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ABSTRACT. Let G be an abstract Kac-Moody group over a finite field &d

the closure of the image @ in the automorphism group of its positive building.
We show that if the Dynkin diagram associateds irreducible and neither of
spherical nor of affine type, then the contraction groups of eleme@sahich

are not topologically periodic are not closed. (In those groups there always exist
elements which are not topologically periodic.)

1. INTRODUCTION

Let g be a continuous automorphism of a topological gr@uwith continuous

inverse. Itscontraction group is the subgroup o& defined by
Ug == {x€ G: g"(X) — e asngoes to infinity} .

Interest in contraction groups has been stimulated by applications in the theory
of probability measures and random walks on, and the representation theory of,
locally compact groups. For these applications it is important to know whether a
contraction group is closed. We refer the reader to the introduction in [2] and the
references cited there for information about the applications of contraction groups
and known results. Recent articles which treat contraction groups are [8] and [7].

The article [2] studied the contraction group and its supergroup

R, :={xe G: {g"(x): ne N} is relatively compact

in the case where the ambient group is locally compact and totally disconnected, a
case in which previously little was known. In contrastlfg the grougr; is always
closed if the ambient grou@ is totally disconnected [17, Proposition 3, paiiis) (

and i)]. The groupR; was named th@arabolic group of the automorphisny

in [2] because for any inner automorphism of a semisimple algebraic group over a
local field its parabolic group is the group of rational points of a rational parabolic
subgroup (and every such group is of that form); the corresponding contraction
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group in that case is the group of rational points of the unipotent radical of the par-
abolic subgroup. In this algebraic group context, identifying parabolic subgroups
(in the dynamical sense, introduced above) and their unipotent radicals with para-
bolic subgroups (in the algebraic group sense) and the corresponding contraction
groups is a crucial technique used by G. Prasad to prove strong approximation for
semisimple groups in positive characteristic [11]. This technique was later used
again by G. Prasad to give a simple proof of Tits’s theorem on cocompactness
of open non-compact subgroups in simple algebraic groups over local fields [12],
which can be proved also by appealing to Howe-Moore’s property.

In this article we investigate which contraction groups of inner automorphisms
in complete Kac-Moody groups are closed. Complete Kac-Moody groups (which
we introduce in Section 2) are combinatorial generalizations of semisimple alge-
braic groups over local fields. In contrast to members of the latter class of groups,
complete Kac-Moody groups are generically non-lingatally disconnected, lo-
cally compact groups. These properties make them perfect test cases for the devel-
oping structure theory of totally disconnected, locally compact groups which was
established in [17], and further advanced in [18] and [19].

Our main result is the following theorem, in whose statement the contraction
group of a group elemeigtis understood to be the contraction group of the inner
automorphisng: x — gxg .

Theorem 1(Main Theorem) LetG be an abstract Kac-Moody group over a finite
field andG be the closure of the image & in the automorphism group of its
positive building. Then the following are true:

(1) The contraction group of any topologically periodic elemeriis trivial.

(2) If the type ofG is irreducible and neither spherical nor affine, then the
contraction group of any element that is not topologically periodiGiis
not closed.

Furthermore, the grou® contains non-topologically periodic elements whenever
G is not of spherical type.

The second assertion of Theorem 1 is in sharp contrast with the known results
about contraction groups of elements in spherical and affine Kac-Moody groups.
In particular, all contraction groups of inner automorphisms are closed for semi-
simple algebraic groups over local fields; this follows from the representation of
contraction groups as rational points of unipotent radicals and we direct the reader
to part 2 of Proposition 3 for a slightly more general statement.

Consequently, all contraction groups of inner automorphisms are closed for
certain affine Kac-Moody groups, namely those that are geometric completions of
Chevalley group schemes over the rings of Laurent polynomials over finite fields.
For completions of Kac-Moody groups of any spherical type the same is seen to
be true; see part 1 of Proposition 3.
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Thus Theorem 1 and Proposition 3 provide another instance of the strong di-
chotomy between Euclidean and arbitrary non-Euclidean buildings with large au-
tomorphism groups which is already evident in results such as the Simplicity The-
orem in [5] and the strong Tits alternative for infinite irreducible Coxeter groups
by Margulis-Noskov-Vinberg [9, 10].

The groups covered by the second part of our Main Theorem are topologically
simple [15], indeed in many cases algebraically simple [4] groups, whose flat rank
assumes all positive integral values [1], and indeed are the first known groups who
have non-closed contraction groups and whose flat rank can be largeZ; tivan
refer the reader to [19, 1] for the definition of flat rank. They are thus ‘larger’ but
similar to the group of type-preserving isometries of a regular, locally finite tree,
which is a simple, totally disconnected, locally compact group of flat rank 1, whose
non-trivial contraction groups are non-closed. This follows from Example 3.13(2)
in [2] and Remark 1.

The Main Theorem will be proved within the wider framework of groups with a
locally finite twin root datum. Within this wider framework we need to impose the
additional assumption that the root groups of the given root datum are contractive
(a condition introduced in Subsection 4.2) in order to be able to prove the analogue
of the second statement above. In the Kac-Moody case this condition is automati-
cally fulfilled by a theorem of Caprace an@Ry. In all cases, the geometry of the
underlying Coxeter complex will play a crucial role in the proof via the existence
of ‘a fundamental hyperbolic configuration’, see Theorem 3.

2. FRAMEWORK

We study complete Kac-Moody groups; these were introduced in [14] under
the name ‘topological Kac-Moody groups’. A complete Kac-Moody group is a
geometrically defined completion of an abstract Kac-Moody group over a finite
field. Every Kac-Moody group is a group-valued funct@rsay, on rings, which
is defined by a Chevalley-Steinberg type presentation, whose main parameter is an
integral matrix, a ‘generalized Cartan matrix’, which also defines a Coxeter system
of finite rank; see [16, Subsection 3.6] and [13, Section 9] for details. For each ring
R, the valueG := G(R) of the functorG on R is anabstract Kac-Moody group
over R

For each fieldR the Chevalley-Steinberg presentation endows the abstract Kac-
Moody groupG(R) with the structure of group with a twin root datum , which
is the context in which our results are stated. A twin root datum is a collection
((Ua)geq), H) of subgroups ofs indexed by the se® of roots of the associated
Coxeter systeniW, S) and satisfying certain axioms which ensure that the group
G acts on a ‘twinned’ pair of buildings of typ@V,S); see [13, 1.5.1]. See Sub-
section 0.3, respectively 0.4, in [5] for the list of axioms of a twin root datum and
references to further literature on twin root data and twin buildings.
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In order to define thgeometric completionof G(R), assume thaR is a finite
field. Under this assumption all the groups which constitute the natural root da-
tum of G(R) are finite; groups with a twin root datum having this property will
be calledgroups with a locally finite twin root datum. The Davis-realization
of the buildings defined by a locally finite twin root datum are locally finite, met-
ric, CAT(0)-complexes in the sense of [3] all of whose cells have finite diameter;
see [1, Section 1.1] for a short explanation following M. Davis’ exposition in [6].
The geometric completionof a groupG with locally finite twin root datum is
the closure of the image @ in the automorphism group of the Davis-realization
of the positive building defined by the given root datumGifs an abstract Kac-
Moody group over a finite field that completion will be called the corresponding
complete Kac-Moody groupand denoted be.

The completion of an abstract Kac-Moody group is defined by its action on
its building and our techniques rely on tRAT (0)-geometry of the building, in
particular the action of the group ‘at infinity’. However, note that the topology
and the completion of a group with locally finite twin root datum do depend
on theCAT (0)-structure, only on the combinatorics of the action on the building;
see Lemma 2 in [1]. Therefore one should be able to dispense with the use of the
Davis-realization below.

We summarize the basic topological properties of automorphism groups of lo-
cally finite complexes in the following proposition.

Proposition 1. Let X be a connected, locally finite cell complex. Then the com-
pact-open topology oAut(X) is a locally compact, totally disconnected (hence
Hausdorff) group topology. This topology has a countable basis, hence is
compact and metrizable. Stabilizers and fixators of finite subcomplex¢srof
Aut(X) are compact, open subgroupsAidit(X) and the collection of all fixators
of finite subcomplexes form a neighborhood basis of the identityi(X). These
statements are also true for closed subgroup&wf(X).

Any closed subgroufg say, ofAut (X), which admits a finite subcomplex whose
G-translates covek, is compactly generated and cocompachint (X).

Complete Kac-Moody groups hence have all the properties described above,
including compact generation and co-compactness in the full automorphism group
of its building even though we will not use the latter two properties in this paper.

3. GEOMETRIC REFORMULATION OF TOPOLOGICAL GROUP CONCEPTS

In what follows, we reformulate topological group concepts in geometric terms,
that is in terms of the action on the building. We begin with a geometric reformu-
lation of relative compactness.

A closed subgroufs of the automorphism group of a connected, locally finite,
metric complexX carries two natural structures of bornological group.
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The first bornological group structure @is the natural bornology induced
by its topological group structure, and consists of the collection aktdtively
compactsubsets of the groug.

The second bornological group structure®iis the bornology induced by the
natural bornology on the metric spa&e in which subsets oK are bounded if
and only if they have finite diameter; this bornology on the gr@uponsists of
the collection of subsetdl of G which have the property that for every bounded
subseB of X the setM.B is also bounded. One can verify that the latter condition
on the subseM of G is equivalent to the condition that for some, and hence any,
pointx of X the setM.x is bounded. We will call the sets in the second bornology
on the groups boundedsets.

We now verify that these two bornologies coincide. For subget&/ of the
metric spac& define Transg(Y,W) := {g € G: g.Y C W}. Note that

Transg({y}, {W}) = {gWyGy = GuOwy = GuOwyGy if Jgwy € G: guy.y =W
(%] else
Hence, wheneveG is a closed subgroup of the automorphism group of a con-

nected, locally finite compleX andy, w are points o, the sefTransg({y}, {w})
will be compact and open.

Lemma 1 (geometric reformulation of ‘relatively compact’Let X be a con-
nected, locally finite, metric complex, and assume @ a closed subgroup of
Aut(X) equipped with the compact-open topology. Then a subsgtofelatively
compact if and only if it is bounded.

Proof. We will use the criterion that a subgdtof G is bounded if and only if, for
some chosen vertex,say, the sei.x is bounded.

Assume first thaM is a bounded subset & This means tha¥l.xis a bounded,
hence finite set of vertices. We conclude that

MC [ J Transg({x}, {y}),

yeM.x

which shows thaM is a relatively compact subset Gf
Conversely, assume thisk is a relatively compact subset Gt We have

M C U Transg({x}, {y}).

yeX
and, sinceM is relatively compact, there is a finite subB€¢M, x) of X such that
MC U Transg({x}, {y}) =: T(M,Xx).
yeF (M.x)
We conclude thatl.x C T(M,x).x C F (M, x) which shows thaM is bounded. O
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3.1. Geometric reformulation of topological properties of isometries. Under

the additional condition that the compl¥xcarries aCAT (0)-structure, we use the
previous result to reformulate the topological condition on a group element to be
(topologically) periodic in dynamical terms.

Lemma 2 (weak geometric reformulation of ‘topologically periodic’l.et X be
a connected, locally finite, metricAT (0)-complex. EquipAut(X) with the com-
pact-open topology and leg be an element ofut(X). Theng is topologica-
lly periodic if and only ifg has a fixed point.

Proof. By Lemma 1g is topologically periodic if and only if the group generated
by gis bounded. Since a bounded group of automorphisms of a confpAdte)-
space has a fixed point, topologically periodic elements have fixed points.
Conversely, ifg fixes the pointx say, theng, and the group it generates, is
contained in the compact s&tit (X)y. Henceg is topologically periodic. d

One can even detect the property of being topologically periodic in a purely
geometric way: isometries ¢fAT(0)-spaces which do not have fixed points are
either parabolic or hyperbolic. If, in the previous lemma, we impose the additional
condition that the compleX should have finitely many isometry classes of cells,
thenX is known to have no parabolic isometries and we obtain the following neat
characterization.

Lemma 3 (strong geometric reformulation of ‘topologically periodiclet X be

a connected, locally finite, metri€AT (0)-complex with finitely many isometry
classes of cells. Equiput(X) with the compact-open topology and tgbe an
element oAut(X). Then the following properties are equivalent:

(1) gistopologically periodic;
(2) ghas a fixed point;
(3) gis not hyperbolic.

Proof. The assumption that the compl&xhas finitely many isometry classes of
cells implies that no isometry of is parabolic by a theorem of Bridson [3, 11.6.6
Exercise (2) p. 231]. This shows that the second and third statement of the lemma
are equivalent. The first and the second statement are equivalent by Lemma 2,
which concludes the proof. |

In the case of interest to us, we can add a further characterization of ‘topolog-
ically periodic’ to those given above and we include it for completeness although
we will not need to use it. The scale referred to in the statement is defined as
in [17] and [18].



CONTRACTION GROUPS IN COMPLETE KAC-MOODY GROUPS 7

Lemma 4 (scale characterization of ‘topologically periodiclf G is the geomet-

ric completion of a group with locally finite twin root datum (or the full automor-
phism group of its building) the following statements are also equivalent to the
statements (1)—(3) of Lemma 3:

(4) the scale valugg(g) is equal tol;
(5) the scale valueg(g?) is equal tol;

Furthermoress(9) = sg(g™!) for all gin G.
Proof. This statement follows form Corollary 10 and Corollary 5in[1]. O

3.2. Geometric reformulation of the topological definition of a contraction
group. It follows from Lemma 4 and Proposition 3.24 in [2] that in the geomet-
ric completion of a group with locally finite twin root datum contraction groups
of topologically periodic elements are bounded while the contraction groups of
elements which are not topologically periodic are unbounded. In particular this
observation applies to topological Kac-Moody groups.

The following lemma explains why in this paper we focus on contraction groups
of non-topologically periodic elements. Note that we relax notation and denote the
contraction group of inner conjugation wigfby Ug.

Lemma 5 (contraction group of a topologically periodic elemerfBuppose thaj
is a topologically periodic element of a locally compact group. Then the contrac-
tion groupUy is trivial and hence closed.

Proof. This is a special case of Lemma 3.5 in [2] where g andd = e. a

Membership in contraction groups can be detected by examining the growth of
fixed point sets while going to infinity. The precise formulation is as follows.

Lemma 6 (geometric reformulation of ‘membership in a contraction groupgt
X be a connected, locally finite, meti{@AT (0)-complex. EquipAut(X) with the
compact-open topology. Suppose thas an hyperbolic isometry ok and let
—& be its repelling fixed point at infinity. Lét R — X be a geodesic line with
[(c0) = —&.

Then an isometrg of X is in Uy, if and only if for eachr > 0 there is a real
numberp(g, r) such that all points irK within distancer of the rayl ([p(g,r),»))
are fixed byg.

Proof. The assumptio(co) = —& implies that we may assume without loss of
generality that is an axis oh.

Suppose now tha is an isometry oiX and letr(g,n) be the radius of the ball
aroundP(g,n) :=h~".1(0) that is fixed byg, with the convention that(g, n) equals
—o if gdoes not fix the poin(g, n). By the definition of the contraction groly,
and the topology o\ut(X) the elemeng is contained irJy, if and only if r(g,n)
goes to infinity as goes to infinity.
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Sinceg is an isometry andl is an axis ofh, the pointsP(g,n) for nin N are
equally spaced alon@R). Therefore we may reformulate the condition for mem-
bership inUy given at the end of the last paragraph as in the statement of the
lemma. a

The results in Lemma5b, Lemma 3 and Lemma 6 imply the following dichotomy
for contraction groups.

Lemma 7 (dichotomy for contraction groups)f X is a connected, locally finite,
metric CAT (0)-complex with finitely many isometry classes of cells then we have
the following dichotomy for contraction groups associated to isometrigs of

e Either the isometry is elliptic and its contraction group is trivial,

e or the isometry is hyperbolic and its contraction group is the set of isome-
tries whose fixed point set grows without bounds when one approaches its
repelling fixed point at infinity as described in Lemma 6.

3.3. Geometric reformulation of the topological definition of a parabolic
group. Using the compatibility result between the natural bornologies in Lemma 1
we can also prove a geometric characterization for membership in parabolic
groups. We again relax notation and denote the parabolic group of inner conju-
gation withg by Py.

Lemma 8 (geometric reformulation of ‘membership in a parabolic group’et
X be a connected, locally finite, metricAT (0)-complex. Suppose thétis a
hyperbolic isometry oK and let—¢& be its repelling fixed point at infinity. Théh
is the stabilizer of-¢.

Proof. Suppose first thag is an element of,. Let o be a point ofX. By our
assumption oig and by Lemma 1 there is a constamfg, o) such that

d(h"gh™.0,0) = d(g.(h™".0),(h™".0)) < M(g,0) for alln€ N.

But the point—¢ is the limit of the sequenc@".0)cn and thus by the definition
of points at infinity ofX we infer thatg fixes —¢.

Conversely, assume thgtfixes the point—¢. The above argument can be
reversed and then shows tligis contained irf,. O

There is a dichotomy for parabolic groups that is analogous to the dichotomy
for contraction groups obtained in Lemma 7; the statement is as follows.

Lemma 9 (dichotomy for parabolic groups)if X is a connected, locally finite,
metric CAT (0)-complex with finitely many isometry classes of cells then we have
the following dichotomy for parabolic groups associated to isometries of

e Eitherthe isometry is elliptic and its parabolic group is the ambient group,

e or the isometry is hyperbolic and its parabolic group is the stabilizer of
its repelling fixed point at infinity.
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Proof. Applying Lemma 3.5 in [2] in the case of parabolic groups wita g and
d = e one sees that parabolic groups defined by topologically periodic elements
are equal to the ambient group; this settles the first possibility listed above. By
Lemma 3 an isometry that is not elliptic must be hyperbolic and then the parabolic
group has the claimed form by Lemma 8. O

We conclude this section with the following remark.

Remark 1. SupposeG is a topological groupg € Aut(G) andH is a g-stable
subgroup ofa. Then the contraction group gfin H is the intersection of the con-
traction group ofg in G with H; an analogous statement is true for the parabolic
groups ofg within H and G. Thus the geometric characterizations of contraction
groups and parabolics given in Lemmas 6 and 8 and the dichotomies described in
Lemma 7 and 9 also hold for subgroupsfait (X) for the specified spaces

4. OUTLINE OF THE PROOF OF THEMAIN THEOREM

We know from Lemma 5 that contraction groups of topologically periodic ele-
ments are trivial and hence closed. This proves statement 1 of our Main Theorem.
Under the additional condition on the type of the Weyl group given in state-

ment 2, we will show that for any non-topologically periodic elemérgay, ofG
the groupU, NU,,-1 contains &G-conjugate of a root group from the natural root
datum forG.

4.1. The criterion implying non-closed contraction groups. Theorem 3.32

in [2] gives 12 equivalent conditions for a contraction group in a metric totally
disconnected, locally compact group to be closed. By the equivalence of condi-
tions (1) and (4) from Theorem 3.32 in [2] the gradpis not closed if and only

if the groupU,NU,,-1 is not trivial, hence the property whose verification we an-
nounced in the previous paragraph confirms statement 2 of our Main Theorem.
The proof of this strengthening of statement 2 of Theorem 1 proceeds in three
steps.

(1) Firstly, we show that any geodesic linesay, can be moved to a line
I” = g.I with image in the standard apartment by a suitable elemert
the completed grou. In what follows we will be interested only in the
case where the linkis an axis of a hyperbolic isomettye G.

(2) Secondly, we use the assumption on the type of the Weyl group to show
that for any geodesic linE in the standard apartment there is a triple of
roots(a, B,y) in “fundamental hyperbolic configuration” with respect to
|. By this we mean thatr, 3 andy are pairwise non-opposite pairwise
disjoint roots, such that the two endslbfre contained in the respective
interiors ofa andf.
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(3) Thirdly and finally, we use that every split or almost split Kac-Moody
group has (uniformly) contractive root groups, a notion introduced in Sub-
section 4.2 below, to arrive at the announced conclusion. More precisely,
the geometric criterion for membership in contraction groups is used to
show that whenever is a hyperbolic isometry i, the linel’ is an axis
of ' contained in the standard apartment and the fundamental hyperbolic
configuration(a, 3,y) is chosen as mentioned in the previous item, then
the root groupJ__, is contained in the grougy NU, 1.

In terms of the originally chosen hyperbolic isomelrand the elemeng of
G found in step 1 above, the conclusion arrived at after step 3 isgt‘rJraLyg -
UpnN Uh—l.

For our proof to work, we do not need to assume that our original gfdup
is the abstract Kac-Moody group over a finite field. Step 1 uses that the group
is a completion of a group with a locally finite twin root datum, Step 2 uses a
property of the corresponding Coxeter complex and Step 3 works for groups with
a locally finite twin root datum whose root groups are contractive, a notion which
we introduce now.

4.2. Contractive root groups. As explained above, the following condition will
play a central role in the proof of our Main Theorem. In the formulation of that
condition, we denote the boundary wall of the half-apartment defined by aroot
by da, as is customary.

Definition 1. LetG be a group with twin root daturtUy )qeco. We say thaG has
contractive root groupsf and only if for all a in ® we have: Ifxis a point in the
half-apartment defined by, then the radius of the ball aroundwhich is fixed
pointwise byJ, goes to infinity as the distancexfo da goes to infinity.

The natural system of root groups of any split or almost split Kac-Moody group
satisfies a stronger, uniform version of the condition of contractive root groups,
which we introduce now. This latter condition was called condition (FPRS) in
[5], where it was shown in Proposition 4 that any split or almost split Kac-Moody
group satisfies it.

Definition 2. LetG be a group with twin root daturfUq ) gco. We say tha6 has
uniformly contractive root groupsf and only if for each poink in the standard
apartment of the positive building defined by the given root datum and all coots
in ® whose corresponding half-apartment containghe radius of the ball which
is fixed pointwise by, goes to infinity as the distance @& to x goes to infinity.

Remark 2. By Lemma 6, for a groufs; say, with twin root datuniUy ) gee, Which
has contractive root groups, for any roatthe root groupU, is contained in the
contraction group of any elemegbf G whose repelling point at infinity is defined



CONTRACTION GROUPS IN COMPLETE KAC-MOODY GROUPS 11

by a geodesic ray contained in the interior of the half-apartment defined Be
latter condition will be instrumental in showing our main theorem.

Abramenko and Nhlherr constructed an example of a group with twin root
datum that does not have uniformly contractive root groups. However, in that
example the effect of fixed point sets staying bounded is obtained by going towards
infinity along a non-periodic path of chambers. Therefore, it is not possible to find
an automorphism of the building that translates in the direction of that path.

In discussions between the authors and BernhaiihiMerr he asserted that
a bound on the nilpotency degree of subgroups of the group with twin root da-
tum would imply that fixed point sets always grow without bounds along periodic
paths.

Remark 3. It would be interesting to define and investigate quantitative versions
of the notions of contractive and uniformly contractive root groups for groups with

locally finite twin root datum. These quantitative versions would specify the growth
of the radius of the ball fixed by a root group as a function of the distance of the
center of that ball from the boundary hyperplane. We suspect that this growth
might be linear in all situations if and only if all contraction groups of elements in

the geometric completion of a group with locally finite twin root datum are closed.

5. PROOF OF THEMAIN THEOREM
We will prove the following generalization of our Main Theorem.

Theorem 2(strong version of the Main TheoremletG be a group with a locally
finite twin root datum andG the closure of the image @& in the automorphism
group of its positive building. Then the following are true:

(1) The contraction group of any topologically periodic elemeriis trivial.

(2) If the root groups ofs are contractive and the type &fis irreducible and
neither spherical nor affine then the contraction group of any element that
is not topologically periodic irG is not closed.

Furthermore every element of infinite order in the Wey! grou difts to a non-
topologically periodic element @; in particular, if the Weyl group o6 is not of
spherical type, then the groud contains non-topologically periodic elements.

The proof of this theorem will be obtained from several smaller results as out-
lined in Subsection 4.1 above. By Lemma 5, we only need to prove statement 2
and the existence statement for non-topologically periodic elements.

The first step towards the proof of statement 2 of Theorem 2 is provided by the
following proposition.

Proposition 2 (geodesic lines can be moved to the standard apartmeet)G a
group with locally finite twin root datum. Denote Bthe geometric completion of
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G defined by the given root datum, Xythe Davis-realization of the corresponding
positive building and by the corresponding standard apartment.

If | is a geodesic line ifX, then there is an elemegtin G such thatg.| (R) is
contained in/A| and intersects the fundamental chamber.

Proof. Since the grouf acts transitively on chambers, there is an elengéint
G such that'.I (R) intersects the fundamental chambge A. We therefore may,
and will, assume thd{R) intersectxy from the outset.

Whenevel leavesA, necessarily at a wall, use elements of the corresponding
root groupJ, which fixescy to ‘fold | into A’ . This needs to be done at increasing
distance fronty alongl ‘on both sides’, leading to an infinite product of elements
from root groups. The sequence consisting of the partial products of that infinite
product is contained in the stabilizer of, which is a compact set. Hence that
sequence has a convergent subsequence, which implies that the infinite product
defined above is convergent, with lingtsay. By constructiong attains the pur-
pose of the element of the same name in the statement of the proposition and we
are done. O

The second step in the proof of statment 2 of Theorem 2 consists of the follow-
ing strengthening of Theorem 14 in [5].

Theorem 3(a “fundamental hyperbolic configuration” exists w.r.t. any linkgt

A be a Coxeter complex, whose type is irreducible and neither spherical nor affine.
Suppose thdt: R — |A| is a geodesic line. Then there is a triple of ro6ts 3, y)
which are pairwise disjoint and pairwise non-opposite such that for suitably cho-
sen real numbera and b the raysl (] — «,a]) and|([b,»[) are contained in the
interior of the half-apartments defined byand 3 respectively.

Proof. The linel (R) must cut some wall o, H say. One of the two roots whose
boundary isH contains the ray(] — «,a]) for sufficiently smalla; we name that
root a. Since the Coxeter complex is not of spherical type, there is another wall
H’ which cutsl, but notH. Call 8 the root whose boundary id’ and which
contains the raj/([b, «o[) for sufficiently largeb. The existence of a rogtas in the
statement is then assured by Theorem 14 in [5], which completes the proaf.

The third and final step in the proof of statment 2 of Theorem 2 is an immediate
consequence of our assumption that root groups are contractive and the geometric
criterion for membership in contraction groups.

Lemma 10 (non-triviality of intersection of opposite contraction groupkpt G

be a group which contains the root groups of a group with twin root datum all of
whose root groups are contractive. Assume thatG is not topologically periodic
and letl be an axis oh. If yis a root whose position relative las as described

in the previous lemma, thdé#h_, C U,NU,-1. HenceUy is not closed.
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Proof. Since the root group)_y is contractive, Lemma 6 ensures that it is con-
tained in any contraction grolx with the property that the repelling fixed point of

k atinfinity is defined by a ray that is contained in the interior of the half-apartment
defined by—y. Bothh andh~? satisfy this condition ok, hencel_, C UpNU; -1

as claimed. Since_y is not trivial, we infer from Theorem 3.32 in [2] thik, is

not closed. O

The following lemma provides the final statement of Theorem 2 and thereby
concludes the proof of that theorem.

Lemma 11 (existence of non-topologically periodic elementket G be a group

with a locally finite twin root datum an¢ the closure of the image @ in the
automorphism group of its positive building. Then every element of infinite order
in the Weyl group o6 lifts to a non-topologically periodic element & in par-
ticular, if the Weyl group ofs is not of spherical type, then the gro@contains
non-topologically periodic elements.

Proof. Since a Coxeter group is torsion if and only if it is of spherical type, the
second claim follows from the first. In what follows, we will show that the lift of
an elementv in the Weyl group is topologically periodic if and onlyf has finite
order.

By Lemma 3, an elemenh say, ofG is topologically periodic if and only if
its action on the buildingX, has a fixed point. If that elementis obtained as
an inverse image of an elementsay, of the Weyl group, it belongs to the stabi-
lizer of the standard apartmeft Since the Davis-realizatiod\ | of the standard
apartment is a complete, convex subspace of the com@lt€0)-spaceX, us-
ing the nearest-point projection fro¥onto |A|, we see that the action afon X
has a fixed point if and only if its restricted action | has a fixed point. The
latter condition is equivalent to the condition that the natural actiow of |A|
has a fixed point. Since this happens if and onhy ifias finite order, our claim is
proved. O

6. THE CASE OF A DISCONNECTEIDYNKIN DIAGRAM

The following two results may be used to reduce the determination of contrac-
tion groups for elements in arbitrary complete Kac-Moody groups to the determi-
nation of the contraction groups in the factors defined by the irreducible compo-
nents. Their proofs are left to the reader.

Lemma 12(product decomposition for root data with disconnected diagrare)
G be a group with a locally finite twin root datum such that the typ&ad$ the
product of irreducible factors whose restricted root data define grdsjs . .Gy.
Denote byH the quotient of a groupl by its center. Then

GGy x - xG, and G=2=Gyx---xGy.
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as abstract, respectively topological, groups.

Lemma 13(contraction groups of elements in productsgtG;, ..., Gy be locally
compact groups an¢bs,...,91) € Gy x... x Gn. Then

We conjecture that the contraction groups for elements in a complete Kac-
Moody group of spherical or affine type are always closed. Supporting evidence
for that conjecture is provided by the following proposition.

Proposition 3 (contraction groups for spherical and known affine typ&sitG be
a totally disconnected, locally compact group. If

(1) eitherG is the geometric completion of an abstract Kac-Moody group of
spherical type over a finite field,

(2) or G is a topological subgroup of the general linear group over a local
field,

then all contraction groups of elements@are closed.

Proof. To show statement 1, observe that an abstract Kac-Moody group of spher-
ical type over a finite field is a finite group. The associated complete gGup,

is then finite too and hence is a discrete group, because its topology is Hausdorff.
Contraction groups in a discrete group are trivial, and it follows that all contraction
groups of all elements i are closed ifG is of spherical type.

As noted in Remark 1, we obtain the contraction group of an elemeith re-
spect to a (topological) subgroug,by intersecting the contraction group relative
to the ambient group witHl.

Thus to establish statement 2 it is enough to treat the special case of the gen-
eral linear group over a local fielk say. Using the same observation again
and noting thatGL,(k) can be realized as a closed subgroupStf;1(k) via
g — diag(g,det(g)~1), it suffices to prove statement 2 in the special case of the
group SLn(k), wherek is a local field. But contraction groups of elements in
SLn(k) have been shown to lierational points of unipotent radicals kfparabolic
subgroups in [12, Lemma 2] as explained in Example 3.13(1) in [2]; as such they
are Zariski-closed and hence closed in the Hausdorff-topology induced by the field
k. This proves statement 2 for the gro8pn(k), and, by the previous reductions,
in all cases. O

There are complete Kac-Moody groups of affine type for which it is unknown
whether the criterion listed under item 2 of Proposition 3 can be applied. For exam-
ple, the complete Kac-Moody groups defined by the generalized Cartan-matrices

( _21 n; ) with integralm < —4 are of that kind.
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