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Abstract. The Stanley lattice, Tamari lattice and Kreweras lattice
are three remarkable orders defined on the set of Catalan objects of
a given size. These lattices are ordered by inclusion: the Stanley
lattice is an extension of the Tamari lattice which is an extension of
the Kreweras lattice. The Stanley order can be defined on the set of
Dyck paths of size n as the relation of being above. Hence, intervals in
the Stanley lattice are pairs of non-crossing Dyck paths. In a former
article, the second author defined a bijection Φ between pairs of non-
crossing Dyck paths and the realizers of triangulations (or Schnyder
woods). We give a simpler description of the bijection Φ. Then,
we study the restriction of Φ to Tamari’s and Kreweras’ intervals.
We prove that Φ induces a bijection between Tamari intervals and
minimal realizers. This gives a bijection between Tamari intervals
and triangulations. We also prove that Φ induces a bijection between
Kreweras intervals and the (unique) realizers of stack triangulations.
Thus, Φ induces a bijection between Kreweras intervals and stack
triangulations which are known to be in bijection with ternary trees.

1. Introduction

A Dyck path is a lattice path made of +1 and −1 steps that starts from
0, remains non-negative and ends at 0. It is often convenient to represent
a Dyck path by a sequence of North-East and South-East steps as is done
in Figure 1 (a). The set Dn of Dyck paths of length 2n can be ordered
by the relation P ≤S Q if P stays below Q. This partial order is in fact a
distributive lattice on Dn known as the Stanley lattice. The Hasse diagram
of the Stanley lattice on D3 is represented in Figure 2 (a).

It is well known that the Dyck paths of length 2n are counted by the nth

Catalan number Cn = 1
n+1

(

2n
n

)

. The Catalan sequence is a pervasive guest
in enumerative combinatorics. Indeed, beside Dyck paths, this sequence
enumerates the binary trees, the plane trees, the non-crossing partitions
and over 60 other fundamental combinatorial structures [17, Ex. 6.19].
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1 2 3 4 5 6 7
(c)(b)(a)

Figure 1. (a) A Dyck path. (b) A binary tree. (c) A
non-crossing partition.

These different incarnations of the Catalan family gave rise to several lat-
tices beside Stanley’s. The Tamari lattice appears naturally in the study of
binary trees where the covering relation corresponds to right rotation. This
lattice is actively studied due to its link with the associahedron (Stasheff
polytope). Indeed, the Hasse diagram of the Tamari lattice is the 1-skeleton
of the associahedron. The Kreweras lattice appears naturally in the setting
of non-crossing partitions. In the seminal paper [9], Kreweras proved that
the refinement order on non-crossing partitions defines a lattice. Kreweras
lattice appears to support a great deal of mathematics that reach far be-
yond enumerative combinatorics [10, 16]. Using suitable bijection between
Dyck paths, binary trees, non-crossing partitions and plane trees, the three
Catalan lattices can be defined on the set of plane trees of size n in such
way that the Stanley lattice LS

n is an extension of the Tamari lattice LT
n

which in turn is an extension of the Kreweras lattice LK
n (see [8, Ex. 7.2.1.6

- 26, 27 and 28]). In this paper, we shall find convenient to embed the three
Catalan lattices on the set Dn of Dyck paths. The Hasse diagram of the
Catalan lattices on D3 is represented in Figure 2.

(b) (c)(a)

Figure 2. Hasse diagrams of the Catalan lattices on the
set D3 of Dyck paths: (a) Stanley lattice, (b) Tamari lat-
tice, (c) Kreweras lattice.
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There are closed formulas for the number of intervals (i.e. pairs of compa-
rable elements) in each of the Catalan lattices. The intervals of the Stanley
lattice are the pairs of non-crossing Dyck paths and the number |LS

n | of
such pairs can be calculated using the lattice path determinant formula of
Lindström-Gessel-Viennot [6]. It is shown in [4] that

|LS
n | = Cn+2Cn − C2

n+1 =
6(2n)!(2n + 2)!

n!(n + 1)!(n + 2)!(n + 3)!
.(1)

The intervals of the Tamari lattice were recently enumerated by Chapoton
[3] using a generating function approach. It was proved that the number of
intervals in the Tamari lattice is

|LT
n | =

2(4n + 1)!

(n + 1)!(3n + 2)!
.(2)

Chapoton also noticed that (2) is the number of triangulations (i.e. maximal
planar graphs) and asked for an explanation. The number |LK

n | of intervals
of the Kreweras Lattice has an even simpler formula. In [9], Kreweras proved
by a recursive method that

|LK
n | =

1

2n + 1

(

3n

n

)

.(3)

This is also the number of ternary trees and a bijection was exhibited in [5].

In [1], the second author defined a bijection Φ between the pairs of non-
crossing Dyck paths (equivalently, Stanley’s intervals) and the realizers (or
Schnyder woods) of triangulations. The main purpose of this article is to
study the restriction of the bijection Φ to the Tamari intervals and to the
Kreweras intervals. We first give an alternative, simpler, description of
the bijection Φ. Then, we prove that the bijection Φ induces a bijection
between the intervals of the Tamari lattice and the realizers which are min-
imal. Since every triangulation has a unique minimal realizer, we obtain a
bijection between Tamari intervals and triangulations. As a corollary, we
obtain a bijective proof of Formula (2) thereby answering the question of
Chapoton. Turning to the Kreweras lattice, we prove that the mapping
Φ induces a bijection between Kreweras intervals and the realizers which
are both minimal and maximal. We then characterize the triangulations
having a realizer which is both minimal and maximal and prove that these
triangulations are in bijection with ternary trees. This gives a new bijective
proof of Formula (3).

The outline of this paper is as follows. In Section 2, we review our
notations about Dyck paths and characterize the covering relations for the
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Stanley, Tamari and Kreweras lattices in terms of Dyck paths. In Section 3,
we recall the definitions about triangulations and realizers. We then give
an alternative description of the bijection Φ defined in [1] between pairs
of non-crossing Dyck paths and the realizers. In Section 4, we study the
restriction of Φ to the Tamari intervals. Lastly, in Section 5 we study the
restriction of Φ to the Kreweras intervals.

2. Catalan lattices

Dyck paths. A Dyck path is a lattice path made of steps N = +1 and
S = −1 that starts from 0, remains non-negative and ends at 0. A Dyck
path is said to be prime if it remains positive between its start and end.
The size of a path is half its length and the set of Dyck paths of size n is
denoted by Dn.

Let P be a Dyck path of size n. Since P begins by an N step and has
n N steps, it can be written as P = NSα1NSα2 . . . NSαn . We call ith

descent the subsequence Sαi of P . For i = 0, 1, . . . , n we call ith exceedence
and denote by ei(P ) the height of the path P after the ith descent, that is,
ei(P ) = i−

∑

j≤i αj . For instance, the Dyck path represented in Figure 3 (a)

is P = NS1NS0NS1NS2NS0NS0NS3 and e0(P ) = 0, e1(P ) = 0, e2(P ) =
1, e3(P ) = 1, e4(P ) = 0, e5(P ) = 1, e6(P ) = 2 and e7(P ) = 0. If P, Q
are two Dyck paths of size n, we denote δi(P, Q) = ei(Q) − ei(P ) and
∆(P, Q) =

∑n

i=1 δi(P, Q). For instance, if P and Q are respectively the
lower and upper paths in Figure 3 (b), the values δi(P, Q) are zero except
for δ1(P, Q) = 1, δ4(P, Q) = 2 and δ5(P, Q) = 1.

71 3 50 2 4 6
(b)(a)

71 3 50 2 4 6

Figure 3. (a) Exceedence of a Dyck path. (b) Differences
between two Dyck paths.

For 0 ≤ i ≤ j ≤ n, we write i P j (resp. i P j) if ei(P ) ≥ ej(P ) and
ei(P ) ≤ ek(P ) (resp. ei(P ) < ek(P )) for all i < k < j. In other words,

i P j (resp. i P j) means that the subpath NSαi+1NSαi+2 . . .NSαj is a
Dyck path (resp. prime Dyck path) followed by ei(P )− ej(P ) S steps. For

instance, for the Dyck path P of Figure 3 (a), we have 0 P 4, 1 P 4 and
2 P 4 (and many other relations).
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We will now define the Stanley, Tamari and Kreweras lattices in terms
of Dyck paths. More precisely, we will characterize the covering relation of
each lattice in terms of Dyck paths and show that our definitions respects
the known hierarchy between the three lattices (the Stanley lattice is a re-
finement of the Tamari lattice which is refinement of the Kreweras Lattice;
see [8, Ex. 7.2.1.6 - 26, 27 and 28]).

Stanley lattice. Let P = NSα1 . . . NSαn and Q = NSβ1 . . . NSβn be two
Dyck paths of size n. We denote by P ≤S Q if the path P stays below the
path Q. Equivalently, ei(P ) ≤ ei(Q) for all 1 ≤ i ≤ n. The relation ≤S

defines the Stanley lattice LS
n on the set Dn. Clearly the path P is covered

by the path Q in the Stanley lattice if Q is obtained from P by replacing
a subpath SN by NS. Equivalently, there is an index 1 ≤ i ≤ n such that
βi = αi − 1, βi+1 = αi+1 + 1 and βk = αk for all k 6= i, i + 1. The covering
relation of the Stanley lattice is represented in Figure 4 (a) and the Hasse
Diagram of LS

3 is represented in Figure 2 (a).

(a) (b)

Figure 4. Covering relations in (a) Stanley lattice, (b)
Tamari lattice.

Tamari lattice. The Tamari lattice has a simple interpretation in terms
of binary trees. The set of binary trees can be defined recursively by the
following grammar. A binary tree B is either a leaf denoted by ◦ or is an
ordered pair of binary trees, denoted B = (B1, B2). It is often convenient
to draw a binary tree by representing the leaf by a white vertex and the
tree B = (B1, B2) by a black vertex at the bottom joined to the subtrees B1

(on the left) and B2 (on the right). The tree (((◦, ◦), ((◦, ◦), ◦)), (◦, (◦, ◦)))
is represented in Figure 5.

σ

Figure 5. The binary tree (((◦, ◦), ((◦, ◦), ◦)), (◦, (◦, ◦)))
and its image by the bijection σ.

The set Bn of binary trees with n nodes has cardinality Cn = 1
n+1

(

2n

n

)

and there are well known bijections between the set Bn and the set Dn. We
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call σ the bijection defined as follows: the image of the binary tree reduced
to a leaf is the empty word and the image of the binary tree B = (B1, B2)
is the Dyck path σ(B) = σ(B1)Nσ(B2)S. An example is given in Figure 5.

In [7], Tamari defined a partial order on the set Bn of binary trees
and proved to be a lattice. The covering relation for the Tamari lat-
tice is defined has follows: a binary tree B containing a subtree of type
X = ((B1, B2), B3) is covered by the binary tree B′ obtained from B by
replacing X by (B1, (B2, B3)). The Hasse diagram of the Tamari lattice on
the set of binary trees with 4 nodes is represented in Figure 6 (left).

Figure 6. Hasse diagram of the Tamari lattice LT
4 .

The bijection σ allows to transfer the Tamari lattice to the set of Dn Dyck
paths. We denote by LT

n the image of the Tamari lattice on Dn and denote
by P ≤T Q if the path P is less than or equal to the path Q for this order.
The Hasse diagram of LT

4 is represented in Figure 6 (right). The following
ptoposition expresses the covering relation of the Tamari lattice LT

n in terms
of Dyck paths. This covering relation is illustrated in Figure 4 (b).

Proposition 2.1. Let P = NSα1 . . . NSαn and Q = NSβ1 . . .NSβn be two
Dyck paths. The path P is covered by the path Q in the Tamari lattice LT

n

if Q is obtained from P by swapping an S step and the prime Dyck subpath

following it, that is, there are indices 1 ≤ i < j ≤ n with αi > 0 and i P j
such that βi = αi − 1, βj = αj + 1 and βk = αk for all k 6= i, j.

Corollary 2.2. The Stanley lattice LS
n is a refinement of the Tamari lattice

LT
n . That is, for any pair of Dyck paths P, Q, P ≤T Q implies P ≤S Q.

Proof of Proposition 2.1: Let B be a binary tree and let P = σ(B).
• We use the well known fact that there is a one-to-one correspondence
between the subtrees of B and the Dyck subpaths of P which are either a
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prefix of P or are preceded by an N step. (This classical property is easily
shown by induction on the size of P .)
• If the binary tree B′ is obtained from B by replacing a subtree X =
((B1, B2), B3) by X ′ = (B1, (B2, B3)), then the Dyck path Q = σ(B′) is
obtained from P by replacing a subpath σ(X) = σ(B1)Nσ(B2)SNσ(B3)S
by σ(X ′) = σ(B1)Nσ(B2)Nσ(B3)SS; hence by swapping an S step and the
prime Dyck subpath following it.
• Suppose conversely that the Dyck path Q is obtained from P by swap-
ping an S step with a prime Dyck subpath NP3S following it. Then,
there are two Dyck paths P1 and P2 (possibly empty) such that W =
P1NP2SNP3S is a Dyck subpath of P which is either a prefix of P or is
preceded by an N step. Hence, the binary tree B contains the subtree
X = σ−1(W ) = ((B1, B2), B3), where Bi = σ−1(Pi), i = 1, 2, 3. Moreover,
the binary tree B′ = σ−1(Q) is obtained from B by replacing the subtree
X = ((B1, B2), B3) by X ′ = (B1, (B2, B3)) = σ−1(P1NP2NP3SS). �

Kreweras lattice. A partition of {1, . . . , n} is non-crossing if whenever
four elements 1 ≤ i < j < k < l ≤ n are such that i, k are in the same class
and j, l are in the same class, then the two classes coincide. The non-crossing
partition whose classes are {1}, {2, 4}, {3}, and {5, 6, 7} is represented in
Figure 7. In this figure, each class is represented by a connected cell incident
to the integers it contains.

1 2 3 4 5 6 7

θ

Figure 7. A non-crossing partition and its image by the
bijection θ.

The set NCn of non-crossing partition on {1, . . . , n} has cardinality
Cn = 1

n+1

(

2n

n

)

and there are well known bijections between non-crossing
partitions and Dyck paths. We consider the bijection θ defined as follows.
The image of a non-crossing partition π of size n by the mapping θ is the
Dyck path θ(π) = NSα1NSα2 . . .NSαn , where αi is the size of the class
containing i if i is maximal in its class and αi = 0 otherwise. An example
is given in Figure 7.

In [9], Kreweras showed that the partial order of refinement defines a
lattice on the set NCn of non-crossing partitions. The covering relation of
this lattice corresponds to the merging of two parts when this operation does
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not break the non-crossing condition. The Hasse diagram of the Kreweras
lattice on the set NC4 is represented in Figure 8 (left).

Figure 8. Hasse diagram of the Kreweras lattice LK
4 .

The bijection θ allows to transfer the Kreweras lattice on the set Dn of
Dyck paths. We denote by LK

n the lattice structure obtained on Dn and
denote by P ≤K Q if the path P is less than or equal to the path Q for
this order. The Hasse diagram of LK

4 is represented in Figure 8 (right).
The following proposition expresses the covering relation of the Kreweras
lattice LK

n in terms of Dyck paths. This covering relation is represented in
Figure 9.

Proposition 2.3. Let P = NSα1 . . . NSαn and Q = NSβ1 . . .NSβn be two
Dyck paths of size n. The path P is covered by the path Q in the Kreweras
lattice LK

n if Q is obtained from P by swapping a (non-empty) descent with
a Dyck subpath following it, that is, there are indices 1 ≤ i < j ≤ n with
αi > 0 and i P j such that βi = 0, βj = αi+αj and βk = αk for all k 6= i, j.

Corollary 2.4. The Tamari lattice LT
n is a refinement of the Kreweras

lattice LK
n . That is, for any pair P, Q of Dyck paths, P ≤K Q implies

P ≤T Q.

Figure 9. Two examples of covering relation in the Krew-
eras lattice.

Proposition 2.3 is a immediate consequence of the following lemma.

Lemma 2.5. Let π be a non-crossing partition and let P = θ(π). Let c and
c′ be two classes of π with the convention that i = max(c) < j = max(c′).
Then, the classes c and c′ can be merged without breaking the non-crossing
condition if and only if i P j.
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Proof: For any index k = 1, . . . , n, we denote by ck the class of π containing
k. Observe that the classes c and c′ can be merged without breaking the
non-crossing condition if and only if there are no integers r, s with cr = cs

such that r < i < s < j or i < r < j < s. Observe also from the definition
of the mapping θ that for all index l = 1, . . . , n, the exceedence el(P ) is
equal to the number of indices k ≤ l such that max(ck) > l.
• We suppose that i P j and we want to prove that merging the classes c and
c′ does not break the non-crossing condition. We first prove that there are
no integers r, s such that i < r < j < s and cr = cs. Suppose the contrary.
In this case, there is no integer k ≤ r such that r < max(ck) ≤ j (otherwise,
ck = cr = cs by the non-crossing condition, hence max(ck) ≥ max(cs) > j).
Thus, {k ≤ r/ max(ck) > r} = {k ≤ r/ max(ck) > j} ( {k ≤ j/ max(ck) >
j}. This implies er(P ) < ej(P ) and contradicts the assumption i P j. It
remains to prove that there are no integers r, s such that r < i < s < j
and cr = cs. Suppose the contrary and let s′ = max(cr). The case where
s′ ≥ j has been treated in the preceding point so we can assume that
s′ < j. In this case, there is no integer k such that i < k ≤ s′ and
max(ck) > s′ (otherwise, ck = cr = cs′ by the non-crossing condition,
hence max(ck) = max(cr) = s′). Thus, {k ≤ i/ max(ck) > i} ( {k ≤
i/ max(ck) > s′} = {k ≤ s′/ max(ck) > s′}. This implies ei(P ) < es′(P )
and contradicts the assumption i P j.
• We suppose now that merging the classes c and c′ does not break the
non-crossing partition and we want to prove that i P j. Observe that there
is no integer k such that i < k ≤ j and max(ck) > j (otherwise, merging
the classes c and c′ would break the non-crossing condition). Thus, {k ≤
j/ max(ck) > j} = {k ≤ i/ max(ck) > j} ⊆ {k ≤ i/ max(ck) > i}. This
implies ej(P ) ≤ ei(P ). It remains to prove that there is no index s such
that i < s < j and es(P ) < ei(P ). Suppose the contrary and consider the
minimal such s. Observe that s is maximal in its class, otherwise es−1(P ) =
es(P ) − 1 < ei(P ) contradicts the minimality of s. Observe also that i <
r = min(cs) otherwise merging the classes c and c′ would break the non-
crossing condition. By the non-crossing condition, there is no integer k < r
such that r ≤ max(ck) ≤ s. Thus, {k ≤ r − 1/ max(ck) > r − 1} = {k ≤
r − 1/ max(ck) > s} ⊆ {k ≤ s/ max(ck) > s}. This implies er−1(P ) ≤
es(P ) < ei(P ) and contradicts the minimality of s. �

3. A bijection between Stanley intervals and realizers

In this section, we recall some definitions about triangulations and real-
izers. Then, we define a bijection between pairs of non-crossing Dyck paths
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and realizers.

3.1. Triangulations and realizers.

Maps. A planar map, or map for short, is an embedding of a connected
finite planar graph in the sphere considered up to continuous deformation.
In this paper, maps have no loop nor multiple edge. The faces are the
connected components of the complement of the graph. By removing the
midpoint of an edge we get two half-edges, that is, one dimensional cells
incident to one vertex. Two consecutive half-edges around a vertex define a
corner. If an edge is oriented we call tail (resp. head) the half-edge incident
to the origin (resp. end).

A rooted map is a map together with a special half-edge which is not
part of a complete edge and is called the root. (Equivalently, a rooting is
defined by the choice of a corner.) The root is incident to one vertex called
root-vertex and one face (containing it) called the root-face. When drawing
maps in the plane the root is represented by an arrow pointing on the root-
vertex and the root-face is the infinite one. See Figure 10 for an example.
The vertices and edges incident to the root-face are called external while the
others are called internal. From now on, maps are rooted without further
notice.

Color 0

Color 1

Color 2

v0

v2 v1

Figure 10. A rooted triangulation (left) and one of its
realizers (right).

Triangulations. A triangulation is a map in which any face has degree
3 (has 3 corners). A triangulation has size n if it has n internal vertices.
The incidence relation between faces and edges together with Euler formula
show that a triangulation of size n has 3n internal edges and 2n+1 internal
triangles.

In one of its famous census paper, Tutte proved by a generating function

approach that the number of triangulations of size n is tn = 2(4n+1)!
(n+1)!(3n+2)!
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[18]. A bijective proof of this result was given in [12].

Realizers. We now recall the notion of realizer (or Schnyder wood) defined
by Schnyder [14, 15]. Given an edge coloring of a map, we shall call i-edge
(resp. i-tail, i-head) an edge (resp. tail, head) of color i.

Definition 3.1 ([14]). Let M be a triangulation and let U be the set of its
internal vertices. Let v0 be the root-vertex and let v1, v2 be the other exter-
nal vertices with the convention that v0, v1, v2 appear in counterclockwise
order around the root-face.
A realizer of M is a coloring of the internal edges in three colors {0, 1, 2}
such that:

(1) Tree condition: for i = 0, 1, 2, the i-edges form a tree Ti with vertex
set U ∪{vi}. The vertex vi is considered to be the root-vertex of Ti

and the i-edges are oriented toward vi.
(2) Schnyder condition: in clockwise order around any internal vertex

there is: one 0-tail, some 1-heads, one 2-tail, some 0-heads, one
1-tail, some 2-heads. This situation is represented in Figure 11.

We denote by R = (T0, T1, T2) this realizer.

Color 1

Color 0

Color 2

Figure 11. Edges coloration and orientation around a ver-
tex in a realizer (Schnyder condition).

A realizer is represented in Figure 10 (right). Let R = (T0, T1, T2) be
a realizer. We denote by T0 the tree made of T0 together with the edge
(v0, v1). For any internal vertex u, we denote by pi(u) the parent of u in
the tree Ti. A cw-triangle (resp. ccw-triangle) is a triple of vertices (u, v, w)
such that p0(u) = v,p2(v) = w and p1(w) = u (resp. p0(u) = v,p1(v) = w
and p2(w) = u). A realizer is called minimal (resp. maximal) if it has no
cw-triangle (resp. ccw-triangle). It was proved in [11, 13] that every trian-
gulation has a unique minimal (resp. maximal) realizer. (The appellations
minimal and maximal refer to a classical lattice which is defined on the set
of realizers of any given triangulation [11, 13].)
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3.2. A bijection between pairs of non-crossing Dyck paths and re-

alizers.

In this subsection, we give an alternative (and simpler) description of the bi-
jection defined in [1] between realizers and pairs of non-crossing Dyck paths.

We first recall a classical bijection between plane trees and Dyck paths.
A plane tree is a rooted map whose underlying graph is a tree. Let T be
a plane tree. We make the tour of the tree T by following its border in
clockwise direction starting and ending at the root (see Figure 14 (a)). We
denote by ω(T ) the word obtained by making the tour of the tree T and
writing N the first time we follow an edge and S the second time we follow
this edge. For instance, w(T ) = NNSSNNSNNSNSSNNSSS for the
tree in Figure 14 (a). It is well known that the mapping ω is a bijection
between plane trees with n edges and Dyck paths of size n [8].

Let T be a plane tree. Consider the order in which the vertices are en-
countered while making the tour of T . This defines the clockwise order
around T (or preorder). For the tree in Figure 14 (a), the clockwise order
is v0 < u0 < u1 < . . . < u8. The tour of the tree also defines an order on
the set of corners around each vertex v. We shall talk about the first (resp.
last) corner of v around T .

We are now ready to define a mapping Ψ which associates an ordered
pair of Dyck paths to each realizer.

Definition 3.2. Let M be a rooted triangulation of size n and let R =
(T0, T1, T2) be a realizer of M . Let u0, u1, . . . , un−1 be the internal vertices
of M in clockwise order around T0. Let βi, i = 1, . . . , n − 1 be the number
of 1-heads incident to ui and let βn be the number of 1-heads incident to
v1. Then Ψ(R) = (P, Q), where P = ω−1(T0) and Q = NSβ1 . . . NSβn .

The image of a realizer by the mapping Ψ is represented in Figure 12.

Theorem 3.3. The mapping Ψ is a bijection between realizers of size n
and pairs of non-crossing Dyck paths of size n.

The rest of this section is devoted to the proof of Theorem 3.3. We first
prove that the image of a realizer is indeed a pair of non-crossing Dyck
paths.

Proposition 3.4. Let R = (T0, T1, T2) be a realizer of size n and let
(P, Q) = Ψ(R). Then, P and Q are both Dyck paths and moreover the
path P stays below the path Q.
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v0

v2 v1

Ψ

Φ

Figure 12. The bijections Ψ and Φ.

Proposition 3.4 is closely related to the Lemma 3.6 below which, in turn,
relies on the following technical lemma.

Lemma 3.5. Let M be a map in which every face has degree three. We
consider an orientation of the internal edges of M such that every internal
vertex has outdegree 3 (i.e. is incident to exactly 3 tails). Let C be a simple
cycle made of c edges. By the Jordan Lemma, the cycle C separates the
sphere into two connected regions. We call inside the region not containing
the root. Then, the number of tails incident with C and lying strictly inside
C is c − 3.

Proof: Let v (resp. f, e) be the number of vertices (resp. faces, edges) lying
strictly inside C. Note that the edges strictly inside C are internal hence are
oriented. The number i of tails incident with C and lying strictly inside C
satisfies e = 3v+i. Moreover, the incidence relation between edges and faces
implies 3f = 2e+c and the Euler relation implies (f+1)+(v+c) = (e+m)+2.
Solving for i gives i = c − 3. �

Lemma 3.6. Let R = (T0, T1, T2) be a realizer. Then, for any 1-edge e the
tail of e is encountered before its head around the tree T0.

Proof of Lemma 3.6: Suppose a 1-edge e breaks this rule and consider the
cycle C made of e and the 0-path joining its endpoints. Using the Schnyder
condition it is easy to show that the number of tails incident with C and
lying strictly inside C is equal to the number of edges of C (the different
possibilities are represented in Figure 13). This contradicts Lemma 3.5. �

Lemma 3.7. Let P = NSα1 . . .NSαn be a Dyck path and let T = ω−1(P ).
Let v0 be the root-vertex of the tree T and let u0, u1, . . . , un−1 be its other
vertices in clockwise order around T . Then, the word obtained by making
the tour of T and writing Sβi when arriving at the first corner of ui and N

when arriving at the last corner of ui is W = Sβ0Nα1Sβ1 . . .Sβn−1Nαn .
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e

e e T0

T1

T2

Figure 13. Case analysis for a 1-edge e whose head ap-
pears before its tail around the tree T0.

Proof: We consider the word W obtained by making the tour of T and
writing NSβi when arriving at the first corner of ui and NS when arriving
at the last corner of ui for i = 0, . . . , n− 1. By definition of the mapping ω,
the restriction of W to the letters N, S is W = ω(T ) = P = NSα1 . . . NSαn .

Therefore, W = NSβ0(NS)α1NSβ1(NS)α2 . . .NSβn−1(NS)αn . Hence, the

restriction of W to the letters N, S is W = Sβ0Nα1Sβ1Nα2 . . .Sβn−1Nαn .

�

Proof of Proposition 3.4: We denote P = NSα1 . . . NSαn and Q =
NSβ1 . . . NSβn .
• The mapping ω is known to be a bijection between trees and Dyck paths,
hence P = ω(T ) is a Dyck path.
• We want to prove that Q is a Dyck path staying above P . Consider
the word W obtained by making the tour of T0 and writing N (resp. S)
when we encounter a 1-tail (resp. 1-head). By Lemma 3.7, the word W is

Sβ0Nα1Sβ1Nα2 . . .Sβn−1NαnSβn . By Lemma 3.6, the word W is a Dyck
path. In particular, Sβ0 = 0 and

∑n

i=1 βi =
∑n

i=1 αi = n, hence the
path Q returns to the origin. Moreover, for all i = 1, . . . , n, δi(P, Q) =
∑n

j=1 αi − βi ≥ 0. Thus, the path Q stays above P . In particular, Q is a
Dyck path. �

In order to prove Theorem 3.3, we shall now define a mapping Φ from
pairs of non-crossing Dyck paths to realizers and prove it to be the inverse
of Ψ. We first define prerealizers.

Definition 3.8. Let M be a map. Let v0 be the root-vertex, let v1 be an-
other external vertex and let U be the set of the other vertices. A prerealizer
of M is a coloring of the edges in two colors {0, 1} such that:

(1) Tree condition: for i = 0, 1, the i-edges form a tree Ti with vertex
set U ∪{vi}. The vertex vi is considered to be the root-vertex of Ti

and the i-edges are oriented toward vi.
(2) Corner condition: in clockwise order around any vertex u ∈ U there

is: one 0-tail, some 1-heads, some 0-heads, one 1-tail.
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(3) Order condition: for any 1-edge e, the tail of e is encountered before
its head around the tree T0, where T0 is the tree obtained from T0

by adding the edge (v0, v1) at the right of the root.

We denote by PR = (T0, T1) this prerealizer.

An example of prerealizer is given in Figure 14 (c).

Lemma 3.9. Let PR = (T0, T1) be a prerealizer. Then, there exists a unique
tree T2 such that R = (T0, T1, T2) is a realizer.

In order to prove Lemma 3.9, we need to study the sequences of corner
around the faces of prerealizers. If h and h′ are two consecutive half-edges
in clockwise order around a vertex u we denote by c = (h, h′) the corner
delimited by h and h′. For 0 ≤ i, j ≤ 2, we call (hi, hj)-corner (resp.
(hi, tj)-corner, (ti, hj)-corner, (ti, tj)-corner) a corner c = (h, h′) where h
and h′ are respectively an i-head (resp. i-head, i-tail, i-tail) and a j-head
(resp. j-tail, j-head, j-tail).

Proof of Lemma 3.9: Let PR = (T0, T1) be a prerealizer and let N =
T0 ∪ T1 be the underlying map. Let v0 (resp. v1) be the root-vertex of T0

(resp. T1) and let U be the set of vertices distinct from v0, v1. Let T 0 (resp.
N) be the tree (resp. map) obtained from T0 (resp. N) by adding the edge
(v0, v1) at the right of the root. We first prove that there is at most one
tree T2 such that R = (T0, T1, T2) is a realizer.

• Let f be an internal face of N and let c1, c2, . . . , ck be the corners of
f encountered in clockwise order around T 0. Note that c1, c2, . . . , ck

also correspond to the clockwise order of the corners around the face
f . We want to prove the following properties:

- the corner c1 is a (t1, t0)-corner,
- the corner c2 is either a (h0, h0)- or a (h0, t1)-corner,
- the corners c3, . . . , ck−1 are (h1, h0)-, (h1, t1)-, (t0, h0)- or (t0, t1)-

corners,
- the corner ck is either a (h1, h1)- or a (t0, h1)-corner.

First note that by the corner condition of the prerealizers the pos-
sible corners are of type (h0, h0), (h0, t1), (h1, h0), (h1, h1), (h1, t1),
(t0, h0), (t0, h1), (t0, t1) and (t1, t0). By the order condition, one
enters a face for the first time (during a tour of T0) when crossing
a 1-tail. Hence, the first corner c1 of f is a (t1, t0)-corner while
the corners ci, i = 2, . . . , k are not (t1, t0)-corners. Since c1 is
a (t1, t0)-corner, the corner c2 is either a (h0, h0)- or a (h0, t1)-
corner. Similarly, since c1 is a (t1, t0)-corner, the corner ck is either
a (h1, h1)- or a (t0, h1)-corner. Moreover, for i = 2, . . . , k − 1, the
corner ci is not a (h1, h1)- nor a (t0, h1)-corner or ci+1 would be a
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(t1, t0)-corner. Therefore, it is easily seen by induction on i that the
corners ci, i = 3, . . . , k − 1 are either (h1, h0)-, (h1, t1)-, (t0, h0)- or
(t0, t1)-corners.

• By a similar argument we prove that the corners of the external
face of N are (h1, h0)-, (h1, t1)-, (t0, h0)- or (t0, t1)-corners except
for the corner incident to v0 which is a (h0, h0)-corner and the corner
incident to v1 which is a (h1, h1)-corner.

• Let v2 be an isolated vertex in the external face of N . If a tree T2

with vertex set U ∪ {v2} is such that R = (T0, T1, T2) is a realizer,
then there is one 2-tail in each (h1, h0)-, (h1, t1)-, (t0, h0)- or (t0, t1)-
corner of N while the 2-heads are only incident to the (t0, t1)-corners
and to the vertex v2. By the preceding points, there is exactly one
(t1, t0) corner in each internal face and none in the external face.
Moreover there is at most one way of connecting the 2-tails and the
2-heads in each face of N . Thus, there is at most one tree T2 such
that R = (T0, T1, T2) is a realizer.

We now prove that there exists a tree T2 such that R = (T0, T1, T2) is a
realizer. Consider the colored map (T0, T1, T2) obtained by
- adding an isolated vertex v2 in the external face of N .
- adding a 2-tail in each (h1, h0)-, (h1, t1)-, (t0, h0)- and (t0, t1)-corner of N .
- joining each 2-tail in an internal face f (resp. the external face) to the
unique (t0, t1)-corner of f (resp. to v2).
We denote by M = T0 ∪ T1 ∪ T2 ∪ {(v0, v1), (v0, v2), (v1, v2)} the underlying
map.

• We first prove that the map M = T0∪T1∪T2∪{(v0, v1), (v0, v2), (v1, v2)}
is a triangulation. Let f be an internal face. By a preceding point, f
has exactly one (t1, t0) corner c and the (h1, h0)-, (h1, t1)-, (t0, h0)-
or (t0, t1)-corners are precisely the ones that are not consecutive
with c around f . Thus, the internal faces of N are triangulated
(split into sub-faces of degree 3) by the 2-edges. Moreover, the only
corners of the external face of N which are not of type (h1, h0),
(h1, t1), (t0, h0) or (t0, t1) are the (unique) corner around v0 and
the (unique) corner around v1. Hence the external face of N is
triangulated by the 2-edges together with the edges (v0, v2) and
(v1, v2). Thus, every face of M has degree 3. It only remains to
prove that M has no multiple edge. Since the faces of M are of
degree 3 and every internal vertex has outdegree 3, the hypothesis
of Lemma 3.5 are satisfied. By this lemma, there can be no multi-
ple edge (this would create a cycle of length 2 incident to -1 tails!).
Thus, the map M has no multiple edge and is a triangulation.
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• We now prove that the coloring R = (T0, T1, T2) is a realizer of M .
By construction, R satisfies de Schnyder-condition. Hence it only
remains to prove that T2 is a tree. Suppose there is a cycle C of
2-edges. Since every vertex in C is incident to one 2-tail, the cycle
C is directed. Therefore, the Schnyder condition proves that there
are c = |C| tails incident with C and lying strictly inside C. This
contradicts Lemma 3.5. Thus, T2 has no cycle. Since T2 has |U |
edges and |U | + 1 vertices it is a tree.

�

We are now ready to define a mapping Φ from pairs of non-crossing
Dyck paths to realizers. This mapping is illustrated by Figure 14. Consider
a pair of Dyck paths P = NSα1 . . .NSαn and Q = NSβ1 . . . NSβn such
that P stays below Q. The image of (P, Q) by the mapping Φ is the realizer
R = (T0, T1, T2) obtained as follows.

Step 1. The tree T0 is ω−1(P ). We denote by v0 its root-vertex and by
u0, . . . , un the other vertices in clockwise order around T0. We denote by T0

the tree obtained from T0 by adding a new vertex v1 and an edge (v0, v1)
at the right of the root.

Step 2. We glue a 1-tail in the last corner of each vertex ui, i = 0, . . . , n−1
and we glue βi 1-heads in the first corner of each vertex ui, i = 1, . . . , n− 1
(if ui is a leaf we glue the 1-heads before the 1-tail in clockwise order around
ui). We also glue βn 1-heads in the (unique) corner of v1. This operation
is illustrated by Figure 14 (b).

Step 3. We consider the sequence of 1-tails and 1-heads around T0. Let W
be the word obtained by making the tour of T0 and writing N (resp. S) when
we cross a 1-tail (resp. 1-head). By Lemma 3.7, W = Nα1Sβ1 . . . NαnSβn .
Since the path P stays below the path Q, we have δi(P, Q) =

∑

j≤i αj−βj ≥
0 for all i = 1, . . . , n, hence W is a Dyck path. Thus, there exists a unique
way of joining each 1-tail to a 1-head that appears after it around the tree
T0 so that the 1-edges do not intersect (this statement is equivalent to the
well-known fact that there is a unique way of matching parenthesis in a well
parenthesized word); we denote by T1 the set of 1-edges obtained in this
way. This operation is illustrated in Figure 14 (c).

Step 4. The set T1 of 1-edges is a tree directed toward v1; see Lemma 3.10
below. Hence, by construction, PR = (T0, T1) is a prerealizer. By Lemma
3.9, there is a unique tree T2 such that R = (T0, T1, T2) is a realizer and we
define Φ(P, Q) = R.

In order to prove that step 4 of the bijection Φ is well defined, we need
the following lemma.
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v1

v0

(a) (c) (d)(b)

v0

u0

u3

u5 u6
u8

u2

u4 u7

u1

v1

v0

v1v2

v0

Figure 14. Steps of the mapping Φ : (P, Q) 7→
(T0, T1, T2). (a) Step 1: build the tree T0. (b) Step 2:
add the 1-tails and 1-heads. (c) Step 3: join the 1-tails and
1-heads together. (d) Step 4: determine the third tree T2.

Lemma 3.10. The set T1 of 1-edges obtained at step 3 in the defini-
tion of Φ is a tree directed toward v1 and spanning the vertices in U1 =
{u0, . . . , un−1, v1}.

Proof: • Every vertex in U1 is incident to an edge in T1 since there is a
1-tail incident to each vertex ui, i = 1, . . . , n − 1 and at least one 1-head
incident to v1 since βn > 0.
• We now prove that the tree T1 has no cycle. Since every vertex in U1 is
incident to at most one 1-tail, any 1-cycle is directed. Moreover, if e is a
1-edge directed from ui to uj then i < j since the last corner of ui appears
before the first corner of uj around T0. Therefore, there is no directed cycle.
• Since T1 is a set of n edges incident to n + 1 vertices and having no cycle,
it is a tree. Since the only sink is v1, the tree T1 is directed toward v1 (make
an induction on the size of the oriented tree T1 by removing a leaf).

�

The mapping Φ is well defined and the image of any pair of non-crossing
Dyck paths is a realizer. Conversely, by Proposition 3.4, the image of any
realizer by Ψ is a pair of non-crossing Dyck paths. It is clear from the
definitions that Ψ ◦Φ (resp. Φ ◦Ψ) is the identity mapping on pairs of non-
crossing Dyck paths (resp. realizers). Thus, Φ and Ψ are inverse bijections
between realizers of size n and pairs of non-crossing Dyck paths of size n.
This concludes the proof of Theorem 3.3.

�

4. Intervals of the Tamari lattice

In the previous section, we defined a bijection Φ between pairs of non-
crossing Dyck paths and realizers. Recall that the pairs of non-crossing Dyck
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paths correspond to the intervals of the Stanley lattice. In this section, we
study the restriction of the bijection Φ to the intervals of the Tamari lattice.

Theorem 4.1. The bijection Φ induces a bijection between the intervals of
the Tamari lattice LT

n and minimal realizers of size n.

Since every triangulation has a unique minimal realizer, Theorem 4.1 im-
plies that the mapping Φ′ which associates with a Tamari interval (P, Q) the
triangulation underlying Φ(P, Q) is a bijection. This gives a bijective expla-
nation to the relation between the number of Tamari intervals enumerated
in [3] and the number of triangulations enumerated in [18, 12].

Corollary 4.2. The number of intervals in the Tamari lattice LT
n is equal

to the number 2(4n+1)!
(n+1)!(3n+2)! of triangulations of size n.

The rest of this section is devoted to the proof of Theorem 4.1. We first
recall a characterization of minimality given in [2] and illustrated in Figure
15.

Proposition 4.3 ([2]). A realizer R = (T0, T1, T2) is minimal if and only
if for any internal vertex u, the vertex p0(p1(u)) is an ancestor of u in the
tree T0.

u

p0(p1(u))

p1(u)

v1v2

v0

Ψ

(b)(a)

Figure 15. (a) Characterization of minimality: p0(p1(u))
is an ancestor of u in T0. (b) A minimal realizer and its
image by Ψ.

Using Proposition 4.3, we obtain the following characterization of the
pairs of non-crossing Dyck paths (P, Q) whose image by the bijection Φ is
a minimal realizer.

Proposition 4.4. Let (P, Q) be a pair of non-crossing Dyck paths and
let R = (T0, T1, T2) = Φ(P, Q). Let u0, . . . , un−1 be the non-root vertices
of T0 in clockwise order. Then, the realizer R is minimal if and only if
δi(P, Q) ≤ δj(P, Q) whenever ui is the parent of uj in T0 = ω−1(P ).

In order to prove Proposition 4.4, we need to interpret the value of
δi(P, Q) is terms of the realizer R = Φ(P, Q). Let u be an internal ver-
tex of the triangulation underlying the realizer R = (T0, T1, T2). We say
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that a 1-tail is available at u if this tail appears before the first corner
of u in clockwise order around T0 while the corresponding 1-head appears
(strictly) after the first corner of u.

Lemma 4.5. Let (P, Q) be a pair of non-crossing Dyck paths and let R =
(T0, T1, T2) = Φ(P, Q). Let u0, . . . , un−1 be the non-root vertices of T0 in
clockwise order. The number of 1-tails available at ui is δi(P, Q).

Proof of Lemma 4.5: We denote P = NSα1 . . . NSαn and Q = NSβ1 . . . NSβn.
Let W be the word obtained by making the tour of T0 and writing NSβi

when arriving at the first corner of ui and NS when arriving at the last cor-
ner of ui for i = 0, . . . , n−1 (with the convention that β0 = 0). By definition
of the mapping ω, the restriction of W to the letters N, S is ω(T0) = P =

NSα1 . . .NSαn . Therefore, W = NSβ0(NS)α1NSβ1(NS)α2 . . . NSβn−1(NS)αn .

The prefix of W written after arriving at the first corner of ui is NSβ0(NS)α1NSβ1

. . . (NS)αiNSβi . The sub-word Sβ0Nα1Sβ1 . . .NαiSβi corresponds to the
sequence of 1-tails and 1-heads encountered so far (N for a 1-tail, S for a 1-
head). Thus, the number of 1-tails available at ui is

∑

j≤i αj−βj = δi(P, Q).
�

Proof of Proposition 4.4:

• We suppose that a vertex ui is the parent of a vertex uj in T0 and that
δi(P, Q) > δj(P, Q), and we want to prove that the realizer R = Φ(P, Q) is
not minimal. Since ui is the parent of uj we have i < j and all the vertices
ur, i < r ≤ j are descendants of ui. By Lemma 4.5, δi(P, Q) > δj(P, Q)
implies that there is a 1-tail t available at ui which is not available at uj,
hence the corresponding 1-head is incident to a vertex ul with i < l ≤ j.
Let uk be the vertex incident to the 1-tail t. Since t is available at ui, the
vertex uk is not a descendant of ui. But p0(p1(uk)) = p0(ul) is either ui

or a descendant of ui in T0. Thus, the vertex uk contradicts the minimality
condition given by Proposition 4.3. Hence, the realizer R is not minimal.
• We suppose that the realizer R is not minimal and we want to prove that
there exists a vertex ui parent of a vertex uj in T0 such that δi(P, Q) >
δj(P, Q). By Proposition 4.3, there exists a vertex u such that p0(p1(u)) is
not an ancestor of u in T0. In this case, the 1-tail t incident to u is available
at ui = p0(p1(u)) but not at uj = p1(u) (since t cannot appear between the
first corner of ui and the first corner of uj around T0, otherwise u would be
a descendant of ui). Moreover, any 1-tail t′ available at uj appears before
the 1-tail t around T0 (otherwise, the 1-edge corresponding to t′ would cross
the 1-edge (u, uj)). Hence, any 1-tail t′ available at uj is also available at ui.
Thus, there are more 1-tails available at ui than at uj . By Lemma 4.5, this
implies δi(P, Q) > δj(P, Q). �
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Proposition 4.6. . Let (P, Q) be a pair of non-crossing Dyck paths. Let
T = ω−1(P ), let v0 be the root-vertex of the tree T and let u0, . . . , un−1 be
its other vertices in clockwise order. Then, P ≤T Q if and only if δi(P, Q) ≤
δj(P, Q) whenever ui is the parent of uj.

Propositions 4.4 and Propositions 4.6 clearly imply Theorem 4.1. Hence,
it only remains to prove Proposition 4.6.

Proof: We denote Q = NSβ1 . . .NSβn .
• We suppose that P ≤T Q and want to prove that δk(P, Q) ≤ δl(P, Q)
whenever uk is the parent of ul. We make an induction on ∆(P, Q). If
∆(P, Q) = 0, then P = Q and the property holds. If ∆(P, Q) > 0 there

is a path Q′ = NSβ′

1 . . . NSβ′

n such that P ≤T Q′ and Q′ is covered by Q
in the Tamari lattice. The three paths P, Q′, Q are represented in Figure

16. By definition, there are two indices 1 ≤ i < j ≤ n such that i Q’ j and
βi = β′

i + 1, βj = βj − 1 and βk = β′
k for all k 6= i, j. Thus, δk(P, Q) =

δk(P, Q′) + 1 if i ≤ k < j and δk(P, Q) = δk(P, Q′) otherwise. By the
induction hypothesis we can assume that δk(P, Q′) ≤ δl(P, Q′) whenever
uk is the parent of ul. Suppose there exists uk parent of ul such that
δk(P, Q) > δl(P, Q). Note that if uk is the parent of ul then k < l and for
all k < r ≤ l, the vertex ur is a proper descendant of uk. Since δk(P, Q) >
δl(P, Q) and δk(P, Q′) ≤ δl(P, Q′) we have k < j ≤ l, hence uj is a proper
descendant of uk. Note that for all r = 0, . . . , n−1, er(P )+1 is equal to the
height of the vertex ur in the tree T (i.e. the distance between v0 and ur).
Thus, ek(P ) < ej(P ). Moreover, by the induction hypothesis, δk(P, Q′) ≤
δj(P, Q′). Hence, ek(Q′) = ek(P ) + δk(P, Q′) < ej(Q

′) = ej(P ) + δj(P, Q′).

But since i ≤ k < j this contradicts the hypothesis i Q’ j. We reach a
contradiction, hence δk(P, Q) ≤ δl(P, Q) whenever uk is the parent of ul.

P

δr(P, Q)

Q′

Q

i j

Figure 16. The Dyck paths P ≤T Q′ ≤T Q.

• We suppose that δk(P, Q) ≤ δl(P, Q) whenever uk is the parent of ul

and want to prove that P ≤T Q. We make an induction on ∆(P, Q). If
∆(P, Q) = 0, then P = Q and the property holds. Suppose ∆(P, Q) > 0 and
let δ = max{δk(P, Q), k = 0 . . . n}, let e = min{ek(P )/δk(P, Q) = δ} and let
i = max{k/ek(P ) = e and δk(P, Q) = δ}. Let j be the first index such that
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i < j ≤ n and uj is not a descendant of ui (j = n if ui+1, . . . , un−1 are all

descendants of ui). Let Q′ = NSβ′

1 . . . NSβ′

n with β′
i = βi + 1, β′

j = βj − 1

and β′
k = βk for all k 6= i, j. The paths P, Q and Q′ are represented in

Figure 16. We want to prove that Q′ is a Dyck path covered by Q in the
Tamari lattice and P ≤T Q′.
- We first prove that Q′ is a Dyck path that stays above P . First note that
δk(P, Q′) = δk(P, Q) − 1 if i ≤ k < j and δk(P, Q′) = δk(P, Q) otherwise.
If δk(P, Q′) < 0, then i ≤ k < j, hence uk is a descendant of ui. Since
the value of δr(P, Q) is weakly increasing along the branches of T , we have
δk(P, Q) ≥ δi(P, Q) = δ > 0, hence δk(P, Q′) ≥ 0. Thus for all k = 0, . . . , n,
δk(P, Q′) ≥ 0, that is, Q′ stays above P .
- We now prove that P ≤T Q′. Suppose there exist k, l, such that δk(P, Q′) >
δl(P, Q′) with uk parent of ul. Since δk(P, Q) ≤ δl(P, Q), we have k < i ≤
l < j. Since a vertex ur is a descendant of ui if and only if i < r < j,
the only possibility is l = i. Moreover, since uk is the parent of ui we have
ek(P ) < ei(P ) = e, hence by the choice of e, δk(P, Q) < δ = δi(P, Q).
Hence, δk(P, Q′) = δk(P, Q) ≤ δi(P, Q) − 1 = δi(P, Q′). We reach a contra-
diction. Thus δk(P, Q′) ≤ δl(P, Q′) whenever uk is the parent of ul. By the
induction hypothesis, this implies P ≤T Q′.
- It remains to prove that Q′ is covered by Q in the Tamari lattice. It suffices

to prove that i Q’ j. Recall that for all r = 0, . . . , n − 1, er(P ) + 1 is the
height of the vertex ur in the tree T . For all i < r < j, the vertex ur is a de-
scendant of ui hence er(P ) > ei(P ). Moreover, since the value of δx(P, Q)
is weakly increasing along the branches of T , δr(P, Q) ≥ δi(P, Q) for all
i < r < j. Thus, for all i < r < j, er(Q) = er(P ) + δr(P, Q) > ei(Q) =
ei(P ) + δi(P, Q) and er(Q

′) = er(Q) − 1 > ei(Q
′) = ei(Q) − 1. It only

remains to show that ej(Q
′) ≤ ei(Q

′). The vertex uj is the first vertex not
descendant of ui around T , hence ej(P ) ≤ ei(P ). Moreover δj(P, Q) ≤ δ =
δi(P, Q). Furthermore, the equalities ei(P ) = ej(P ) and δj(P ) = δ cannot
hold simultaneously by the choice of i. Thus, ej(Q) = ej(P ) + δj(P, Q) <
ei(Q) = ei(P ) + δi(P, Q) and ej(Q

′) = ej(Q) ≤ ei(Q
′) = ei(Q) − 1. �

5. Intervals of the Kreweras lattice

In this section, we study the restriction of the bijection Φ to the Kreweras
intervals.

Theorem 5.1. The mapping Φ induces a bijection between the intervals of
the Kreweras lattice LK

n and realizers of size n which are both minimal and
maximal.

Before commenting on Theorem 5.1, we characterize the realizers which
are both minimal and maximal. Recall that a triangulation is stack if it
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is obtained from the map reduced to a triangle by recursively inserting a
vertex of degree 3 in one of the (triangular) internal face. An example is
given in Figure 17.

Figure 17. A stack triangulation is obtained by recur-
sively inserting a vertex of degree 3.

Proposition 5.2. A realizer R is both minimal and maximal if and only
if the underlying triangulation M is stack. (In this case, R is the unique
realizer of M .)

The proof of Proposition 5.2 uses the following Lemma.

Lemma 5.3. Let M be a triangulation and let R = (T0, T1, T2) be one of
its realizers. Suppose that M has an internal vertex v of degree 3 and let
M ′ be obtained from M by removing v (and the incident edges). Then, the
restriction of the realizer R to the triangulation M ′ is a realizer.

Proof: By Schnyder condition, the vertex v is incident to three tails and
no head, hence it is a leaf in each of the trees T1, T2, T3. Thus, the tree
condition is preserved by the deletion of v. Moreover, deleting v does not
deprive any other vertex of an i-tail, hence the Schnyder condition is pre-
served by the deletion of v.

�

Proof of Proposition 5.2:

• We first prove that any realizer R of a stack triangulation M is minimal
and maximal, that is, contains neither a cw- nor a ccw-triangle. We proceed
by induction on the size of M . If M is reduced to the triangle, the property
is obvious. Let M be a stack triangulation not reduced to the triangle. By
definition, the triangulation M contains an internal vertex v of degree 3
such that the triangulation M ′ obtained from M by removing v is stack.
By Lemma 5.3, the restriction of the realizer R to M ′ is a realizer. Hence,
by the induction hypothesis, the triangulation M ′ contains neither a cw-
nor a ccw-triangle. Thus, if C is either a cw- or a ccw-triangle of M , then
C contains v. But this is impossible since v is incident to no head.
• We now prove that any realizer R of a non-stack triangulation M contains
either a cw- or a ccw-triangle.
- We first prove that the property holds if M has no internal vertex of
degree 3 nor separating triangle (a triangle which is not a face). It is known
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that if R contains a directed cycle, then it contains either a cw- or ccw-
triangle (proof omitted; see [11]). Thus it suffices to prove that R contains
a directed cycle. Let u be the third vertex of the internal triangle incident
to the edge (v1, v2). The vertex u is such that p1(u) = v1 and p2(u) = v2

(see Figure 18). The vertex u has degree at least 4 and is not adjacent
to v0 (otherwise one of the triangles (v0, v1, u) or (v0, v2, u) contains some
vertices, hence is separating). Thus, u′ = p0(u) 6= v0. Moreover, either
p1(u

′) 6= v1 or p2(u
′) 6= v2, otherwise the triangle (v1, v2, u

′) is separating.
Let us assume that u′′ = p1(u

′) 6= v1 (the other case is symmetrical). By
Schnyder condition, the vertex u′′ lies inside the cycle C made of the edges
(v0, v1), (v1, u) and the 0-path from u to v0. By Schnyder condition, the
1-path from u′′ to v1 stays strictly inside C. Let C′ be the cycle made of the
edges (v1, u), (u, u′) and the 1-path from u′ to v1. By Schnyder condition,
the 2-path from u′′ to v2 starts inside the cycle C′, hence cut this cycle.
Let v be the first vertex of C′ on the 2-path from u′′ to v2. The vertex v
is incident to a 2-head lying inside C′, hence by Schnyder condition v = u.
Thus, the cycle made of the edges (u, u′), (u′, u′′) and the 2-path from u′′

to u is directed.

u
v2 v1

v0

u′

u′′

T2

T1

T3

Figure 18. The vertices u, u′ = p0(u) and u′′ = p1(u
′).

- We now prove that the property holds for any non-stack triangulation M
without internal vertex of degree 3. If M has no separating triangle then,
by the preceding point, the realizer R contains either a cw- or ccw-triangle.
Suppose now that M has a separating triangle ∆. We can choose ∆ not
containing any other separating triangle. In this case, the triangulation M ′

lying inside the triangle ∆ has no separating triangle and is not stack (since
no internal vertex has degree 3). Let t0, t1, t2 be the vertices of the triangle
∆. By definition, there are some vertices lying inside the triangle ∆. By
Lemma 3.5, there is no tail incident to ∆ and lying inside ∆. Thus, for
i = 1, 2, 3, the half-edges incident to the vertex ti and lying inside ∆ are
heads. Moreover, the Schnyder condition implies that all the heads incident
to ti have the same color. Furthermore, for each color i = 1, 2, 3 there is an
i-head incident to one of the vertices t0, t1, t2, otherwise the vertices inside
∆ would not be connected to vi by an i-path. Hence, we can assume without
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loss of generality that for i = 1, 2, 3, the heads incident to ti and lying inside
∆ are of color i. Thus, the restriction R′ of R to the triangulation lying
inside ∆ is a realizer. By the preceding point, the realizer R′ contains either
a cw- or ccw-triangle, hence so do R.
- We now prove that the property holds for any non-stack triangulation
M . Let R be a realizer of a non-stack triangulation M . Let M ′ be the
triangulation obtained from M ′ by recursively deleting every internal vertex
of degree 3. The triangulation M ′ is not stack and has no internal vertex
of degree 3. Moreover, by Lemma 5.3, the restriction R′ of the realizer R
to the triangulation M ′ is a realizer. By the preceding point, the realizer
R′ contains either a cw- or ccw-triangle, hence so do R. �

Given Theorem 5.1 and Proposition 5.2, the mapping Φ induces a bijec-
tion between the intervals of the Kreweras lattice and the stack triangula-
tions. Stack triangulations are known to be in bijection with ternary trees
(see for instance [19]), hence we obtain a new proof that the number of

intervals in LK
n is 1

2n+1

(

3n
n

)

. The rest of this section is devoted to the proof
of Theorem 5.1. We first recall a characterization of the realizers which are
both minimal and maximal. This characterization which is illustrated in
Figure 19 follows immediately from the characterizations of minimality and
of maximality given in [2].

Proposition 5.4 ([2]). A realizer R = (T0, T1, T2) is both minimal and
maximal if and only if for any internal vertex u, either p0(p1(u)) = p0(u)
or p1(p0(u)) = p1(u).

p0(u)

p1(u)u

p0(u)

p1(u)u

v0

Ψ

v1v2

(b)(a)

1 3 50 2 4 6

or

Figure 19. (a) Condition for a realizer to be both minimal
and maximal: p0(p1(u))=p0(u) or p1(p0(u))=p1(u). (b)
A minimal and maximal realizer and its image by Ψ.

Let R = (T0, T1, T2) be a realizer of a triangulation M and let u, u′ be
two vertices distinct from v0 and v2. We say that there is a 1-obstruction
between u and u′ if there is a 1-edge e such that the tail of e appears
before the first corner of u while its head appears strictly between the first
corner of u and the first corner of u′ around the tree T0. This situation is
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represented in Figure 20. Using Proposition 5.4, we obtain the following
property satisfied by realizers which are both minimal and maximal.

Lemma 5.5. Let R = (T0, T1, T2) be a minimal and maximal realizer and
let (P, Q) = Ψ(R). Let
v0, u0, u1, . . . , un =v1 be the vertices of the tree T0 in clockwise order. Then,
for all indices 0 ≤ i < j ≤ n, the relation i Q j holds if and only if the three
following properties are satisfied:

(1) the vertex uj is an ancestor of ui in the tree T1,
(2) either p1(p0(ui)) = uj or p0(ui) = p0(uj) (with the convention that

p0(un) = v0),
(3) there is no 1-obstruction between ui and uj.

v0

v1e

u′

u

Figure 20. A 1-obstruction between the vertices u and u′.

The proof Lemma 5.5 of is based on the following result.

Lemma 5.6. Let R = (T0, T1, T2) be a minimal and maximal realizer and
let (P, Q) = Ψ(R). Let
v0, u0, u1, . . . , un =v1 be the vertices of the tree T0 in clockwise order. For all

indices 0 ≤ i < j ≤ n, the relation i Q j holds if and only if p1(ui) = uj.
Moreover, in this case ej(Q) = ei(Q) if and only if p0(ui) = p0(uj) and
there is no 1-edge whose head is incident to uj and whose tail appears before
the first corner of ui.

Proof: Let 0 ≤ i < j ≤ n such that p1(ui) = uj.
• We first prove that for all index r = i + 1, . . . , j − 1, the inequality
ek(Q) > ei(Q) holds.
Let ui1 , . . . , uis

be the vertices on the 0-path from ui0 = ui to uis+1
= p0(uj)

(that is, p0(uik
) = uik+1

for all k = 0, . . . , s); see Figure 21. The character-
ization of minimal and maximal realizers given in Proposition 5.4 implies
that p1(uik

) = uj for all k = 1, . . . , s. For all k = 0, . . . , s, we denote by rk

the index of the last descendant of uik
around T0 and we denote rs+1 = j−1.

Note that, for all k = 0, . . . , s, the vertices urk+1, . . . , urk+1
are descendants

of uik+1
in T0. Hence, for all k = 0, . . . , s and all l = rk + 1, . . . , rk+1, the
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inequality el(P ) > ei(P )−k holds (since for any index h the value eh(P )+1
is the height of the vertex uh is the tree T0). By the minimality condition
given by Proposition 4.3, none of the 1-tails available at ui is matched to
one the vertices ui+1, . . . , ur0

(since these vertices are descendants of ui).
Moreover, none of these available 1-tails is matched to one of the vertices
ur0+1, . . . , uj−1 or there would be a crossing with the 1-edge (ui, uj) (see Fig-
ure 21). Hence, the 1-tails available at i are also available at all the vertices
ui+1, . . . , uj − 1. Moreover, for all k = 1, . . . , s and all l = rk + 1, . . . , rk+1

the k 1-tails incident to each of the vertices ui0 , . . . , uik−1
are available

at the vertex ul. Thus, given Lemma 4.5, for all k = 0, . . . , s, for all
l = rk +1, . . . , rk+1, δl(P, Q) ≤ δi(P, Q)+k. Thus, for all l = i+1, . . . , j−1,
the inequality el(Q) = el(P ) + δl(P, Q) > ei(Q) = ei(P ) + δi(P, Q) holds.
• It only remains to prove that the inequality ej(Q) ≤ ei(Q) holds and
equality occurs if and only if p0(ui) = p0(uj) and there is no 1-edge whose
head is incident to uj and whose tail appears before the first corner of ui.
- Since the realizer R is minimal the vertex p0(uj) is an ancestor of uj in
the tree T0 (by Proposition 4.3). Hence, the inequality ej(P ) ≤ ei(P ) holds
and equality occurs if and only if p0(ui) = p0(uj). We now compare the
values of δi(P, Q) and δj(P, Q) which are the number of tails available at ui

and at uj respectively (by Lemma 4.5).
- We first prove that any 1-tails available at uj is also available at ui. No
1-tail available at uj is incident to a vertex ul with r0 < l < j or the corre-
sponding 1-edge would cross the edge (ui, uj) (see Figure 21). Moreover, the
characterization of minimal and maximal realizers given in Proposition 5.4
implies that no 1-tail available at uj is incident to a vertex ul with i < l ≤ r0

(since these vertices are descendants of ui). Hence, any the 1-tail available
at uj is also available at ui.
- We now prove any 1-tail available at ui is available at uj except if the
corresponding 1-head is incident to uj . Clearly, no 1-tail available at ui is
such that the corresponding 1-head is incident to a vertex ul with r0 < l < j
or the 1-edge under consideration would cross the edge (ui, uj) (see Figure
21). Since the realizer R is minimal, there is no 1-tail available at ui and
such that the corresponding 1-head is a vertex ul with i < l ≤ r0 (since
these vertices are descendants of ui). Hence, if a 1-tail available at ui is not
available at uj , then the corresponding 1-head is incident to uj.
- Given Lemma 4.5, the preceding points imply that the inequality δi(P, Q) ≤
δj(P, Q) holds and equality occurs if and only if there is no 1-edge whose
head is incident to uj and whose tail appears before the first corner of ui.
Hence, ej(Q) = ej(P ) + δj(P, Q) ≤ ei(Q) = ei(P, Q) + δi(P, Q) and equal-
ity occurs if and only if p0(ui) = p0(uj) and no index k < i is such that
p1(uk) = uj. �
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uj

ur0

ur1ui0 =ui

ui1

uis

uis+1

urs

Figure 21. Notations for the proof of Lemma 5.6.

Proof of Lemma 5.5:

• We suppose that i Q j and we want to prove the properties (1), (2) and
(3).
(1) Since i Q j, there are indices i0 = i, i1, . . . , is+1 = j such that

i0 Q i1 Q . . . Q is+1 and ei0(Q) = ei1(Q) = · · · = eis
(Q). Lemma 5.6 im-

plies p1(uik
) = uik+1

for all k ≤ s. Hence uj is a ancestor of ui in the tree
T1.
(2) Since eik

(P ) = ei(P ) for all k ≤ s, Lemma 5.6 implies p0(uik
) = p0(ui)

for all k ≤ s. Moreover, p1(uis
) = uj, thus Proposition 5.4 implies that

either p0(uj) = p0(uis
) = p0(ui) or uj = p1(p0(uis

)) = p1(p0(ui)). This
situation is represented in Figure 22.
(3) We want to prove that there is no 1-obstruction between ui and uj.
We suppose that the tail of a 1-edge e appears before the first corner of
ui around T0 and we want to prove that the corresponding 1-head h is not
incident to a vertex uk with i < k < j. Clearly, if the 1-head h is inci-
dent to a vertex uk with i < k < j, then the vertex uk is either one of
the vertices ui0 , ui2 , . . . , uis

or one of their descendants (otherwise, the edge
e would cross one of the 1-edges (ui0 , ui1), . . . ,(uis

, uis+1
); see Figure 22).

Since ei0(Q) = ei1(Q) = · · · = eis
(Q), Lemma 5.6 implies that uk is none

of the vertices ui1 , ui2 , . . . , uis
. Moreover, since the realizer R is minimal,

Proposition 4.3 implies that uk is not a (proper) descendant of one of the
vertices i0, . . . , is. Thus, the 1-head h is not incident to a vertex uk with
i < k < j and e is not creating a 1-obstruction.
• We suppose that the vertices ui and uj satisfy the properties (1), (2) and
(3) and want to prove that i Q j. Observe first that by property (1), there
are indices i0 = i, i1, . . . , is+1 = j such that p1(uik

) = uik+1
.

- We first prove that, for all k = 1, . . . , s, p0(uik
) = p0(ui); this situation is

represented in Figure 22.
Suppose the contrary and consider the first index k ∈ {1, . . . , s} such that
p0(uik

) 6= p0(ui). In this case, uik
= p1(uik−1

) and p0(uik
) 6= p0(uik−1

) =
p0(ui). Since the realizer R is minimal and maximal, Proposition 5.4 implies
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that uik
= p1(p0(uik−1

) = p1(p0(ui)). Thus, the vertices uik+1
, . . . , uis+1

are distinct from p1(p0(ui)) and are ancestors of p0(ui) in the tree T1. In
particular, uj = uis+1

6= p1(p0(ui)), and p0(uj) 6= p0(ui). This contradicts
Property (2).
- We now prove that for all index k = 1, . . . , s there is no 1-edge e whose
head is incident to uik

and whose tail appears before the first corner of uk−1.
Suppose that such a 1-edge e exist. Observe that the 1-tail t of the edge e
do not appear before the first corner of ui otherwise the edge e creates a
1-obstruction between ui and uj . Hence, the 1-tail t is incident either to one
of the vertices ui0 , . . . , uik−2

or to one of their descendants (otherwise, the
edge e would cross one of the 1-edges (ui0 , ui1), . . . ,(uik−2

, uik−1
); see Figure

22). Moreover, the 1-tail t is not incident to the vertices ui0 , . . . , uik−2
, oth-

erwise e would create a cycle in the tree T1. Lastly, since the realizer R is
minimal, the 1-tail t is not incident to a descendant of uil

, l = 0, . . . , k − 2.
Thus the 1-tail t does not appear before the first corner of uk−1.

- By Lemma 5.6, the preceding points imply ik Q ik+1 and eik
(Q) = ei(Q)

for all k = 0 . . . s. Thus, i Q j.
�

. . . . . .uis+1
=ujui0 =ui ui0 =ui

uis+1
=uj

ui2 uisui1
uis

ui2ui1

Figure 22. Notations for the proof of Lemma 5.5.

Proof of Theorem 5.1: Let P = NSα1 . . .NSαn and Q = NSβ1 . . .NSβn

be two Dyck paths and let R = (T0, T1, T2) = Φ(P, Q). Let v0, u0, u1, . . . , un =
v1 be the vertices of the tree T0 in clockwise order.
• We suppose that P ≤K Q and we want to prove that the realizer R is
minimal and maximal. We proceed by induction on ∆(P, Q).
- We first suppose that ∆(P, Q) = 0, that is P = Q, and we want to prove
that R is minimal and maximal. Let W be the word obtained by making the
tour of T0 and writing N (resp. S) when following an edge of T0 for the first
(resp. second) time and writing N (resp. S) when crossing a 1-tail (resp.
1-head). By definition of the mapping ω, the restriction of W to the letters
N, S is ω(T0) = NSα1 . . . NSαnNS. Moreover, for all i = 0, . . . , n there are
αi 1-heads incident to the first corner of ui and one 1-head incident to its
last corner. Thus, W = N(NS)α1NSα1(NS)α2 . . . NSαn−1(NS)αnNSαnS.
Between any letter N of W and the corresponding letter S there is exactly
one letter N . Thus, for any internal vertex u, the vertex p1(u) is the first
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vertex appearing after the last corner of u around T0 (that is, the first vertex
which is not a descendant of u appearing after u around T0). By Proposition
5.4, this implies that R is minimal and maximal.
- We now suppose that ∆(P, Q) > 0. In this case, there is a Dyck path

Q′ = NSβ′

1 . . . NSβ′

n covered by Q in the Kreweras lattice and such that
P ≤K Q′. Since Q′ is covered by Q is the Kreweras lattice, there are indices
0 ≤ i < j ≤ n such that i Q’ j and βi = 0, βj = β′

i + β′
j and βk = β′

k for all
k 6= i, j (this situation is represented in Figure 23 (a)). By the induction
hypothesis, the realizer R′ = (T ′

0, T
′
1, T

′
2) = Φ(P, Q′) is both minimal and

maximal. Moreover, by definition of the bijection Φ, the trees T0 and T ′
0

are the same. We use this fact to identify the vertices in the prerealizers
PR = (T0, T1) and PR′ = (T0, T

′
1) that we denote by v0, u0, u1, . . . , un = v1

in clockwise order around T0 = T ′
0. We also denote by p′

1(u) the parent of
any vertex u in T ′

1.

• We first prove that for any vertex v, p′
1(v) = p1(v) except if p′

1(v) =
ui in which case p1(v) = uj. Since i Q j, Lemma 5.5 implies that
there is no 1-obstruction between ui and uj in the realizer R′. Thus,
the β′

i 1-heads incident to ui can be unglued from the first corner of
ui and glued to the first corner of uj without creating any crossing
in the prerealizer PR′ = (T0, T

′
1) (the transfer of the β′

i 1-heads is
represented in Figure 23 (b)). Let PR′′ = (T0, T

′′
1 ) be the colored

map obtained. Clearly, PR′′ = (T0, T
′′
1 ) satisfies the tree condition

(T ′′
1 is a tree), the corner condition (the 1-heads are in first corners,

the 1-tails are in last corners) and the order condition (any 1-tail
appears before the corresponding 1-head around T0), therefore PR′′

is a prerealizer. Moreover, for all i = 0, . . . , n, there are βi 1-heads
incident to the vertex ui. Thus, by definition of the mapping Φ, the
prerealizer PR′′ is equal to PR = (T0, T1). Since the only difference
between the prerealizers PR′ and PR is that the 1-heads incident to
ui in PR′ are incident to uj in PR, the property holds.

• We now prove that the realizer R = (T0, T1, T2) is minimal and
maximal. If the realizer R is not both minimal and maximal, there
is a vertex u such that p1(u) 6= p1(p0(u)) and p0(p1(u)) 6= p0(u).
Since the realizer R′ is both minimal and maximal, either p′

1(u) =
p′

1(p0(u)) or p0(p
′
1(u)) = p0(u). But p′

1(u) 6= p′
1(p0(u)), otherwise

p1(u) = p1(p0(u)). Thus, p0(p
′
1(u)) = p0(u) and p′

1(u) = ui.
Hence, p0(ui) = p0(u) and p1(u) = uj . Moreover, since i Q’ j,
Lemma 5.5 implies that either p0(ui) = p0(uj) or p′

1(p0(ui)) = uj.
But, if p0(ui) = p0(uj), then p0(u) = p0(ui) = p0(uj) = p0(p1(u))
which is forbidden. And, if p′

1(p0(ui)) = uj , then p1(p0(u)) =
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p1(p0(ui)) = p′
1(p0(ui)) = uj = p1(u) which is also forbidden. We

reach a contradiction.

P

Q’

Q

v0

(b)

v0
PR′ PR′′ = PR

ui
ui

i

(a)

j

uj =v1 uj =v1

Figure 23. (a) The Dyck paths P ≤K Q′ ≤K Q. (b) The
prerealizer PR′′ is obtained from PR′ = (T0, T

′
1) by moving

β′
i 1-heads from the first corner of ui to the first corner of

uj.

• We suppose that the realizer R is minimal and maximal and we want to
prove that P ≤K Q. We proceed by induction on ∆(P, Q). If ∆(P, Q) = 0,
then P = Q and the property holds. We suppose now that ∆(P, Q) > 0 and
we denote by v0, u0, u1, . . . , un = v1 the vertices of the tree T0 in clockwise
order.
- We first prove that there are indices 0 ≤ k < i < j ≤ n such that p0(uk) =
p0(ui) and p1(uk) = uj. We suppose that no such indices exist and we
want to prove that P = Q. Let u be an internal vertex. If u has a sibling
in T0 appearing after u around T0, then p1(u) is the first such sibling (since
the indices i, j, k do not exist), else p1(u) = p1(p0(u)) (since the realizer R
is minimal and maximal). Thus, for any vertex u, p1(u) is the first vertex
appearing after the last corner of u around T0. Let W be the word obtained
by making the tour of T0 and writing N (resp. S) when following an edge of
T0 for the first (resp. second) time and writing N (resp. S) when crossing
a 1-tail (resp. 1-head). By definition of the mapping ω, the restriction
of W to the letters N, S is ω(T0) = NSα1 . . . NSαnNS. Moreover, for all
i = 0, . . . , n there are βi 1-heads in the first corner of ui and one 1-head in its
last corner. Thus, W = N(NS)α1NSβ1(NS)α2 . . . NSβn−1(NS)αnNSβnS.
Moreover, between any letter N of W and the corresponding letter S there
is exactly one letter N . Thus, β1 = α1,. . . , βn = αn, that is, P = Q.
- Let k < i < j be as described in the preceding point with k maximal
and i minimal with respect to k (i.e. ui is the first sibling of uk appearing
after uk around the tree T0). This situation is represented in Figure 24.
Observe that no 1-head is incident to ui in the prerealizer PR = (T0, T1)
(see Figure 24), hence βi = 0,. Let H be the set of 1-heads incident to
uj and such that the corresponding 1-tail is either incident to uk or to one
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of its descendants. One can unglue the 1-heads in H from the first corner
of uj and glue them to the first corner of ui without creating any crossing
(see Figure 24). Moreover, the resulting colored map PR′ is easily seen to
be a prerealizer that we denote by PR′ = (T0, T

′
1). Let R′ be the realizer

corresponding to the prerealizer PR′ and let Q′ = NSβ′

1 . . .NSβ′

n be the
Dyck path such that Φ(P, Q′) = R′. By definition of Φ, we have β′

i = |H |,
β′

j = βj − |H | and β′
l = βl for all l 6= i, j.

- We now prove that the realizer R′ = Φ(P, Q′) is minimal and maximal.
By Proposition 5.4, we only need to prove that for every internal vertex u,
either p0(p

′
1(u)) = p0(u) or p′

1(p0(u)) = p′
1(u), where p′

1(u) denotes the
parent of u in the tree T ′

1. Suppose that there is a vertex u not satisfying
this condition. Note first that u 6= uk since p0(p

′
1(uk)) = p0(uk). Since the

realizer R is minimal and maximal, either p0(p1(u)) = p0(u) or p1(p0(u)) =
p1(u). Suppose first p0(p1(u)) = p0(u). In this case, the vertex u is a
descendant of uk (otherwise, p0(p

′
1(u)) = p0(p1(u)) = p0(u)), and p′

1(u) =
uj (for the same reason). Therefore, p0(uj) = p0(p1(u)) = p0(u) implies
that uj is a descendant of uk. This is impossible since uj appears after ui

around T0. Suppose now that p1(p0(u)) = p1(u). In this case, the vertex u
is a descendant of uk (otherwise, p′

1(p0(u)) = p1(p0(u)) = p1(u) = p′
1(u)),

and p1(p0(u)) = p1(u) = uj (for the same reason). Thus p′
1(p0(u)) =

p′
1(u) = ui. We reach again a contradiction.

- We now prove that the Dyck path Q′ is covered by Q in the Kreweras lattice.
By definition of the covering relation in the Kreweras lattice LK , it suffices
to prove that i Q’ j. Since the realizer R′ is minimal and maximal, it suffices
to prove that the conditions (1), (2) and (3) of Lemma 5.5 hold. Clearly,
there is no 1-obstruction between the vertices ui and uj in the realizer R′

(see Figure 24), hence condition (3) holds. Moreover, since the realizer R is
minimal and maximal, either p0(uk) = p0(uj) or p1(p0(uk)) = uj . Thus,
either p0(ui) = p0(uj) or p1(p0(ui)) = uj , hence condition (2) holds. Let
i = i1, i2, . . . , is be the indices of the siblings of uk appearing between uk

and uj in clockwise order around T0 (see Figure 24). By the choice of k, we
get p1(uir

) = uir+1
for all r < s. Moreover, since the realizer R is minimal

and maximal, either p0(uk) = p0(uj) or p1(p0(uk)) = uj. If either case,
we get p1(us) = uj. Thus, p′

1(uir
) = p1(uir

) = uir+1
for all r < s, and

p′
1(us) = p1(us) = uj. Hence, uj is an ancestor of ui in the tree T ′

1, that is,
condition (1) holds.
- The realizer R′ = Φ(P, Q′) is minimal and maximal, hence by the induction
hypothesis P ≤K Q′. Moreover, the path Q′ is covered by Q in the Kreweras
lattice. Thus, P ≤K Q.

�
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uk ui
uk ui uj ujui2 ui2

. . . . . .
uis

uis

PR′PR

Figure 24. The vertices uk, ui, uj in the prerealizer PR =
(T0, T1) and PR′ = (T0, T

′
1).
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