of 0. So ||¢;]| is bounded, which is independent of
§. Observe that J'(p;) = ¢ — ¢; + P(p;) where P: E — E* is compact
operator and J'(¢;) — 0 as j — oco. Hence (pj — (p; is precompact in E.
That is, ¢; is precompact in E. Thus the proof is completed. O

5. MINIMAX METHODS

In this section, we construct critical points of J(¢) via minimax meth-
ods. For convenience, we define the usual lexicographical order for 2-tuples
(k,i) € D as follows, where D =N x {1,2,--- , N},

(j,m) = (k,i), if j=Fkandm =1,
(j,m) < (k,4), if j<korj=kandm <i.

Moreover, we write (k,i) = (k+ [+],i — [%]) for any i € N, where [a] is the
integer part of a, (k,0) = (k—1,N) for k € N.

We observe that the eigenvalues of the wave operator under periodic-
Dirichlet conditions are {j? — k%| j € N,k € Z} and corresponding eigen-
functions are sin jx cos kt and sin jz sin kt. We arrange the negative eigen-
values in the following order, denoted by 0 > —puq > —pg > —pug > -+ with
repetitions according to the multiplicity of each eigenvalue and denote by
v; the eigenfunctions which correspond to p;. We assume (v;, v;) = §;; for
i,j € N. Let ep,---, ey denote the usual orthogonal basis in RY. Define
v, = vjer for j € Nand 1 <k < N. Let

Ef = E;,; = span{vji| (1,1) < (. k) < (m, i)},
where 1 <i < N and ¢ = mN + 1.
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Lemma 5.1. For all 6 € (0,1/a), there is a constant C' > 0 independent
of m € N such that

lella < Cunlliell for ¢ € (EF)*,

where (Ef)* = EY\ Ef and m = [q/N] is the integer part of q.

Proof. We have m = [¢/N] and by the definition of y,,, it follows for all
leNn

/Q|<Pl|2 dadt < p,! /Q lpi|? — |k |? dzdt  for o € (EF)*.

Summing the inequalities from 1 to NV, we get
lellz < pz'Zllell - for o € (B

On the other hand, by the embedding property,
llolls < Csllell for all p € ET and s € [1,00).

Using Holder’s inequality, we obtain for s € (a, 00)

lella < lellzllels™ for ¢ € BT,

where

Combining the above inequalities, we have

Iella < Ci " un™?llell for ¢ € (EF)™.

Note that

lell < m2lellz for ¢ € EF,m = [q/N].



24 JINGGANG TAN
For ¢ = ¢t + ¢~ € Ef ® E~, we have
1 1, _ -
J(p) = §H<P+||2 - §||<P 1> = Qo — X(u)(Q — Qo)

1 1 .
Slet P = 5le 1P = Qo+ C(@o(9) "/ +1)

IN

1 1 1

< = +12 _ — -2 _ C

< 2H<P I 2||<P | 5Qo +
1 1 ~ 1, _

< Lt - thoet - v - Lo+ C
1 ~ S T

< et —eliet +o7 +olls - Sl +C
1 _ L1,

< Lt - el + o+l - Lol +C

1 N T
< SletIE - clletls - 5llemI? +C

< SletIP — cunt gt ~ Sl I+ C.
Hence there is a constant R, such that
(5.1) J(p) <0 forall p € Ef ® E~with [l¢|| > R,.
We may assume that R, < R4y for all 7 € N. Let
Br ={y € El|l¢lz < R} for R >0,
D, = Br, 0 (Ef & E™),
Ly ={y € C(Dy, E)|v satisfies (1) — (13)},

where

(m) v is odd, i.e., y(—p) = —y(p) for all p € Dy,

(v2) V() = ¢ for all ¢ € dD,,

(73) for ¢ = @™+~ € Dyg,v(p) = a(p)p + k() where a € C(Dy, [1,4a]) is
a even functional (& depends on v) and k is a compact operator such that
a(p) =1and k =0 on 0D,.

Moreover, set

Uy ={p=w+T10441|w € Br
Let

N Equ € [OaRqul]v HSOH < Rq+1}~

q+1

A, ={) € C(U,, E)| A satisfies (A1) — (A3)},
where
()\1) )\|Dq € Fq
(A2) A(p) = @ on 6Uq \ Dy,
(A3) for o = T + ¢~ € Uy, M) = a(p)p +K(p) where & € C(Uy, [1,4]) is
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a even functional (@ depends on \) and & is a compact operator such that
a(p) =1and K =0 on 0U, \ D,.

Define for ¢ € N,
(5.2) by = Vigrfq JSup J(v(9), ¢q= Aig/fq sp J(A(¢))-
Lemma 5.2. Suppose that ¢ > My is a regular value of J(p), that is,
J'(¢) # 0 when J(p) = c. Then for any € there exists an € € (0,€) and
n € C([0,1] x E, E) such that
(i) n(t,-) is odd, fort € [0,1] if g(x,t) = 0;
(i) n(t,-) is homeomorphism of E onto E for all t;
(i) (0, ) = ¢ for all p € E;
(i) n(t,e) =@ if J(p) & [c— & c+é;
() J(n(1,0)) <c—eif J(o) <c+e
(vi) for o =t + o= € EY@ E7,n(l,p) = at(p)p™ +a™ (p)p™ + k(p)
where o € C(E,[0,1]), a= € C(E,[1,a]) is a even functional (& > 1 is
constant ) and k is a compact operator.

Proof. Since J(p) € CY(E,R) and satisfies (P.S.) condition via Propo-
sition 4.6, the assertions are standard. As [15] Proposition A.18, we know
that 7 is the solution of the initial value problem

W= V), n0.0) =,

where w € C%!(E, R) satisfying 0 < w < 1 and V is pseudogradient vector
field for J' on E*. By Lemma 4.4, it follows that

{ I — )L+ Tum) i —n7) +P),
n(0) = ¢,

where P(n) is compact. It yields

{ G = w1+ Ta)n* + PEP())
7 (0) = ¢7,

where P* : E — E* are the orthogonal projection. Integrating these shows

t
() = Ol = [ A Ounls ) PP ) dr),
where A(t) = :Ffot wn(s,))(1 + Ti(n(s,¢))))ds. Thus 7 is the form as-
serted. O
Proposition 5.3. Suppose that ¢q > by > My. Let d € (0,¢cq — by) and
Ag(d)={r e Ay] J(X) < by +d on D}
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Define

(5.3) cq(d) = Aeiilﬂd) sup J(A(®)) (= cq)-

Then cq(d) is a critical value of J(p).

Proof. From Proposition 4.1 and 4.6, we obtain that whenever ¢ € F
satisfies J'(¢) = 0 and J(p) > My, then I(¢) = J(¢) and I'(¢) = 0 and
that J(yp) satisfies the Palais-Smale condition on Ay, = {¢ € E|J(p) >
My}. Note that

J'(0) = (1+T1(9))(¢" — ¢7) + (compact)

where |T1(¢)| < 2 on {¢ € E|J(p) > Mo}, see Lemma 4.4. Therefore we
can show that ¢, is a critical value of J(y) as in [14]. In fact, note that by
the definition of by and Ag, Ay(8) # 0. Choose &€ = 3(cq — by —d) > 0. If
¢q(d) is not a critical value of J, there are an ¢ and an 7 as Lemma 5.2.

Choose A € Ay(d) such that
(5.4) max J(A(¢)) < cq(d) + €.

Consider n(1, A(¢)) € C(Ug, E). Note that if |¢|| = Ry or ¢ € (Bgr,,, \
Br,)NEy, J(A(p)) = J(¢) <0,s0n(1,A(p)) = ¢ by Lemma 5.2. Therefore
n(1,A) € Ay. Moreover on Dy, J(A(p)) < bg+d < cg—& < ¢y(d) — € via
our choice of d and & Then n(1,A) = X, J(n(1,A)) < by +d on Dy, again
by Lemma 5.2. Thus (1, A) € Ay(d) and by (5.4) and Lemma 5.2,

max J(A(¢)) < ¢q(d) —e.
contrary to the definition of ¢,(d). Hence ¢,(d) is a critical value of J. O

Proposition 5.4. If c, = b, for all ¢ > qo, then there is a constant C' > 0
such that

by < CqPt1)/p for allq € N.
Proof. Let ¢ > qo and € > 0 and «y € I'; such that
max J(y(¢)) < bg + €.
yel’

q

Let F(p) = ’y( ) for ¢ € Ty and (—¢) = —y(p) for ¢ € —T';. Note that
U(=T¢) =Tg41. Moreover since v € I'y implies 7 € I'g41. Therefore,
bgv1 < g + C(‘bq|1/a +1).
Hence

+1

by < Cqa1 < Cq'v .
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Therefore, the existence of subsequence of ¢, which satisfy ¢, > b, < My
guarantees the existence of critical values. In other words, we should show
the existence of subsequence {g¢;} such that

cq; > bg; > My for large q; € N,
by, — 00 as q; — 00.

To show the above properties, we will prove the existence of a sequence {g; }
such that for any € > 0, there is a C. > 0 satisfying

(5.5) by, > C’eq](»erl)/(p_l)_6 for large q; € N,

which make sure that the case in Proposition 5.4 does not happen.
Let us look for the comparison functional for J(¢).

1 1., _ .
J(p) = §H<P+||2 - 5”90 12 — Qo — X(¢)(Q — Qo)
1 1
> §H<P+||2 - §||<P7||2 —2Qo — a1
1 1, _ _
> Sletl = 5leT I = Foole™ +¢7) —an
1 1 a a
] > ZloTl2 — Zlle— 12 — 0 +p+1 0
(5.6) > 2“@ [ 2||<P || p7+1||<ﬁ [y Pl

where ag,a; > 0 are constants independent of . We set

—p+1
le~ 541 — a1

1 ao
67 K@) =5l - Shllet I € (BT R).

Here we recall the definitions of (P.S.), and (P.S.),, conditions:
(P.S.).: If {on} C ET satisfies ¢, € E,, K(p,) < C and
(K gs) (en)ll(gry- — 0 asn— oo, then {pn} is relative compact in Et;

(P.S)n: If {@;} C Ef satisfies K(¢;) < C and ||(K|gt) (93)ll(gz)- — O
as j — 00, then {¢;} is relative compact in E; .
Then we have

Lemma 5.5. (i) J(pt) > K(¢) —ay for all o™ € ET.
(ii) K(¢™) satisfied the (PS), (PS). and (PS), conditions on E*.

Proof. The arguments to show (PS), (PS). and (PS),, are very similar.
Therefore we just give the proof of (PS).. Let ¢, C ET be a sequence such
that ¢, C Ef, K(p,) < C and

[ IORp—)
that is, for all h € ET

(O, ) — ao/ Pl (JonlP ton)hdedt = €, — 0,
Q
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which lead to a priori estimate of type: [l¢n|p+ = [l¢|lg+ < C. Hence, for
a subsequence denote again by ¢, one has ¢, — ¢ weakly in E¥, strongly
in LP*!. Consequently,

/Prf(lwnlp‘lwn)wndxdt_)/(\wl”‘lw)cpdfcdt-
Q Q

Therefore,

lenll® = ao /Q Bl (lenl? ™ on)pn dxdt+e, — ag L(\wlp’lsﬁ)@d:ﬂdt = [lol.

It follows that ||, — P ¢llg+ = [lon — Pl g+ converges to 0 as n — oo.
This shows ¢, — ¢ in ET. O

Now we are concerned with the functional K (o) and state index prop-
erty of Bahri-Berestycki’s max-min value o,. For n > ¢,n,q € N set

(5.8) A ={o € C(S" 1, EN)| o(~y) = —o(y) for all y},

(5.9) ol = sup min K(o(y)),
ceAp yEST1

n
q
n
q
where ¢ = mN + 1.

Lemma 5.6. ([17]) Let a,b € N. Suppose that hy € C(S* R**?) and
hy € C(R?, Rt are continuous such that

hi(—y) = —hi(y) forall y € S  ho(—y) = —ha(y) for all y € R,
and there is a ro > 0 such that ha(y) = y for |y| > ro. Then h1(S%) N
ha(R?) £ 0.

Lemma 5.7. For all o € Ay,

(5.10) o(S"NNES #0.
Proof. Apply Lemma 5.6 to hy = 0 : "9 — E and hy = id : Ef —
E. Then we get the result. O

Proposition 5.8. (i) 0 < o} < o7, for all ¢,n;
(i1) For all n € N there exist v(q) and U(q) such that
(5.11) 0<v(q) <o, <v(q) <ooforall n>q+1;
(#ii) Moreover, v(q) — 0o as ¢ — oo.

Proof. (i) For any o € Ay, it is clear that there is a ¢ € Aj,; with
a(8™7171) C 0(5™77). Hence we have o)) < o7 ;.
(ii) We now prove the existence of 7(q). By Lemma 5.7 we have for all
oeA?

q

(5.12) min K(o(y)) < sup K(y).
yesn—a peEf
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For all ¢ € E, we have
(5.13)

1 11 11 -
K(p) < 5lelP=Cllelyii < Sllel®=Cliglls™ < Slell?—Cun "V el*

Thus the right-hand of (5.13) is finite and independent of o and n. Set
v(q) = sup K(p) < oo,
pEBS
then we obtain
og = sup min K(o(y)) <v(q).
cEAp yeSm I

(iii) We claim that the existence of v(n). We construct a special o € A} as
follows: write

" ={y = (Ygr- - yn) ERIF D 92 =1}
i=q
and set 0 : S"79 — Ef\ {0} by

*(P+1)/(P*1)w(y>

a(y) = ag PV w(y)ll,

where w(y) is defined by
w(y) = Z YiVi,
i1=q

and v; are eigenfunctions corresponding to ;. Obviously we have o € A7.
Since ||w(y)|| = 1 on S™~ 4, we have
K(0)2 (5= —p)ag /0l 200
Since
w(y) € (B, Jw(y)l| =1 forall ye ",
we get that

lo()llp+1 < Copy s,

where 6 € (0,1/(p + 1)) and Cy is a constant independent of n and y.
Therefore,

0(p+1)/(p—1
K(p) > Cop 0=l = (q).
Then we have

oy > Héin K(o(y)) > v(q) for n>q.
yesn—1

Since pq—1 as ¢ — 0o, we obtain v(g) — 0o as n — oo. O
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Proposition 5.9. Suppose that v(q) > 0. Then oy 1s a critical point of

the restriction of K to E,. Furthermore, the limit o, of any convergent
subsequence of o is a critical value of K € C*(E,R), 0, < 0441 for all
g€ N and oy — 00 as g — oo.

Proof. Since K satisfies (PS), (PS). and (PS),, by Lemma 5.5, we have
oq is a critical value of K+ € C?(E},R). By Proposition 5.8, we can
choose a sequence n; such that n; — oo as j — oo,

(5.14) oq= lim 057 exist for all ¢ € N.

J—0o0

Using the (PS), condition, we can extract a convergent subsequence ¢’ —
©q, then observe easily that K (p,) = limoy” and K'(¢,) = 0. Therefore o,
is a critical value of K € C%(ET,R), the other properties follows directly
from Proposition 5.8. O

Next we state the relation between b, and o,.
Proposition 5.10. For all ¢ € N,
(5.15) by > 0g — a1,
where a1 is the constant appeared in (5.6).

To prove this proposition, we need the lemma:

Lemma 5.11. For ally €'y and o € Ay,

((Pan)(Dg) U{w € B & E7| gl > Ry} ) No(S™7) #0,
where P, : E=ET® E~ — ET ® E~ is orthogonal projection.
Proof. We extend v to 5 € C(E; & E~,E) by
Y(p) =(@)ifllel < Ry A(e) = ¢ if (o]l = Ry.
Obviously, 7(¢) is well defined and odd in E ® E~ and
Pnﬁ(E;_ QL) = Pn'Y(Dq) U{pe Eq,® E7|lele > Rq}-
Therefore, it suffices to prove P,5(Ef & E~) No(S"79) # 0. We set
E; = {sinjze™ [0 < k,j <s,j > [k[}
and let P : E = EY @ E- — El ® E; be the orthogonal projection.
Consider the operators
c:S" "> EYCElf®E;, P,v:Ef®E; - El®E,.
Apply Lemma 5.6 for hy = o and hy = P, s, we get for some y, € S™7¢
and ¢, € Ef © E,
o(ys) = Pns7(ps)-
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Since S™ ¢ is compact, there is a subsequence y,, such that
(5.16) Ys, — yin S"TY
(5.17) o(ys,) — o(y) in E;.
On the other hand, by (v3),
P s7(0s) = Prslops)ps + k(0s)] = alps)ps + Posk(es),

where a(p) > 1 on Ef @ E~ and k(Ef & E~) = k(D,) is compact. Hence
we have

L p . I SN
mpn,sh(sos) — K(ps)] = a(%)Pn,s[ (ps) — #(ps))]-

By (5.17) (ps) has a convergent subsequence (gs, ), that is,

Ps =

ps; — @ in E; L.
Passing to the limit we obtain
PoA(p) = o(y), ie, PY(Ey @ E7)Na(S"77) #0.
O

Proof of Proposition 5.10. Since J(¢) <0on {p € E;f ® E~||¢| >
R,}, we have from Lemma 5.11

min J(o(y)) < sup J(Ppy(y))
yesSn—4a p€D,

for all y € 'y and 0 € Aj. By Lemma 5.5
min J(o(y)) — a1 < sup J(Pay(p)).

yesn—a pED,
Hence we obtain

sup min J(o(y)) —a1 < inf sup J(Puy(p)) =:by.
O'EA;" yesn—a v€lq p€EDq

Letting n = n; — oo, we get

0q — a1 < limsup bg.

n—oo

Thus it suffices to show the following lemma.
Lemma 5.12. For q € N, b, = limsup,,_, by

Proof. Since P,I'y = {Pyy|y € Iy} C Ty, it is clear that b, < by for
n > gq. Let us prove b, > limsup,,_, by for ¢ € N. From the definition of
by, for any € > 0, there is a v € I'; such that

sup J(7(p)) < b + €.
peD,
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By (73), 7(¢p) takes a form () = o)+ r(p) where a(p) € C(Dy, [1,a])
and k(D) is compact. Since P, k(¢) — £(p) as n — oo uniformly in Dy,
we have

Poy(p) = a(p)p + Puk(p) — ale)p + k() = v(p)

uniformly in Dy. Hence

sup J(Poy(p)) — sup J(v(y))
p€D, pED,

as n — 00. By the above inequality, we obtain

limsup by < limsup sup J(P,v(¢))

n—oo n—o0 <p€Dq
= sup J(y(p)) < bg +e.
p€D,
Since € is arbitrary, we get the desired result. O

6. MORSE INDEX AND SPECTRAL ESTIMATE

In this section, we go to get the lower and upper bound for Morse index
of K. For ¢ € ET, we define a index of K" (p) by

index K”(¢)= the number of eigenvalues of K" () which are non-positive.

That is,
index K" (p) =

max{dim H| H is subspace such that (K" (p)h,h) <0 for h € H}.
Firstly we have lower bound:

Proposition 6.1. Suppose that o, < oqy1. Then there exists a ¢, € E™
such that

(6.1) K(pq) < 0q,
(6.2) K'(q) =0,
(6.3) index K" (¢q) > q.

Proposition 6.2. Suppose that o < oy ,n > q+ 1. Then there exists a
©r € EY such that

(6.4) K(py) < ogs
(6.5) (K
(6.6) index (K|pt+)"(0}) > ¢

To get those, we need several lemmas.
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Lemma 6.3. ([3][17]) Let U be a C? open subset of some Hilbert space H
and let ¢ € C*(U,R). Assume that ¢" is a Fredholm operator (of null
index) on the critical set Z(¢1) = {x € U|¢i(x) = 0}. Lastly suppose
that ¢1 satisfies the condition (P.S.) and that Z(¢1) is compact. Then for
any € > 0, there exists g5 € C?(U,R) satisfying (P.S.) with the following
properties:
(i) d2 = ¢1(x) if distance {x, Z(P1)} > €;
(i) |¢1(x) = P2(2)], |91 (2) = @5 (2)], |91 (2) — d5(2)[| < € for all x € U;
(i4i) the critical points of ¢o are finite in number and non-degenerate.

We remark that K|+ € C?(E;,R) satisfies (P.S.) and that all critical
values of K| g+ are nonnegative, in fact, suppose that ¢ € E;7 is critical
point of K|+ , then we have

1 11 o

K(p) = K(9) = 5 (Kl (0):) = (5 = —aallellid 2 0.
On the other hand, there is a constant R, such that K(p) < 0 for ¢ € E;
with || > R,,. Therefore Z(K|p+) is compact. Applying Lemma 6.3, for

all € > 0 there exists a ¢, € C?(E;",R) satisfying (P.S.) with the following
properties:

(6.7) [oc() = K(@): 16c(#) = (K1) ()l |9 () = (K gp)" (@)l < €

for all ¢ € E¥; the critical points of ¢, are finite in number and nondegen-
erate. We set for n > ¢q and ¢ > 0

og(€) = sup min dc(o(y)).
oeAp yesSnT1

By (6.7),
oy —egag(e) <o, +e
Moreover we have the following lemmas as Tanaka in [17],
Lemma 6.4. [17] Suppose that a. € R satisfies
oy (€) <ac—2e<ac<oy(e).

Then
(6.8) Tn—q-1([¢e = acln,p) # 0 for some p € [pe > ac]n,
where [pe > acln = {p € Ef| ¢e(p) > ac}.
Lemma 6.5. [17] For a regular value a € R of ¢, set

L(e;a) = max{index ¢! (z)| ¢ (x) < a, ¢.(z) = 0}.
Then

7s([0e(x) > alpn,p) =0 for all p € [¢p > a], and s <n— L(e;a) — 2.
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Proof of Proposition 6.2. Since o; < oy, and the critical points

of ¢, are finite in the number and nondegenerate, there is a sequence a. €
R(0 < € < €p) such that

(6.9) ae is a regular value of ¢,
(6.10) oy (€) <ac—2¢<ac<oy4(e),
(6.11) a.— oy ase— 0.

Applying Lemma 6.4 and Lemma 6.5, we observe
L(e;a) > q for 0<e<ep.
Therefore there is a ¢. € E; such that

(6.12) De(pe) < e,
(6.13) ¢e(e) =0,
(6.14) index¢” (c) > q.

It follows from (6.7) that satisfies
K(pc) is bounded as € — 0,
(K|E::)/(<Pe) — 0 ase— 0.

Since K|+ satisfies (P.S) on E;, we can choose a convergent subsequence
Pe; = ¢y (€5 — 0).

Proof of proposition 6.1. Since o, < 0,41, we have o4’ < agil
for sufficiently large j. Hence there is a g’ € E;; satisfying (6.4)-(6.6) by
Proposition 6.2. Since K € C?(E*,R) satisfies (P.S.)., ¢4’ has a convergent
subsequence ¢q’". Let @, = limji o @q’ . Then (6.1)(6.2) follow from
(6.4)(6.5) easily. Let us prove (6.3).

First we have

index K”(Lpg) > index (K|EI)”(¢Z)

for all n € N.
On the other hand, we observe that K" () is an operator of type K" =
id 4 (compact). Hence there is an € > 0 such that for h € ET,
(K"(0q)h,h) <0 iff (K"(pq)h, h) < €|lh]|.
i.e.,
index K" (¢4) = index (K" (¢q) — €).
Since K € C?*(E™,R), we have for some jj,
IK"(2g") = K" ()| < € for j > jg.
Thus for j' > j, and h € E*

(K" (0q)h, h) — €| B> < (K" (9q” ), ).
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That is
index K" (pq"") < index (K" (pq) — €).
Therefore by the above inequality, we complete the proof. O

Now we go to prove the upper bound.
Proposition 6.6. For any ¢ > 0 there is a constant C. > 0 such that for
pe BT,

. —1)(1+e€
(6.15) index K" (p) < Ce||<,0\|g_1ggli€g-

Note that for p,h € ET,
(6.16) (K"(@)h, h) = [|h[* = pao(le|P~"h, h).
From the definition of index K" (i), it is clear that
(6.17) index K" (p) =

max{dim H| H C ET subspace such that ||h||* < pao(|¢[P~'h,h),for he H}

We define an operator D : L? — E* by
(6.18) (Dv) = Z (k2 — %)~/ Zaéksinjxeiktel,

i<kl 1

for v = Zl,j,k a;‘ksinjxeiktel. It i_s easily seen that D is an isometry from
L% = L?—closure of span {sinjze'*'e)| j < |k|} to ET and D = 0 on (L2)*.
Setting h = Dv in (6.18), we get
(6.19) index K" ()

= max{dim H| H C L? such that ||v||2 < (pao|p|P~' Dv, Dv),v € L?},
which means that index K”(p) is the number of the eigenvalues of
D*(pag|¢|P~1) D that are greater than or equal to 1.

For the above reason, we are concerned with an operator Ty, : L? — L?
defined by

(6.20) Tv,p = V(z,t) Z Ok Z aéksinjxeiktel for v = Z aéksinja:eiktel,
J-k l L,j.k

where V' (z,t) is a function on  and § = (6,) is a sequence on N x Z. If
we set

(6.21) V(a,t) = /paole| P V/2,
g _ (=) < k|,
0:22) % = { 0 if j > [k,

then letting 6 = (gij), we have
(6.23) D*(paol| *"V)D =T} ;
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In order to analyze the operator Ty g, let us recall the definition of the
singular values of a compact operator. Let A : L? — L? be a compact
operator. The singular values of A, s, (A) are the eigenvalues of |A| = vV A*A
listed according to s1(A) > s9(A4) > .... For 1 < ¢ < o0, A is said to lie in
trace ideal I, if and only if

oo

|A||I_Z ) < o0 for 1 < ¢ < oo,

For g = 0o, we set I, = the set of bounded linear operators L? — L? and
| Allr.. = sup{[|Av]l2|[lv]l2 < 1} < cc.

The following properties of trace ideals are known :
(i) I3 is the Hilbert-Schmidt class on L2. (ii) Let B denote the family of
orthogonal sequences in L2, then

[Allz, = sup (tn, Av)| )19,
{un},{vn}EB Z

When ¢ = 2, for any complete orthogonal sequence {v,} in L?,

oo

1Az, = Z 1A, 13)1/2

(iii) For ¢ > 2, A € I, if and only if A*A € I/ and HAHZ = [[A*All1, ,-
We denote by 12 = [7(N x Z) the space of sequences 6 = (6,;,) which satisfy

161l = (3 10519)"/* < o0 for g € g € [L,00),
jk
[0l = Sup 01| < oo forq € q € [l,00).
J
Lemma 6.7. ([17]) Suppose that V € L? and § = (0,;) € 17 for ¢ € [2,00].

Then Tyg € L7 and there is a constant Cyq > 0, which is independent of V
and 6, such that

(6.24) 1Tvellr, < CqNI[Vgllllia  for all V and 6.
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Proof. Tt follows directly as [17]. Firstly we deal with the case ¢ = 2.
Setting {v} = {1} sinjze*'e;, we get

1 L
Tvelr = ZﬁHTv,e(Sme@mel)H%
Gkl

1 Ly
= 3 IV sin e e
gkl

1 N
< D SV 30K = SI0EIVIE
okl

Next we deal with the case ¢ = co. For v = Zl,j,k a;k sin jre'Fte;,

ITvevll3 = IV ) af gsinjue™ a3 < |VI3[1611E oI5
1,5,k

That is,
[Tvell = sup [|Tv,gv]l2 < [[Vlool|llio--

llofla=1

Lastly for 2 < g < oo, fix {u, }, {v,} € B and consider the operator Lx[? —
17 defined by (V,0) — {(un,Tv,evn)}nen. By the case ¢ = 2,00, we get
1
(v ovn)llie < [Tviollr < —5 1100V ]l2,
[(un 1y 0vn)lliee < [ Tvoll1e < 1011102 IV ]|oo-
By the complex interpolation, we get for ¢ € (2, 00),
||(Un,TV,9Un)qu < CgllOlia 1V [l

where C is constant independent of {w,},{v,} € B. By the definition of
Tv,ollr,, we get the desired result. |

Proof of Proposition 6.6. Since Ty Ty, is a positive self-adjoint
operator,

T3 Tvollr,,. = (O ¥/ for q>2,

where s,, are the eigenvalues of T{§79TV’9. Hence we have from the definition
of I, and (6.19)

index K" () < | T 9Ty ol§?, < [ Tvollf, for ¢ > 2.

Set V and 6 as in (6.21),(6.22). Then we have from (6.23)
: 1 |19
index K" (¢) < [|T; gll7, for q € (2, 00].
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Note that for any ¢ € (2,00] as in [17]

I, = Y (k=T =2 Y ((+s) =57

i<kl 4,sEN
= QZ[S(Qj +5)])"1?% < ZS_Q/2j_q/2 < 0.
- >

Then we deduce from Lemma 6.7 that

. Y 7 1 2
indexK" (i9) < N|[Tg 519, < CoN[0lI5 V]2 < CN |8 1803.

7. PROOF OF THEOREM 1.2

Step 1. By Proposition 5.3 and Proposition 5.4, we see that

by, > C’eqj(»m_l)/(p_l)_e for large ¢; € N,

ensures the existence of an unbounded sequence {,} of critical points of J.
Then by Proposition 4.1, we know that the unbounded critical points {¢;}
satisfy I(;) = J(;)-

By Proposition 5.10, it suffices to show the existence of a sequence ¢; —
00, as j — oo, with the following property: for any € > 0 there is a C. > 0
such that

oq; > C'Eq](-pﬂ)/(p*l)*6 for large j € N.
Since o4, — 00 as ¢ — o0, there is a sequence g; such that o,, < 0g;41.
Applying Proposition 6.1, there are {¢;} € E™ such that

(7.1) K(p;) < 0q,,
(7.2) K'(;) =0
(7.3) index K" (p;) > q; for large j € N.

Next applying Proposition 6.6, we get

—1)(1+€
Celleo IE-001S > a5

Choosing € € (0,2/(p — 1)), we obtain

1 1 +1)/[(p—1)(1+e€ .
(T4) st = Clesllet pg = Clal D0 for j e W,

On the other hand, we have by (7.2)

1
(K (03 05) = llsll* = aollps 1541 = 0.

By (7.1), we obtain

1 a
+1 0 +1
I = G~ el

1
o 2 Klps) = 5llesll* -
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Therefore by (7.4), we conclude that for a unbounded sequence g; (as j —
o0)
g > C€q§p+1)/(p—1)—6.

Step 2. Passing limit: We complete the proof by convexity of Fs,. We
may assume that for each § € (0, 1), us = @; + @5 + s is a solution of the
equation

(7.5) Ou+ VF54(u) =0.

It follows from the same argument as in section 3 that also (pg,apg are
bounded uniformly for ¢ in £. Hence there is a sequence J; tending to 0
such that 5, — @ in E and s, — ¢ in LPT1.

Now we employ a standard monotonicity argument in order to show
that & = @ + 1 is a weak solution of (1.1)-(1.3). Set u; = us,. Then u;
satisfies (7.5) with 0 = ¢;. The right hand side of (7.5) is integrable in €.
Thus Ou; — ¢ in Lr=1/P possibly after passing to a subsequence. Since
Ou; — Ou in the sense of distributions, we have ¢ = Uu. For each 7 € F,

/Q(D“j + VEs; 4(7))(uj — 1) dwdt

(7.6) = /(VF(;].’Q(T) — VFs, g(uj))(uj — 1) dxdt <0.
Q
Furthermore,
(7.7) / Oujuj dedt — [ Duadzdt,
Q Q

so we obtain

/ (O + VF o (7)) (1 — 7) dadt < 0,
Q

after passing to the limit in (7.6). Let 7 = @ + sy, where s > 0 and
X € ENC*®(Q). Substituting this 7 in the inequality above and letting
s — 0 give

/ (Ou + VEFyg(a))x dedt <O0.
Q

Since x was chosen arbitrary, @ is a solution of (1.1)-(1.3). O
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