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Abstract. We prove a double commutant theorem for hereditary
subalgebras of a large class of C*-algebras, partially resolving a prob-
lem posed by Pedersen[8]. Double commutant theorems originated
with von Neumann, whose seminal result evolved into an entire field
now called von Neumann algebra theory. Voiculescu proved a C*-
algebraic double commutant theorem for separable subalgebras of the
Calkin algebra. We prove a similar result for hereditary subalgebras
which holds for arbitrary corona C*-algebras. (It is not clear how
generally Voiculescu’s double commutant theorem holds.)

Résumé. Nous démontrons un théorème commutant double
(d’après Voiculescu et von Neumann) pour des sous-C*-algèbres héré-
ditaires dans une C*-algèbre <<corona>>, c’est a dire M(A)/A.

1. Introduction

The most fundamental result in all of von Neumann algebra theory is
perhaps von Neumann’s double commutant theorem,† published in 1929
(see [12]). We phrase the theorem as follows:

Theorem 1.1. Given a ∗-closed subalgebra of B(H), the double commutant
of the subalgebra is equal to the weak operator closure of its unitization.

Approximately half a century later, Voiculescu proved[11, 10] a remark-
able and unexpected C*-algebraic version of the above theorem:

Theorem 1.2. Consider the Calkin algebra B(H)/K(H) of a separable
infinite-dimensional Hilbert space H. The double commutant of a separable
sub-C∗-algebra is the unitization of that subalgebra.

Research supported by NSERC (Canada) and by CRM (Barcelona).
†The commutant C′ of a given algebra C is the set of all elements of some larger algebra
that commute with all of C. Thus, commutants are always defined relative to some
larger algebra, and when not clear from the context, the larger algebra can be specified
by a subscript, as for example C′

B(H)
. Iterating, C′′ := (C′)′ is by definition a double

commutant.
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The unitization mentioned in the above theorem is with respect to the
unit of B(H)/K(H).

Recall that the multiplier algebra M(B) of a given C*-algebra B is the
idealizer of B in the double dual B∗∗. Since the multiplier algebra of the
compact operators K(H) is B(H), we may reasonably regard the corona
algebra M(B)/B as a sweeping generalization of the Calkin algebra consid-
ered by Voiculescu. At a conference in 1988, Pedersen posed the problem
of generalizing Voiculescu’s theorem to the setting of corona algebras[8].

In this note, we show that in most cases, the relative double commutant
of a singly generated hereditary subalgebra H of a corona algebra is H + Z
where Z is the centre of the given corona algebra.

2. Full hereditary subalgebras

Theorem 2.1. Let H be a full hereditary subalgebra of a unital C∗-algebra
Q. Then an element x that commutes with H can be uniquely decomposed
as z + a where z is in the centre, Z(Q), of Q and a is in the annihilator,
H⊥, of H.

Proof. Let us first prove the uniqueness of the decomposition. If x =
z1 + a1 = z2 + a2 with zi in the centre of Q and ai in the annihilator of H,
then c = z1−z2 = a2−a1 is in both Z(Q) and H⊥. We are to show that c is
zero. If not, then by the Gelfand–Naimark theorem there is an irreducible
representation π of Q such that π(c) is non-zero. Then as c is in the centre
of Q, it follows that π(c) is a multiple of the unit of π(Q). But since c is
also in H⊥, it follows that the subalgebra π(H⊥) ⊆ π(Q) contains the unit
of π(Q). Since π(H)π(H⊥) = 0, we have that π(H) = 0. This contradicts
the assumption that H is full.

Let us now prove existence. Given x that commutes with all of H, we
notice that if h ∈ H then xh = x1hx2 for any factoring x = x1x2 in H, from
which it follows that xh is in H. The case of action on the right is similar,
and so x can be regarded as an element of M(H). Clearly x is central as an
element of M(H).

By one of Pedersen’s early results, as H is full, the natural map t 7→ t∩H
from PrimQ to PrimH is a homeomorphism[7]. Since this map is compati-
ble with the map from Z(Q) to Z(M(H)) constructed in the previous para-
graph, it follows by the extension of the Dauns-Hofmann Theorem given
in [2] that this map is an isomorphism of C*-algebras, and in particular is
surjective.

Let us denote the (unique) pre-image of x ∈ Z(M(H)) under this iso-
morphism by c ∈ Z(Q), and define a := x− c.
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This element a ∈ Q certainly multiplies H into itself, and as an element
of M(H) it is zero by construction. Thus a is in the annihilator of H, and
x = a + c is our desired decomposition. ¤

Now recall Pedersen’s result[8]:

Theorem 2.2. If H is a singly generated hereditary subalgebra of a corona
algebra (of a σ-unital C∗-algebra), then H⊥⊥ = H.

We have our first result on double commutants:

Theorem 2.3. Suppose that H is a full and singly generated hereditary
subalgebra of the corona C*-algebra of some σ-unital C*-algebra. Then the
double relative commutant H ′′ is equal to Z + H, where Z is the centre of
the corona.

Proof. Let x be some element of H ′′. Note that x commutes with the
annihilator H⊥, since after all the elements of the annihilator commute
with the elements of H. We may thus apply our Theorem 2.1 to decompose
x as a+z with a annihilating H⊥ and z in the centre of the corona. But a is
then in H⊥⊥ and by Theorem 2.2 this algebra is equal to H. We conclude
that H ′′ is contained in Z + H. On the other hand, it is routine to verify
that both Z and H are contained in H ′′. ¤

3. The case of extremally disconnected primitive ideal space

We now remove the fullness condition on the given hereditary subalgebra,
replacing it by a condition on the primitive ideal space of the corona algebra.
This condition is that the space is extremally disconnected, meaning that the
closure of every open set is open. For example, an extremally disconnected
first countable Hausdorff space must be discrete, but of course primitive
ideal spaces are not usually Hausdorff. The most important special case of
relevance to C*-algebraic problems is probably the observation that prime
C*-algebras have extremally disconnected primitive ideal space. To see this,
recall that open sets in the primitive ideal space of a prime C*-algebra are
either empty or dense. In either case, the closure of an open set is both
open and closed.

We now partially characterize C*-algebras whose corona C*-algebra is
prime:

Theorem 3.1. The corona of a primitive σ-unital C*-algebra is prime. For
separable C*-algebras with no unital ideals, the converse holds.

Remark: One of the ideas in the proof is related to Theorem 2 of [4],
where it is in effect shown that the multiplier algebra of a nonunital sep-
arable C*-algebra is strictly larger than the given C*-algebra. Also, the
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method of construction of corona ideals in the following proof is related to
that of Theorem 3.1 of [13].

Proof. Akemann and Eilers[1] have shown that corona algebras of primitive
σ-unital C*-algebras are prime. Conversely, if a separable C*-algebra A is
not primitive, then it is not prime[3], and we can find a pair I, J of non-
zero orthogonal ideals. The strict closures of these ideals in M(A) are
still orthogonal, and are unital (this follows from taking the strict limit of
a suitable approximate unit). Being unital, they are not contained in A.
Passing to the corona, we thus have a pair of non-zero orthogonal ideals, so
that the corona algebra is not prime. ¤

On the other hand, the natural conjecture that the corona of a sepa-
rable C∗-algebra with extremally disconnected primitive ideal space also
has extremally disconnected primitive ideal space is false: consider the case
A = C0(N). It can be shown [5] that the Stone-Čech corona of the natural
numbers N is (surprisingly) not extremally disconnected. In this case, it
is even true that the algebra and the multiplier algebra (and the corona
algebra) have real rank zero.

Nevertheless, Theorem 3.1 gives a large supply of C*-algebras whose
corona has extremally disconnected primitive ideal space, and it seems of
interest that our Theorem 2.3 generalizes to coronas with this property.

The hypothesis on the primitive ideal space is applied by means of the
following basically topological lemma:

Lemma 3.2. The following conditions are equivalent, for a C∗-algebra A
with primitive ideal space V :

(i) Any element of the centre of the multiplier algebra of an ideal comes
from an element of the centre of the multiplier algebra M(A) of A,
and

(ii) The primitive ideal space V is extremally disconnected.
The extension of a central multiplier from an ideal is unique if and only if
the ideal is essential.

Proof. Let J be a given ideal and let z0 be a given element of the centre of
M(J). By Dixmier’s extension of the Dauns-Hofmann Theorem[2, 7], the
element z0 is a continuous bounded function on the primitive ideal space of
J . Recall that the primitive ideal space of J is an open subset of V . Note
that we may as well assume that J is essential, replacing J by J + J⊥ and
defining z0 to be zero on J⊥.

Now we apply the theorem that a space is extremally disconnected if and
only if any continuous bounded function on a dense open set can be extended
to a continuous bounded function on the whole space (see paragraphs 1.4
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and 1.H.6 of [5]). Conversely, if property (i) holds for all essential ideals, we
deduce again by Dixmier’s extension of the Dauns-Hofmann Theorem that
the primitive ideal space V has the requisite extension property.

The uniqueness stated in the last part of the lemma is straightforward.
¤

Theorem 3.3. Let Q be a unital C∗-algebra with extremally disconnected
primitive ideal space. If x commutes with a hereditary sub-C∗-algebra H,
then x = z + a for some a in H⊥ and some central element z ∈ Q. The
decomposition is unique if and only if the ideal generated by H in Q is
essential.

Proof. To show existence, we notice as before that x multiplies H into H.
Denote by m the element of Z(M(H)) thus obtained (from x). By Dixmier’s
extension of the Dauns-Hofmann Theorem[2, 7], an element of Z(M(H))
is equivalently a continuous function on the open subset of PrimQ that
corresponds to the ideal I generated by H in Q, and this element is still
a central multiplier. Applying Lemma 3.2, we obtain an element z of the
centre of Q. Then x = (x− z) + z is our desired decomposition. ¤

Specializing to the case of corona algebras and repeating the proof of
Theorem 2.3, we have our main result:

Theorem 3.4. Let Q be the corona algebra of some σ-unital C∗-algebra.
Suppose that Q has extremally disconnected primitive ideal space. Then the
double relative commutant of a singly generated hereditary subalgebra H is
H + Z where Z is the centre of the corona algebra.

One particularly simple special case of the above theorem is as follows:

Corollary 3.5. Let A be a σ-unital primitive C∗-algebra. If H is a singly
generated hereditary subalgebra of M(A)/A, then H ′′ is equal to the uniti-
zation C1M(A)/A + H of H.

This is deduced by noting that by Theorem 3.1 the corona algebra
M(A)/A is prime, thus having trivial centre and extremally disconnected
primitive ideal space.

Note that if A is simple it is certainly primitive, so in this case we recover
our earlier result[6].
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