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Abstract. We consider a two dimensional lattice coupled with near-
est neighbor interaction potential of power type. The existence of
infinite many periodic solutions is shown by using minimax methods.

1. Introduction and main results

In this paper we consider a two dimensional forced lattice coupled with
nearest neighbor interaction potential of power type (1 < p < ∞), i.e.,

(1.1) ¤ul = |ul+1 − ul|p−1(ul+1 − ul)− |ul − ul−1|p−1(ul − ul−1) + gl(x, t)

for x ∈ (0, 2π), t ∈ R, l ∈ N, satisfying the periodic-Dirichlet conditions

ul(0, t) = 0 = ul(π, t) ∀t ∈ R, l ∈ N,(1.2)

ul(x, t) = ul(x, t + 2π) ∀x ∈ (0, π), t ∈ R, l ∈ N,(1.3)

where ¤ul = (ul
tt − ul

xx), N = {1, 2, . . . , N}, N ∈ N, uN+1 = u1, u0 = uN

and gl(x, t+2π) = gl(x, t) for l ∈ N. We are looking for the solutions which
are periodic in time.

In last years a considerable effort has been devoted to mathematical study
of two dimensional lattice constituted by coupled flexible or elastic elements
as strings beams, membranes or plates, etc.. These systems are known as
multi-link or multi-body structures, which may generate new, unexpected
phenomena. Their practical relevance is huge. However, the mathematical
models describing their motions are quite complex. They can be view as
systems of partial differential equations on networks or graphs. For the
control problems of linear systems, wide information may be found in [5].

On the other hand, a one dimensional lattice takes the form as (1.1)-(1.3)
by replacing the operator ¤ with d2/dt2. Its completely integrability and
existence of periodic solutions are well established by [1][6][7][18]. In partic-
ular, the classical Toda lattice was shown to be completely integrable, with
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explicit periodic and soliton solutions in [18]. It is well known by the KAM
(Kolmogorov-Arnold-Moser) theory [1] that periodic and quasi-periodic so-
lutions of Toda lattice persist under small perturbations. A surprising re-
sult, the existence of soliton was got for the power type interaction in [6]. In
[7] travelling wave solutions (periodic oscillation and heteroclinic solutions)
were constructed on a lattice, corresponding to mass particles interacting
nonlinearly with their nearest neighbour (the Fermi-Pasta-Ulam model). It
had wide application in many physical systems and biology models.

For simplicity, here we only consider the simplified version of those models
to study a lattice coupled with nearest neighbor interaction on one line.
This may give us the way to later address more complex situations. To the
best of our knowledge, the nonlinear problem of 2-dimensional Toda lattice
like (1.1)-(1.3) was firstly introduced by Mikhailov in [10], which showed its
integrability by using inverse problem method. Then the reduction problem
about the two-dimensional generalized Toda lattice was considered in [11],
all involving exponential potentials. The existence of periodic solutions
for the 2-dim Toda lattice has been explored in [9] by nonlinear analysis
methods. Here we will use minimax methods to find the critical points which
correspond to the solutions of (1.1)-(1.3) but with power type interaction.
Our main goals are to prove that

Theorem 1.1. If gl ≡ 0 for all l ∈ N, then lattice (1.1)-(1.3) has infinite
many solutions.

Theorem 1.2. Let A = ∂tt − ∂xx and Ω = (0, π) × (0, 2π). If gl ∈
Lα/(α−1)(Ω) satisfies

∫

Ω

glζ dxdt = 0 for all ζ ∈ L∞(Ω) ∩ kerA, l ∈ N = {1, 2, . . . , N},

then lattice (1.1)-(1.3) has infinite many solutions, where {2, p} < α < p+1.

Remark. If gl ∈ kerA satisfies
∑

l g
l 6= 0, then the problem (1.1)-(1.3) has

no periodic solution.

Since the null of the operator ¤u = (ul
tt − ul

xx)l=1,...,N is infinite di-
mensional and the embedding operator from vector space of p-integrable
functions to this null is not compact, we turn to study the functional I(ϕ)
(see (2.8)) as Tanaka did in [17]. Firstly we shall apply linking theorem of
Benci and Rabinowtz in [4] to obtain Theorem 1.1, which is in section 2.
Theorem 1.2 is established from section 4 to section 7.

Theorem 1.2 will be proved with the aid of standard argument for a
perturbation from Z2 symmetry. Here our steps follow Tanaka’s framework
in [17]. Firstly we introduce a functional I of the problem (1.1)-(1.3), (see
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(2.8))

I(ϕ) =
1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 −Q(ϕ),

where ‖·‖ is the norm of the space E (see (2.5)), Q(ϕ) :=minψ∈E0

∫
Ω
Fδ,g(ϕ+

ψ)dxdt and

Fδ,g(u) =
1

p + 1

N∑

l=1

|ul+1 − ul|p+1 − (g, u) +
δ

p + 1

N∑

l=1

|ul|p+1,

for ϕ = ϕ+ + ϕ− ∈ E := E+ ⊕ E−, which is strictly convex functional
(the term δ

∑N
l=1 |ul| makes it strictly convex). Note that critical points of

I and weak solutions of (1.1)-(1.3) possess one-to-one correspondence after
taking limit δ → 0 and that Q′(ϕ) is compact in E. Since there is the force
term g 6≡ 0, the method, which is applicable to treat I, is to make a simple
modification: (see (4.1) in section 4),

J(ϕ) =
1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 −Q0(ϕ)− χ̃(ϕ)(Q(ϕ)−Q0(ϕ)).

Secondly in section 5 we apply the methods of Rabinowitz [14] to I(ϕ++ϕ−)
and obtain the existence of infinitely many solutions of (1.1)-(1.3) under
some assumption

(1.4) bqj ≥ C1q
(p+1)/(p−1)−ε
j − C2 for a large number qj ∈ N,

where bq = infγ∈Γq supϕ∈Dq
J(γ(ϕ)) (see (5.2)). This assumption will tell

us that the critical points, which we find by minimax methods, have large
critical values. To prove the assumption (1.4), we follow Tanaka’s steps
which were introduced by Bahri-Berestycki to find comparison value σq

such that σq ≤ bq + C2 and

(1.5) σqj ≥ C1q
(p+1)/(p−1)−ε
j , for a large number qj ∈ N,

where σn
q = supσ∈An

q
miny∈Sn−q K(σ(y)) (see (5.7)). In the proof of (1.5),

a Morse index estimate and the spectral estimate play an essential role as
Tanaka in [17], which are in section 6 and finally we shall complete the proof
of Theorem 1.2 in section 7.

2. Preliminaries

For convenience, we use the following standard notations. Let E be a
Hilbert space, 〈·, ·〉 be inner product in Hilbert space E or the dual bracket
between Hilbert space E and its dual space E∗. (·, ·) be inner product in
RN .

Let Ω = (0, π)× (0, 2π). We firstly recall basic properties of the operator
A = ∂tt − ∂xx acting on integrable functions which are 2π−periodic and



4 JINGGANG TAN

satisfy Dirichlet boundary conditions. It is well known that Aζ = 0 (in the
weak sense) if and only if

ζ(x, t) = γ(x + t)− γ(x− t)

for some γ ∈ L1
loc(R), 2π-periodic and such that

∫ 2π

0
γ(s) ds = 0. Also, for

a given integrable f0, we have that if
∫

Ω

f0ζ dxdt = 0 for all ζ ∈ L∞(Ω) ∩ kerA,

then there is a unique 2π-periodic continuous function w0 satisfying

(2.1) w0
tt − w0

xx = f0

and the boundary condition w0(0, t) = w0(π, t) = 0 for all t. From here, it
is clear that if f0 ∈ kerA, then there is no solution for the equation (2.1).

Denote u(x, t) = (u1(x, t), . . . , uN (x, t)) for (x, t) ∈ Ω. For p ∈ [1,∞) set
by Lq the vector of 2π-time periodic functions of t whose p-th powers are
integrable, i.e.,

‖u‖p = (
∫

Ω

N∑

l=1

|ul(x, t)|p dxdt)1/p < ∞.

The vector of smooth functions satisfying (1.2),(1.3) has a Fourier expansion
of the form

(2.2) u =
N∑

l=1

∞∑

j=1

∞∑

k=−∞
al

jk sin jxeiktel, al
j,−k = āl

jk,

where {e1, · · · , eN} is the usual orthogonal basis in RN . We define

〈u, v〉W =
1
4
|Ω|

∑

l,j,k

|k2 − j2|al
jk b̄l

jk, ‖u‖2W = 〈u, u〉,

for u =
∑N

l=1

∑∞
j=1

∑∞
k=−∞ al

jk sin jxeiktel and
v =

∑N
l=1

∑∞
j=1

∑∞
k=−∞ bl

jk sin jxeiktel. We observe that ‖ · ‖W is a norm
on the set {u| al

jk = 0 if j = |k|}. Let

W+ = span{(sin jxeiktel)| j < |k|},
W− = span{(sin jxeiktel)| j > |k|},
W = W+ ⊕W−,

where the closures are taken under the norm ‖ · ‖W and (sin jxeiktel) is the
vector (sin jxeikte1, · · · , sin jxeiktel,· · · , sin jxeikteN ). Note that (W, 〈, 〉)
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is a Hilbert space. Further set

W 0 = Lp+1 − closure of span{(sinjxe±ijtel)| j ∈ N, l ∈ N}.
Then W+,W−,W 0 are complementary subspaces of the vector space of
functions satisfying (1.2),(1.3). Moreover, the space W has the following
property (see Lemma 2.1):

‖u‖p ≤ Cp‖u‖W for all u ∈ W and p ∈ [1,∞),(2.3)
the embedding W → Lp is compact for all p ∈ [1,∞),(2.4)

where Cp is positive constant. However the embedding W 0 :→ Lp is not
compact.

Now we are going to look for a subspace of W , which will be our work-
space, called E. For this purpose, we need some facts in RN . Given ξ ∈ RN

let [ξ] = max{ξ1− ξN , ξ2− ξ1, · · · , ξN − ξN−1}. Denote 11 := (1, 1, · · · , 1) ∈
RN and its orthogonal space by {11}⊥. It known from [9] that

[ξ] ≥ 2
N − 1

|ξ|∞ ≥ 2√
N(N − 1)

|ξ| for ξ ∈ 11⊥.

Let

Fδ,0(ξ) =
1

p + 1

N∑

l=1

|ξl+1 − ξl|p+1 +
δ

p + 1

N∑

l=1

|ξl|p+1, δ ∈ (0, 1),

where ξN+1 = ξ1, ξ0 = ξN . Then we have that qualitative properties of
Fδ,0 are as follows (see Lemma 2.2):
(F1) Fδ,0 ∈ C2(R ∩ {11}⊥,R) is strictly convex and coercive.
(F2) There exists α ∈ (2, p + 1) such that (ξ,∇Fδ,0(ξ)) ≥ αFδ,0(ξ) > 0 for
ξ ∈ RN ∩ {11}⊥.

Let w be a function such that (w(x, t)11) :=(w(x, t), w(x, t),· · · ,w(x, t))∈
W ⊕ W 0. Denote X1 = {w11 ∈ W ⊕ W 0} and its orthogonal space by
X2 = X⊥

1 . It is clear that X2 = {(u0, · · · , uN )| ∑N
l=0 ul = 0}. Define

E+ = W+ ∩X2, E− = W− ∩X2,

E = E+ ⊕ E−, E0 = W 0 ∩X2.
(2.5)

Note that W ⊕W 0 = [(W ⊕W 0) ∩X1]⊕ (E ⊕ E0).

On the other hand, it is easy to see that the solutions of problem (1.1)
satisfying conditions (1.2),(1.3) are corresponded to a critical points of the
functional

(2.6) G0(u) :=
1
2

∫

Ω

(|∂tu|2 − |∂xu|2) dxdt−
∫

Ω

F0,g(u) dxdt,
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where

F0,g(u)=
1

p + 1

N∑

l=1

|ul+1−ul|p+1−(g, u), uN+1 = u1, u0 = uN , u ∈ W ⊕W 0.

We can divide g = ḡ11 + ĝ such that (ḡ11) ∈ (W ⊕W 0) ∩X1, ĝ ∈ E ⊕ E0 =
(W ⊕W 0) ∩X2. Similarly we have w = w11 + ŵ. It is easy to see that the
problem (1.1)-(1.3) in (W ⊕W 0) ∩X1 becomes a scalar equation

wtt − wxx = ḡ,

where w be a 2π periodic function satisfying Dirichlet condition and ḡ ∈
(W ⊕W 0) ∩X1. If gl ∈ Lα/(α−1)(Ω) (α > 1)satisfies

∫

Ω

glζ dxdt = 0 for all ζ ∈ L∞(Ω) ∩ kerA, l ∈ N,

then we know from (2.1) that there is a unique solution w. Moreover, note
that if u is a critical point of G0(u) in E, u + w is a solution. To see that,
we know that for ξ ∈ (W ⊕W 0) ∩X1 and ζ ∈ E ⊕ E0,

〈(G0)′(u + w), (ζ + ξ)〉 =

=
∫

Ω

N∑

l=0

[
ul

tζ
l
t + wl

tξ
l
t − ul

tζ
l
x − wl

xξl
t − (F0,0(u), ζ) + ĝlζl + g̃lξl

]
dt

= 〈(G0|g∈E⊕E0)′(u), ζ〉.

Without loss of generality, we may assume
∑N

i=0 gl = 0, that is, the critical
points of G0 in E ⊕ E0 are solutions for lattice (1.1)-(1.3).

To find the critical points of G0, we introduce the aid of a modified
functional to treat the loss of compactness of the embedding E0 → Lp+1 as
follows:

Gδ,g(u) :=
1
2

∫

Ω

|∂tu|2 − |∂xu|2 dxdt−
∫

Ω

Fδ,g(u) dxdt,

for u ∈ E ⊕ E0, where

(2.7) Fδ,g(u) = F0,g(u) +
δ

p + 1

N∑

l=1

|ul|p+1 for δ ∈ (0, 1),

which is strictly convex. The wave form is positive definitely, negative
definitely and null on E+, E−, E0 respectively.
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From the above properties of Fδ,0, we know that for ϕ = ϕ+ + ϕ− ∈ E
and ψ ∈ E0,

Gδ,g(u) = Gδ,g(ϕ+ + ϕ− + ψ) =
1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2

−
∫

Ω

Fδ,g(ϕ+ + ϕ− + ψ) dxdt ∈ C2(E+ ⊕ E− ⊕ E0,R).

Observe also that for fixed ϕ+, ϕ−, the functional Gδ,g(ϕ+ + ϕ− + ψ) is a
strictly concave function of ψ ∈ E0. So there is one to one correspondence
between every critical point of Gδ,g and that of I. Here I : E → R is a
functional for ϕ = ϕ+ + ϕ− ∈ E, defined by

I(ϕ) = max
ψ∈E0

Gδ,g(ϕ + ψ) =
1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 −Q(ϕ)(2.8)

where

(2.9) Q(ϕ) := min
ψ∈E0

∫

Ω

Fδ,g(ϕ + ψ) dxdt for ϕ ∈ E.

We will treat the problem (1.1)-(1.3) by finding the critical points of the
functional I(ϕ) in E and taking limit δ → 0. Note that Q(ϕ) can be also
defined for all ϕ ∈ Lp+1 by (2.9). Now we give the proof of some lemmas
that we mentioned above and also study the space E and treat Q(ϕ) as a
functional from Lp+1 to R at the end of this section.

Lemma 2.1. There is a positive constant Cq such that

‖u‖q ≤ Cq‖u‖W for all u ∈ W and q ∈ [1,∞),
the embedding W → Lq is compact for all q ∈ [1,∞).

In particular, the Hilbert space E has the same compact embedding properties
of the space W .

Proof. Here we follow the steps in [16]. It is easy to see the case q = 2,
so we can set q > 2. Note that u ∈ W have the form (j 6= |k|):

u =
N∑

l=1

∞∑

j=1

∞∑

k=−∞
al

jk sin jxeiktel, al
j,−k = āl

jk.

Denote ajk = (a1
jk, · · · , aN

jk) with the modulus |ajk|. We first note that for
p > 1
∑

j 6=|k|
|j2 − k2|−p≤4

∑

j<|k|
(k2 − j2)−p+

∑

j≥1

j−2p =
∑

j,l≥1

l−p(2j + l)−p+
∑

j≥1

j−2p

≤ 2
∑

j,l≥1

l−pj−p +
∑

j≥1

j−2p ≤ 3
∑

j≥1

j−2p ≤ 3(
p

p− 1
)2.
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Then for q > 2, by F. Riesz’s Theorem in [19], Hölder’s inequality with
p = q/(q − 2),

‖u‖q ≤ π2/q
( ∑

j 6=|k|
|ajk|q/(q−1)

)(q−1)/q

≤ π2/q
( ∑

j 6=|k|
|j2 − k2||ajk|2

)1/2( ∑

j 6=|k|
|j2 − k2|−q/(q−2)

)(q−2)/2q

≤ Cq‖u‖E .

The compactness of the embedding is a standard result. It is enough to
prove that there exist constants 0 < µ, ν < 1/2, C > 0 such that

|u(x, t)− u(x′, t′)| ≤ C(|x− x′|µ + |t− t′|ν).

Firstly we claim

| sin jxeikt − sin jx′eikt′ | ≤ cµ|x− x′|µ + cν |t− t′|ν .

In fact,

|eikt − eikt′ | = |eik(t−t′) − 1| ≤ cµ|t− t′|µ for 0 ≤ µ ≤ 1.

Moreover, if j|x− x′| ≤ 1 then

| sin jx− sin jx′| ≤ j|x− x′| ≤ jν |x− x′|ν ;

if j|x− x′| > 1, then

| sin jx− sin jx′| ≤ 2 ≤ 2jν |x− x′|ν .

Therefore, using

| sin jxeikt − sin jx′eikt′ | ≤ 2| sin jx− sin jx′|+ |eikt − eikt′ |,
we can get the claim. By the form of (2.2), we have

|u(x, t)− u(x′, t′)| = |
∑

j,k,l

(al
jk

(
sin jxeiktel − sin jx′eikt′el

)
|

≤
∑

j,k

| sin jxeikt − sin jx′eikt′ ||ajk| ≤
∑

j,k

(cµ|x− x′|µ + cν |t− t′|ν)|ajk|

≤ C
[
|x− x′|µ

( ∑

j,k

j2µ

|j2 − k2|
)1/2

+ |t− t′|ν
(∑

j,k

j2ν

|j2 − k2|
)1/2]

·

·
( ∑

j,k

|j2 − k2||ajk|2
)1/2

≤ C
[
|x− x′|µ

( ∑

j,k

j2µ

|j2 − k2|
)1/2

+ |t− t′|ν
(∑

j,k

j2ν

|j2 − k2|
)1/2]

‖u‖2E .
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Let u(x, t) ∈ W+, that is j < |k|, and it is similar to W−. Then we have
∑ j2µ

|j2 − k2| = 2
∑

0<j<k

j2µ

(k − j)(k + j)

≤ 2
∑

0≤j<k

1
(k − j)j1−2µ

=
∑

k,j>0

1
k(k + j)1−2µ

≤
∑

k

1
j2−2µ

< ∞.

Thus we can obtain the equi-continuous and the uniform bound for the
sequence {un} in W+. It follows the compactness. 2

Lemma 2.2. Let Fδ,0(ξ) = 1
p+1

∑N
l=1 |ξl+1 − ξl|p+1 + δ

p+1

∑N
l=1 |ξl|p+1 and

δ ∈ (0, 1). Then
(i) Fδ,0 ∈ C2(RN ∩ {11}⊥,R) is strictly convex and coercive.
(ii) There exists α ∈ (2, p + 1) such that (ξ,∇Fδ,0(ξ)) ≥ αFδ,0(ξ) > 0 for
ξ ∈ RN ∩ {11}⊥.
(iii) There is a positive constant C1 such that for ξ ∈ RN ∩ {11}⊥
(2.10) Fδ,0(ξ) ≥ C1|ξ|α.

Proof. (i) Since d2Fδ,0(ξ+sζ)
dt2 |s=0 =

∑N
l=1 p(|ξl − ξl−1|p−1 + δ|ξl|p−1)(ζl −

ζl−1)2, we see that Fδ is strictly convex in {11}⊥.
(ii) It is clear that for α < p + 1,

〈∇Fδ,0(ξ), ξ〉 −αFδ,0(ξ) = (1− α

p + 1
)[

N∑

l=1

|ξl − ξl−1|p+1 + δ

N∑

l=1

|ξl|p+1] ≥ 0.

Hence we have
〈∇Fδ,0(ξ), ξ〉 ≥ αFδ,0(ξ),

for α ∈ (m0, p + 1) and ξ ∈ {11}⊥.
(iii) Let |ξ| = s and ξ

|ξ| = η, so ξ = sη and

〈∇Fδ,0(sη), sη〉 ≥ αFδ,0(sη).

It directly follows
Fδ,0(sη) ≥ C1s

α.

2

Lemma 2.3. (i) For all ϕ ∈ Lp, there exists a unique ψ(ϕ) ∈ E0 such that

(2.11) Q(ϕ) =
∫

Ω

Fδ,g(ϕ + ψ(ϕ)) dxdt.

(ii) ψ(ϕ) : Lp+1 → E0 is continuous.
(iii) Q(ϕ) is of class C1 on E and

(2.12) 〈Q′(ϕ), h〉 =
∫

Ω

(∇Fδ,g(ϕ + ψ), h) dxdt for all ϕ, h ∈ E.
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In particular, Q′(ϕ) : E → E∗ is compact and for all ϕ ∈ E.

Proof. The above lemma is a slight generalization of a result by Tanaka
[17].
(i) From the property (i) of Fδ,0 in Lemma 2.2, we can easily deduce assertion
(i) from the fact that

(2.13) ψ →
∫

Ω

Fδ,g(ϕ + ψ) dxdt

is a strictly convex and coercive functional on E0.
(ii) Suppose that ϕj → ϕ in Lp+1(Ω). We will show that ψ(ϕj) → ψ(ϕ)
strongly in E0. By the definition of ψ(ϕj), we have

(2.14)
∫

Ω

Fδ,g(ϕj + ψ(ϕ)) dxdt ≥
∫

Ω

Fδ,g(ϕj + ψ(ϕj)) dxdt.

We find that {ψ(ϕj)}∞j=1 is bounded in E0 (i.e., in Lp+1). We extract a
subsequence–still denoted by ψ(ϕj)–converges weakly to ψ̄ in E0. Letting
j →∞ in (2.14), by Fatou Lemma and the weak continuity we get∫

Ω

Fδ,g(ϕ+ψ(ϕ))dxdt ≥ lim sup
j→∞

∫

Ω

Fδ,g(ϕj+ψ(ϕj))dxdt ≥
∫

Ω

Fδ,g(ϕ+ ψ̄)dxdt.

By the uniqueness of ψ(ϕ), we observe ψ̄ = ψ(ϕ) and lim sup Fδ,g(ϕj +
ψ(ϕj)) = Fδ,g(ϕ + ψ(ϕ)). Thus we obtain ψ(ϕj) → ψ(ϕ) in E0.
(iii) By the convexity of (2.13), we find that for w ∈ E0,

(2.15) w = ψ(ϕ) iff
∫

Ω

(∇Fδ,g(ϕ + w), ζ) dxdt = 0 for all ζ ∈ E0.

From the convexity of the function Fδ,g and minimality property of ψ(ϕ),
we have for all ϕ, h ∈ E and s > 0,

(2.16) Q(ϕ+sh)−Q(ϕ) ≥
∫

Ω

(∇Fδ,g(ϕ+ψ(ϕ)), sh+ψ(ϕ+sh)−ψ(ϕ)) dxdt.

Since ψ(ϕ + sh)− ψ(ϕ) ∈ E0, we get by (2.15)

(2.17) Q(ϕ + sh)−Q(ϕ) ≥
∫

Ω

(∇Fδ,g(ϕ + ψ(ϕ)), sh) dxdt.

Similarly we have

(2.18) Q(ϕ + sh)−Q(ϕ) ≤
∫

Ω

(∇Fδ,g(ϕ + sh + ψ(ϕ + sh)), sh) dxdt.

Letting s → 0 in (2.17) and (2.18), we obtain (2.12). Thus Q(ϕ) ∈ C1(E,R).
Moreover from (2.4) and the continuity of ψ(ϕ) : Lp+1 → E0, we deduce
that Q′(ϕ) : E → E∗ is compact.

2
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3. Critical points and periodic solutions in the autonomous
case

In this section, we will go to prove the existence of infinite many solutions
for the autonomous case, i.e. g ≡ 0. Therefore,

I(ϕ) =
1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 −Q0(ϕ) for ϕ = ϕ+ + ϕ− ∈ E.

We use the notation Br for the open ball with radius r and ai, ri, i ∈ N
denote nonnegative constants.

Lemma 3.1. [4] Let E be a real Hilbert space, E1 a closed subspace of E,
and E2 = E⊥

1 . Denote I(u) = Φ(u) + b(u). Suppose that I ∈ C1(E,R) and
satisfies
(I1) Φ(u) = 1

2 〈Lu, u〉 where u = u1 + u2 ∈ E1 ⊕E2, Lu = L1u1 + L2u2 and
Li : Ei → Ei, i = 1, 2 is a (bounded) lineal self adjoint mapping.
(I2) b is weakly continuous and uniformly differentiable on bounded subsets
of E.
(I3) If for a sequence {um}∞m=1, I(um) is bounded from above and I ′(um) →
0 as m →∞ then {um}∞m=1 is bounded.
(I4) There are constants r1, r2, α, ρ, ω with r1 > ρ, α > ω and r1, r2, ρ > 0
and there is an e ∈ ∂B1 ∩ E1 such that (i) I ≥ α on S := ∂Bρ ∩ E1, (ii)
I ≤ ω on ∂Σ where Σ := {re| 0 ≤ r ≤ r1} ⊕ (Br2 ∩ E2).
Then I possesses a critical value c ≥ α.

Lemma 3.2. (see Proposition 3.12 in [4]) Let Ω ⊂ Ri be a bounded domain
and for some s, ŝ, g ∈ C1(Ω× Rk,R) where g = g(x, z) and

|gz(x, z)| ≤ C1 + C2|z|s, 1 ≤ s < ŝ.

If Ê is a subspace of L1(Ω)k with ‖z‖r ≤ ar‖z‖ bE for all z ∈ Ê and all
r ∈ [2, ŝ + 1], then b(z) is uniformly differentiable on bounded subsets of Ê.

Proof of Theorem 1.1. We apply Lemma 3.1 to give the proof of
Theorem 1.1 as in [4]. Let E1 = E+ and E2 = E−. Then E2 = E⊥

1 , and J
satisfies (I1) with Liϕi be defined for ϕi = ϕ± ∈ Ei by

〈Liϕi, ζi〉 =
∫

Ω

∂tϕi∂tζi − ∂xϕi∂xζi dxdt,

for all ζi ∈ Ei, i = 1, 2. Hence for ϕ ∈ E,

Φ(ϕ) =
1
2
〈Lϕ,ϕ〉 =

1
2

∫

Ω

|∂tϕ|2 − |∂xϕ|2 dxdt

and

b(ϕ) = −Q0(ϕ) = −
∫

Ω

Fδ,0(ϕ + ψ(ϕ)) dxdt.
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By Lemma 2.3 (ii) we get I ∈ C1(E,R), It remains to prove I(ϕ) satisfies
(I2)-(I4).

Step 1. We claim that b is weakly continuous. To prove this, let {ϕj} ⊂ E
and suppose ϕj converges weakly to ϕ in E. Then by (2.4), ϕj → ϕ in Lβ

for all β ∈ [1,∞). Since

(3.1) Fδ,0(ϕ) ≤ C|ϕ|p+1,

choosing β = p + 1, we see ϕj → ϕ in Lp+1 and b(ϕj) → b(ϕ) as j →∞.
Step 2. The uniform differentiability of b on bounded subsets of E is

immediately from Lemma 3.2, the form of I and (2.4). Thus we complete
(I2).

Step 3. We claim that I(ϕ) satisfies (I3). Let {ϕj} be a sequence with
I(ϕj) ≤ M and I ′(ϕj) → 0 as j →∞. Then for large j we have

|‖ϕ+
j ‖2 − ‖ϕ−j ‖2 − 〈Q′

0(ϕj), ϕj〉| ≤ ‖ϕj‖,
1
2
‖ϕ+

j ‖2 −
1
2
‖ϕ−j ‖2 −Q0(ϕj) ≤ M,

where M is a positive constant. It follows that

1
2
〈Q′

0(ϕj), ϕj〉 −Q0(ϕj) ≤ M + ‖ϕj‖,

(
p + 1

2
− 1)Q0(ϕj) ≤ M + ‖ϕj‖.

Hence

(3.2) Q0(ϕj) ≤ C(M + ‖ϕj‖).

On the other hand, by the assumption we also obtain for large j

|〈I ′(ϕj), ϕ+
j − ϕ−j 〉| ≤ ‖ϕj‖.

So

‖ϕj‖2 − 〈Q′0(ϕj), ϕ+
j − ϕ−j 〉 ≤ ‖ϕj‖,

‖ϕj‖2 ≤ |〈Q′
0(ϕj), ϕ+

j 〉|+ |〈Q′0(ϕj), ϕ−j 〉|+ ‖ϕj‖.(3.3)
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In the following, we will estimate |〈Q′
0(ϕj), ϕ+

j 〉| and |〈Q′
0(ϕj), ϕ−j 〉|. Firstly

|〈Q′
0(ϕj), ϕ+

j 〉| ≤ (4 + δ)
∫

Ω

N∑

l=1

|ϕl
j + ψl(ϕj)|p|ϕ+

j | dxdt

≤ C

∫

Ω

|ϕj + ψ(ϕj)|p|ϕ+
j | dxdt

≤ C(
∫

Ω

|ϕj + ψ(ϕj)|α dxdt)p/α(
∫

Ω

|ϕ+
j |

α
α−p dxdt)(α−p)/α

≤ C(
∫

Ω

|ϕj + ψ(ϕj)|α dxdt)p/α‖ϕ+
j ‖,(3.4)

where C is independent of δ. Similarly we have

(3.5) |〈Q′0(ϕj), ϕ−j 〉| ≤ C(
∫

Ω

|ϕj + ψ(ϕj)|α dxdt)p/α‖ϕ−j ‖.

Since (2.10) implies∫

Ω

|ϕ + ψ(ϕj)|α dxdt ≤ C1

∫

Ω

Fδ,0(ϕj + ψ(ϕj)) dxdt = C1Q0(ϕj),

we obtain by (3.4)

|〈Q′0(ϕj), ϕ+
j 〉| ≤ C1Q0(ϕj)p/α‖ϕ+

j ‖.
Also by (3.5)we get

|〈Q′0(ϕj), ϕ−j 〉| ≤ C1Q0(ϕj)p/α‖ϕ−j ‖.
Therefore, by (3.3),(3.2), we have

‖ϕj‖2 ≤ C1Q0(ϕj)p/α‖ϕj‖+ ‖ϕj‖
≤ [C1‖ϕj‖p/α + 1]‖ϕj‖.

So ‖ϕj‖ is bounded because of α > p.
Step 4. We will verify that Fδ,0 satisfies (I4) (i). The form of Fδ,0 and

the definition Q(ϕ) imply

Q0(ϕ) ≤
∫

Ω

Fδ,0(ϕ) dxdt ≤ C

∫

Ω

|ϕ|p+1 ≤ C‖ϕ‖p+1,

where C is independent of δ. Thus for ϕ ∈ E1

I(ϕ) ≥ ‖ϕ‖2 − C‖ϕ‖p+1 = ‖ϕ‖2(1− C‖ϕ‖p−1).

Choosing ρ so that Cρp−1 < 1
2 gives I(ϕ) ≥ 1

2ρ2 on S = ∂Bρ ∩ E1.
Step 5. Assume that there exists a set Σ with r1 and r2 such that I

satisfies (I4)(ii). In fact, let ϕ = ϕ− ∈ Br2 ∩ E2 where r2 > 0 and consider

(3.6) I(ϕ + re) = r2 − ‖ϕ−‖2 −
∫

Ω

Fδ,0(ϕ− + re + ψ(ϕ− + re)) dxdt,
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where e ∈ ∂B1 ∩E1. Note that for r = 0, I(ϕ) ≤ 0 via Fδ,0 ≥ 0. By (2.10),
∫

Ω

Fδ,0(ϕ + re + ψ(ϕ + re)) dxdt ≥ C1

∫

Ω

|ϕ + re + ψ(ϕ + re)|α dxdt

≥ C1(
∫

Ω

|ϕ + re + ψ(ϕ + re)|2 dxdt)
α
2

≥ C1(
∫

Ω

|ϕ|2 + |re|2 + |ψ(ϕ + re)|2 dxdt)
α
2 ≥ C1[r2α

∫

Ω

|e|2 dxdt]
α
2 .(3.7)

Hence by (3.6)(3.7)

(3.8) I(ϕ + re) ≤ r2 − ‖ϕ−‖2 − C1r
α.

Choosing r1 so that

(3.9) h(r) := r2 − C1r
α ≤ 0

for r ≥ r1, it then follows from (3.8)-(3.9) and Fδ,0 ≥ 0 that I ≤ 0 := ω on
∂Σ.

Step 6. We go to complete the proof by convexity of Fδ,0. We know that
for each δ ∈ (0, 1), there exists a solution uδ = ϕ+

δ + ϕ−δ + ψδ for lattice:

(3.10) ¤u +∇Fδ,0(u) = 0.

It follows from the same argument as in step 3 that also ϕ+
δ , ϕ−δ are bounded

uniformly for δ in E. Hence there is a sequence δj tending to 0 such that
ϕδj ⇀ ϕ̄ in E and ψδj → ψ̄ in Lp+1.

Now we must show that ϕ̄ is nontrivial critical point of I(ϕ) . Recall
I(ϕj) ≥ α > 0. Since ϕ → Q(ϕ) is weakly semi-continuous, it follows from
(3.12) that

α ≤ lim
j→∞

I(ϕj) ≤ I|δ=0(ϕ̄).

Hence ϕ̄ 6= 0.
Finally we employ a standard monotonicity argument in order to show

that ū = ϕ̄ + ψ̄ is a weak solution of (1.1)-(1.3) when gl ≡ 0. Set uj = uδj .
Then uj satisfies (3.10) with δ = δj . The right hand side of (3.10) is bounded
in Lp∗ . Thus ¤uj → ζ in Lp∗ , possibly after passing to a subsequence. Since
¤uj → ¤ū in the sense of distributions, we have ζ = ¤ū. For each τ ∈ E,

∫

Ω

(¤uj +∇Fδj ,0(τ))(uj − τ) dxdt

=
∫

Ω

(∇Fδj ,0(τ)−∇Fδj ,0(uj))(uj − τ) dxdt ≤ 0.(3.11)

Furthermore,

(3.12)
∫

Ω

¤ujuj dxdt →
∫

Ω

¤ūū dxdt,
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so we obtain ∫

Ω

(¤ū +∇F0,0(τ))(ū− τ) dxdt ≤ 0,

after passing to the limit in (3.11). Let τ = ū + sχ, where s > 0 and
χ ∈ E ∩ C∞(Ω). Substituting this τ in the inequality above and letting
s → 0 give ∫

Ω

(¤ū +∇F0,0(ū))χdxdt ≤ 0.

Since χ was chosen arbitrary, ū is a solution of (1.1)-(1.3).
Therefore there exists at least one solution u for the autonomous lattice.

To prove the existence of infinitely many periodic solutions one relies on the
following simple argument (see [12]): assume u is the solutions founded by
the preceding argument. Firstly we prove that u = (u1, · · · , uN ) depends
on the time t. Suppose that u is independent of t, then to multiplying the
lattice ¤u+∇Fδ,0(u) = 0 by u, we have

∫
Ω

u2
x dxdt+(p+1)

∫
Ω

Fδ,0(u) dxdt =
0. It is impossible. Therefore, assume that the solution u has a minimal
period ≤ 2π, say 2π/j for j ∈ N. Now consider the same problem on the
space H1((0, π) × (0, 2π/j)), which yields a solution with minimal period
≤ 2π/j. Repeating this procedure we find infinitely many distinct 2π-
periodic solutions. 2

4. A modified functional

In the following sections, we will treat the non-autonomous case. I(ϕ)
will be replaced by a modified functional J(ϕ) ∈ C1(E,R).

Let χ ∈ C∞(R,R) such that χ(τ) = 1 for τ ≤ 1, χ(τ) = 0 for τ ≥ 2
and χ′(τ) ≤ 0, 0 ≤ χ ≤ 1 for τ ∈ R. Denote χ̃(ϕ) = χ( Q0(ϕ)

a[I(ϕ)2+1]1/2 ). For
ϕ = ϕ+ + ϕ− ∈ E+ ⊕ E− = E we set

(4.1) J(ϕ) =
1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 −Q0(ϕ)− χ̃(ϕ)(Q(ϕ)−Q0(ϕ)),

where a = max{1, 12/(p− 1)}, Q(ϕ) = minψ∈E0

∫
Ω

Fδ,g(ϕ+ψ(ϕ)) dxdt and
Q0(ϕ) = minψ∈E0

∫
Ω

Fδ,0(ϕ + ψ(ϕ)) dxdt for ϕ ∈ E.

Proposition 4.1. The functional J(ϕ) ∈ C1(E,R) satisfies:
(i) There is a constant c1 = c1(‖g‖α/(α−1)) > 0 such that for ϕ ∈ E

(4.2) |J(ϕ)− J(−ϕ)| ≤ c1(|J(ϕ)|1/α + 1).

(ii) If there is a constant M0 = M0(‖g‖α/(α−1)) > 0 such that J(ϕ) ≥ M0

and ‖J ′(ϕ)‖E∗ ≤ 1, then J(ϕ) = I(ϕ).

To prove this proposition, we need some lemmas as follows:
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Lemma 4.2. There is a constant C = C(‖g‖α/(α−1)) > 0 such that for
ϕ ∈ E,

|Q(ϕ)| ≤ C(Q0(ϕ) + 1),(4.3)

|Q(ϕ)−Q0(ϕ)| ≤ C(Q0(ϕ)1/α + 1).(4.4)

Proof. By the definition Q0(ϕ),

Q(ϕ)−Q0(ϕ) = min
ψ∈E0

∫

Ω

Fδ,g(ϕ + ψ) dxdt−
∫

Ω

Fδ,0(ϕ + ψ0(ϕ)) dxdt

≤ |〈g, ϕ + ψ0(ϕ)〉| ≤ ‖g‖α/(α−1)‖ϕ + ψ0(ϕ)‖α

≤ C(Q0(ϕ) + C0)1/α ≤ C(Q0(ϕ)1/α + 1).(4.5)

Similarly we have

Q(ϕ)−Q0(ϕ) ≥ −C(|Q(ϕ)|1/α + 1).

Obviously (4.5) implies (4.3). By (4.3) we have

Q(ϕ)−Q0(ϕ) ≥ −C(Q0(ϕ)1/α + 1).

Thus we get (4.4) from the above inequality and (4.5). 2

Lemma 4.3. If there is a constant M1 = M1(‖g‖α/(α−1)) > 0 such that
J(ϕ) ≥ M1 and ϕ ∈ suppχ, then I(ϕ) ≥ 1

3J(ϕ).

Proof. Form the definition of J(ϕ),

J(ϕ) = I(ϕ) + (1− χ̃(ϕ))(Q(ϕ)−Q0(ϕ))

≤ I(ϕ) + C(Q0(ϕ)1/α + 1).

By definition of χ̃, we get for ϕ ∈ suppχ̃ ( i.e., Q0(ϕ) ≤ a(I2(ϕ)2 + 1)1/2),

J(ϕ) ≤ I(ϕ) + C(|I(ϕ)|1/α + 1) ≤ I(ϕ) +
1
2
|I(ϕ)|+ C1.

Choosing M1 = 2C1, we get the desired result. 2

Lemma 4.4. For all ϕ = ϕ+ + ϕ− ∈ E = E+ ⊕ E− and h ∈ E∗,

〈J ′(ϕ), h〉 = (1 + T1(ϕ))〈ϕ+ − ϕ−, h〉 − (1 + T2(ϕ))〈Q′0(ϕ), h〉
−(χ̃(ϕ) + T1(ϕ))〈Q′(ϕ)−Q′0(ϕ), h〉,(4.6)

where T1(ϕ), T2(ϕ) ∈ C(E,R) are functionals satisfying

(4.7) sup{|Ti(ϕ)||ϕ ∈ E, J(ϕ) ≥ M2, i = 1, 2} → 0 as M2 →∞.

Proof. For all ϕ = ϕ+ + ϕ− ∈ E, we have

〈J ′(ϕ), h〉 = 〈ϕ+ − ϕ−, h〉 − 〈Q′
0(ϕ), h〉

−〈χ̃′(ϕ), h〉(Q(ϕ)−Q0(ϕ))− χ̃(ϕ)〈Q′(ϕ)−Q′
0(ϕ), h〉,(4.8)



THE EXISTENCE OF PERIODIC SOLUTIONS OF A TWO DIM. LATTICE 17

where

〈χ̃′(ϕ), h〉 =

= χ′(Q0(ϕ)a−1[I(ϕ)2 + 1]−1/2)[−a−1(I(ϕ)2+1)−3/2Q0(ϕ)I(ϕ)〈I ′(ϕ), h〉
+a−1(I(ϕ)2 + 1)−1/2〈Q′0(ϕ), h〉]

and

〈I ′(ϕ), h〉 = 〈ϕ+ − ϕ−, h〉 − 〈Q′
0(ϕ), h〉 − 〈Q′(ϕ)−Q′

0(ϕ), h〉.
By regrouping terms, we get (4.6) for

T1(ϕ) = a−1χ′(·)(I2(ϕ) + 1)−3/2I(ϕ)Q0(ϕ)(Q(ϕ)−Q0(ϕ)),

T2(ϕ) = T1(ϕ) + a−1χ′(·)(I2(ϕ) + 1)−1/2(Q(ϕ)−Q0(ϕ)).

Let us prove (4.7). Suppose that ϕ ∈ E satisfies J(ϕ) ≥ M2. Using (4.4)
we get

|T1(ϕ)| ≤ C|χ′(·)|(I2(ϕ) + 1)−1Q0(ϕ)(Q0(ϕ)1/α + 1).

If ϕ 6∈ suppχ̃, then T1(ϕ) = 0. Otherwise, by the definition of χ̃, we have

Q0(ϕ) ≤ 2a(I2(ϕ) + 1)1/2.

On the other hand, we get from Lemma 4.3,

a(I2(ϕ) + 1)1/2 ≥ I(ϕ) ≥ 1
3
J(ϕ) ≥ 1

3
M2.

Hence we obtain

|T1(ϕ)| ≤ C(a(I2(ϕ) + 1)1/2)−(α−1)/α) ≤ CM
−(α−1)/α)
2 → 0 as M2 →∞.

Similarly we have T2(ϕ) → 0 as M2 →∞. Thus we get (4.7). 2

Lemma 4.5. For all ϕ ∈ E, there exists a constant C = C(‖g‖α/(α−1))
such that

(i) |〈Q′(ϕ), ϕ〉 − (p + 1)Q(ϕ)| ≤ C(|Q(ϕ)|1/α + 1).(4.9)

(ii) |〈Q′
0(ϕ), ϕ+ − ϕ−〉| ≤ C|Q0(ϕ)|p/α‖ϕ‖,(4.10)

(iii) |〈Q′(ϕ), ϕ+ − ϕ−〉| ≤ C(|Q(ϕ)|p/α + 1)‖ϕ‖,(4.11)

(iv) |〈Q′(ϕ)−Q′
0(ϕ), ϕ〉| ≤ C(|Q0(ϕ)|p/α + 1)‖ϕ‖.(4.12)

Proof. (i) By (2.11)(2.12)(2.15),

|(p + 1)Q(ϕ)− 〈Q′(ϕ), ϕ〉| ≤ p|
∫

Ω

(g, ϕ + ψ(ϕ)) dxdt|
≤ C‖g‖α/(α−1)‖ϕ + ψ(ϕ)‖α.



18 JINGGANG TAN

Since ∫

Ω

|ϕ + ψ(ϕ)|α dxdt ≤ C1

∫

Ω

Fδ,0(ϕ + ψ(ϕ)) dxdt

≤ C1|
∫

Ω

Fδ,g(ϕ + ψ(ϕ)) dxdt|+ |
∫

Ω

(g, ϕ + ψ(ϕ)) dxdt|

≤ C1|Q(ϕ)|+
∫

Ω

(ε|ϕ + ψ(ϕ)|α + Cε|g|α/(α−1)) dxdt,

we have
‖ϕ + ψ(ϕ)‖α ≤ C(|Q(ϕ)|1/α + 1).

(ii) Note that

〈Q′
0(ϕ), ϕ+〉 ≤ C

∫

Ω

N∑

l=1

|ϕl + ψl
0(ϕ)|p|ϕ+| dxdt

≤ C(
∫

Ω

|ϕ + ψ0(ϕ)|α dxdt)p/α(
∫

Ω

|ϕ+| α
α−p dxdt)(α−p)/α

≤ C(
∫

Ω

|ϕ + ψ0(ϕ)|α dxdt)p/α‖ϕ+‖.

Similarly, we have

〈Q′
0(ϕ), ϕ−〉 ≤ C(

∫

Ω

|ϕ + ψ0(ϕ)|α dxdt)p/α‖ϕ−‖.

Since ∫

Ω

|ϕ + ψ0(ϕ)|α dxdt ≤ C1

∫

Ω

Fδ,0(ϕ + ψ0(ϕ)) dxdt,

we get |〈Q′
0(ϕ), ϕ+ − ϕ−〉| ≤ CQ0(ϕ)p/α‖ϕ‖.

(iii) To prove the other one in similar way,

〈Q′(ϕ), ϕ+〉≤C
∫
Ω

∑N
l=1|ϕl+ψl(ϕ)|p|ϕ+|dxdt+

∫
Ω
(g, ϕ+ψ(ϕ))dxdt

≤C(
∫
Ω
|ϕ+ψ(ϕ)|αdxdt)p/α(

∫
Ω
|ϕ+| α

α−p dxdt)(α−p)/α+‖g‖α/(α−1)‖ϕ+‖
≤ C[(

∫
Ω
|ϕ + ψ(ϕ)|α dxdt)p/α + 1]‖ϕ+‖.

Similarly, we have

〈Q′(ϕ), ϕ−〉 ≤ C[(
∫

Ω

|ϕ + ψ(ϕ)|α dxdt)p/α + 1]‖ϕ−‖.

Since∫

Ω

|ϕ+ψ(ϕ)|αdxdt≤C1

∫

Ω

Fδ,g(ϕ+ψ(ϕ))dxdt+C1

∫

Ω

(g, ϕ+ψ(ϕ))dxdt

≤ C1|Q(ϕ)|+ C1‖g‖α/(α−1)‖ϕ + ψ(ϕ)‖α,
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by Young’s inequality, we have
∫

Ω

|ϕ+ψ(ϕ)|α dxdt ≤ C1|Q(ϕ)|+ ε‖ϕ+ψ(ϕ)‖α
α +Cε(C1‖g‖α/(α−1))α/(α−1).

Therefore ∫

Ω

|ϕ + ψ(ϕ)|α dxdt ≤ C1|Q(ϕ)|,

we get |〈Q′(ϕ), ϕ+ − ϕ−〉| ≤ C(|Q(ϕ)|p/α + 1)‖ϕ‖.
(iv) The proof is similar to (ii)(iii). It is easy to get

〈Q′(ϕ), ϕ〉 ≤ C(Q0(ϕ)p/α + 1)‖ϕ‖,
〈Q′

0(ϕ), ϕ〉 ≤ CQ0(ϕ)p/α‖ϕ‖,
which implies (iv). 2

Proof of Proposition 4.1 (i) From the definition of J(ϕ), we have

|J(ϕ)− J(−ϕ)| ≤ χ̃(ϕ)|Q(ϕ)−Q0(ϕ)|+ χ̃(−ϕ)|Q(−ϕ)−Q0(−ϕ)|.
Suppose that −ϕ ∈ suppχ̃, i.e., Q0(ϕ) ≤ 2a(I(−ϕ)2 + 1)1/2. From the
definition of J(ϕ),

I(−ϕ) = J(ϕ) + Q0(ϕ)−Q(−ϕ)− χ̃(ϕ)(Q(ϕ)−Q0(ϕ)).

By Lemma 4.2, we get that

|I(−ϕ)| ≤ |J(ϕ)|+ C(Q0(ϕ)1/α + 1) ≤ |J(ϕ)|+ C(I(−ϕ)2 + 1)1/2α.

Using Young’s inequality, we deduce that

|I(−ϕ)| ≤ 2|J(ϕ)|+ C.

Hence we get for −ϕ ∈ suppχ̃,

Q0(−ϕ) ≤ 2a(I(−ϕ)2 + 1)1/2 ≤ C|J(ϕ)|+ C.

Similarly we have for ϕ ∈ suppχ̃,

Q0(ϕ) ≤ C|J(ϕ)|+ C.

Combining the above inequalities, we obtain for ϕ ∈ E,

|J(ϕ)− J(−ϕ)| ≤ C(χ̃(ϕ) + χ̃(−ϕ))(Q0(ϕ)1/α).

This is the desired result.
(ii) It suffices to show that χ̃ = 1, that is, by the definition of χ̃, to show
that

(4.13) Q0(ϕ) ≤ a(I(ϕ)2 + 1)1/2
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for ϕ ∈ E such that J(ϕ) ≥ M0 and ‖J ′(ϕ)‖ ≤ 1. For sufficiently large
M0 > 0 and we can assume by (4.7) that |T1(ϕ)| ≤ 1

2 , |T2(ϕ)| ≤ 1 and

(p + 1)(1 + T2(ϕ))
2(1 + T1(ϕ))

− 1 >
p− 1

4
= b.

From (4.6) we obtain

I(ϕ)− 1
2(1 + T1(ϕ))

〈J ′(ϕ), ϕ〉 =

= −Q(ϕ)+
1 + T2(ϕ)

2(1 + T1(ϕ))
〈Q′

0(ϕ),ϕ〉+ χ̃(u)+T1(ϕ)
2(1 + T1(ϕ))

〈Q′(ϕ)−Q′
0(ϕ), ϕ〉

= −Q(ϕ) +
1 + T2(ϕ)

2(1 + T1(ϕ))
〈Q′

0(ϕ), ϕ〉+ (III)

=
( (p + 1)(1 + T2(ϕ))

2(1 + T1(ϕ))
− 1

)
Q0(ϕ)− (Q(ϕ)−Q0(ϕ)) + (III)

= (I) + (II) + (III).

By (4.4)

(4.14) |(II)| ≤ C(Q0(ϕ)1/α + 1).

Using (4.3)(4.4) we get

|(III)| ≤ C|〈Q′(ϕ)−Q′
0(ϕ), ϕ〉|

≤ |(p + 1)Q(ϕ)− 〈Q′(ϕ), ϕ〉|+ (p + 1)|Q(ϕ)−Q0(ϕ)|
≤ C(Q0(ϕ)1/α + 1).(4.15)

On the other hand, letting h = ϕ+ − ϕ− in (4.6) we get

〈J ′(ϕ), ϕ+ − ϕ−〉 = (1 + T1(ϕ))‖ϕ‖2 − (1 + T2(ϕ))〈Q′
0(ϕ), ϕ+ − ϕ−〉

·(χ̃(ϕ) + T1(ϕ))〈Q′(ϕ)−Q′0(ϕ), ϕ+ − ϕ−〉.(4.16)

Therefore we get from (4.16) and Lemma 4.4, T1(ϕ) ≤ 1
2 and the

assumption: ‖J ′(ϕ)‖E∗ ≤ 1,

1
2
‖ϕ‖2 ≤ ‖J ′(ϕ)‖E∗‖ϕ‖+ C(Q0(ϕ)p/α + 1)‖ϕ‖ ≤ C(Q0(ϕ)p/α + 1)‖ϕ‖,

that is

(4.17) ‖ϕ‖ ≤ C(Q0(ϕ)p/α + 1).

We obtain by (4.14)(4.15),

I(ϕ)− 1
2(1 + T1(ϕ))

〈J ′(ϕ), ϕ〉 ≥ (I)− C(Q0(ϕ)1/(p+1) + 1).



THE EXISTENCE OF PERIODIC SOLUTIONS OF A TWO DIM. LATTICE 21

It follows by (4.17) and ‖J ′(ϕ)‖E∗ ≤ 1,
(4.18)
I(ϕ) ≥ −C‖J ′(ϕ)‖E∗‖ϕ‖+ (I)− C(Q0(ϕ)1/(p+1) + 1) ≥ bQ0(ϕ)/2− C0.

We remark that

inf{Q0(ϕ)| ‖J ′(ϕ)‖E∗ ≤ 1 and J(ϕ) ≥ M} → ∞ as M →∞.

This follows from (4.17). In fact, J(ϕ) → ∞ implies ‖ϕ‖ → ∞. So it
follows Q0(ϕ) → ∞, by (4.17). Now we may assume that J(ϕ) ≥ M0

implies bQ0(ϕ)/6− C0 ≥ 0, i.e., I(ϕ) ≥ bQ0(ϕ)/3 by (4.18). Thus

Q0(ϕ) ≤ aI(ϕ) ≤ a(I(ϕ)2 + 1)1/2.

2

Proposition 4.6. J(ϕ) ∈ C1(E,R) satisfies the following Palias-Smale
compactness condition (P.S.): Whenever a sequence {ϕj}∞j=1 in E satisfies
for a large M2 and some M3 > 0,

M2 ≤ J(ϕj) ≤ M3 for all j,

J ′(ϕj) → 0 in E∗ as j →∞,

there is a subsequence of {ϕj} which is convergent in E.

Proof. Setting h = ϕj and h = ϕ+
j − ϕ−j in (4.6)

∣∣∣(1 + T1(ϕj))
(
‖ϕ+

j ‖2 − ‖ϕ−j ‖2
)
− (1 + T2(ϕj))〈Q′0(ϕj), ϕj〉

−
(
χ̃(ϕj) + T1(ϕj)

)
〈Q′(ϕj)−Q′

0(ϕj), ϕj〉
∣∣∣ ≤ m‖ϕj‖,(4.19)

∣∣∣(1 + T1(ϕj))‖ϕj‖2 − (1 + T2(ϕj))〈Q′
0(ϕj), ϕ+

j − ϕ−j 〉

−
(
χ̃(ϕj) + T1(ϕj)

)
〈Q′(ϕj)−Q′

0(ϕj), ϕ+
j − ϕ−j 〉

∣∣∣ ≤ m‖ϕj‖,(4.20)

where m = sup ‖J ′(ϕj)‖E∗ . Since

J(ϕj) =
1
2
‖ϕ+

j ‖2 −
1
2
‖ϕ−j ‖2 −Q0(ϕj)− χ̃(ϕj)(Q(ϕj)−Q0(ϕj)) ≤ M3,

it follows from (4.19)

1 + T2(ϕj)
2(1 + T1(ϕj))

〈Q′0(ϕj), ϕj〉 −Q0(ϕj)− χ̃(ϕj) + T1(ϕj)
2(1 + T1(ϕj))

〈Q′(ϕj)

−Q′0(ϕj), ϕj〉 − χ̃(ϕj)(Q(ϕj)−Q0(ϕj)) ≤ M3 + m‖ϕj‖.
Hence for large M2, T1(ϕj), T2(ϕj) are small. One can see that there is C0

such that
1 + T2(ϕj)

2(1 + T1(ϕj))
〈Q′0(ϕj), ϕj〉 −Q0(ϕj) ≤ C0Q0(ϕj).
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It follows by Lemma 4.2 and Lemma 4.5 that

C0Q0(ϕj)− C1(|Q0(ϕj)|+ 1)p/α ≤ M3 + m‖ϕj‖.
Hence by Young’s inequality,

(4.21) |Q0(ϕj)| ≤ C1(1 + ‖ϕj‖) for all j.

Then, by (4.20) we obtain for large j,

‖ϕj‖2 ≤
∣∣∣1 + T2(ϕj)
1 + T1(ϕj)

〈Q′0(ϕj), ϕ+
j − ϕ−j 〉

− χ̃(ϕj) + T1(ϕj)
1 + T1(ϕj)

〈Q′(ϕj)−Q′
0(ϕj), ϕ+

j − ϕ−j 〉
∣∣∣ + m‖ϕj‖

≤ C2[(|Q(ϕj)|p/α + ‖g‖α/(α−1)‖ϕj‖α)‖ϕj‖+ ‖ϕj‖]
≤ C2(‖ϕj‖p/α + 1)‖ϕj‖,

where C2 is independent of δ. So ‖ϕj‖ is bounded, which is independent of
δ. Observe that J ′(ϕj) = ϕ+

i − ϕ−j + P (ϕj) where P : E → E∗ is compact
operator and J ′(ϕj) → 0 as j → ∞. Hence ϕ+

j − ϕ−j is precompact in E.
That is, ϕj is precompact in E. Thus the proof is completed. 2

5. Minimax methods

In this section, we construct critical points of J(ϕ) via minimax meth-
ods. For convenience, we define the usual lexicographical order for 2-tuples
(k, i) ∈ D as follows, where D = N× {1, 2, · · · , N},

(j,m) = (k, i), if j = k and m = i,

(j,m) < (k, i), if j < k or j = k and m < i.

Moreover, we write (k, i) ≡ (k + [ i
N ], i− [ i

N ]) for any i ∈ N, where [a] is the
integer part of a, (k, 0) ≡ (k − 1, N) for k ∈ N.

We observe that the eigenvalues of the wave operator under periodic-
Dirichlet conditions are {j2 − k2| j ∈ N, k ∈ Z} and corresponding eigen-
functions are sin jx cos kt and sin jx sin kt. We arrange the negative eigen-
values in the following order, denoted by 0 > −µ1 ≥ −µ2 ≥ −µ3 ≥ · · · with
repetitions according to the multiplicity of each eigenvalue and denote by
vj the eigenfunctions which correspond to µj . We assume 〈vi, vj〉 = δij for
i, j ∈ N. Let e1, · · · , eN denote the usual orthogonal basis in RN . Define
vjk = vjek for j ∈ N and 1 ≤ k ≤ N . Let

E+
q = E+

mi = span{vjk| (1, 1) ≤ (j, k) ≤ (m, i)},
where 1 ≤ i ≤ N and q = mN + i.
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Lemma 5.1. For all θ ∈ (0, 1/α), there is a constant C > 0 independent
of m ∈ N such that

‖ϕ‖α ≤ Cµ−θ
m ‖ϕ‖ for ϕ ∈ (E+

q )⊥,

where (E+
q )⊥ = E+ \ E+

q and m = [q/N ] is the integer part of q.

Proof. We have m = [q/N ] and by the definition of µm, it follows for all
l ∈ N

∫

Ω

|ϕl|2 dxdt ≤ µ−1
m

∫

Ω

|ϕl
t|2 − |ϕl

x|2 dxdt for ϕ ∈ (E+
q )⊥.

Summing the inequalities from 1 to N , we get

‖ϕ‖2 ≤ µ−1/2
m ‖ϕ‖ for ϕ ∈ (E+

q )⊥.

On the other hand, by the embedding property,

‖ϕ‖s ≤ Cs‖ϕ‖ for all ϕ ∈ E+ and s ∈ [1,∞).

Using Hölder’s inequality, we obtain for s ∈ (α,∞)

‖ϕ‖α ≤ ‖ϕ‖τ
2‖ϕ‖1−τ

s for ϕ ∈ E+,

where

τ =
2(s− α)
α(s− 2)

∈ (0,
2
α

).

Combining the above inequalities, we have

‖ϕ‖α ≤ C1−τ
s µ−τ/2

m ‖ϕ‖ for ϕ ∈ (E+
q )⊥.

2

Note that

‖ϕ‖ ≤ µ1/2
m ‖ϕ‖2 for ϕ ∈ E+

q , m = [q/N ].
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For ϕ = ϕ+ + ϕ− ∈ E+
q ⊕ E−, we have

J(ϕ) =
1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 −Q0 − χ̃(u)(Q−Q0)

≤ 1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 −Q0 + C(Q0(ϕ)1/α + 1)

≤ 1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 − 1

2
Q0 + C

≤ 1
2
‖ϕ+‖2 − 1

2
Fδ,0(ϕ+ − ϕ− + ψ)− 1

2
‖ϕ−‖2 + C

≤ 1
2
‖ϕ+‖2 − c‖ϕ+ + ϕ− + ψ‖α

α −
1
2
‖ϕ−‖2 + C

≤ 1
2
‖ϕ+‖2 − c‖ϕ+ + ϕ− + ψ‖α

2 −
1
2
‖ϕ−‖2 + C

≤ 1
2
‖ϕ+‖2 − c‖ϕ+‖α

2 −
1
2
‖ϕ−‖2 + C

≤ 1
2
‖ϕ+‖2 − cµ−α/2

m ‖ϕ+‖α − 1
2
‖ϕ−‖2 + C.

Hence there is a constant Rq such that

(5.1) J(ϕ) ≤ 0 for all ϕ ∈ E+
q ⊕ E−with ‖ϕ‖ ≥ Rq.

We may assume that Rq < Rq+1 for all i ∈ N. Let

BR = {ϕ ∈ E| ‖ϕ‖E ≤ R} for R ≥ 0,

Dq = BRq ∩ (E+
q ⊕ E−),

Γq = {γ ∈ C(Dq, E)| γ satisfies (γ1)− (γ3)},
where
(γ1) γ is odd, i.e., γ(−ϕ) = −γ(ϕ) for all ϕ ∈ Dq,
(γ2) γ(ϕ) = ϕ for all ϕ ∈ ∂Dq,
(γ3) for ϕ = ϕ+ +ϕ− ∈ Dq, γ(ϕ) = α(ϕ)ϕ+κ(ϕ) where α ∈ C(Dq, [1, ᾱ]) is
a even functional (ᾱ depends on γ) and κ is a compact operator such that
α(ϕ) = 1 and κ = 0 on ∂Dq.
Moreover, set

Uq = {ϕ = w + τvq+1|w ∈ BRq+1 ∩ Eq, τ ∈ [0, Rq+1], ‖ϕ‖ ≤ Rq+1}.
Let

Λq = {λ ∈ C(Uq, E)|λ satisfies (λ1)− (λ3)},
where
(λ1) λ|Dq ∈ Γq

(λ2) λ(ϕ) = ϕ on ∂Uq \Dq,
(λ3) for ϕ = ϕ+ + ϕ− ∈ Uq, λ(ϕ) = α̃(ϕ)ϕ + κ̃(ϕ) where α̃ ∈ C(Uq, [1, ᾱ]) is
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a even functional (ᾱ depends on λ) and κ̃ is a compact operator such that
α̃(ϕ) = 1 and κ̃ = 0 on ∂Uq \Dq.

Define for q ∈ N,

(5.2) bq = inf
γ∈Γq

sup
ϕ∈Dq

J(γ(ϕ)), cq = inf
λ∈Λq

sup
ϕ∈Uq

J(λ(ϕ)).

Lemma 5.2. Suppose that c > M0 is a regular value of J(ϕ), that is,
J ′(ϕ) 6= 0 when J(ϕ) = c. Then for any ε̄ there exists an ε ∈ (0, ε̄) and
η ∈ C([0, 1]× E,E) such that
(i) η(t, ·) is odd, for t ∈ [0, 1] if g(x, t) = 0;
(ii) η(t, ·) is homeomorphism of E onto E for all t;
(iii) η(0, ϕ) = ϕ for all ϕ ∈ E;
(iv) η(t, ϕ) = ϕ if J(ϕ) 6∈ [c− ε̄, c + ε̄];
(v) J(η(1, ϕ)) ≤ c− ε if J(ϕ) ≤ c + ε;
(vi) for ϕ = ϕ+ + ϕ− ∈ E+ ⊕ E−, η(1, ϕ) = α+(ϕ)ϕ+ + α−(ϕ)ϕ− + κ(ϕ)
where α+ ∈ C(E, [0, 1]), α− ∈ C(E, [1, ᾱ]) is a even functional (ᾱ ≥ 1 is
constant ) and κ is a compact operator.

Proof. Since J(ϕ) ∈ C1(E,R) and satisfies (P.S.) condition via Propo-
sition 4.6, the assertions are standard. As [15] Proposition A.18, we know
that η is the solution of the initial value problem

dη

dt
= −ω(η)V (η), η(0, ϕ) = ϕ,

where ω ∈ C0,1(E,R) satisfying 0 ≤ ω ≤ 1 and V is pseudogradient vector
field for J ′ on E∗. By Lemma 4.4, it follows that

{
dη
dt = −ω(η)[(1 + T1(η))(η+ − η−) + P(η)],
η(0) = ϕ,

where P(η) is compact. It yields
{

dη±

dt = −ω(η)[±(1 + T1(η))η± + P±P(η)],
η±(0) = ϕ±,

where P± : E → E± are the orthogonal projection. Integrating these shows

η±(t, ϕ) = eA(t)[ϕ± −
∫ t

0

e−A(τ)ω(η(s, ϕ))P±P(η(τ, ϕ)) dτ ],

where A(t) = ∓ ∫ t

0
ω(η(s, ϕ))(1 + T1(η(s, ϕ)))) ds. Thus η is the form as-

serted. 2

Proposition 5.3. Suppose that cq > bq ≥ M0. Let d ∈ (0, cq − bq) and

Λq(d) = {λ ∈ Λq| J(λ) ≤ bq + d on Dq}.
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Define

(5.3) cq(d) = inf
λ∈Λq(d)

sup
ϕ∈Uq

J(λ(ϕ)) (≥ cq).

Then cq(d) is a critical value of J(ϕ).

Proof. From Proposition 4.1 and 4.6, we obtain that whenever ϕ ∈ E
satisfies J ′(ϕ) = 0 and J(ϕ) ≥ M0, then I(ϕ) = J(ϕ) and I ′(ϕ) = 0 and
that J(ϕ) satisfies the Palais-Smale condition on AM0 = {ϕ ∈ E| J(ϕ) ≥
M0}. Note that

J ′(ϕ) = (1 + T1(ϕ))(ϕ+ − ϕ−) + (compact)

where |T1(ϕ)| ≤ 1
2 on {ϕ ∈ E |J(ϕ) ≥ M0}, see Lemma 4.4. Therefore we

can show that cq is a critical value of J(ϕ) as in [14]. In fact, note that by
the definition of bq and Λq, Λq(δ) 6= ∅. Choose ε̄ = 1

2 (cq − bq − d) > 0. If
cq(d) is not a critical value of J , there are an ε and an η as Lemma 5.2.
Choose λ ∈ Λq(d) such that

(5.4) max J(λ(ϕ)) ≤ cq(d) + ε.

Consider η(1, λ(ϕ)) ∈ C(Uq, E). Note that if ‖ϕ‖ = Rq+1 or ϕ ∈ (BRq+1 \
BRq )∩Eq, J(λ(ϕ)) = J(ϕ) ≤ 0, so η(1, λ(ϕ)) = ϕ by Lemma 5.2. Therefore
η(1, λ) ∈ Λq. Moreover on Dq, J(λ(ϕ)) ≤ bq + d ≤ cq − ε̄ ≤ cq(d) − ε̄ via
our choice of d and ε̄. Then η(1, λ) = λ, J(η(1, λ)) ≤ bq + d on Dq, again
by Lemma 5.2. Thus η(1, λ) ∈ Λq(d) and by (5.4) and Lemma 5.2,

maxJ(λ(ϕ)) ≤ cq(d)− ε.

contrary to the definition of cq(d). Hence cq(d) is a critical value of J . 2

Proposition 5.4. If cq = bq for all q ≥ q0, then there is a constant C > 0
such that

bq ≤ Cq(p+1)/p for all q ∈ N.

Proof. Let q ≥ q0 and ε > 0 and γ ∈ Γq such that

max
γ∈Γq

J(γ(ϕ)) ≤ bq + ε.

Let γ̃(ϕ) = γ(ϕ) for ϕ ∈ Γq and γ̃(−ϕ) = −γ(ϕ) for ϕ ∈ −Γq. Note that
Γq ∪ (−Γq) = Γq+1. Moreover, since γ ∈ Γq implies γ̃ ∈ Γq+1. Therefore,

bq+1 ≤ bq + C(|bq|1/α + 1).

Hence
bq ≤ Cq

α
α−1 ≤ Cq

p+1
p .

2
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Therefore, the existence of subsequence of cq which satisfy cq > bq ≤ M0

guarantees the existence of critical values. In other words, we should show
the existence of subsequence {qj} such that

cqj > bqj ≥ M0 for large qj ∈ N,

bqj
→∞ as qj →∞.

To show the above properties, we will prove the existence of a sequence {qj}
such that for any ε > 0, there is a Cε > 0 satisfying

(5.5) bqj ≥ Cεq
(p+1)/(p−1)−ε
j for large qj ∈ N,

which make sure that the case in Proposition 5.4 does not happen.
Let us look for the comparison functional for J(ϕ).

J(ϕ) =
1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 −Q0 − χ̃(ϕ)(Q−Q0)

≥ 1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 − 2Q0 − a1

≥ 1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 − Fδ,0(ϕ+ + ϕ−)− a1

≥ 1
2
‖ϕ+‖2 − 1

2
‖ϕ−‖2 − a0

p + 1
‖ϕ+‖p+1

p+1 −
a0

p + 1
‖ϕ−‖p+1

p+1 − a1.(5.6)

where a0, a1 > 0 are constants independent of ϕ. We set

(5.7) K(ϕ+) =
1
2
‖ϕ+‖2 − a0

p + 1
‖ϕ+‖p+1

p+1 ∈ C2(E+,R).

Here we recall the definitions of (P.S.)∗ and (P.S.)n conditions:
(P.S.)∗: If {ϕn} ⊂ E+ satisfies ϕn ∈ En, K(ϕn) ≤ C and
‖(K|E+

n
)′(ϕn)‖(E+

n )∗ → 0 as n →∞, then {ϕn} is relative compact in E+;
(P.S.)n: If {ϕj} ⊂ E+

n satisfies K(ϕj) ≤ C and ‖(K|E+
n
)′(ϕj)‖(E+

n )∗ → 0
as j →∞, then {ϕj} is relative compact in E+

n .
Then we have

Lemma 5.5. (i) J(ϕ+) ≥ K(ϕ+)− a1 for all ϕ+ ∈ E+.
(ii) K(ϕ+) satisfied the (PS), (PS)∗ and (PS)n conditions on E+.

Proof. The arguments to show (PS), (PS)∗ and (PS)n are very similar.
Therefore we just give the proof of (PS)∗. Let ϕn ⊂ E+ be a sequence such
that ϕn ⊂ E+

n , K(ϕn) ≤ C and

‖(K|E+
n
)′(ϕn)‖(E+

n )∗ → 0,

that is, for all h ∈ E+

〈ϕn, h〉 − a0

∫

Ω

P+
n (|ϕn|p−1ϕn)h dxdt = εn → 0,
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which lead to a priori estimate of type: ‖ϕn‖E+ = ‖ϕ‖E+
n
≤ C. Hence, for

a subsequence denote again by ϕn, one has ϕn → ϕ weakly in E+, strongly
in Lp+1. Consequently,∫

Ω

P+
n (|ϕn|p−1ϕn)ϕn dxdt →

∫

Ω

(|ϕ|p−1ϕ)ϕdxdt.

Therefore,

‖ϕn‖2 = a0

∫

Ω

P+
n (|ϕn|p−1ϕn)ϕn dxdt+εn → a0

∫

Ω

(|ϕ|p−1ϕ)ϕdxdt = ‖ϕ‖2.

It follows that ‖ϕn − P+
n ϕ‖E+ = ‖ϕn − P+

n ϕ‖E+
n

converges to 0 as n →∞.
This shows ϕn → ϕ in E+. 2

Now we are concerned with the functional K(ϕ+) and state index prop-
erty of Bahri-Berestycki’s max-min value σq. For n > q, n, q ∈ N set

An
q = {σ ∈ C(Sn−q, E+

n )| σ(−y) = −σ(y) for all y},(5.8)

σn
q = sup

σ∈An
q

min
y∈Sn−q

K(σ(y)),(5.9)

where q = mN + i.

Lemma 5.6. ([17]) Let a, b ∈ N. Suppose that h1 ∈ C(Sa,Ra+b) and
h2 ∈ C(Rb,Ra+b) are continuous such that

h1(−y) = −h1(y) for all y ∈ Sa, h2(−y) = −h2(y) for all y ∈ Rb,

and there is a r0 > 0 such that h2(y) = y for |y| ≥ r0. Then h1(Sa) ∩
h2(Rb) 6= ∅.
Lemma 5.7. For all σ ∈ An

q ,

(5.10) σ(Sn−q) ∩ E+
q 6= ∅.

Proof. Apply Lemma 5.6 to h1 = σ : Sn−q → E+
n and h2 = id : E+

q →
E+

n . Then we get the result. 2

Proposition 5.8. (i) 0 ≤ σn
q ≤ σn

q+1 for all q, n;
(ii) For all n ∈ N there exist ν(q) and ν̃(q) such that

(5.11) 0 ≤ ν(q) ≤ σn
q ≤ ν̃(q) ≤ ∞ for all n ≥ q + 1;

(iii) Moreover, ν(q) →∞ as q →∞.

Proof. (i) For any σ ∈ An
q , it is clear that there is a σ̄ ∈ An

q+1 with
σ̄(Sn−q−1) ⊂ σ(Sn−q). Hence we have σn

q ≤ σn
q+1.

(ii) We now prove the existence of ν̃(q). By Lemma 5.7 we have for all
σ ∈ An

q ,

(5.12) min
y∈Sn−q

K(σ(y)) ≤ sup
ϕ∈E+

q

K(ϕ).
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For all ϕ ∈ E+
q , we have

(5.13)

K(ϕ) ≤ 1
2
‖ϕ‖2−C‖ϕ‖p+1

p+1 ≤
1
2
‖ϕ‖2−C‖ϕ‖p+1

2 ≤ 1
2
‖ϕ‖2−Cµ−(p+1)

m ‖ϕ‖p+1.

Thus the right-hand of (5.13) is finite and independent of σ and n. Set

ν̃(q) = sup
ϕ∈E+

q

K(ϕ) ≤ ∞,

then we obtain
σn

q = sup
σ∈An

q

min
y∈Sn−q

K(σ(y)) ≤ ν̃(q).

(iii) We claim that the existence of ν(n). We construct a special σ ∈ An
q as

follows: write

Sn−q = {y = (yq, . . . , yn) ∈ Rn−q+1|
n∑

i=q

y2
i = 1}

and set σ : Sn−q → E+
q \ {0} by

σ(y) = a
−1/(p+1)
0 ‖w(y)‖−(p+1)/(p−1)

p+1 w(y),

where w(y) is defined by

w(y) =
n∑

i=q

yivi,

and vi are eigenfunctions corresponding to µi. Obviously we have σ ∈ An
q .

Since ‖w(y)‖ = 1 on Sn−q, we have

K(σ) ≥ (
1
2
− 1

p + 1
)a−2/(p−1)

0 ‖w‖−2(p+1)/(p−1)
p+1 .

Since
w(y) ∈ (E+

q )⊥, ‖w(y)‖ = 1 for all y ∈ Sn−q,

we get that
‖w(y)‖p+1 ≤ Cθµ

−θ
n−1,

where θ ∈ (0, 1/(p + 1)) and Cθ is a constant independent of n and y.
Therefore,

K(ϕ) ≥ C ′θµ
θ(p+1)/(p−1)
q−1 := ν(q).

Then we have

σn
q ≥ min

y∈Sn−q
K(σ(y)) ≥ ν(q) for n > q.

Since µq−1 as q →∞, we obtain ν(q) →∞ as n →∞. 2
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Proposition 5.9. Suppose that ν(q) > 0. Then σn
q is a critical point of

the restriction of K to E+
n . Furthermore, the limit σq of any convergent

subsequence of σn
q is a critical value of K ∈ C2(E+

n ,R), σq ≤ σq+1 for all
q ∈ N and σq →∞ as q →∞.

Proof. Since K satisfies (PS), (PS)∗ and (PS)n by Lemma 5.5, we have
σn

q is a critical value of KE+
n
∈ C2(E+

n ,R). By Proposition 5.8, we can
choose a sequence nj such that nj →∞ as j →∞,

(5.14) σq = lim
j→∞

σnj
q exist for all q ∈ N.

Using the (PS)∗ condition, we can extract a convergent subsequence ϕ
nj
q →

ϕq, then observe easily that K(ϕq) = lim σ
nj
q and K ′(ϕq) = 0. Therefore σq

is a critical value of K ∈ C2(E+,R), the other properties follows directly
from Proposition 5.8. 2

Next we state the relation between bq and σq.

Proposition 5.10. For all q ∈ N,

(5.15) bq ≥ σq − a1,

where a1 is the constant appeared in (5.6).

To prove this proposition, we need the lemma:

Lemma 5.11. For all γ ∈ Γq and σ ∈ An
q ,

(
(Pnγ)(Dq) ∪ {ϕ ∈ E+

q ⊕ E−| ‖ϕ‖ ≥ Rq}
)
∩ σ(Sn−q) 6= ∅,

where Pn : E = E+ ⊕ E− → E+
n ⊕ E− is orthogonal projection.

Proof. We extend γ to γ̃ ∈ C(E+
q ⊕ E−, E) by

γ̃(ϕ) = γ(ϕ) if ‖ϕ‖ ≤ Rq γ̃(ϕ) = ϕ if ‖ϕ‖ ≥ Rq.

Obviously, γ̃(ϕ) is well defined and odd in E+
q ⊕ E− and

Pnγ̃(E+
q ⊕ E−) = Pnγ(Dq) ∪ {ϕ ∈ Eq ⊕ E−| ‖ϕ‖E ≥ Rq}.

Therefore, it suffices to prove Pnγ̃(E+
q ⊕ E−) ∩ σ(Sn−q) 6= ∅. We set

E−
s = {sinjxeikt| 0 ≤ k, j ≤ s, j > |k|}

and let Pq,s : E = E+ ⊕ E− → E+
q ⊕ E−

s be the orthogonal projection.
Consider the operators

σ : Sn−q → E+
n ⊂ E+

n ⊕ E−
s , Pn,sγ̃ : E+

q ⊕ E−
s → E+

n ⊕ E−
s .

Apply Lemma 5.6 for h1 = σ and h2 = Pq,sγ̃, we get for some ys ∈ Sn−q

and ϕs ∈ E+
q ⊕ E−

s ,
σ(ys) = Pn,sγ̃(ϕs).



THE EXISTENCE OF PERIODIC SOLUTIONS OF A TWO DIM. LATTICE 31

Since Sn−q is compact, there is a subsequence ysi such that

ysi
→ y in Sn−q,(5.16)

σ(ysi) → σ(y) in E+
q .(5.17)

On the other hand, by (γ3),

Pn,sγ̃(ϕs) = Pn,s[α(ϕs)ϕs + κ(ϕs)] = α(ϕs)ϕs + Pn,sκ(ϕs),

where α(ϕ) ≥ 1 on E+
q ⊕E− and κ(E+

q ⊕ E−) = κ(Dq) is compact. Hence
we have

ϕs =
1

α(ϕs)
Pn,s[γ̃(ϕs)− κ(ϕs)] =

1
α(ϕs)

Pn,s[σ(ϕs)− κ(ϕs))].

By (5.17) (ϕs) has a convergent subsequence (ϕsi
), that is,

ϕsi → ϕ in E+
q ⊕ E−.

Passing to the limit we obtain

Pnγ̃(ϕ) = σ(y), i.e., Pnγ̃(E+
q ⊕ E−) ∩ σ(Sn−q) 6= ∅.

2

Proof of Proposition 5.10. Since J(ϕ) ≤ 0 on {ϕ ∈ E+
n ⊕ E−| ‖ϕ‖ ≥

Rq}, we have from Lemma 5.11

min
y∈Sn−q

J(σ(y)) ≤ sup
ϕ∈Dq

J(Pnγ(ϕ))

for all γ ∈ Γq and σ ∈ An
q . By Lemma 5.5

min
y∈Sn−q

J(σ(y))− a1 ≤ sup
ϕ∈Dq

J(Pnγ(ϕ)).

Hence we obtain

sup
σ∈An

q

min
y∈Sn−q

J(σ(y))− a1 ≤ inf
γ∈Γq

sup
ϕ∈Dq

J(Pnγ(ϕ)) =: bn
q .

Letting n = ni →∞, we get

σq − a1 ≤ lim sup
n→∞

bn
q .

Thus it suffices to show the following lemma.

Lemma 5.12. For q ∈ N, bq = lim supn→∞ bn
q .

Proof. Since PnΓq = {Pnγ| γ ∈ Γq} ⊂ Γq, it is clear that bq ≤ bn
q for

n > q. Let us prove bq ≥ lim supn→∞ bn
q for q ∈ N. From the definition of

bq, for any ε > 0, there is a γ ∈ Γq such that

sup
ϕ∈Dq

J(γ(ϕ)) ≤ bq + ε.
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By (γ3), γ(ϕ) takes a form γ(ϕ) = α(ϕ)ϕ+κ(ϕ) where α(ϕ) ∈ C(Dq, [1, ᾱ])
and κ(Dq) is compact. Since Pnκ(ϕ) → κ(ϕ) as n → ∞ uniformly in Dq,
we have

Pnγ(ϕ) = α(ϕ)ϕ + Pnκ(ϕ) → α(ϕ)ϕ + κ(ϕ) = γ(ϕ)

uniformly in Dq. Hence

sup
ϕ∈Dq

J(Pnγ(ϕ)) → sup
ϕ∈Dq

J(γ(ϕ))

as n →∞. By the above inequality, we obtain

lim sup
n→∞

bn
q ≤ lim sup

n→∞
sup

ϕ∈Dq

J(Pnγ(ϕ))

= sup
ϕ∈Dq

J(γ(ϕ)) ≤ bq + ε.

Since ε is arbitrary, we get the desired result. 2

6. Morse index and spectral estimate

In this section, we go to get the lower and upper bound for Morse index
of K ′′. For ϕ ∈ E+, we define a index of K ′′(ϕ) by

index K ′′(ϕ)= the number of eigenvalues of K ′′(ϕ) which are non-positive.

That is,
index K ′′(ϕ) =

max{dim H|H is subspace such that 〈K ′′(ϕ)h, h〉 ≤ 0 for h ∈ H}.
Firstly we have lower bound:

Proposition 6.1. Suppose that σq < σq+1. Then there exists a ϕq ∈ E+

such that

K(ϕq) ≤ σq,(6.1)
K ′(ϕq) = 0,(6.2)

indexK ′′(ϕq) ≥ q.(6.3)

Proposition 6.2. Suppose that σn
q < σn

q+1, n > q + 1. Then there exists a
ϕn

q ∈ E+
n such that

K(ϕn
q ) ≤ σn

q ,(6.4)

(K|E+
n
)′(ϕn

q ) = 0,(6.5)

index (K|E+
n
)′′(ϕn

q ) ≥ q.(6.6)

To get those, we need several lemmas.
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Lemma 6.3. ([3][17]) Let U be a C2 open subset of some Hilbert space H
and let φ1 ∈ C2(U,R). Assume that φ′′ is a Fredholm operator (of null
index) on the critical set Z(φ1) = {x ∈ U |φ′1(x) = 0}. Lastly suppose
that φ1 satisfies the condition (P.S.) and that Z(φ1) is compact. Then for
any ε > 0, there exists φ2 ∈ C2(U,R) satisfying (P.S.) with the following
properties:
(i) φ2 = φ1(x) if distance {x,Z(φ1)} ≥ ε;
(ii) |φ1(x)− φ2(x)|, ‖φ′1(x)− φ′2(x)‖, ‖φ′′1(x)− φ′′2(x)‖ ≤ ε for all x ∈ U ;
(iii) the critical points of φ2 are finite in number and non-degenerate.

We remark that K|E+
n
∈ C2(E+

n ,R) satisfies (P.S.) and that all critical
values of K|E+

n
are nonnegative, in fact, suppose that ϕ ∈ E+

n is critical
point of K|E+

n
, then we have

K(ϕ) = K(ϕ)− 1
2
〈(K|E+

n
)′(ϕ), ϕ〉 = (

1
2
− 1

p + 1
)a0‖ϕ‖p+1

p+1 ≥ 0.

On the other hand, there is a constant R̄n such that K(ϕ) < 0 for ϕ ∈ E+
n

with ‖ϕ‖ ≥ R̄n. Therefore Z(K|E+
n
) is compact. Applying Lemma 6.3, for

all ε > 0 there exists a φε ∈ C2(E+
n ,R) satisfying (P.S.) with the following

properties:

(6.7) |φε(ϕ)−K(ϕ)|, ‖φ′ε(ϕ)− (K|E+
n
)′(ϕ)‖, ‖φ′′ε (ϕ)− (K|E+

n
)′′(ϕ)‖ ≤ ε

for all ϕ ∈ E+
n ; the critical points of φε are finite in number and nondegen-

erate. We set for n > q and ε > 0

σn
q (ε) = sup

σ∈An
q

min
y∈Sn−q

φε(σ(y)).

By (6.7),
σn

q − ε ≤ σn
q (ε) ≤ σn

q + ε.

Moreover we have the following lemmas as Tanaka in [17],

Lemma 6.4. [17] Suppose that aε ∈ R satisfies

σn
q (ε) < aε − 2ε < aε < σn

q+1(ε).

Then

(6.8) πn−q−1([φε ≥ aε]n, p) 6= 0 for some p ∈ [φε ≥ aε]n,

where [φε ≥ aε]n = {ϕ ∈ E+
n |φε(ϕ) ≥ aε}.

Lemma 6.5. [17] For a regular value a ∈ R of φε, set

L(ε; a) = max{indexφ′′ε (x)|φε(x) ≤ a, φ′ε(x) = 0}.
Then

πs([φε(x) ≥ a]n, p) = 0 for all p ∈ [φε ≥ a]n and s ≤ n− L(ε; a)− 2.
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Proof of Proposition 6.2. Since σn
q < σn

q+1 and the critical points
of φε are finite in the number and nondegenerate, there is a sequence aε ∈
R(0 < ε ≤ ε0) such that

aε is a regular value of φε,(6.9)
σn

q (ε) < aε − 2ε < aε < σn
q+1(ε),(6.10)

aε → σn
q as ε → 0.(6.11)

Applying Lemma 6.4 and Lemma 6.5, we observe

L(ε; a) ≥ q for 0 < ε < ε0.

Therefore there is a ϕε ∈ E+
n such that

φε(ϕε) ≤ aε,(6.12)
φ′ε(ϕε) = 0,(6.13)

indexφ′′ε (ϕε) ≥ q.(6.14)

It follows from (6.7) that satisfies

K(ϕε) is bounded as ε → 0,

(K|E+
n
)′(ϕε) → 0 as ε → 0.

Since K|E+
n

satisfies (P.S) on E+
n , we can choose a convergent subsequence

ϕεj → ϕn
q (εj → 0).

Proof of proposition 6.1. Since σq < σq+1, we have σ
nj
q < σ

nj

q+1

for sufficiently large j. Hence there is a ϕ
nj
q ∈ E+

nj
satisfying (6.4)-(6.6) by

Proposition 6.2. Since K ∈ C2(E+,R) satisfies (P.S.)∗, ϕ
nj
q has a convergent

subsequence ϕ
nj′
q . Let ϕq = limj′→∞ ϕ

nj′
q . Then (6.1)(6.2) follow from

(6.4)(6.5) easily. Let us prove (6.3).
First we have

indexK ′′(ϕn
q ) ≥ index (K|E+

n
)′′(ϕn

q )

for all n ∈ N.
On the other hand, we observe that K ′′(ϕq) is an operator of type K ′′ =

id + (compact). Hence there is an ε > 0 such that for h ∈ E+,

〈K ′′(ϕq)h, h〉 ≤ 0 iff 〈K ′′(ϕq)h, h〉 ≤ ε‖h‖2.
i.e.,

index K ′′(ϕq) = index (K ′′(ϕq)− ε).
Since K ∈ C2(E+,R), we have for some j′0,

‖K ′′(ϕ
nj′
q )−K ′′(ϕq)‖ ≤ ε for j > j′0.

Thus for j′ ≥ j′0 and h ∈ E+

〈K ′′(ϕq)h, h〉 − ε‖h‖2 ≤ 〈K ′′(ϕ
nj′
q )h, h〉.
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That is
indexK ′′(ϕ

nj′
q ) ≤ index (K ′′(ϕq)− ε).

Therefore by the above inequality, we complete the proof. 2

Now we go to prove the upper bound.

Proposition 6.6. For any ε > 0 there is a constant Cε > 0 such that for
ϕ ∈ E+,

(6.15) indexK ′′(ϕ) ≤ Cε‖ϕ‖(p−1)(1+ε)
(p−1)(1+ε).

Note that for ϕ, h ∈ E+,

(6.16) 〈K ′′(ϕ)h, h〉 = ‖h‖2 − pa0〈|ϕ|p−1h, h〉.
From the definition of index K ′′(ϕ), it is clear that

(6.17) indexK ′′(ϕ) =

max{dim H|H ⊂ E+ subspace such that ‖h‖2 ≤ pa0〈|ϕ|p−1h, h〉, forh∈H}
We define an operator D : L2 → E+ by

(6.18) (Dv) =
∑

j<|k|
(k2 − j2)−1/2

∑

l

al
jksinjxeiktel,

for v =
∑

l,j,k an
jksinjxeiktel. It is easily seen that D is an isometry from

L2
+ = L2−closure of span {sinjxeiktel| j < |k|} to E+ and D = 0 on (L2

+)⊥.
Setting h = Dv in (6.18), we get

(6.19) index K ′′(ϕ)

= max{dim H|H ⊂ L2 such that ‖v‖22 ≤ 〈pa0|ϕ|p−1Dv, Dv〉, v ∈ L2},
which means that indexK ′′(ϕ) is the number of the eigenvalues of
D∗(pa0|ϕ|p−1)D that are greater than or equal to 1.

For the above reason, we are concerned with an operator TV,θ : L2 → L2

defined by

(6.20) TV,θ = V (x, t)
∑

j,k

θjk

∑

l

al
jksinjxeiktel for v =

∑

l,j,k

al
jksinjxeiktel,

where V (x, t) is a function on Ω and θ = (θjk) is a sequence on N × Z. If
we set

Ṽ (x, t) =
√

pa0|ϕ|(p−1)/2,(6.21)

θ̃ij =
{

(k2 − j2)−1/2 if j < |k|,
0 if j ≥ |k|,(6.22)

then letting θ̃ = (θ̃ij), we have

(6.23) D∗(pa0|ϕ|(p−1))D = T ∗eV ,eθTeV ,eθ.
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In order to analyze the operator TV,Θ, let us recall the definition of the
singular values of a compact operator. Let A : L2 → L2 be a compact
operator. The singular values of A, sn(A) are the eigenvalues of |A| = √

A∗A
listed according to s1(A) ≥ s2(A) ≥ . . . . For 1 ≤ q < ∞, A is said to lie in
trace ideal Iq if and only if

‖A‖Iq = (
∞∑

n=1

sn(A)q)1/q < ∞ for 1 ≤ q < ∞.

For q = ∞, we set I∞ = the set of bounded linear operators L2 → L2 and

‖A‖I∞ = sup{‖Av‖2| ‖v‖2 ≤ 1} < ∞.

The following properties of trace ideals are known :
(i) I2 is the Hilbert-Schmidt class on L2. (ii) Let B denote the family of
orthogonal sequences in L2, then

‖A‖Iq = sup
{un},{vn}∈B

(
∞∑

n=1

|〈un, Avn〉|q)1/q.

When q = 2, for any complete orthogonal sequence {vn} in L2,

‖A‖I2 = (
∞∑

n=1

‖Avn‖22)1/2

(iii) For q ≥ 2, A ∈ Iq if and only if A∗A ∈ Iq/2 and ‖A‖2Iq
= ‖A∗A‖Iq/2 .

We denote by lq = lq(N×Z) the space of sequences θ = (θjk) which satisfy

‖θ‖lq = (
∑

jk

|θjk|q)1/q < ∞ for q ∈ q ∈ [1,∞),

‖θ‖l∞ = sup
jk
|θjk| < ∞ for q ∈ q ∈ [1,∞).

Lemma 6.7. ([17]) Suppose that V ∈ Lq and θ = (θjk) ∈ lq for q ∈ [2,∞].
Then TV,θ ∈ Lq and there is a constant Cq > 0, which is independent of V
and θ, such that

(6.24) ‖TV,θ‖Iq ≤ CqN‖V ‖q‖θ‖lq for all V and θ.
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Proof. It follows directly as [17]. Firstly we deal with the case q = 2.
Setting {v} = { 1

π} sin jxeiktel, we get

‖TV,θ‖I2 =
∑

j,k,l

1
π2
‖TV,θ(sin jxeiktel)‖22

=
∑

j,k,l

1
π2
‖V (x, t)θjk sin jxeiktel‖22

≤
∑

j,k,l

1
π2
‖V (x, t)‖22|θjk|2 =

N

π2
‖θ‖2l2‖V ‖22.

Next we deal with the case q = ∞. For v =
∑

l,j,k al
j,k sin jxeiktel,

‖TV,θv‖22 = ‖V
∑

l,j,k

al
j,k sin jxeiktel‖22 ≤ ‖V ‖2∞‖θ‖2l∞‖v‖22.

That is,
‖TV,θ‖ = sup

‖v‖2=1

‖TV,θv‖2 ≤ ‖V ‖∞‖θ‖l∞ .

Lastly for 2 ≤ q ≤ ∞, fix {un}, {vn} ∈ B and consider the operator Lq×lq →
lq defined by (V, θ) → {(un, TV,θvn)}n∈N. By the case q = 2,∞, we get

‖(un,TV,θ
vn)‖l2 ≤ ‖TV,θ‖I2 ≤

1
π2
‖θ‖l2‖V ‖2,

‖(un,TV,θ
vn)‖l∞ ≤ ‖TV,θ‖I∞ ≤ ‖θ‖l∞‖V ‖∞.

By the complex interpolation, we get for q ∈ (2,∞),

‖(un,TV,θ
vn)‖lq ≤ Cq‖θ‖lq‖V ‖q

where Cq is constant independent of {un}, {vn} ∈ B. By the definition of
‖TV,θ‖Iq , we get the desired result. 2

Proof of Proposition 6.6. Since T ∗V,θTV,θ is a positive self-adjoint
operator,

‖T ∗V,θTV,θ‖Iq/2 = (
∑

n

sq/2
n )2/q for q ≥ 2,

where sn are the eigenvalues of T ∗V,θTV,θ. Hence we have from the definition
of Iq and (6.19)

indexK ′′(ϕ) ≤ ‖T ∗V,θTV,θ‖q/2
Iq/2

≤ ‖TV,θ‖q
Iq

for q ≥ 2.

Set Ṽ and θ̃ as in (6.21),(6.22). Then we have from (6.23)

indexK ′′(ϕ) ≤ ‖TeV ,eθ‖q
Iq

for q ∈ (2,∞].



38 JINGGANG TAN

Note that for any q ∈ (2,∞] as in [17]

‖θ̃‖q
lq =

∑

j<|k|
(k2 − j2)−q/2 = 2

∑

j,s∈N
((j + s)2 − j2)−q/2

= 2
∑

j,s

[s(2j + s)])−q/2 ≤
∑

j,s

s−q/2j−q/2 < ∞.

Then we deduce from Lemma 6.7 that

indexK ′′(ϕ) ≤ N‖TeV ,eθ‖q
Iq
≤ CqN‖θ̃‖q

lq‖Ṽ ‖q
q ≤ CN‖ϕ‖(p−1)q/2

(p−1)q/2.

2

7. Proof of Theorem 1.2

Step 1. By Proposition 5.3 and Proposition 5.4, we see that

bqj ≥ Cεq
(p+1)/(p−1)−ε
j for large qj ∈ N,

ensures the existence of an unbounded sequence {ϕj} of critical points of J .
Then by Proposition 4.1, we know that the unbounded critical points {ϕj}
satisfy I(ϕj) = J(ϕj).

By Proposition 5.10, it suffices to show the existence of a sequence qj →
∞, as j →∞, with the following property: for any ε > 0 there is a Cε > 0
such that

σqj ≥ Cεq
(p+1)/(p−1)−ε
j for large j ∈ N.

Since σq → ∞ as q → ∞, there is a sequence qj such that σqj < σqj+1.
Applying Proposition 6.1, there are {ϕj} ∈ E+ such that

K(ϕj) ≤ σqj ,(7.1)

K ′(ϕj) = 0(7.2)
indexK ′′(ϕj) ≥ qj for large j ∈ N.(7.3)

Next applying Proposition 6.6, we get

Cε‖ϕj‖(p−1)(1+ε)
(p−1)(1+ε) ≥ qj .

Choosing ε ∈ (0, 2/(p− 1)), we obtain

(7.4) ‖ϕj‖p+1
p+1 ≥ C‖ϕj‖p+1

(p−1)(1+ε) ≥ C ′εq
(p+1)/[(p−1)(1+ε)]
j for j ∈ N.

On the other hand, we have by (7.2)

〈K ′(ϕj), ϕj〉 = ‖ϕj‖2 − a0‖ϕj‖p+1
p+1 = 0.

By (7.1), we obtain

σqj ≥ K(ϕj) =
1
2
‖ϕj‖2 − a0

p + 1
‖ϕj‖p+1

p+1 = (
1
2
− a0

p + 1
)‖ϕj‖p+1

p+1.
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Therefore by (7.4), we conclude that for a unbounded sequence qj (as j →
∞)

σqj
≥ Cεq

(p+1)/(p−1)−ε
j .

Step 2. Passing limit: We complete the proof by convexity of Fδ,g. We
may assume that for each δ ∈ (0, 1), uδ = ϕ+

δ + ϕ−δ + ψδ is a solution of the
equation

(7.5) ¤u +∇Fδ,g(u) = 0.

It follows from the same argument as in section 3 that also ϕ+
δ , ϕ−δ are

bounded uniformly for δ in E. Hence there is a sequence δj tending to 0
such that ϕδj ⇀ ϕ̄ in E and ψδj → ψ̄ in Lp+1.

Now we employ a standard monotonicity argument in order to show
that ū = ϕ̄ + ψ̄ is a weak solution of (1.1)-(1.3). Set uj = uδj

. Then uj

satisfies (7.5) with δ = δj . The right hand side of (7.5) is integrable in Ω.
Thus ¤uj → ζ in L(p−1)/p, possibly after passing to a subsequence. Since
¤uj → ¤ū in the sense of distributions, we have ζ = ¤ū. For each τ ∈ E,

∫

Ω

(¤uj +∇Fδj ,g(τ))(uj − τ) dxdt

=
∫

Ω

(∇Fδj ,g(τ)−∇Fδj ,g(uj))(uj − τ) dxdt ≤ 0.(7.6)

Furthermore,

(7.7)
∫

Ω

¤ujuj dxdt →
∫

Ω

¤ūū dxdt,

so we obtain ∫

Ω

(¤ū +∇F0,g(τ))(ū− τ) dxdt ≤ 0,

after passing to the limit in (7.6). Let τ = ū + sχ, where s > 0 and
χ ∈ E ∩ C∞(Ω). Substituting this τ in the inequality above and letting
s → 0 give ∫

Ω

(¤ū +∇F0,g(ū))χdxdt ≤ 0.

Since χ was chosen arbitrary, ū is a solution of (1.1)-(1.3). 2
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Spain.



40 JINGGANG TAN

References

[1] V.I. Arnold, Proof of a Theorem of A.N. Kolmogorov on the invariance of quasiperi-
odic motions under small perturbations of the Hamiltonian, Buss. Math. Surv., 18
(1963) 9-36.

[2] A. Bahri and H. Berestyski, Existence of forced oscillations for some nonlinear dif-
ferential equations, Comm. Pure Appl. Math., 37 (1984) 403-442.

[3] A. Bahri and H. Berestyski, Forced vibrations of super-quadratic Hamiltonian sys-
tems, Acta Math., 152 (1984) 143-197.

[4] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, In-
vent. Math., 52 (1979) 241-273.
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UMR2071 CNRS-UChile, Univ. de Chile, Casilla 170 Correo 3, Santiago, Chile

E-mail address: jinggang@dim.uchile.cl.


