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Abstract. Variational steepest descent approximation schemes for
the modified Patlak-Keller-Segel equation with a logarithmic inter-
action kernel in any dimension are considered. We prove the con-
vergence of the suitably interpolated in time implicit Euler scheme,
defined in terms of the Euclidean Wasserstein distance, associated to
this equation for sub-critical masses. As a consequence, we recover
the recent result about the global in time existence of weak-solutions
to the modified Patlak-Keller-Segel equation for the logarithmic in-
teraction kernel in any dimension in the sub-critical case. Moreover,
we show how this method performs numerically in one dimension.
In this particular case, this numerical scheme corresponds to a stan-
dard implicit Euler method for the pseudo-inverse of the cumulative
distribution function. We demonstrate its capabilities to reproduce
easily without the need of mesh-refinement the blow-up of solutions
for super-critical masses.

1. Introduction

The Patlak-Keller-Segel (PKS) equation is widely used in mathematical
biology to model the collective motion of cells which are attracted by a self-
emitted chemical substance, being the slime mold amoebae Dictyostelium
discoideum a prototype organism for this behaviour. Moreover, the PKS
equation has become a paradigmatic mathematical problem since it shows
a concentration-collapse dichotomy: for masses larger than a critical value
solutions aggregate their mass, as Delta Diracs, in finite time while solutions
exist globally and disperse collapsing down to zero below this critical mass
threshold. This coexistence of phenomena in this simple-looking mathe-
matical model makes appealing and difficult to develop numerical schemes
capable of dealing with both situations.
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Historically, the first mathematical models in chemotaxis were introduced
in 1953 by C. S. Patlak in [36] and E. F. Keller and L. A. Segel in [30] in
1970. Here, we focus on the modified Patlak-Keller-Segel system for the log
interaction kernel introduced by B. Perthame, the second author and M.
Sharifi tabar in [14]





∂n

∂t
(t, x) = ∆n(t, x)− χ∇·[n(t, x)∇c(t, x)] t > 0 , x ∈ Rd ,

c(t, x) = − 1
dπ

∫

Rd

log |x− y|n(t, y) dy , t > 0 , x ∈ Rd ,

n(0, x) = n0 ≥ 0 x ∈ Rd .
(1.1)

Here (t, x) 7→ n(t, x) represents the cell density, and (t, x) 7→ c(t, x) is the
concentration of chemo-attractant. The constant χ > 0 is the sensitivity
of the bacteria to the chemo-attractant. Mathematically, it measures the
interaction force between cells, and hence, the strength of the non-linear
coupling. Initial data are assumed to verify

(1 + |x|2)n0 ∈ L1
+(Rd) and n0 log n0 ∈ L1(Rd). (1.2)

The solutions satisfy the formal conservation of the total mass of the system
∫

Rd

n0(x) dx =
∫

Rd

n(t, x) dx.

Without loss of generality we assume that the total mass is 1, such that
all the parameters of the system are contained in the reduced parameter χ.
The center of mass is also conserved as time evolves, and thus, we fix it to
be zero for the sake of simplicity,

∫

Rd

xn(t, x) dx =
∫

Rd

xn0(t, x) dx = 0.

We first remind that a notion of weak solution n in the space
C0

(
[0, T ); L1

weak(Rd)
)
, with fixed T > 0, using the symmetry in x, y for

the concentration gradient, was introduced in [37] able to handle measure
solutions. We shall say that n is a weak solution to the system (1.1) if for
all test functions ζ ∈ D(Rd),

d

dt

∫

Rd

ζ(x)n(t, x) dx =
∫

Rd

∆ζ(x)n(t, x) dx

− χ

2 d π

∫∫

Rd×Rd

[∇ζ(x)−∇ζ(y)] · x− y

|x− y|2 n(t, s)n(t, y) dx dy (1.3)

together with n(t = 0) = n0 in the distributional sense in (0, T ).



STEEPEST DESCENT SCHEME FOR THE PKS MODEL 3

As proved in [10, 8, 14], this problem presents the following dichotomy:
either solutions blow-up in finite time for the super-critical case χ > 2d2π or
rather solutions exist globally in time and spread in space decaying towards
a stationary solution in rescaled variables as t →∞ in the sub-critical case
χ < 2d2π.

Global improved weak solutions have been constructed for the system (1.1)
in the sub-critical case, χ < 2d2π, for d = 2 [24, 8] and d 6= 2 in [14]; and in
the critical case for d = 2 in [7]. These improved weak solutions satisfy the
decreasing character of a free energy functional for the PKS equation given
by:

t 7→ F [n](t) := S[n](t) +W[n](t) (1.4)

where S[n] is the standard Boltzmann’s entropy and W[n] is the interaction
energy defined by

S[n](t) :=
∫

Rd

n(t, x) log n(t, x) dx

and W[n](t) :=
χ

2dπ

∫∫

Rd

n(t, x) n(t, y) log |x− y| dx dy.

The free energy F [n] is related to its time derivative, the corresponding
Fisher information, in the following way: consider a non-negative solution
n ∈ C0([0, T ), L1(Rd)) of the Patlak-Keller-Segel system (1.1) such that
n(1 + |x|2), n log n are bounded in L∞((0, T ), L1(Rd)), ∇√n ∈
L1((0, T ), L2(Rd)) and ∇c ∈ L∞((0, T )× Rd), then

d

dt
F [n](t) = −

∫

Rd

n(t, x) |∇ log n(t, x)− χ∇c(t, x)|2 dx. (1.5)

The functional F structurally belongs to the general class of free energies
for interacting particles introduced in [33, 18, 19] and further analysed in
[22, 2]. The functionals treated in those references are of the general form:

E [n] :=
∫

Rd

U [n(x)] dx+
∫

Rd

n(x)V (x) dx+
1
2

∫∫

Rd×Rd

W (x− y)n(x)n(y) dx dy

(1.6)
under the basic assumptions U : R+ → R is a density of internal energy,
V : Rd → R is a convex confinement potential and W : Rd → R is a sym-
metric convex interaction potential. The internal energy U should satisfy
the following dilation condition, introduced in McCann [33]

λ 7−→ λdU(λ−d) is convex non-increasing on R+. (1.7)

The most important case of application, as it is for our case, is U(s) = s log s,
which identifies the internal energy with Boltzmann’s entropy.
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Continuity equations where the velocity field is formally derived from the
variational derivative of free energy functionals of the type (1.6), given by

∂ρ

∂t
= div

(
ρ∇δE

δρ

)
, in (0, +∞)× Rd , (1.8)

appear in various contexts: the interest for a convex interaction potential
energy arose from its use in the modelling of granular flows: see the works of
D. Benedetto, E. Caglioti, the last author, M. Pulvirenti, G. Toscani and C.
Villani [5, 6, 39, 44] and the references therein for the physical background
and related mathematical analysis. Nice mathematical and physical reviews
are provided in [43, Chapter 5] and [44].

A very powerful theory has been developed in the past decade starting
from the seminal paper by R. McCann [33] where the notion of displacement
convexity for a functional acting on probability measures was introduced.
This notion provides functionals of the form (1.6) with a natural convexity
structure. However, the interacting kernel W is itself required to be convex.
Later, F. Otto [35] introduced a formal Riemaniann structure giving sense to
this family of equations (1.8) as the gradient flow of the convex free-energy
functional (1.8) with respect to a metric that induces the euclidean Wasser-
stein distance for measures. Geodesics in Otto’s interpretation correspond
to optimal transportation pathways (or displacement interpolation),

ρt =
(
(1− t)Id + t∇ϕ

)
#ρ0,

where T = ∇ϕ is the optimal static transport map between the endpoints
ρ0 and ρ1.

On the other hand, a steepest descent scheme based on optimal transport
of measures was introduced in [29] for the linear Fokker-Planck equation,
exhibiting very nice properties. This scheme is now well understood and
has been formalised for a large class of degenerate parabolic equations in
[1], and in a more abstract setting, by L. Ambrosio, N. Gigli and G. Savaré
[3] with the name of ’minimising movement scheme’. The idea corresponds
to a discrete version of the gradient flow or steepest descent of the free en-
ergy under the Wasserstein metric structure, see Section 2 below for precise
definitions.

In our case, the free-energy functional shows a non convex interaction
potential, characteristic also of other models in mathematical biology [9, 10]
and swarming [38]. To weaken the convexity assumption on the interaction
kernel and to find under which conditions stationary states continue to be
global attractors of the dynamics are issues of great interest for applications
in mathematical biology.
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The main results of this work, Theorem 3.4 and Proposition 4.1, show
the convergence of the Jordan-Kinderlehrer-Otto steepest descent discrete
method [29] using Otto’s interpretation of the PKS equation (1.1) as the
gradient flow of the free-energy functional for the sub-critical case and the
exponential convergence towards a unique stationary profile in scaled vari-
ables for the sub-critical one-dimensional case. The first result recovers the
available global existence results in the sub-critical cases for the PKS equa-
tion in [10, 8, 14]. Moreover, we solve numerically this scheme in the one
dimensional case showing its abilities on capturing the blow-up for super-
critical cases without the need of mesh-refinement.

The plan of this paper is the following: we first recall in Section 2.1
some recent results on free energies and rescaled variables which allows to
obtain a priori estimates. We remind in Section 2.2 notions on optimal
transport and on the Wasserstein distance that we will use in Section 3
to prove the convergence of the scheme (3.1). The exponential convergence
towards a unique equilibrium is shown in the scaled one-dimensional setting
in Subsection 4.1. Finally, one-dimensional numerical simulations are given
in Subsection 4.2.

2. Preliminaries

2.1. A priori estimates in the sub-critical case. Here, we review some
aspects of the PKS model that were already used in [10, 8, 14, 7] as the main
tools for the proof of global existence of weak solutions in the sub-critical
and critical cases, respectively.

We will make a fundamental use of the Logarithmic Hardy-Littlewood-
Sobolev inequality [4, 15]: let f be a non-negative function in L1(Rd) such
that f log f and f log(1 + |x|2) belong to L1(Rd). If

∫

Rd

f dx = 1,

then
∫

Rd

f(x) log f(x) dx+d

∫∫

Rd×Rd

f(x)f(y) log |x−y| dx dy ≥ − C(d) (2.1)

with C(d) := (1/2) log π + (1/d) log[Γ(d/2)/Γ(d)] + (1/2)[ψ(d) − ψ(d/2)]
where ψ is the logarithmic derivative of the Γ-function. The Logarithmic
Hardy-Littlewood-Sobolev inequality (2.1) implies that the functional en-
ergy (1.4) is bounded from below if χ = χc := 2 d2π.

Since we will work mainly in the sub-critical case χ < χc, it is clearer,
although not necessary, to solve the equation in rescaled variables. Let us
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define the rescaled functions ρ and v by:

n(t, x) =
1

Rd(t)
ρ

(
τ(t),

x

R(t)

)
and c(x, t) = v

(
τ(t),

x

R(t)

)
(2.2)

with
R(t) =

√
1 + 2t and τ(t) = log R(t) .

The rescaled system is




∂ρ

∂t
(t, x) = ∆ρ(t, x) +∇·{ρ(t, x) [x− χ∇v(t, x)]} t > 0 , x ∈ Rd ,

v(t, x) = − 1
d π

log | · | ∗ ρ(t, x)− 1
d π

τ(t) t > 0 , x ∈ Rd ,

ρ(0, x) = ρ0 = n0 ≥ 0 x ∈ Rd .
(2.3)

In the rescaled variables, the confinement potential V (x) = 1
2 |x|2 is added

and the free energy becomes

G[ρ] =
∫

Rd

ρ(x) log ρ(x) dx +
1
2

∫

Rd

|x|2 ρ(x) dx

+
χ

2 d π

∫∫

Rd×Rd

log |x− y| ρ(x) ρ(y) dx dy (2.4)

With the definition (1.3) we shall say that ρ is a weak solution to the
system (2.3) if for all test functions ζ ∈ D(Rd),

d

dt

∫

Rd

ζ(x) ρ(t, x) dx =
∫

Rd

∆ζ(x) ρ(t, x) dx−
∫

Rd

∇ζ(x) · x ρ(t, x) dx

− χ

2 d π

∫∫

Rd×Rd

[∇ζ(x)−∇ζ(y)] · x− y

|x− y|2 ρ(t, x) ρ(t, y) dx dy (2.5)

together with ρ(t = 0) = ρ0 in the distributional sense in (0, T ). The follow-
ing Lemma extracts enough information from this decreasing free energy to
proceed.

Lemma 2.1 (A priori estimates). The functional G is bounded from below
on the set

K :=
{
ρ ∈ L1

+(Rd) :
∫

Rd

ρ(t, x) = 1, |x|2 ρ ∈ L1(Rd),
∫

Rd

ρ(t, x) | log ρ(t, x)| dx < ∞
}

if and only if χ ≤ χc. In addition, if χ < χc we have on every subset
{G ≤ C},
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i) no concentration:
∫

Rd

ρ| log ρ| ≤ C,

ii) mass confinement:
∫

Rd

|x|2ρ ≤ C,

As a consequence, every level subset {G ≤ C} is equi-integrable.

Proof. The first use of the Logarithmic Hardy-Littlewood-Sobolev inequal-
ity (2.1) to bound from below the free energy G is due to [24]. Rewrite

G[ρ](t) = (1− θ)
∫

Rd

ρ(t, x) log ρ(t, x) dx +
1
2

∫

Rd

|x|2 ρ(t, x) dx (2.6)

+θd

[
1
d

∫

Rd

ρ(t, x) log ρ(t, x) dx+
χ

2d2πθ

∫∫

Rd×Rd

ρ(t, x)ρ(t, y) log |x− y| dx dy

]
.

The Logarithmic Hardy-Littlewood-Sobolev inequality (2.1) controls the
third term if we choose θ = χ/χc. Because the function ρ log ρ is nega-
tive for small ρ, we need to control somehow the density for large x. We
use in fact the confinement potential, i.e., the second momentum of ρ.

Lemma 2.2 (Carleman’s estimates). For any probability density u∈L1
+(Rd),

if the second moment
∫
Rd |x|2 u(x) dx and the entropy

∫
Rd u log u dx are

bounded from above, then u log u is uniformly bounded in L1(Rd) and we
have∫

Rd

u(x) | log u(x)| dx ≤
∫

Rd

u(x)
(

log u(x) +
1
2
|x|2

)
dx + d log(4π) +

2
e

.

Proof. The proof goes as follows. Let ū := u1l{u≤1} and m=
∫
Rd ū(x) dx≤∫

Rdu(x) dx = 1. Then
∫

Rd

ū(x)
(

log ū(x) +
1
4
|x|2

)
dx =

∫

Rd

U(x) log U(x) dµ−m
d

2
log (4π)

where U := ū/µ, dµ(x) = (4π)−d/2e−|x|
2/4 dx. The Jensen inequality yields

∫

Rd

U(x) log U(x) dµ ≥
(∫

Rd

U(x) dµ

)
log

(∫

Rd

U(x) dµ

)
= m log m

and ∫

Rd

ū(x) log ū(x) dx ≥ m log m−m
d

2
log 4π − 1

4

∫

Rd

|x|2 ū(x) dx

≥ −1
e
− d

2
log(4π)− 1

4

∫

Rd

|x|2 u(x) dx .
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Using
∫

Rd

u(x) | log u(x)| dx =
∫

Rd

u(x) log u(x) dx− 2
∫

Rd

ū(x) log ū(x) dx ,

this completes the proof. ¤

We apply this lemma to obtain the first part of the result from (2.6):

G[ρ](t) ≥ (1− θ)
∫

Rd

ρ(t, x) | log ρ(t, x)| dx +
θ

2

∫

Rd

|x|2 ρ(t, x) dx + C.

On the other hand, the functional G[ρ] has an interesting scaling property.
For a given ρ, let ρλ(x) = λdρ(λx). It is straightforward to check that
‖ρλ‖L1(Rd) = 1 and

G[ρλ] = G[ρ] + d

(
1− χ

χc

)
log λ +

λ−2 − 1
2

∫

Rd

|x|2 ρ dx .

Since λ 7→ G[ρλ] is clearly not bounded from below if χ > χc, the proof
concludes. ¤

We shall also state another technical Lemma, which will plays a major
role when passing to the limit in the quadratic interaction contribution.

Lemma 2.3 (Doubling of variables). Assume fi ⇀ f in L1 and the family
{fi} is equi-integrable in the sense of Lemma 2.1, then fi ⊗ fi ⇀ f ⊗ f in
L1(Rd × Rd).

Proof. Let ψ(x, y) denote any test function in L∞(Rd × Rd). For any t ∈
(0, T ) and for almost every x ∈ Rd define

limΨi(x) := lim
∫

Rd

fi(y) ψ(x, y) dy =
∫

Rd

f(y)ψ(x, y) dy =: Ψ(x)

Note that for any t and x, |Ψi(x)| and |Ψ(x)| are bounded by ‖ψ‖L∞ .
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By Egorov’s theorem for any R > 0 and δ > 0, there exists Xδ such that
|Xδ| < δ and Ψi uniformly converges to Ψ in BR \Xδ. We have
∣∣∣∣
∫

Rd

[
Ψi(x) fi(x)−Ψ(x) f(x)

]
dx

∣∣∣∣

≤
∫

BR\Xδ

∣∣Ψi(x)fi(x)−Ψ(x)f(x)
∣∣ dx+

∫

Xδ

∣∣Ψi(x)fi(x)−Ψ(x)f(x)
∣∣ dx

+
∫

Bc
R

∣∣Ψi(x) fi(x)−Ψ(x) f(x)
∣∣ dx

≤
∫

BR\Xδ

∣∣Ψi(x) fi(x)−Ψ(x) f(x)
∣∣ dx + ‖ψ‖

∫

Xδ

fi(x) + f(x) dx

+ ‖ψ‖ 1
R2

∫

Bc
R

|x|2 [fi(x) + f(x)] dx .

Egorov’s theorem and the weak-L1 convergence of fi towards f ensures that
the first term is as small as desired by choosing i large enough. By the a
priori estimates in Lemma 2.1,

∫
Xδ

fi(x) dx and
∫

Xδ
f(x) dx can me made

as small as desired by choosing δ small enough, as well as the third term
can be made as small as desired by choosing R large enough. ¤

2.2. Optimal transport and the Wasserstein distance. We recall
some standard results related to optimal transportation and Wasserstein
distance that we will use in the sequel of this paper. The interested reader
can refer to the books of C. Villani [43, 45] and the book of L. Ambrosio, N.
Gigli and G. Savaré [3]. A short summary of properties of the Wasserstein
distance can be seen in [21].

Let µ and ν be in P(Rd) the space of probability measure in Rd, P2(Rd)
the subset of probability measures with finite second-momentum, Pac

2 (Rd)
its subset formed by the absolutely continuous measures with respect to
Lebesgue and T be a measurable map Rd → Rd. We say that T transports
µ onto ν and we note ν = T#µ if for any measurable set B ⊂ Rd, ν(B) =
µ ◦ T−1(B). We also say ν is the push-forward or the image measure of µ
by T i.e. ∫

Rd

ζ◦T (x) dµ(x) =
∫

Rd

ζ(y) dν(y) ∀ζ ∈ C0
b (Rd) . (2.7)

The Wasserstein distance between µ and ν, dW can be defined by

d2
W (µ, ν) := inf

T : ν=T#µ

∫

Rd

|x− T (x)|2 dµ(x) .

By Brenier’s theorem [11, 32, 34], see [43, Theorem 2.32, p.85] for a review,
if µ is absolutely continuous with respect to Lebesgue measure, then there
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is one measurable plan T such that ν = T#µ and T = ∇ϕ for some convex
function ϕ. As a consequence,

d2
W (µ, ν) =

∫

Rd

|x−∇ϕ(x)|2 dµ(x) . (2.8)

The variational problem leading to the definition of the Wasserstein distance
can be relaxed to the linear program

d2
W (µ, ν) = inf

Π∈Γ

{∫

Rd×Rd

|x− y|2 dΠ(x, y)
}

,

where Π runs over the set of transference plans Γ, that is, the set of joint
probability measures on Rd × Rd with marginals µ and ν. In fact, the
infimum above is a minimum by Kantorovich duality theorems [43, Chapter
1]. The optimal transference plan, in case Brenier’s theorem applies, is given
by Πo = (idRd ⊗∇ϕ)#µ.

Let us remind a simple consequence of the definition of the Wasserstein
distance for controlling averages [21, Corollary 2.4].

Lemma 2.4 (Convergence of averages with dW ). Given ζ a Lipschitz func-
tion with Lipschitz constant L and µ, ν ∈ P2(Rd), then we have

∣∣∣∣
∫

Rd

ζ(x) dµ−
∫

Rd

ζ(x) dν

∣∣∣∣ ≤ L dW (µ, ν).

Proof. Let Πo(x, y) the optimal plan between µ and ν ∈ P2(Rd) for dW .
Then ∫

Rd×Rd

|x− y|2dΠo(x, y) = d2
W (µ, ν),

and we can write
∫

Rd

ζ(x) dµ−
∫

Rd

ζ(x) dν =
∫

Rd×Rd

(ζ(x)− ζ(y)) dΠo(x, y).

Using that ζ is Lipschitz with constant L and estimating by Hölder’s in-
equality, we get

∣∣∣∣
∫

Rd

ζ(x) dµ−
∫

Rd

ζ(x) dν

∣∣∣∣ ≤
∫

Rd×Rd

|ζ(x)− ζ(y)| dΠo(x, y)

≤ L

∫

Rd×Rd

|x− y| dΠo(x, y) ≤ LdW (µ, ν),

giving the assertion. ¤
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3. Time discretisation

We consider a time-step τ > 0, an initial datum ρ0 ∈ Pac
2 (Rd). We

introduce the sequence (ρn
τ )n∈N recursively defined by ρ0

τ = ρ0 and

ρn+1
τ ∈ arg infρ∈K

{
G[ρ] +

1
2 τ

d2
W (ρn

τ , ρ)
}

. (3.1)

The JKO steepest descent scheme can be viewed formally as a time dis-
cretisation of the abstract gradient flow equation,

∂ρ

∂t
= −”∇W ”G[ρ] ,

where the space K ⊂ Pac
2 (Rd) is endowed with a formal riemannian structure

compatible with the Wasserstein dW distance [35]. We refer to [35, 43, 3, 19]
for a deeper discussion and the rigorous sense of the ”∇W ” definition. Next
lemma ensures that this discrete scheme is well defined.

Lemma 3.1 (Existence of minimisers). Let ρ0 satisfies (1.2) and χ < χc,
then there recursively exists a minimiser to (3.1).

Proof. Introduce the function

K 3 ξ 7→ G[ξ] +
1

2 τ
d2

W (ρn
τ , ξ) . (3.2)

By the a priori estimates in Lemma 2.1, this function is bounded from
below. Consider (ξk)k∈N a minimising sequence, without loss of generality,
we can assume that it satisfies G[ξk] ≤ G[ρn

τ ] for all k ∈ N. Proceeding as in
Lemma 2.1, we get

(1− θ)
∫

Rd

ξk(x) | log ξk(x)| dx +
θ

2

∫
|x|2ξk(x) ≤ G[ρn

τ ] + θ C(d) .

If χ < χc, then θ =
χ

χc
< 1 and this shows that ξk log ξk is bounded in

L1(Rd).
The bound on the second momentum avoid vanishing, while the L1(Rd)-

bound on ξk log ξk avoid concentration: indeed,∫

{ξk≥Q}
ξk dx ≤ 1

log Q

∫

{ξk≥Q}
ξk log ξk dx ≤ 1

log Q

∫

Rd

ξk | log ξk| dx ,

can be made as small as desired for Q > 1 large enough. Hence the family
{ξk}k∈N verifies the hypotheses in Dunford-Pettis theorem, and thus, there
exists a sub-sequence still denoted (ξk)k∈N which converges weakly L1 to a
density ξ∗.
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It remains to prove that this candidate ξ∗ realizes in fact a minimum
of (3.2). The weak-L1 lower semi-continuity of the entropy S, the second
momentum and the Wasserstein distance are well known, see [29, 3] and
references therein. We will prove that the quadratic interaction term is
continuous for the weak-L1 convergence in our situation. We split it into

∫∫

Rd×Rd

ξk(x) ξk(y) log |x− y| dx dy = A(t) + B(t) + C(t),

with

A(t) :=
∫∫

|x−y|<ε

ξk(x) ξk(y) log |x− y| dx dy,

B(t) :=
∫∫

ε≤|x−y|≤R

ξk(x) ξk(y) log |x− y| dx dy

and C(t) :=
∫∫

|x−y|>R

ξk(x) ξk(y) log |x− y| dx dy ,

where ε < 1 and R >
√

e.

Control of A(t). We use the duality inequality, ab ≤ ea + b log b− b.
∣∣A(t)

∣∣ ≤
≤

∫∫

|x−y|<ε

ξk(x)ξk(y)log
1

|x− y| dx dy

≤
∫ {

ξk(x)
∫

|x−y|<ε

α−1ξk(y)log(α−1ξk(y))−α−1ξk(y)+exp
(
α log

1
|x− y|

)}

≤ α−1

∫
ξk(y) log(α−1ξk(y))

∫

|x−y|<ε

ξk(x) dx dy +
∫

ξk(x) dx

∫

|z|<ε

1
|z|α dz.

By the L1(Rd)-bound on ξk log ξk,
∫

Xε
ξk is uniformly small on small sets

Xε, and therefore the last term can be made as small as desired uniformly
in k by choosing ε small enough and α < d.

Control of B(t). We shall use the Lemma 2.3 because log |x−y| is bounded
on the set {ε < |x− y| < R}
Control of C(t). For R >

√
e, R 7→ R2/ log R is an increasing function, so

that

0 ≤ C(t) ≤ 2 log R

R2

∫

R2
|x|2 ξk(t, x) dx .

Because we uniformly bound the second momentum, this can be made as
small as desired while choosing R large enough.
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Finally, collecting terms we get that the difference∣∣∣∣
∫∫

Rd×Rd

ξk(t, x) ξk(t, y) log |x− y| dx dy −
∫∫

Rd×Rd

ξ∗(t, x) ξ∗(t, y) log |x− y| dx dy

∣∣∣∣
can be made as small as desired by choosing ε and δ small enough, and r,
R and k large enough. ¤

Remark 3.2 (Uniqueness of Minimizers). Since the functional G[n] is not
convex, we cannot conclude the uniqueness of minimizers for the discrete
scheme, and thus, the scheme (3.1) is defined by choosing any element re-
alizing the infimum as ρn+1

τ . Each choice might in principle give rise to a
solution in the limit τ → 0. It is an open problem to deal with the uniqueness
of solutions in the subcritical case.

Now, we define the time interpolation of the discrete scheme as a family
of Lipschitz curves (ρτ )τ>0 connecting every pair {ρn

τ , ρn+1
τ } with a con-

stant speed geodesic in the interval [n τ, (n + 1) τ). Accordingly for any
t ∈ [n τ, (n + 1) τ) we have,

dW (ρn
τ , ρτ (t)) =

t− nτ

τ
dW

(
ρn

τ , ρn+1
τ

)
.

Obviously ρτ (nτ) = ρn
τ . This is possible due to Brenier theorem by defining

the displacement interpolant

ρτ (t) =
(

(n + 1)τ − t

τ
Id +

t− nτ

τ
∇ϕn

)
#ρn

τ

with ∇ϕn being the optimal map transporting ρn
τ onto ρn+1

τ .

Remark 3.3 (Comparison to Literature). Let us point out that once the
free energy G[n] is bounded from below (Lemma 2.1) and the approximation
scheme is well-defined (Lemma 3.1), then [3, Theorem 11.1.6, pp. 288-289]
applies. For the convenience of the reader we give a shorter proof adapted
to our problem. Our proof is based on the founding idea of [29] proving the
convergence of the ad-hoc scheme for the linear Fokker-Planck equation. A
nice sketch of the proof of [29] can be found in [43, Section 8.4,pp. 256-262].

Theorem 3.4 (Convergence of the scheme as τ → 0). Under assumption
(1.2), if χ < χc then the family (ρτ )τ>0 admits a sub-sequence converging
weakly in L1(Rd) to a weak solution of (2.5).
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Proof. We proceed in three steps:
Step 1.- A priori estimates in space and time: Since ρn+1

τ minimises
(3.1) we obviously have

G[ρn+1
τ ] +

1
2 τ

d2
W (ρn

τ , ρn+1
τ ) ≤ G[ρn

τ ] .

As a consequence we obtain an energy estimate

sup
n∈N

G[ρn
τ ] ≤ G[ρ0

τ ], (3.3)

and a total square estimate
1

2 τ

∑

n∈N
d2

W (ρn
τ , ρn+1

τ ) ≤ G[ρ0
τ ]− inf

n∈N
G[ρn

τ ] . (3.4)

The right-hand side is bounded thanks to Lemma 2.1.
From the total square estimate (3.4) we deduce a 1

2 -Hölder-estimate in
time of (ρτ )τ≥0: indeed, for any 0 ≤ m ≤ n,

dW (ρm
τ , ρn

τ ) ≤
√

2 τ

n−1∑

k=m

1√
2 τ

dW (ρk
τ , ρk+1

τ )

≤
√

2 τ
√

(n−m)
√
G[ρ0

τ ]− inf
n∈N

G[ρn
τ ] .

As a consequence for any 0 ≤ s ≤ t

dW (ρτ (s), ρτ (t)) ≤ dW

(
ρτ (s), ρ[ s

τ +1]τ
τ

)
+ dW

(
ρ
[ s

τ +1]τ
τ , ρ

[ t
τ ]τ

τ

)

+ dW

(
ρ
[ t

τ ]τ
τ , ρτ (t)

)

≤
([

s

τ
+ 1

]
− s

τ

)
dW

(
ρ
[ s

τ ]τ
τ , ρ

[ s
τ +1]τ

τ

)

+

√
2 τ

([
t

τ

]
−

[
s

τ
+ 1

])(
G(ρ0

τ )− inf
n∈N

G(ρn
τ )

)

+
(

t

τ
−

[
t

τ

])
dW

(
ρ
[ t

τ ]τ
τ , ρ

[ t
τ +1]τ

τ

)

≤
√

6
(
G(ρ0)− inf

n∈N
G(ρn)

)
(t− s)

1
2 . (3.5)

Step 2.- Compactness: By the 1
2 -Hölder-estimate (3.5), ρτ is bounded in

P2(Rd) so the family {ρτ}τ>0 is narrow. By the a priori estimates (Lemma
2.1), the family {ρτ (t)}τ>0 can neither concentrate nor vanish and the family
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{ρτ (t)}τ>0 is tight. In the other hand by the estimate (3.5) the curves ρτ (t, ·)
are 1

2 -Hölder continuous in time. Ascoli-Arzéla’s theorems yield the relative
compactness of the family (ρτ (t, ·))τ>0.

Finally {ρτ}τ>0 is relatively compact in C0([0, T ], L1
weak(Rd)) for any T >

0. As a consequence, for any T > 0, there exists a sub-sequence still denoted
(ρτ )τ>0, such that (ρτ )τ>0 converges in C0([0, T ], L1

weak(Rd)) to a function
ρ when τ goes to 0.

Step 3.- Approximate Euler-Lagrange equation in weak formula-
tion:
Weak space derivative.- Let ζ be a test function and ∇ζ be a smooth vec-
tor field with compact support. Let us define Tε := ∇ϕε with ϕε(x) :=
|x|2
2 + ε ζ. For ε small enough Tε is a C1-diffeomorphism and Det∇Tε =

Det (Id + εD2ζ) > 0. We define ρε the push-forward perturbation of ρn+1
τ

by Tε:

ρε = Tε#ρn+1
τ .

Changing variables and using (2.7), we have

G[ρε](t)=
∫

Rd

log
ρn+1

τ (x)
Det(Id +εD2ζ)

ρn+1
τ (x) dx+

∫

Rd

[
1
2
|x−ε∇ζ(x)|2

]
ρn+1

τ (x)dx

+
∫

Rd

[
χ

2 d π

∫

Rd

log |x− y + ε[∇ζ(x)−∇ζ(y)]| ρn+1
τ (y) dy

]
ρn+1

τ (x)dx.

Alternatively we introduce the optimal map ∇ϕn which transports ρn
τ onto

ρn+1
τ . By (2.8)

d2
W (ρn

τ , ρn+1
τ ) =

∫

Rd

|x−∇ϕn(x)|2ρn
τ (x) dx . (3.6)

The map [Id + ε∇ζ) ◦∇ϕn] transports ρn
τ on ρε. We do not know if this is

the optimal map however by definition of the Wasserstein distance

d2
W (ρn

τ , ρε) ≤
∫

Rd

∣∣x− (Id + ε∇ζ)◦∇ϕn(x)
∣∣2ρn

τ (x) dx . (3.7)
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Using the minimising property of the scheme (3.1), and combining (3.6) and
(3.7) we obtain

0 ≤ 1
2 τ

d2
W (ρn

τ , ρε) + G[ρε]− 1
2 τ

d2
W (ρn+1

τ , ρn
τ )− G[ρn+1

τ ]

≤ 1
2 τ

∫

Rd

(
|x−∇ϕn(x)− ε∇ζ◦∇ϕn(x)|2 − |x−∇ϕn(x)|2

)
ρn

τ (x) dx

+
1
2

∫

Rd

((|x− ε∇ζ(x)|2 − |x|2)− log
[
Det (Id + εD2ζ)

])
ρn+1

τ (x) dx

+
χ

2dπ

∫∫(
log

∣∣x−y+ε(∇ζ(x)−∇ζ(y))
∣∣−log |x−y|) ρn+1

τ (x)dxρn+1
τ (y)dy.

Dividing by ε and letting ε > 0 going to zero we find

0 ≤ 1
τ

∫

Rd

〈∇ϕn(x)− x,∇ζ◦∇ϕn(x)
〉
ρn

τ (x) dx

+
∫

Rd

[−∆ζ(x)− x · ∇ζ(x)+

+
χ

2dπ

∫

Rd

[∇ζ(x)−∇ζ(y)] ·(x− y)
|x− y|2 ρn+1

τ (y) dy

]
ρn+1

τ (x)dx.

Since we can change ε in −ε we have in fact

1
τ

∫

Rd

〈∇ϕn(x)− x,∇ζ(x)◦∇ϕn(x)
〉
ρn

τ (x) dx (3.8)

=
∫

Rd

[∆ζ(x) + x · ∇ζ(x)−

− χ

2 d π

∫

Rd

[∇ζ(x)−∇ζ(y)] · (x− y)
|x− y|2 ρn+1

τ (y) dy

]
ρn+1

τ (x)dx.

Weak time derivative.- Using the Taylor’s expansion

ζ(∇ϕn(x))− ζ(x) =
〈∇ϕn(x)− x,∇ζ◦∇ϕn(x)

〉
+ O

(
|x−∇ϕn(x)|2

)

we can recast the left-hand side of (3.8) as

1
τ

(∫

Rd

ζ◦∇ϕn(x)ρn
τ (x) dx−

∫

Rd

ζ(x)ρn
τ (x) dx

)
+

+ O

(
1
τ

∫

Rd

|x−∇ϕn(x)|2 ρn
τ (t) dx

)

=
1
τ

(∫

Rd

ζ(x)ρn+1
τ (x) dx−

∫

Rd

ζ(x)ρn
τ (x) dx

)
+ O

(
1
τ

d2
W

(
ρn

τ , ρn+1
τ

))
.
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We multiply (3.8) by τ and eventually obtain∫

Rd

ζ(x)
[
ρn+1

τ (x)− ρn
τ (x)

]
dx + O

(
d2

W

(
ρn

τ , ρn+1
τ

))
(3.9)

=τ

∫

Rd

[∆ζ(x) + x · ∇ζ(x)−

− χ

2 d π

∫

Rd

[∇ζ(x)−∇ζ(y)] · (x− y)
|x− y|2 ρn+1

τ (y) dy

]
ρn+1

τ (x)dx.

let 0 ≤ t1 < t2 be fixed times, m = [t1/τ ] + 1 and n = [t2/τ ]. By summing
equation (3.9) we have thanks to the total square estimate (3.4),
∫

Rd

ζ(x)[ρn
τ (x)−ρm

τ (x)] dx+O(τ)=
n−1∑

k=m

τ

∫

Rd

[∆ζ(x) + x · ∇ζ(x)] ρk+1
τ (x) dx

− χ

2 d π

n−1∑

k=m

τ

∫∫

Rd×Rd

[∇ζ(x)−∇ζ(y)] · (x− y)
|x− y|2 ρk+1

τ (y) dyρk+1
τ (x) dx,

(3.10)

On the other hand, we can split
∫

Rd

ζ(x) [ρτ (t2, x)− ρτ (t1, x)] dx =
∫

Rd

ζ(x) [ρτ (t2, x)− ρn
τ (x)] dx

+
∫

Rd

ζ(x) [ρn
τ (x)− ρm

τ (x)] dx +
∫

Rd

ζ(x) [ρm
τ (x)− ρτ (t1, x)] dx .

By Lemma 2.4, we control the bordering averages,∫

Rd

ζ(x) |ρm
τ (x)− ρτ (t1, x)| dx ≤ C dW (ρm

τ , ρτ (t1, x))

≤ C dW (ρm
τ , ρm−1

τ ) ≤ O(τ1/2) .

In addition, integrating in time Lemma 2.4 implies for all k in [[m, n− 1]]

τ

∫

Rd

ψ(x)ρk+1
τ (x)dx =

∫ (k+1)τ

kτ

∫

Rd

ψ(x)ρτ (s, x) ds + O(τ dW (ρk
τ , ρk+1

τ )) ,

where ψ denotes any bounded test function. Hence we can transform the
discrete in time sum (3.10) into a continuous time integration. Finally, the
test contributions are bounded in L∞((0, T ) × Rd) so that the bordering
time integrands are negligible,

∫ mτ

t1

∫

Rd

[∆ζ(x) + x · ∇ζ(x)] ρτ (s, x)dx ds

− χ

2 d π

∫ mτ

t1

∫∫

Rd×Rd

[∇ζ(x)−∇ζ(y)] · (x−y)
|x−y|2 ρτ (s, y)ρτ (s, x) dy dx ds = O(τ) .
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Collecting all the terms we end up with
∫

Rd

ζ(x) [ρτ (t2, x)−ρτ (t1, x)] dx =
∫ t2

t1

∫

Rd

[∆ζ(x)+x · ∇ζ(x)] ρτ (s, x) dx ds

(3.11)

− χ

2 d π

∫ t2

t1

∫∫

Rd×Rd

[∇ζ(x)−∇ζ(y)] · (x−y)
|x−y|2 ρτ (s, y) dyρτ (s, x) dx ds+O(τ1/2).

Step 4.- Passing to the limit: The relative compactness of the family
of curves {ρτ}τ>0 in C0([0, T ], L1

weak(Rd)) for any T > 0, allows to pass
to the limit in the linear parts of (3.11) because ∇ζ and ∆ζ are bounded
in L∞(Rd). The quadratic last term of (3.11), coming from the concave
interaction energy, is more difficult to handle with. Actually, we shall make
another use of the doubling of variables’ trick: ρτ ⊗ ρτ ⇀ ρ ⊗ ρ thanks to
the equi-integrability, obtained in Lemma 2.3. In addition, recall that the
convergence is uniform in time thanks to Ascoli-Arzéla’s theorems, and that
equi-integrability bounds are also uniform with respect to τ . We can thus
pass to the limit when τ goes to zero in (3.11) to obtain for any t1, t2

∫

Rd

ζ(x) [ρ(t2, x)−ρ(t1, x)] dx =
∫ t2

t1

∫

Rd

[∆ζ(x) + x · ∇ζ(x)] ρ(s, x) dx ds

− χ

2 d π

∫ t2

t1

∫

Rd×Rd

[∇ζ(x)−∇ζ(y)] · (x− y)
|x− y|2 ρ(s, y)ρ(s, x) dy dx ds ,

which is a formulation of the weak solution as defined in (2.5). ¤

Remark 3.5 (Original variables). This theorem is true in original vari-
ables (1.1) locally in time, when we consider the free energy (1.4) with mi-
nor changes, see also [29]. However, the long time asymptotics are better
understood in scaled variables (see the numerical results, Section 4.2.1).

Remark 3.6 (Comparison to Literature). Previous results of convergence
of numerical schemes have been presented in [26]. Theorem 3.4 shows the
convergence of the JKO scheme for all values χ < χc, where χc = 2d2π
is known to be optimal, whereas in [26] the threshold is non-optimal and
depends upon the mesh grid regularity. Furthermore, because the free en-
ergy is not really used in [26], there is currently no hope to get the optimal
threshold in his method. However, the ’minimising movement’ scheme is
much more involved numerically in other dimension than one, at least as a
direct implicit discretisation detailed in Section 4.2. Alternative ideas based
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on minimisation procedures may be of application in more dimensions. Be-
yond the optimal threshold, there is another result arguing on this alternative
scheme’s behalf. Namely for a given τ the solution ρn

τ is shown to converge
towards the unique stationary state, with explicit exponential rate in the
one-dimensional case, see next section Proposition 4.1.

Remark 3.7 (Generalizations). The ongoing work extends to non-linear
diffusions, under suitable assumptions, ∆f(n) without deeper difficulty. The
main points is that the free energy should be bounded from below – this
results from a balance between diffusion at high density level (diffusion must
be super-linear at infinity above the optimal threshold) and at low density
level (basically f(u) & uα where α > max(1/2, 1− 2/d) preventing mass to
escape too fast towards infinity), see [13] and [17].

4. One-dimensional Case

In the case of the real line, consider µ and ν two absolutely continuous
measures with respect to the Lebesgue measure, of respective densities f
and g, and of cumulative distribution functions F and G. As the cumulative
distribution function is non-decreasing we can define the pseudo-inverse
function by

V (z) = F−1(z) := inf{x : F (x) ≥ z} .

By Brenier’s theorem and the definition of the image measure (2.7), we have

F ◦ϕ′(x) =
∫ ϕ(x)

0

f(y) dy =
∫ x

0

g(y) dy = G(x) .

Hence, the transport map can be stated explicitly ϕ′ = F−1 ◦G and the
Wasserstein distance can be expressed in the following more tractable way

d2
W (µ, ν) =

∫ 1

0

|F−1(w)−G−1(w)|2 dw . (4.1)

In fact, F−1◦G is the optimal map for all convex costs in one dimension [43,
Theorem 2.18].

This expression of the one dimensional Wasserstein distance has been
used for non-linear diffusions and non-linear non-local friction equations
in granular media [20, 31, 16] to analyse the long-time asymptotics and
the contraction properties with respect to Wasserstein distances of those
equations. Moreover, these ideas have been used in [27, 28] for numeri-
cal purposes. Explicit in time numerical schemes for the equations of the
inverse distribution function are proposed keeping the contraction of the
Wasserstein distance at the discrete level. Here, we prefer to solve it by
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an implicit in time Euler scheme since it coincides with the JKO scheme
through the representation (4.1) and moreover, the contraction property
of the Wasserstein distance is not true due to the lack of convexity of the
functional G.

More precisely, let Fn and Fn+1 be the cumulative distribution functions
associated respectively to ρn

τ and ρn+1
τ . By the expression (4.1) of the

Wasserstein distance on the real line, the scheme (3.1) can be rewritten in
terms of Vn = F−1

n and Vn+1 = F−1
n+1 as the gradient flow of the inverse

distribution function subject to L2−metric structure:

Vn+1 = inf
W

[
G[W ] +

1
2 τ
‖W − Vn‖2L2(0,1)

]
.

Here the metric is Euclidean, hence the Euler-Lagrange equation associated
to this minimisation problem is

Vn+1 − Vn

τ
= −∇G[Vn+1] ,

where ∇ is the usual gradient operator in L2(R). This Euler-Lagrange
equation can be rewritten

−Vn+1(w)− Vn(w)
τ

=
∂

∂w

[(
∂Vn+1(w)

∂w

)−1
]
+Vn+1(w)+

χ

π
H[Vn+1] (4.2)

where H corresponds to the Hilbert transform H[ρ] = −∇v, and is defined
by

H[V ](w) :=
1
π

lim
ε→0

∫

|V (w)−V (z)|≥ε

1
V (w)− V (z)

dz .

For sake of simplicity we assume that the space step is constant, equal to
h. If we set V i

n := Vn(ih), for any i = 0 · · ·N , and Nh = 1, the finite differ-
ence discretisation in space of (4.2) is the following implicit Euler scheme
in rescaled variables,

− V i
n+1 − V i

n

τ
=

1
V i+1

n+1 − V i
n+1

− 1
V i

n+1 − V i−1
n+1

+ V i
n+1

+
χ

π
lim
ε→0

∑

j:|V i
n+1−V j

n+1|≥ε

1
V i

n+1 − V j
n+1

. (4.3)

with initial condition V0 = ρ0. We impose Neumann boundary conditions
in the ρ−problem (2.3), i.e. for any n, 1

V N
n −V N−1

n
= 0 and 1

V 1
n−V 0

n
= 0, so

that the ’centre of mass’ is conserved:

∀n
N∑

i=0

V i
n = 0.
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The solution at each time step of the non-linear system of equations is
obtained by an iterative Newton-Raphson procedure.

4.1. Exponential Convergence in 1-D. Here comes the second main
improvement and motivation for this numerical scheme. In addition to
convergence as the time step goes to zero, we are able to show that for a
fixed τ > 0, the discrete solution converges to a unique steady state as time
goes to infinity.

Proposition 4.1 (Convergence in the sub-critical case). Assume χ < χc.
Then the solution of the numerical scheme (4.3) converges to the (unique)
steady-state of the problem with exponential rate.

Proof. First we need the following two characterizations of the (unique)
equilibrium state. The uniqueness will in fact follow from the convergence
proof, as we shall see later (Remark 4.2). The discrete function (U i) is an
equilibrium if and only if

∀i 0 =
1

U i+1 − U i
− 1

U i − U i−1
+ U i +

χ

π

∑

j 6=i

h
1

U i − U j
, (4.4)

or equivalently

∀k (Uk+1 − Uk)





χ

π

k∑

j=0

N∑

i=k+1

h
1

U i − U j
−

k∑

i=0

U i



 = 1. (4.5)

To see that (4.4) and (4.5) are equivalent, rewrite the latter as

∀k 1
Uk+1 − Uk

=
χ

π

k∑

j=0

N∑

i=k+1

h
1

U i − U j
−

k∑

i=0

U i,

then ’derive’ the ongoing expression in a discrete way,
1

Uk+1 − Uk
− 1

Uk − Uk−1
=

=
χ

π

k∑

j=0

N∑

i=k+1

h
1

U i − U j
− χ

π

k−1∑

j=0

N∑

i=k

h
1

U i − U j
− Uk

=
χ

π

N∑

i=k+1

h
1

U i − Uk
− χ

π

k−1∑

j=0

h
1

Uk − U j
− Uk.

We shall split the proof into an analytic part (existence of the stationary
state) and an algebraic computation (convergence estimate). Because the
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existence proof shares many similarities with previous estimates (e.g. exis-
tence of a minimiser to the corresponding free energy, see Lemma 3.1), we
leave it to the reader.

We proceed as computing the time evolution of the L2−distance between
Vn and the stationary state U .

1
2τ

(
‖Vn+1 − U‖2− ‖Vn − U‖2

)
=

=
1
2τ

∑

i

h(V i
n+1 − V i

n)(V i
n+1 + V i

n − 2U i)

=
∑

i

h
V i

n+1 − V i
n

τ
(V i

n+1 − U i)− 1
2τ

∑

i

h(V i
n+1 − V i

n)2.

We then input the evolution equation for Vn+1 − Vn, and obtain thanks
to (4.4),

1
2τ

(
‖Vn+1 − U‖2 − ‖Vn − U‖2

)
≤

≤ −
∑

i

h
( 1

V i+1 − V i
− 1

V i − V i−1
− 1

U i+1 − U i

+
1

U i − U i−1
+ V i − U i +

χ

π

∑

j 6=i

h
1

V i − V j

−χ

π

∑

j 6=i

h
1

U i − U j

)
(V i − U i)

= An + Bn + Cn,

where V stands for Vn+1 without any ambiguity. We integrate by part the
first (diffusion) contribution,

A =

= −
∑

i

h
( 1

V i+1−V i
− 1

V i−V i−1
− 1

U i+1−U i
+

1
U i−U i−1

)
(V i − U i)

=
∑

i

h
( 1

V i+1 − V i
− 1

U i+1 − U i

)
(V i+1 − U i+1 − V i + U i).

We have carefully used the boundary conditions 1
V N−V N−1 = 0 and 1

V 1−V 0 =
0. We can rewrite A using zero-homogeinity of the last expression, namely

A =
∑

i

hγ
(V i+1 − V i

U i+1 − U i

)
,
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where γ(λ) = 2− λ− λ−1 is concave and non-positive. The second contri-
bution coming from variables rescaling is obvious but crucial, namely

B = −
∑

i

h(V i − U i)2 = −‖Vn+1 − U‖2.

The last (interaction) contribution is more tricky to handle with, and in-
volves variables doubling, as it is known from granular media, see [20]. We
have

C = −χ

π

∑

i

h
( ∑

j 6=i

h
1

V i − V j
−

∑

j 6=i

h
1

U i − U j

)
(V i − U i)

= − χ

2π

∑ ∑

i,j, i 6=j

h2
( 1

V i − V j
− 1

U i − U j

)
(V i − V j − U i + U j)

= − χ

2π

∑ ∑

i,j, i 6=j

h2γ
(V i − V j

U i − U j

)
.

Notice that the above expression is symmetric between the two possible
choices i < j and j < i. We shall also make use of the concavity property
of γ as following,

C = −2
χ

2π

∑∑

j<i

h2γ
( ∑

j≤k<i

V k+1 − V k

Uk+1 − Uk
· Uk+1 − Uk

U i − U j

)

≤ −χ

π

∑∑

i<j

h2
∑

j≤k<i

γ
(V k+1 − V k

Uk+1 − Uk

)Uk+1 − Uk

U i − U j

= −χ

π

∑

k

hγ
(V k+1 − V k

Uk+1 − Uk

)
(Uk+1 − Uk)

k∑

j=0

N∑

i=k+1

h
1

U i − U j

≤ −
∑

k

hγ
(V k+1−V k

Uk+1−Uk

)
(Uk+1−Uk)





χ

π

k∑

j=0

N∑

i=k+1

h
1

U i−U j
−

k∑

i=0

U i



 ,

where we have used the fact that Dk :=
∑k

i=0 U i is a non-positive quantity
for all k.

Let us prove this last claim. Indeed, Dk+1−Dk−1−2 Dk = Uk+1−Uk ≥
0. Hence, Dk+1−Dk ≥ Dk−1−Dk. Since DN = 0 and D0 = U0 ≤ 0, there
exists k0 such that (Dk)k∈[[1,k0]] is non-decreasing and (Dk)k∈[[k0−1,N ]] is
non-increasing. As a consequence Dk ≤ D0 ≤ 0 for any k ∈ [[1, k0]] and
Dk ≤ DN = 0 for any k ∈ [[k0 + 1, N ]] which proves the assertion.
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At this stage we bring in the alternative representation of the stationary
solution (4.5), so that A + C ≤ 0. As a consequence we obtain

1
2τ

(
‖Vn+1 − U‖2 − ‖Vn − U‖2

)
≤ −‖Vn+1 − U‖2. (4.6)

We finally get the exponential convergence rate,

‖Vn − U‖2 ≤
( 1

1 + 2τ

)n

‖V 0 − U‖2.

If τ is small, we can thus approximate log(1 + 2τ) ≈ 2τ and
(

1
1+2τ

)n

≈
exp(−2nτ) ≈ exp(−2t). Thus, the bound on the rate, we find, does not
depend on the parameter χ < χc. ¤

Remark 4.2 (Uniqueness of Stationary Solution). We can deduce a pos-
teriori the uniqueness of the equilibrium. As a matter of fact let consider
another equilibrium state Ũ and set Vn+1 = Vn = Ũ in the above compu-
tations. We eventually obtain ‖Ũ − U‖ ≤ 0 from (4.6), which proves the
uniqueness.

Remark 4.3 (Original Variables). When coming back in the continuous
setting to the original variables n(t, x) by (2.2), we are not able to show
even that

n(t, x) = n∞(t, x) + OW (1),
where n∞ is the dilatation of the stationary state,

n∞(t, x) =
1

1 + 2t
U

(
x√

1 + 2t

)
,

and OW means the infinitesimal in the dW sense. The reason is that the
found estimate on the speed of convergence does not depend on the reduced
parameter χ, but only on the variables rescaling, and the change of variables
restores back exactly the factor et due to the scaling properties of dW [43, 21].
This result should be improved as seen from the numerical experiments below
and it is an open problem how to get a faster speed of convergence in the
scaled equation leading to a polynomial decay in original variables. In fact,
we conjecture that if we fix the center of mass then the rate on convergence of
the solution to the stationary solution in rescaled variables is of order e−2t.
This fact coincides with other situations as in nonlinear diffusions in which
fixing certain invariants of the equation improves the rate of convergence
[23]. Certainly the situation is close to the heat equation for small mass
solutions [25].
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In the next subsections, we will show some numerical experiments for the
PKS equation using the scheme (4.3). We begin with the sub-critical case
χ = π (remind that in one dimension the critical parameter is χc = 2 π)
for the not rescaled (Section 4.2.1) as opposed to the rescaled system (Sec-
tion 4.2.2). We next approach the critical parameter plugging χ = 1.8π,
and initialise the scheme with a two-peaks density n0 (resp. Sections 4.2.3
and 4.2.4). We then investigate the upper-critical case starting with respec-
tively a single peak (Section 4.3.1), two symmetric peaks attracting each
other (Section 4.3.2) and two asymmetric peaks (Section 4.4).

In the following, we assume a uniform in space discretisation wi = ih, i =
0 . . . N , and Nh = 1.

4.2. Sub-critical case.

4.2.1. Not rescaled case. Starting with the centred initial data,

V i
0 = 2

wi − 0.5

[(wi + 0.01) (1.01− wi)]
1/4

,

corresponding to a compact supported density n0, we numerically solve the
PKS equation on the time interval [0, 400] with χ = π. Figures 4.1 and 4.2
show the evolution of the solution both for the density (Fig. 4.2) and its
inverse distribution function (Fig. 4.1).

Observe in Figure 4.1 that the branches of the inverse cumulative function
V goes eventually to ±∞. This is expected because the support of the
cell density spreads as time goes on, and therefore the distribution tails
are wider. Remind that in the sub-critical regime, the diffusion process
dominates. The scheme captures well the collapse down to zero of the cell
density and the spreading of the solution. Interestingly, this scheme handles
easily with moving density’s support (note that finite speed of propagation
is a numerical artifact) whereas the reference domain [0, 1] is fixed because
we deal with probability densities (mass is conserved).

Moreover, the spreading towards zero seems to be polynomial from Fig-
ure 4.3 showing the evolution of the L2-norm of the cell density in log-log
scale. The entropy decay is plotted in Figure 4.4.

4.2.2. Rescaled variables: χ = π. Given the compactly supported initial
data,

V i
0 = 2

wi − 0.5

[(wi + 0.01) (1.01− wi)]
1/4

,

we numerically solve the PKS equation in rescaled variables on the time
interval [0, 5] with χ = π (corresponding results are shown in figures 4.5
and 4.6, 4.7 and 4.8).
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Figure 4.1. Inverse
cumulative distrib-
ution function for
χ = π. Note that the
initial data seems to
be flat relatively to
the very large scale
on the V−axis, as
opposed to Figure 4.5.
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Figure 4.2. Cell
density n as time
evolves, obtained
from its inverse cu-
mulative distribution
function. Accord-
ingly to Figure 4.1,
the space scale is also
very large, and there-
fore the density seems
highly concentrated
at t = 0.
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Figure 4.3. L2-
norm’s evolution for
the cell density n, in
a log− log scale. The
decay appears to be
polynomial.
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tion of the entropy
S[n] showing slow de-
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Figure 4.5. Fast
convergence towards
the stationary solution
for χ = π and rescaled
variables.
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Figure 4.6. Evolu-
tion of the corre-
sponding cell density

n.

Contrary to previous Section 4.2.1, we observe an exponential conver-
gence towards the stationary solution (see Figures 4.5 and 4.7). When
computing the Wasserstein distance between the density at time t and the
expected stationary solution (last computed time), we find out that the con-
vergence is faster than e−t (Figure 4.7) obtained in Proposition 4.1. This
confirms the open problem of trying to find a better decay rate in scaled
variables that will eventually lead to a polynomial decay rate towards self-
similarity in original variables for subcritical masses.

4.2.3. Rescaled variables: χ = 1.8π. Given the compactly supported initial
data,

V i
0 = 2

wi − 0.5

[(wi + 0.01) (1.01− wi)]
1/4

,

we numerically solve the PKS equation in rescaled variables on the time
interval [0, 5.5] with χ = 1.8π. Figures 4.9 and 4.10 show the evolution of
the solution.

The initial data is the same as in Section 4.2.2 but χ is closer to the
critical parameter χc. The solution again converges exponentially to the
stationary solution (see Figures 4.9 and 4.10). According to Proposition
4.1, the rate of convergence is at least the same as in Section 4.2.2, compare
Fig. 4.11 to Fig. 4.7 and the slope are the same (of order e−2t). On the other
hand, the equilibrium state is more concentrated (Fig. 4.10), corresponding
to a flat plateau in Fig. 4.9, as we expect it converges to a Dirac mass.
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Figure 4.7. Was-
serstein distance
between the density
at time t and the
final computed den-
sity assumed to be
almost the stationary
solution. Dash-line:
decay rate proven in
Proposition 4.1.
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tion of the entropy.
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Figure 4.11. Was-
serstein distance be-
tween the density at
time t and the final
computed density as-
sumed to be almost
the stationary solu-
tion. Dash-line: de-
cay rate proven in
Proposition 4.1.
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Figure 4.12. Evo-
lution of the entropy.

4.2.4. Two peaks initial data. Initialise with the centred cumulative distri-
bution function,

V i
0 =

exp [10 (wi − 0.5)]− 1

[(wi + 0.01) (1.01− wi)]
1/4

,

corresponding to a two-peaks like density with compact support. We nu-
merically solve the PKS equation in rescaled variables on the time interval
[0, 5] with χ = π.

Whereas the parameter χ is the same as in Section 4.2.2, the initial data
is qualitatively different. The two peaks diffuse, eventually merging and
finally converging to the stationary solution with exponential speed (see
Figures 4.13 and 4.14). Let us finally mention that the numerical scheme
does not preserve the exact value of the critical mass. The scheme does
not preserve the law of evolution of the second moment. However, with the
same initial data as in the first two subsections, the numerical critical mass
is situated between 1.973π and 1.974π.

4.3. Super-critical case.
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Figure
4.13. Cumulative
distribution func-
tion V for χ = π
and a two-peaks
initial condition.

−4 −2 0 2 4

5

0

0.2

0.4

0.6

0.8

t

x

n

Figure 4.14. Cell
density n.

4.3.1. Single peak initial data. Given the compactly supported initial data,

V i
0 = 2

wi − 0.5

[(wi + 0.01) (1.01− wi)]
1/4

,

we numerically solve the PKS equation in original variables on the time
interval [0, 0.32] with χ = (5/2) π. Note that in the upper-critical case, the
variables’ rescaling seems to play no role.

The solution blows-up in finite time (either a flat portion or a highly con-
centrated region appears, resp. Figure 4.15 and Figure 4.16). Visualized
in Wasserstein distance (namely the square root of the second momentum),
the convergence to the Dirac mass located at zero seems to be linear in time
(see Figure 4.17) as it should be from the theoretical viewpoint. However
the computed distance does not reach zero in finite time. This is not sur-
prising, because when blow-up occurs, part of the mass is still away from
the blow-up point (here, zero). In order to see some vanishing distance, one
can renormalize the process in the following away: localize the Wasserstein
distance in the transport variable (L2−distance for the cumulative distrib-
ution function), to capture only the final plateau. This plateau is a priorily
known from the beginning because it is entirely determined by the ratio
χc/χ. However this does not provide any new insight of what happens after
blow-up, and it is known from theoretical works that the behavior highly
depends upon the regularization procedure [41, 42].
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Figure
4.15. Cumulative
distribution function
V for χ > χc. The
solution blows-up
exhibiting a plateau
in finite time.
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density n. We observe
blow-up in finite time.
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this time.
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Figure 4.18. The
variation of the en-
tropy S[n] seems to
blow-up.

Interestingly, numerics are able to track the blow-up phenomenon quite
precisely, without mesh refinement. Indeed, if the space step is even uni-
form, the number of space points at the density level adapt to the highly
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concentrated (blow-up) regions, corresponding to plateaus (compare Fig-
ure 4.15 and Figure 4.16). This is the counterpart of the ’moving support’
observed in Section 4.2.1.

4.3.2. Two symmetric peaks: case χ = 3 π. Given the compactly supported
initial data,

V i
0 =

exp [10 (wi − 0.5)]− 1

[(wi + 0.01) (1.01− wi)]
1/4

,

we numerically solve the PKS equation in original variables on the time
interval [0, 1.3] with χ = 3 π.
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Figure 4.19. Cell
density n for χ = 3π
and two initial peaks.
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Figure 4.20. Zoom
of Figure 4.19. Be-
cause both two peaks
do not contain enough
mass to blow-up far
from each other, they
first merge, then the
solution blows-up.

The factor χ is super-critical but is less than 2 χc. Then, according to
the conjectures in [40, 41, 42] there should be only one blow-up point. The
density first diffuses (see Figure 4.20) and then concentrates in a delta dirac
(see Figures 4.19 and 4.21).

4.3.3. Two symmetric peaks: case χ = 5 π. Starting with the centered cu-
mulative distribution function,

V i
0 =

exp [10 (wi − 0.5)]− 1

[(wi + 0.01) (1.01− wi)]
1/4

,
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Figure 4.21. Cu-
mulative function
distribution function
V for χ = 3π and two
initial plateaus (that
is, density peaks).
The solution flattens
into a single plateau.
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Figure 4.22. Evo-
lution of the entropy.
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Figure 4.23. Cell
density n for two ini-
tial peaks and χ =
5π. As opposed
to the previous Sec-
tion 4.3.2, each peak
contains enough mass
to blow-up itself.
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Figure 4.24. Cu-
mulative distribution
function V . Two
distinct plateaus may
appear when χ is
above twice the criti-
cal paramater χc.
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corresponding to a two-peaks like initial density, we numerically solve the
PKS equation in original variables on the time interval [0, 0.45] with χ = 5 π.

The initial condition is the same as in Section 4.3.2 but χ is now bigger
than 2 χc. The blow-up occurs in two different points (see Figures 4.23
and 4.24).

4.4. Two asymmetric peaks. Given the compactly supported initial data,

V i
0 =

exp [10 (wi − 0.45)]− 1

[(wi + 0.01) (1.01− wi)]
1/4

,

we numerically solve the PKS equation in original variables on the time
interval [0, 1.1] with χ = 3 π. Note that the initial density is not centered,
but it has no effect because proposition 4.1 does not hold in this case.
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Figure 4.25. Cu-
mulative distribution
function V when χ ∈
(χc, 2 χc), and initial
data is a two-peaks
like density.
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Figure 4.26. Evo-
lution of the cell den-
sity n.

When the parameter is between the critical parameter χc and twice the
critical parameter 2 χc, if the peaks are asymmetric the blowup occurs at
the centre of mass which is closer to the highest peak. The peaks diffuses
and then the density blows-up at the centre of mass (see Figures 4.25 and
4.26).
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[18] J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for
granular media and related equations: entropy dissipation and mass transportation
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Barcelona, E-08193 Bellaterra, Spain; http://kinetic.mat.uab.es/∼carrillo/.

E-mail address: carrillo@mat.uab.es


