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Abstract. A permutomino of size n is a polyomino determined by
particular pairs (π1, π2) of permutations of size n, such that π1(i) 6=
π2(i), for 1 ≤ i ≤ n. Here we determine the combinatorial properties
and, in particular, the characterization for the permutations defining
convex permutominoes.

Using such a characterization, these permutations can be uniquely
represented in terms of the so called square permutations, introduced
by Mansour and Severini. Then, we provide a closed formula for the
number of these permutations with size n.

1. Convex polyominoes

In the plane Z × Z a cell is a unit square, and a polyomino is a finite
connected union of cells having no cut point. Polyominoes are defined up to
translations (see Figure 1). A column (row) of a polyomino is the intersec-
tion between the polyomino and an infinite strip of cells lying on a vertical
(horizontal) line.

Polyominoes were introduced by Golomb [18], and then they have
been studied in several mathematical problems, such as tilings [2, 17], or
games [16] among many others. The enumeration problem for general poly-
ominoes is difficult to solve and still open. The number an of polyominoes
with n cells is known up to n = 56 [19] and asymptotically, these numbers
satisfy the relation limn (an)1/n = µ, 3.96 < µ < 4.64, where the lower
bound is a recent improvement of [1].

In order to simplify enumeration problems of polyominoes, several sub-
classes were defined by combining the two simple notions of convexity and
directed growth. A polyomino is said to be column convex (resp. row convex)
if every its column (resp. row) is connected (see Figure 1 (b)). A polyomino
is said to be convex, if it is both row and column convex (see Figure 1 (c)).
The area of a polyomino is just the number of cells it contains, while its
semi-perimeter is half the number of edges of cells in its boundary. Thus,
for any convex polyomino the semi-perimeter is the sum of the numbers of
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its rows and columns. Moreover, any convex polyomino is contained in a
rectangle in the square lattice which has the same semi-perimeter, called
minimal bounding rectangle.

(a) (c)(b)

Figure 1. (a) a polyomino; (b) a column convex poly-
omino which is not row convex; (c) a convex polyomino.

A significant result in the enumeration of convex polyominoes was first
obtained by Delest and Viennot in [15], where the authors proved that the
number `n of convex polyominoes with semi-perimeter equal to n + 2 is:

(1) `n+2 = (2n + 11)4n − 4(2n + 1)
(

2n

n

)
, n ≥ 2; `0 = 1, `1 = 2.

This is sequence A005436 in [22], the first few terms being:

1, 2, 7, 28, 120, 528, 2344, 10416, . . . .

During the last two decades convex polyominoes, and several combina-
torial objects obtained as a generalizations of this class, have been studied
by various points of view. For the main results concerning the enumera-
tion and other combinatorial properties of convex polyominoes we refer to
[4, 5, 6, 8].

There are two other classes of convex polyominoes which will be useful
in the paper, the directed convex polyominoes and the parallelogram. A
polyomino is said to be directed when each of its cells can be reached from
a distinguished cell, called the root, by a path which is contained in the
polyomino and uses only north and east unitary steps.

A polyomino is directed convex if it is both directed and convex (see
Figure 2 (a)). It is known that the number of directed convex polyominoes
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of semi-perimeter n + 2 is equal to the nth central binomial coefficient, i.e.,

(2) bn =
(

2n

n

)
,

sequence A000984 in [22].

(b)(a)

Figure 2. (a) A directed convex polyomino; (b) a paral-
lelogram polyomino.

Finally, parallelogram polyominoes are a special subset of the directed
convex ones, defined by two lattice paths that use north and east unit steps,
and intersect only at their origin and extremity. These paths are called the
upper and the lower path (see Figure 2 (b)). It is known [23] that the
number of parallelogram polyominoes having semi-perimeter n + 1 is the
n-th Catalan number (sequence M1459 in [22]),

(3) cn =
1

n + 1

(
2n

n

)
.

2. Convex permutominoes

Let P be a polyomino without holes, having n rows and columns, n ≥
1; we assume without loss of generality that the south-west corner of its
minimal bounding rectangle is placed in (1, 1). Let A =

(
A1, . . . , A2(r+1)

)
be the list of its vertices (i.e., corners of its boundary) ordered in a clockwise
sense starting from the lowest leftmost vertex.

We say that P is a permutomino if P1 = (A1, A3, . . . , A2r+1) and P2 =
(A2, A4, . . . , A2r+2) represent two permutations of Sn+1, where, as usual,
Sn is the symmetric group of size n. Obviously, if P is a permutomino, then
r = n, and n+1 is called the size of the permutomino. The two permutations
defined by P1 and P2 are indicated by π1(P ) and π2(P ), respectively (see
Figure 3).

From the definition any permutomino P has the property that, for
each abscissa (ordinate) there is exactly one vertical (horizontal) side in
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the boundary of P with that coordinate. It is simple to observe that this
property is also a sufficient condition for a polyomino to be a permutomino.
By convention we also consider the empty permutomino of size 1, associated
with π = (1).

1π  = ( 2, 5, 6, 1, 7, 3, 4 ) π  = ( 5, 6, 7, 2, 4, 1, 3 )2

Figure 3. A permutomino and the two associated permu-
tations.

Permutominoes were introduced by F. Incitti in [20] while studying
the problem of determining the R̃-polynomials (related with the Kazhdan-
Lusztig R-polynomials) associated with a pair (x, y) of permutations. Con-
cerning the class of polyominoes without holes, our definition (though dif-
ferent) turns out to be equivalent to Incitti’s one, which is more general but
uses some algebraic notions not necessary in this paper.

Let us recall the main enumerative results concerning convex permu-
tominoes. In [14], using bijective techniques, it was proved that the number
of parallelogram permutominoes of size n+1 is equal to cn and that the num-
ber of directed-convex permutominoes of size n + 1 is equal to 1

2 bn, where,
throughout all the paper, cn and bn will denote, respectively, the Catalan
numbers and the central binomial coefficients. Finally, in [13] it was proved,
using the ECO method, that the number of convex permutominoes of size
n + 1 is:

(4) 2 (n + 3) 4n−2 − n

2

(
2n

n

)
n ≥ 1.

The first terms of the sequence are

1, 1, 4, 18, 84, 394, 1836, 8468, . . .

(sequence A126020) in [22]). The same formula has been obtained indepen-
dently by Boldi et al. in [3]. The main results concerning the enumeration
of classes of convex permutominoes are listed in the table below, where the
first terms of the sequences are given starting from n = 2 (i.e., the one
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cell permutomino defined by π1(1) = (1, 2), π2 = (2, 1)), and are taken
from [13, 14]:

Class First terms Closed form/rec. relation

convex 1, 1, 4, 18, 84, 394, . . . Cn+1 = 2(n+3)4n−2− n
2

(
2n
n

)

directed
convex 1, 1, 3, 10, 35, 126, . . . Dn+1 = 1

2bn

parallelogram 1, 1, 2, 5, 14, 42, 132, . . . Pn+1 = cn

symmetric
(w.r.t. x = y) 1, 1, 2, 4, 10, 22, 54, . . .

Sn+1 =(n + 3)2n−2−n
( n−1
bn−1

2 c
)

− (n− 1)
( n−2
bn−2

2 c
)

centered 1, 1, 4, 16, 64, 256, . . . Qn = 4n−2

bi-centered 1, 1, 4, 14, 48, 164, . . . Bn = 4Bn−1 − 2Bn−2, n ≥
3

stacks 1, 1, 2, 4, 8, 16, 32, . . . Wn = 2n−2

Notation. Throughout the whole paper we are going to use the following
notations:

• Cn is the set of convex permutominoes of size n;
• Cn is the cardinality of Cn;
• C(x) is the generating function of the sequence {Cn}n≥2.

Moreover, if π is a permutation of size n, then we define its reversal πR and
its complement πC as follows: πR(i) = π(n+1− i) and πC(i) = n+1−π(i),
for each i = 1, . . . , n.
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3. Permutations associated with convex permutominoes

Given a permutomino P , the two permutations we associate with P are
denoted by π1 and π2 (see Figure 3). While it is clear that any permutomino
of size n ≥ 2 uniquely determines two permutations π1 and π2 of Sn, with

1: π1(i) 6= π2(i), 1 ≤ i ≤ n,
2: π1(1) < π2(1), and π1(n) > π2(n),

not all the pairs of permutations (π1, π2) of n satisfying 1 and 2 define a
permutomino: Figure 4 depicts the two problems which may occur.

(a)

2π  = ( 5, 1, 6, 7, 3, 2, 4 )

π  = ( 2, 4, 1, 6, 7, 3, 5 )11π  = ( 2, 1, 3, 4, 5, 7, 6 )

π  = ( 3, 2, 1, 5, 7, 6, 4 )2

(b)

Figure 4. Two permutations π1 and π2 of Sn, satisfying 1
and 2, do not necessarily define a permutomino, since two
problems may occur: (a) two disconnected sets of cells; (b)
the boundary crosses itself.

In [14] the authors give a simple constructive proof that every permu-
tation of Sn is associated with at least one column-convex permutomino.

Proposition 1. If π ∈ Sn, n ≥ 2, then there is at least one column-convex
permutomino P such that π = π1(P ) or π = π2(P ).

For instance, Figure 5 (a) depicts a column convex permutomino asso-
ciated with the permutation π1 in Figure 4 (b).

The statement of Proposition 1 does not hold for convex permutomi-
noes. Therefore, in this paper we consider the class Cn of convex permu-
tominoes of size n, and study the problem of giving a characterization for
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(b)

1 1

2

π  = ( 3, 2, 1, 7, 6, 5, 4 )

π  = ( 7, 3, 2, 6, 5, 4, 1 )π  = ( 4, 6, 2, 7, 3, 5, 1 )

π  = ( 2, 4, 1, 6, 7, 3, 4 )

(a)
2

Figure 5. (a) a column convex permutomino associated
with the permutation π1 in Figure 4 (b); (b) the sym-
metric permutomino associated with the involution π1 =
(3, 2, 1, 7, 6, 5, 4).

the set of permutations defining convex permutominoes,

{ (π1(P ), π2(P )) : P ∈ Cn } .

Moreover, let us consider the following subsets of Sn:

C̃n = {π1(P ) : P ∈ Cn }, C̃′n = {π2(P ) : P ∈ Cn }.
It is easy to prove the following properties:

(1)
∣∣∣C̃n

∣∣∣ =
∣∣∣C̃′n

∣∣∣,
(2) π ∈ C̃n if and only if πR ∈ C̃′n.
(3) If P is symmetric according to the diagonal x = y, then π1(P ) and

π2(P ) are both involutions of Sn. We recall that an involution is
a permutation where all the cycles have length at most 2 (see for
instance Figure 5 (b)). Figures 6 and 16 show permutominoes where
only π1 is an involution, and this condition is not sufficient for the
permutomino to be symmetric.

Given a permutation π ∈ Sn, we say that π is π1-associated (briefly
associated) with a permutomino P , if π = π1(P ). With no loss of generality,
we will study the combinatorial properties of the permutations of C̃n, and
we will give a simple way to recognize if a permutation π is in C̃n or not.
Moreover, we will study the cardinality of this set. In particular, we will
exploit the relations between the cardinalities of Cn and of C̃n.
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For small values of n we have that:

C̃1 = {1},
C̃2 = {12},
C̃3 = {123, 132, 213},
C̃4 = {1234, 1243, 1324, 1342, 1423, 1432, 2143,

2314, 2134, 2413, 3124, 3142, 3214}.

As a main result we will prove that the cardinality of C̃n+1 is

(5) 2 (n + 2) 4n−2 − n

4

(
3− 4n

1− 2n

) (
2n

n

)
, n ≥ 1.

defining the sequence 1, 1, 3, 13, 62, 301, 1450, . . ., not in [22]. For any π ∈ C̃n,
let us consider also

[π] = {P ∈ Cn : π1(P ) = π},
i.e., the set of convex permutominoes associated with π. For instance, there
are 4 convex permutominoes associated with π = (2, 1, 3, 4, 5), as depicted
in Figure 6. In this paper we will also give a simple way of computing [π],
for any given π ∈ C̃n.

Figure 6. The four convex permutominoes associated
with (2, 1, 3, 4, 5).

3.1. A matrix representation of convex permutominoes. Before go-
ing on with the study of convex permutominoes, we would like to point out
a simple property of their boundary, related to reentrant and salient points.
Let us briefly recall the definition of these objects.

Let P be a polyomino; starting from the leftmost point having minimal
ordinate, and moving in a clockwise sense, the boundary of P can be encoded
as a word in a four letter alphabet, {N,E, S,W}, where N (resp., E, S,
W ) represents a north (resp., east, south, west) unit step. Any occurrence
of a sequence NE, ES, SW , or WN in the word encoding P defines a
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salient point of P , while any occurrence of a sequence EN , SE, WS, or
NW defines a reentrant point of P (see for instance, Figure 7).

In [10] and successively in [7], in a more general context, it was proved
that in any polyomino the difference between the number of salient and
reentrant points is equal to 4.

NNENESSENNNESSEESOSOSOSONONO

A

Figure 7. The coding of the boundary of a polyomino,
starting from A and moving in a clockwise sense; its salient
(resp. reentrant) points are indicated by black (resp.
white) squares.

In a convex permutomino of size n + 1 the length of the word coding
the boundary is 4n, and we have n + 3 salient points and n − 1 reentrant
points; moreover we observe that a reentrant point cannot lie on the minimal
bounding rectangle. This leads to the following remarkable property:

Proposition 2. The set of reentrant points of a convex permutomino of
size n + 1 defines a permutation matrix of dimension n− 1, n ≥ 1.

For simplicity of notation, we agree to group the reentrant points of a
convex permutomino in four classes; in practice we choose to represent the
reentrant point determined by a sequence EN (resp. SE, WS, NW ) with
the symbol α (resp. β, γ, δ).

Using this notation we can state the following simple characterization
for convex permutominoes:

Proposition 3. A convex permutomino of size n ≥ 2 is uniquely repre-
sented by the permutation matrix defined by its reentrant points, which has
dimension n−2, and uses the symbols α, β, γ, δ, and such that for all points
A,B,C, D, of type α, β, γ and δ, respectively, we have:

(1) xA < xB, xD < xC , yA > yD, yB > yC ;
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0 0 0 0 γ
0 0 0 β 0

0 0 δ 0 0

α 0 0 0 0
0 α 0 0 0

δ

γ

β

α

Figure 8. The reentrant points of a convex permutomino
uniquely define a permutation matrix in the symbols α, β,
γ and δ.

(2) ¬(xA > xC ∧ yA < yC) and ¬(xB < xD ∧ yB < yD),
(3) the ordinates of the α and of γ points are strictly increasing, from

left to right; the ordinates of the β and of δ points are strictly de-
creasing, from left to right.

where x and y denote the abscissa and the ordinate of the considered point.

(1,1)

C

x+y=n+1

x=y

α

α
α

β

β

γ

γ

γδ

δ
δ

β

A

B

D

Figure 9. A sketched representation of the α, β, γ and δ
paths in a convex permutomino.

Just to give a more informal explanation, on a convex permutomino,
let us consider the special points

A = (1, π1(1)), B = (π−1
1 (n), n), C = (n, π1(n)), D = (π−1

1 (1), 1).
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The path that goes from A to B (resp. from B to C, from C to D, and from
D to A) in a clockwise sense is made only of α (resp. β, γ, δ) points, thus
it is called the α-path (resp. β-path, γ-path, δ-path) of the permutomino.
The situation is schematically sketched in Figure 9.

From the characterization given in Proposition 3 we have the following two
properties:

(z1): the α points are never below the diagonal x = y, and the γ
points are never above the diagonal x = y.

(z2): the β points are never below the diagonal x + y = n + 1, and
the δ points are never above the diagonal x + y = n + 1.

3.2. Characterization and combinatorial properties of C̃n. Let us
consider the problem of establishing, for a given permutation π ∈ Sn, if
there is at least a convex permutomino P of size n such that π1(P ) = π.
Let π be a permutation of Sn, we define µ(π) (briefly µ) as the maximal
upper unimodal sublist of π (µ retains the indexing of π).

Specifically, if µ is denoted by (µ(i1), . . . , n, . . . , µ(im)) , then we have the
following:

(1) µ(i1) = µ(1) = π(1);
(2) if n /∈ {µ(i1), . . . , µ(ik)}, then µ(ik+1) = π(ik+1) such that

i: ik < i < ik+1 implies π(i) < µ(ik), and
ii: π(ik+1) > µ(ik);

(3) if n ∈ {µ(i1), . . . , µ(ik)}, then µ(ik+1) = π(ik+1) such that
i: ik < i < ik+1 implies π(i) < π(ik+1), and
ii: π(ik+1) < µ(ik).

Summarizing we have:

µ(i1) = µ(1) = π(1) < µ(i2) < . . . < n > . . . µ(im) = µ(n) = π(n).

Moreover, let σ(π) (briefly σ) denote (σ(j1), . . . , σ(jr)) where:
(1) σ(j1) = σ(1) = π(1), σ(jr) = σ(n) = π(n), and
(2) if 1 < jk < jr, then σ(jk) = π(jk) if and only if

π(jk) /∈ {µ(i1), . . . , µ(im)}.
We note that the sequence µ can be defined in terms of left-right and

right left-maxima. A left-right maximum (resp. right-left maximum) of
a given permutation τ is an entry τ(j) such that τ(j) > τ(i) for each
i < j (for each i > j). Let u = (ui1 , ui2 , . . . , uis) be the sequence of
the left-right maxima of π with ui1 = π(1) < ui2 < . . . < uis = n, and
let v = (vj1 , vj2 , . . . , vjt) be the sequence of the right-left maxima (read
from the left) with vj1 = n > vj2 > . . . > vjt = π(n). The sequence µ
coincides with the sequence obtained by connecting u with v, observing
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π
  = (8, 6, 1, 9, 11, 14, 2, 16, 15, 13, 12, 10, 7, 3, 5, 4)

  = (9, 8, 6, 11, 14, 16, 1, 15, 13, 12, 10, 7, 5, 2, 4, 3)

π
1

β

δ

δ

γ
γ

β
β

β

β

β

ββ
α

α

α

2

Figure 10. A convex permutomino and the associated permutations.

that, clearly, uis = vj1 = n. In other words it is µ = (ui1 , ui2 , . . . , uis(=
vj1), vj1 , vj2 , . . . , vjt).

Example 1. Consider the convex permutomino of size 16 represented in
Fig. 10. We have

π1 = (8, 6, 1, 9, 11, 14, 2, 16, 15, 13, 12, 10, 7, 3, 5, 4),

and we can determine the decomposition of π into the two subsequences µ
and σ:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
µ 8 - - 9 11 14 - 16 15 13 12 10 7 - 5 4
σ 8 6 1 - - - 2 - - - - - - 3 - 4

For the sake of brevity, when there is no possibility of misunderstanding,
we use to represent the two sequences omitting the empty spaces, as

µ = (8, 9, 11, 14, 16, 15, 13, 12, 10, 7, 5, 4), σ = (8, 6, 1, 2, 3, 4).

While µ is upper unimodal by definition, here σ turns out to be lower
unimodal. In fact from the characterization given in Proposition 3 we have
that
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Proposition 4. If π is associated with a convex permutomino then the
sequence σ is lower unimodal.

In this case, similarly to the sequence µ, also the sequence σ can be
defined in terms of left-right and right-left minima. A left-right minimum
(resp. right-left minimum) of a given permutation τ is an entry τ(j) such
that τ(j) < τ(i) for each i < j (for each i > j). If σ is lower unimodal,
then it is easily seen to be the sequence of the left-right minima followed by
the sequence of the right-left minima (read from the left), recalling that the
entry 1 is both a left-right minimum and a right-left minimum.

The conclusion of Proposition 4 is a necessary condition for a permuta-
tion π to be associated with a convex permutomino, but it is not sufficient.
For instance, if we consider the permutation π = (5, 9, 8, 7, 6, 3, 1, 2, 4), then
µ = (5, 9, 8, 7, 6, 4), and σ = (5, 3, 1, 2, 4) is lower unimodal, but as shown
in Figure 11 (a) there is no convex permutomino associated with π. In fact
any convex permutomino associated with such a permutation has a β point
below the diagonal x + y = 10 and, correspondingly, a δ point above this
diagonal. Thus the β and the δ paths cross themselves.

In order to give a necessary and sufficient condition for a permutation π

to be in C̃n, let us recall that, given two permutations θ = (θ1, . . . , θm) ∈ Sm

and θ′ = (θ′1, . . . , θ
′
m′) ∈ Sm′ , their direct difference θ ª θ′ is a permutation

of Sm+m′ defined as

(θ1 + m′, . . . , θm + m′, θ′1, . . . , θ
′
m′).

A pictorial description is given in Figure 11 (b), where θ = (1, 5, 4, 3, 2),
θ′ = (3, 2, 1, 4), and their direct difference is θ ª θ′ = (5, 9, 8, 7, 6, 3, 1, 2, 4) .

Finally the following characterization holds.

Theorem 1. Let π ∈ Sn be a permutation. Then π ∈ C̃n if and only if:
(1) σ is lower unimodal, and
(2) there are no two permutations, θ ∈ θm , and θ′ ∈ θ′m, such that

m + m′ = n, and π = θ ª θ′.

Proof. Before starting, we need to observe that in a convex permutomino
all the α and γ points belong to the permutation π1, thus by (z1) they can
also lie on the diagonal x = y; on the contrary, the β and δ points belong
to π2, then by (z2) all the β (resp. δ) points must remain strictly above
(resp. below) the diagonal x + y = n + 1.

(=⇒) By Proposition 4 we have that σ is lower unimodal. Then, we have
to prove that π may not be decomposed into the direct difference of two
permutations, π = θ ª θ′.
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β

δ

D

C

B

A

’θ

θ

(b)(a)

Figure 11. (a) there is no convex permutomino associated
with π = (5, 9, 8, 7, 6, 3, 1, 2, 4), since σ is lower unimodal
but the β path passes below the diagonal x + y = 10.
The β point below the diagonal and the corresponding
δ point above the diagonal are encircled. (b) The per-
mutation π = (5, 9, 8, 7, 6, 3, 1, 2, 4) is the direct difference
π = (1, 5, 4, 3, 2)ª (3, 2, 1, 4).

If π(1) < π(n) the property is straightforward. Let us consider the case
π(1) > π(n), and assume that π = θ ª θ′ for some permutations θ and θ′.
We will prove that if the vertices of polygon P define the permutation π,
then the boundary of P crosses itself, hence P is not a permutomino.

Let us assume that P is a convex permutomino associated with π =
θ ª θ′. We start by observing that the β and the δ paths of P may not
be empty. In fact, if the β path is empty, then π(n) = n > π(1), against
the hypothesis. Similarly, if the δ path is empty, then π(1) = 1 < π(n).
Essentially for the same reason, both θ and θ′ must have more than one
element.

As we observed, the points of θ (resp. θ′) in the β path of P , are
placed strictly above the diagonal x + y = n + 1. Let F (resp. F ′) be
the rightmost (resp. leftmost) of these points. Similarly, there must be at
least one point of θ (resp. θ′) in the δ path of P , placed strictly below the
diagonal x + y = n + 1. Let G (resp. G′) be the rightmost (resp. leftmost)
of these points. The situation is schematically sketched in Figure 12.
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F

’G θ’

G

F

θ

’

Figure 12. If π = θª θ′ then the boundary of every poly-
gon associated with π crosses itself.

Since F and F ′ are consecutive points in the β path of P , they must
be connected by means of a path that goes down and then right, and,
similarly, since G′ and G are two consecutive points in the δ path, they
must be connected by means of a path that goes up and then left. These
two paths necessarily cross in at least two points, and their intersections
must be on the diagonal x + y = n + 1.

(⇐=) Clearly condition 2. implies that π(1) < n and π(n) > 1, which are
necessary conditions for π ∈ C̃n. We start building up a polygon P such
that π1(P ) = P , and then prove that P is a permutomino. As usual, let us
consider the points

A = (1, π(1)), B = (π−1(n), n), C = (n, π(n)), D = (π−1(1), 1).

The α path of P goes from A to B, and it is constructed connecting the
points of µ increasing sequence; more formally, if µ(il) and µ(il+1) are two
consecutive points of µ, with µ(il) < µ(il+1) ≤ n, we connect them by
means of a path

1µ(il+1)−µ(il) 0il+1−il ,

(where 1 denotes the vertical, and 0 the horizontal unit step). Similarly we
construct the β path, from B to C, the γ path from C to D, and the δ
path from D to A. Since the subsequence σ is lower unimodal the obtained
polygon is convex (see Figure 13).

Now we must prove that the four paths we have defined may not cross
themselves. First we show that the α path and the γ path may not cross.
In fact, if this happened, there would be a point (r, π(r)) in the path γ,
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B

δ
γ

βα

B

A

D

C C

D

A

Figure 13. Given the permutation π = (3, 1, 6, 8, 2, 4, 7, 5)
satisfying conditions 1. and 2., we construct the α, β, γ,
and δ paths.

α

γ

δ

β

(b)

(r,s)

i

j

r

(a)

θ

θ

’

Figure 14. (a) The α path and the γ path may not cross;
(b) The β path and the δ path may not cross.

and two points (i, π(i)) and (j, π(j)) in the path α, such that i < r < j,
and π(i) < π(r) > π(j) (see Figure 14 (a)). In this case, according to the
definition, π(r) should belong to µ, and then (r, π(r)) should be in the path
α, and not in γ.

Finally we prove that the paths β and δ may not cross. In fact, if they
cross, their intersection should necessarily be on the diagonal x+y = n+1;
if (r, s) is the intersection point having minimum abscissa, then the reader
can easily check, by considering the various possibilities, that the points
(i, π(i)) of π satisfy:

i ≤ r if and only if π(i) ≥ s
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(see Figure 14 (b)). Therefore, setting

θ = {(i, π(i)− s + 1) : i ≤ r}
we have that θ is a permutation of Sr, and letting

θ′ = { (i, π(i) : i > r }
we see that π = θ ª θ′, against the hypothesis. ¤

There is an interesting refinement of the previous general theorem,
which applies to a particular subset of the permutations of Sn.

Corollary 1. Let π ∈ Sn, such that π(1) < π(n). Then π ∈ C̃n if and only
if σ is lower unimodal.

(a)

D

C

B

A

D

C

B

A

(b)

Figure 15. (a) a square permutation and the associated
4-face polygon; (b) a 4 face polygon defined by a non square
permutation.

At the end of this section we would like to point out an interesting con-
nection between the permutations associated with convex permutominoes
and another kind of combinatorial objects treated in some recent works.
We are referring to the so called k-faces permutation polygons defined by
T. Mansour and S. Severini in [21]. In order to construct a polygon from a
given permutation π in an unambiguous way, they find the set of left-right
minima and the set of right-left minima. An entry which is neither a left-
right minimum nor a right-left minimum is said to be a source, together with
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the first and the last entry (which are also a left-right minimum and a right-
left minimum, respectively). Finally, two entries of π are connected with an
edge if they are two consecutive left-right minima or right-left minima or
sources. A maximal path of increasing or decreasing edges defines a face. If
the obtained polygon has k faces, than it is said to be a k-faces polygon.
A permutation is said to be square if the sequence of the sources lies in at
most two faces. The set of the square permutations of length n is denoted
by Qn. We note that a square permutation has at most four faces, but the
inverse statement does not hold: the permutation (1, 5, 8, 2, 7, 3, 9, 10, 6, 4)
has four faces and it is not square. Figure 15 depicts an example.

Connecting all pairs of consecutive points of the sequences µ and σ we
obtain a polygon which may not coincide with the polygon obtained from
the definition of Mansour and Severini, as the reader can easily check with
the permutation (1, 2, 4, 3). It is however simple to state the following

Proposition 5. Given a permutation π ∈ Sn, then π ∈ Qn if and only if
σ(π) is lower unimodal.

All the relations between Qn, Cn and C′n are exploited in the next
section, where, in particular, it is proved that, given a permutation π, then
π ∈ Qn if and only if π ∈ Cn

⋃ C′n.
Mansour and Severini [21] prove that the number Qn+1 of square per-

mutation of size n + 1 is

(6) Qn+1 = 2(n + 3)4n−2 − 4(2n− 3)
(

2(n− 2)
n− 2

)
,

defining the sequence 1, 2, 6, 24, 104, 464, 2088, . . . (not in [22]).

3.3. The relation between the number of permutations and the
number convex permutominoes. Let π ∈ C̃n, and µ and σ defined as
above. Let F(π) (briefly F) denote the set of fixed points of π lying in the
increasing part of the sequence µ and which are different from 1 and n. We
call the points in F the free fixed points of π.
For instance, concerning the permutation π = (2, 1, 3, 4, 7, 6, 5) we have
µ = (2, 3, 4, 7, 6, 5), σ = (2, 1, 5), and F(π) = {3, 4}; here 6 is a fixed
point of π but it is not on the increasing sequence of µ, then it is not free.
By definition, a permutation in C̃n can have no free fixed points (e.g., the
permutation associated with the permutomino in Figure 10), and at most
n− 2 free fixed points (as the identity (1, . . . , n)).

Theorem 2. Let π ∈ C̃n, and let F(π) be the set of free fixed points of π.
Then we have:

| [ π ]∼ | = 2|F(π)|.
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Proof. Since π ∈ C̃n there exists a permutomino P associated with π. If
we look at the permutation matrix defined by the reentrant points of P , we
see that all the free fixed points of π can be only of type α or γ, while the
type of all the other reentrant points of π is established. It is easy to check
that in any way we set the typology of the free fixed points in α or γ we
obtain, starting from the matrix of P , a permutation matrix which defines
a convex permutomino associated with π, and in this way we get all the
convex permutominoes associated with the permutation π. ¤
Applying Theorem 2 we have that the number of convex permutominoes
associated with π = (2, 1, 3, 4, 7, 6, 5) is 22 = 4, as shown in Figure 16.
Moreover, Theorem 2 leads to an interesting property.

α
γ

γ
γ

α
α

γ

α

Figure 16. The four convex permutominoes associated
with the permutation π = (2, 1, 3, 4, 7, 6, 5). The two free
fixed points are encircled.

Proposition 6. Let π ∈ C̃n, with π(1) > π(n). Then there is only one
convex permutomino associated with π, i.e., | [ π ] | = 1.

Proof. If π(1) > π(n) then all the points in the increasing part of µ are
strictly above the diagonal x = y, then π cannot have free fixed points. The
thesis is then straightforward. ¤

Let us now introduce the sets C̃n,k of permutations having exactly k free
fixed points, with 0 ≤ k ≤ n− 2. We easily derive the following relations:

(7) C̃n =
n−2∑

k=0

∣∣∣C̃n,k

∣∣∣ Cn =
n−2∑

k=0

2k
∣∣∣C̃n,k

∣∣∣ .

4. The cardinality of C̃n

In order to find a formula to express C̃n, it is now sufficient to count
how many permutations of Qn can be decomposed into the direct difference
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of other permutations. We say that a square permutation is indecomposable
if it is not the direct difference of two permutations. For any k ≥ 2, let

Bn,k = {π ∈ Qn : π = θ1 ª . . .ª θk, θi indecomposable, 1 ≤ i ≤ k }
be the set of square permutations which are direct difference of exactly k
indecomposable permutations, and

Bn =
⋃

k≥2

Bn,k.

For any n, k ≥ 2, let Tn,k be the class of the sequences (P1, . . . , Pk) such
that:

i: P1 and Pk are (possibly empty) directed convex permutominoes,
ii: P2, . . . , Pk−1 are (possibly empty) parallelogram permutominoes,

and such that the sum of the dimensions of P1, . . . , Pk is equal to n.

Proposition 7. There is a bijective correspondence between the elements
of Bn,k and the elements of Tn,k, so that the two classes have the same
cardinality.

Proof. Let us consider (P1, . . . , Pk) ∈ Tn,k, we construct the corresponding
permutation π = δ1 ª · · · ª δk as follows. For any 1 ≤ i ≤ k, if Pi is the
empty permutomino, then δi = (1), otherwise:

i: for all i with 1 ≤ i ≤ k − 1, δi is the reversal of π2(Pi) (i.e., the
permutation π1 associated with the symmetric permutomino of Pi

with respect to the y- axis).
ii: δk is the complement of π2(Pk) (i.e., it is the permutation π1 asso-

ciated with the symmetric permutomino of Pk with respect to the
x-axis).

For example, starting from the sequence of permutominoes in Figure
17 we obtain the following permutations: δ1 = (2, 1, 4, 5, 3) is obtained
from the permutomino P1 such that π2(P1) = (3, 5, 4, 1, 2); δ2 = (1) is
obtained from the empty permutomino P2; δ3 = (1, 2) is obtained from
P3; δ4 = (3, 1, 5, 4, 2) is obtained from the permutomino P4 such that
π2(P4) = (2, 4, 5, 1, 3). Moreover, δ5 = (3, 1, 6, 5, 2, 4) is the complement
of τ = (4, 6, 1, 2, 5, 3) which is such that π2(P5) = τ . Then, as showed in
Figure 18 we obtain the permutation π = δ1 ª δ2 ª δ4 ª δ4 ª δ5,

π = (16, 15, 18, 19, 17, 14, 12, 13, 9, 7, 11, 10, 8, 3, 1, 6, 5, 2, 4)

We note that the points in the increasing part of µ(π) are precisely the points
of the increasing part of µ(δ1); the points in the increasing part of σ(π)
are the points of the increasing part of σ(δk); the points in the decreasing
part of µ(π) are given by the sequence of points of the decreasing parts of
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3 4
P

P
1

2
P

1
P

4
P

2
π (   ) = (2,1)

2
π (   ) = (2,4,5,1,3)π (   ) = (3,5,4,1,2) empty 

permutomino
2

P

P
3

P
5

P
52π (   ) = (4,6,1,2,5,3)

Figure 17. An element of T19,5, constituted of a sequence
of five permutominoes, and the associated permutations.

µ(δ1), . . . , µ(δk); finally, the points in the decreasing part of σ(π) are given
by the sequence of the points of the decreasing parts of σ(δ1), . . . , σ(δk).
Then, we have that π ∈ Qn and then π ∈ Bn,k.

Conversely, let π ∈ Bn,k, with π = δ1 ª · · · ª δk. By the previous
considerations we have that π ∈ Qn, and then it is clear that, for each
component δi, the sequence µ(δi) is upper unimodal, and σ(δi) is lower
unimodal.

If δi is the one element permutation, then it is associated with the
empty permutomino. Otherwise, if a permutation δi is indecomposable and
has dimension greater than 1 it is clearly associated with a polygon with
exactly one side for every abscissa and ordinate and with the border which
does not intersect itself. These two conditions are sufficient to state that δi

is associated with a convex permutomino, and in particular the reader can
easily observe the following properties, due to its the indecomposability:

(1) there is exactly one directed convex permutomino P1 corresponding
to δ1, and it is the reflection according to the y-axis of a permu-
tomino associated with δ1;

(2) for any 2 ≤ i ≤ k − 1, there is exactly one parallelogram permu-
tomino Pi corresponding to δi, and it is the reflection according to
the y-axis of a permutomino associated with δi;

(3) there is exactly one directed convex permutomino Pk corresponding
to δk, and it is the reflection according to the x-axis of a permu-
tomino associated with δk.

We have thus the sequence (P1, . . . , Pk) ∈ Tn,k. ¤
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(b)(a)

δ

δ

δ

δ

δ

5

4

3

2

1

5

4

3

2

P

P

P

P

P

1

Figure 18. (a) a square permutation which can be de-
composed into the direct difference of five indecomposable
permutations; (b) the five permutominoes associated with
them. For each permutomino Pi, we denote by P̄i the cor-
responding reflected permutomino.

If we denote by Bn (resp. Bn,k) the cardinality of Bn (resp. Bn,k), by
Proposition 5 we have

C̃n = Qn −Bn.

Let us pass to generating functions, denoting by:

(1) P (x) (resp. D(x)) the generating function of parallelogram permu-
tominoes (resp. P (x)), hence

P (x) =
1−√1− 4x

2
= x + x2 + 2x3 + 5x4 + 14x5 + . . .

D(x) =
3x

4
√

1− 4x
= x + x2 + 3x3 + 10x4 + 35x5 + . . . ;

(2) Bk(x) (resp. B(x)) the generating function of the numbers
{Bk,n}n≥0, k ≥ 2 (resp. {Bn}n≥0).

Due to Proposition 7, for any k ≥ 2, we have that Bk(x) = D2(x)P k−2(x)
and then

B(x) =
∑

k≥0

D2(x)P k−2(x) =
D2(x)

1− P (x)
=

1
2

(
x2

1− 4x
+

x2

√
1− 4x

)
.
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Therefore

Bn+2 =
1
2

(
4n +

(
2n

n

))
=

n∑

i=0

(
2n

i

)
.

Now it is easy to determine the cardinality of C̃n. For simplicity of notation
we will express most of the following formulas in terms of n+1 instead of n.

Proposition 8. The number of permutations of C̃n+1 is

(8) 2 (n + 2) 4n−2 − n

4

(
3− 4n

1− 2n

) (
2n

n

)
, n ≥ 1.

Proof. In fact, for any n ≥ 2, we have C̃n = Qn − Bn, then the result is
straightforward. ¤

In ending the paper we would like to point out some other results that
directly come out from the one stated in Proposition 8. First we observe
that the number of permutations π ∈ C̃n for which π(1) < π(n) is equal to
1
2Qn, while the number of those for which π(1) > π(n) is equal to

1
2
Qn −Bn = C̃n − 1

2
Qn,

and the (n + 1)th term of this difference is equal to

(9) (n + 1)4n−2 − n

2

(
2n + 1
n− 1

)
,

whose first terms are 1, 10, 69, 406, 2186, 11124, . . ., (sequence A038806 in
[22]).

Moreover, it is also possible to consider the set C̃n ∩ C̃′n, i.e., the set of the
permutations π for which there is at least one convex permutomino P such
that π1(P ) = π and one convex permutomino P ′ such that π2(P ′) = π. For
instance, we have:

C̃3 ∩ C̃′3 = ∅,

C̃4 ∩ C̃′4 = {(2, 4, 1, 3), (3, 1, 4, 2)}.
We start by recalling that π ∈ C̃n if and only if πR ∈ C̃′n .

Proposition 9. A permutation π ∈ Qn if and only if π ∈ C̃n ∪ C̃′n.

Proof. (⇐) If π is a square permutation but it is not in C̃n, then necessarily
π(1) > π(n). Hence, if we consider πM , we have πM (1) < πM (n), and
πM ∈ C̃n, then π ∈ C̃′n.
(⇒) Trivial. ¤
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Finally, since
∣∣∣C̃′n

∣∣∣ =
∣∣∣C̃n

∣∣∣, and Qn = 2C̃n−
∣∣∣ C̃n ∩ C̃′n

∣∣∣, we can state the
following.

Proposition 10. For any n ≥ 2, we have

(10)
∣∣∣ C̃n ∩ C̃′n

∣∣∣ = C̃n −Bn = Qn − 2Bn.

The reader can easily recognize that the numbers defined by (10) are
the double of the ones expressed by the formula in (9), so that

(11)
∣∣∣ C̃n+1 ∩ C̃′n+1

∣∣∣ = 2(n + 1)4n−2 −
(

2n− 1
n− 1

)
.

5. Further work

Here we outline the main open problems and research lines on the class
of permutominoes.

(1) It would be natural to look for a combinatorial proof of the formula
(4) for the number of convex permutominoes and (8) for the num-
ber of permutations associated with convex permutominoes. These
proofs could be obtained using the matrix characterization for con-
vex permutominoes provided in Section 3.1.

(2) The main results of the paper have been obtained in an analytical
way. In particular from (4) and (8) we have a direct relation between
convex permutominoes and permutations, obtaining that

(12) Cn+2 = C̃n+2 +
1
2

(
4n −

(
2n

n

))
,

which requires a combinatorial explanation. In particular, recalling
that

Cn =
∑

π∈eCn

|[π]| ,

the right term of (12) is the number of convex permutominoes which
are determined by the permutations having at least one free fixed
point.

Moreover, from (8) and (12) we get that

Qn+2 = Cn+2 +
(

2n

n

)
,

and also this identity cannot be clearly explained using the combi-
natorial arguments used in the paper.
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From (11) we have that the generating function of the permuta-
tions in C̃n ∩ C̃′n is

2
(

x2c(x)
1− 4x

)2

,

where c(x) denotes the generating function of Catalan numbers.
While the factor 2 can be easily explained, since for any π ∈ C̃n ∩
C̃′n, also πM ∈ C̃n ∩ C̃′n, and clearly π 6= π′, the convolution of
Catalan numbers and the powers of four begs for a combinatorial
interpretation.

(3) We would like to consider the characterization and the enumeration
of the permutations associated with other classes of permutominoes,
possibly including the class of convex permutominoes. For instance,
if we take the class of column-convex permutominoes, we observe
that Proposition 2 does not hold. In particular, one can see that,
if the permutomino is not convex, then the set of reentrant points
does not form a permutation matrix (Figure 19).

Figure 19. The four column-convex permutominoes asso-
ciated with the permutation (1, 6, 2, 5, 3, 4); only the left-
most is convex

Moreover, it might be interesting to determine an extension of
Theorem 2 for the class of column-convex permutominoes, i.e., to
characterize the set of column-convex permutominoes associated
with a given permutation. For instance, we observe that while there
is one convex permutomino associated with π = (1, 6, 2, 5, 3, 4),
there are four column-convex permutominoes associated with π
(Figure 19).
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