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Abstract. We describe a method for determining the minimal length
of elements in the generalized Thompson’s groups F (p). We compute
the length of an element by constructing a tree pair diagram for the
element, classifying the nodes of the tree and summing associated
weights from the pairs of node classifications. We use this method to
effectively find minimal length representatives of an element.

Introduction

Thompson’s group F is a perplexing example of a finitely-presented group
which is the simplest known example of a wide variety of a number of
unusual group-theoretic phenomena. Cannon, Floyd and Parry [2] give an
excellent introduction to a wide range of the properties of F . Fordham [3]
developed an effective method for measuring lengths of elements in F with
respect to the standard finite generating set and for finding minimal length
representatives. Thompson’s group F can be seen as a group of piecewise-
linear homeomorphisms with dyadic breakpoints or as a group of rooted
binary tree pairs. There are generalizations of F to p-adic breakpoint sets
with slopes integral powers of p, and equivalently, to groups of rooted p-
ary tree pairs. These generalizations were introduced by Higman [5], and
studied by Brown [1] and Stein [6]. Here we extend Fordham’s method
for computing the minimal lengths of elements and finding minimal length
representatives to the groups F (p).

In the following, ḡ denotes the inverse of a group element g. The group
F (p) has infinite presentation:

〈c0, c1, c2, . . . |c̄icnci = cn+p−1,∀i < n〉 .
There is a set of normal forms for elements of F given by:
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with ri, si > 0, i1 < i2 . . . < ik and j1 < j2 . . . < jl. This normal form is
unique if we further require a reduction condition that when both ci and
c̄i occur, so does at least one of ci+1, ci+2 . . . ci+p−1 or their inverses. The
relations give effective means for putting a word in the infinite generating
set into normal form. The generator c0 is also called a. It is clear from the
relations that the set {a, c1, . . . , cp−1} are sufficient to generate the group.
In all of the following, we refer to length of words in F (p) with respect to
this finite generating set.

1. Nodes and Trees

The elements of F (p) can be represented graphically as equivalence classes
of pairs of rooted p-ary trees, both having the same number of nodes. These
equivalence classes tree pair diagrams form a group under a natural opera-
tion of composition. The binary case, when p = 2, is Thompson’s group F
and many of the properties of F occur in F (p). Stein [6] gives an excellent
description of F (p).

We now extend the notion of ∧-nodes and ∧-trees as described for F in
[3, 4] to F (p).

1.1. Nodes and Ordering. We consider ordered, rooted p-ary trees where
each interior node has exactly p children, which are each interior nodes or
exterior nodes. These p children are ordered and are divided into two classes:
left children and right children, and there is at least one left and right child
for each interior node. We call exterior nodes leaves. An interior node
together with its downward directed edges is called a caret node or ∧-node.
A tree pair (S, T ) is two p-ary trees with the same number of nodes. We
sometimes refer to the first tree in the pair as the domain tree and the
second as the range tree, reflecting their roles in describing subdivisions for
interpolation to get piece-wise linear homeomorphisms of the unit interval.
Caret nodes are ordered recursively by a variation of the standard infix
order traversal of the tree, where we order the left children of a ∧-node
before that ∧-node, and the right children after.

For the remainder of this paper, unless specifically noted otherwise, we
will restrict discussion to the group F (p+1)where p ≥ 2. This small change
will simplify much of the notation and makes the bookkeeping in the proofs
easier to follow.

1.2. The groups F (p + 1). Just as Thompson’s group F can be described
as the group of rooted binary tree pair diagrams under a natural operation
of composition, the groups F (p + 1) can be described with rooted p + 1-ary
tree pair diagrams.
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Definition 1.1 (Generators of F (p + 1)). Figure 1 illustrates the ∧-tree
pairs for the standard p + 1 generators of F (p + 1), a = c0, c1, . . . , cp.
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Figure 1. The Generators of F (p + 1).

Definition 1.2 (Primary ∧-node types). There are p + 2 main types of
∧-nodes in F (p+1): left nodes (L), right nodes (R), and middle nodes (Mi

for 1 ≤ i ≤ p). We assign these types by the following recursive procedure.
The root node is always type L and it has one left child node of type L, then
p right child nodes of types M1,M2, . . .Mp−1 and R ordered from left to
right, as shown in Figure 2. A left node has one left child node of type L,
then p right child nodes of types M1,M2, . . .Mp. A right node has one left
child node of type Mp, then p right child nodes of types M1,M2, . . .Mp−1

followed by a right child node of type R.
Nodes of type M1 have p left children of types M1 through Mp and a

single right child of type M1. For nodes of type Mi, there are p + 1− i left
children of types Mi through Mp and i right children of types M1 through
Mi. Finally, nodes of type Mp each have a single left child of type Mp and
right children of types M1 through Mp. These ∧-node types are illustrated
in Figure 2.

The gaps drawn between the child nodes in Figure 2 are significant; the
gaps indicate the division between left and right child nodes. All child or
leaf nodes drawn to the horizontal left of the ∧-node and before the gap are
left children of the nodes and are said to be to the left of the parent node.
Similarly, the remaining children are right children.

We note that in F (2), the middle node type M1 is the same as the
interior node type I defined in [3].

Definition 1.3 (Node order). The order of the ∧-nodes of a ∧-tree are
determined recursively, using Figure 2, as follows:
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Figure 2. Types of the ∧-nodes and the corresponding
child nodes.

(i) If a ∧-tree contains n ∧-nodes, then the nodes are numbered 0, . . . ,
n− 1.

(ii) All left children of a ∧-node are numbered less than that ∧-node,
and all right children are numbered greater than that ∧-node.

(iii) The children of a node are ordered in accordance to their type,
namely, if a left child of type Mj proceeds all left siblings of type
Mk when j < k and follows all left siblings of type Mi when i < j.
Similarly, the right children of a node are ordered by their types.

Graphically, this node ordering means that nodes are numbered from 0
to n−1 from the left to the right as encountered by their vertical placement
in accordance with the gaps separating left children from right children as
shown in Figure 2.

Since this ordering of the ∧-nodes of a tree is a total ordering, we can
clearly identify the predecessor and successor nodes of any ∧i. Similarly,
the immediate predecessor and immediate successor of ∧i are, respectively,
∧i−1 and ∧i+1.

Although we will be primarily concerned with the ordering defined for
the ∧-nodes of a tree, we will occasionally need to identify the leaves of the
trees. The leaves of a ∧-tree inherit an ordering from the ∧-nodes:

Definition 1.4 (Leaf order). For a tree with n ∧-nodes, there are np + 1
leaves and the leaves are numbered 0, 1, . . . , np by requiring that leaves of
a node be numbered larger than all the leaves of any predecessor nodes
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and that the leaves of node are numbered in the obvious left-to-right order
induced by the node order.

Definition 1.5 (Exposed caret). A ∧-node where all children are leaves is
called an exposed caret.
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Figure 3. An example ∧-tree from F (3) with nodes and
leaves labelled.

i leftmost child of ∧i leaf-index of ∧i τ(∧i)
0 leaf 0 0 L
1 ∧0 0 L
2 leaf 3 3 M1

3 leaf 6 6 M2

4 leaf 5 5 M1

5 leaf 10 10 M2

6 ∧5 10 R
Table 1. The node and leaf indices of the example ∧-tree
from Figure 3.

Definition 1.6 (Reduced and unreduced tree pairs). A tree pair (S, T ) is
unreduced if there is an i such that the i-th through (i+p)th leaves of S are
all children of a single ∧-node and the corresponding i-th through (i + p)th
leaves of T are children of a single ∧-node. Equivalently, such a tree pair is
unreduced if all of the leaves of an exposed ∧-node in S are numbered the
same as all of the leaves of an exposed ∧-node in T . A reduced tree pair
diagram is not unreduced.

Just as in F , there is a unique reduced tree pair for each element of
F (p+1). Similarly, the notion of leaf exponent described in [2] gives an easy
mechanism for changing between the tree pair representation and algebraic
normal forms, and the reduction condition on tree pairs corresponds exactly
to the algebraic reduction condition described in the introduction.
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Definition 1.7 (Leaf-index). If ∧n is a ∧-node of a tree, then we define
the leaf-index of ∧n to be i if

(i) the leftmost child of ∧n is the leaf labeled i, or
(ii) the leftmost child of ∧n is a ∧-node with leaf-index i.

For example, the ∧-tree shown in Figure 3 has its ∧-nodes and leaves
both numbered and the leaf-index of each ∧-node is listed in Table 1.

Theorem 1.8. If ∧n is a ∧-node of type Mj in a p + 1-ary tree T with
leaf-index i then i ' j mod p. For ∧-nodes of type L or R, i ' 0 mod p.

Proof. If we remove any exposed ∧-node other than ∧n, the number of
leaves in T is decreased by p. If the removed node was a predecessor of ∧n

then the original node of interest is now ∧n−1 in the new tree T ′ and it has
leaf-index i or i− p. If the removed node is a successor of ∧n in T then the
index of the caret and its leaf-index are both unchanged in T ′. Continuing
this process, if we remove all exposed carets of T other than ∧n then in the
new tree T ′ the original ∧n is now ∧n−m with leaf-index of i−mp for some
m ≥ 0, ∧n−m is the only exposed caret in T ′ and all the ∧-nodes of T ′ lie in
the path from the root of the tree to the root of ∧n−m. Each caret on this
path has exactly one child except for ∧n−m which has no ∧-node children
and the leaf-index of the original ∧n is congruent to the leaf-index of ∧n−m

modulo p.
We can now assume that T is a tree of ∧-nodes where each node has

exactly one child except for the exposed ∧-node ∧n which has a leaf-index
i. If T consists of a single ∧-node then the root node is type L with n = 0
and i = 0. If T has more than one ∧-node, then we examine the relationship
between the leaf-index of the exposed ∧-node and the leaf-index of its parent.

If the exposed node is type L, then all of its ancestors are also left nodes
and the leaf-index is 0. If the exposed node is a right node then all its
ancestors except the root are also type R and ∧n is the last node of the tree
so the leaf-index must be np− p which is congruent to 0 modulo p.

If ∧n is type Mj and its parent is type L then the parent node must have
leaf-index 0 and so j = i. If the parent node of ∧n is type R then the last
leaf of the tree is the last leaf of the parent node of ∧n. In this case, ∧n is
either type Mp and the predecessor of its parent or ∧n is type Mj (j < p)
and the rightmost ∧-node of the tree. In the first case, i = (n+1)p−2p ' p
and, in the second case, i = np− 2p + j ' j.

Lastly, using the type diagrams in Figure 2, if the parent of ∧n is type
Mk, assuming the parents leaf-index is k mod p, then i ' k if ∧n is the
leftmost child of its parent, i ' k + (p − k) + j ' j mod p if k ≤ j, and
i ' k + (j − k) ' j if j > k. Therefore, by induction i ' j mod p. ¤
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Note that in the example shown in Figure 3, that ∧2 and ∧4 have leaf-
indices congruent to 1 modulo 2 and the rest are congruent to 0 modulo
2.

1.3. Types and Weight. Once the ∧-nodes are ordered the specific types
of the nodes can be determined using the following definition:

Definition 1.9 (Node Types). The type of a ∧-node, τ(∧i), is one of the
following:
L∅ – Left ∧-node with no predecessor; ∧0 is always the only ∧-node of

this type.
LL – Left ∧-node with a predecessor; that is, all left ∧-nodes other than

∧0.
R∅ – Right ∧-node where all successors are right ∧-nodes.
RR – Right ∧-node with an immediate successor that is a right ∧-node,

but not all successors are right nodes.
Rj – Right ∧-node with an immediate successor that is not a right ∧-

node and with a leftmost child successor of type Mj where j < p.
If the leftmost child successor is type R, we use j = p.

Mi
∅ – Middle ∧-node of type Mi with no child successor ∧-nodes.

Mi
j – Middle ∧-node of type Mi that has a leftmost child successor of

type Mj (the definition of the Mi type requires that j ≤ i).
The type of the ∧i in a reduced tree pair (S, T ) is the ordered pair of

types for ∧i in the individual trees, i.e. τ (S,T )(∧i) = (τS(∧i), τT (∧i)).
If the exact type of a ∧-node is unknown or varies according to the

circumstance, we will commonly use L∗,R∗ andMi
∗ to represent the general

node types. In most cases, ∧-node of type R∅ and RR have the same weight
and behavior; when a node may be either of these two types but not type
Rj , we will use RN to represent the type of the node.

We note that in F , the caret type RR corresponds to RNI , the caret type
M1

∅ corresponds to I0, and M1
1 corresponds to IR as described by Fordham

[3, 4].
The definition of type R∅ makes it impossible for a reduced pair of trees

to have more than one ∧-node pair of type (R∅,R∅). Also, any node pair
of this type must be the last node pair of the trees.

Corollary 1.10. (corollary of Theorem 1.8) If ∧n is a reducible, exposed
∧-node in the pair (S, T ) then

τS(∧n) = τT (∧n).

Proof. If ∧n is reducible in (S, T ), the leaves of ∧n must be numbered
i, i + 1, . . . , i + p in both trees. By Theorem 1.8, if i 6' 0 mod p and ∧n is
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type Mj in S then it is also type Mj in T . If i ' 0 mod p then ∧n must
be type L, R, or Mp. ∧n is type L only if i = 0, in which case, n = 0 and
the node is type L in both trees. If ∧n is an exposed ∧-node of type R in S
then ∧n is the last node of (and thus type R in) both trees and must have
leaf-index i = (n− 1)p ' 0 mod p. Any other node where i ' 0 must be of
type Mp in both trees. ¤

From the previous definition, the types of the child nodes of a ∧-node of
type Mi are quite restricted. The following two lemmas, which will be used
frequently throughout this paper, describe two important type restrictions.

Lemma 1.11. If ∧n is a ∧-node of type Mi, the rightmost descendant (if
such a node exists) of ∧n must be of type Mj

∅ where j ≤ i.

Proof. By the definition of type Mi
k, k must be less than or equal to i.

Therefore, if ∧n has a rightmost child then it must be type Mi1 with i1 ≤ i.
Similarly, the rightmost child of this ∧-node must be of type Mi2 with
i2 ≤ i1 ≤ i. Continuing inductively, the rightmost descendant of ∧n must be
a ∧-node with no successor and of type Mj

∅ where j ≤ . . . ≤ i2 ≤ i1 ≤ i. ¤

Lemma 1.12. If ∧n is a ∧-node of type Mi, the leftmost descendant (if
such a node exists) of ∧n must be of type Mj

∗ where j ≥ i.

Proof. By the definition of type Mi, if ∧n has a predecessor child then the
leftmost predecessor must be type Mi1 with i1 ≥ i. Similarly, the leftmost
child of this ∧-node must be of type Mi2 with i2 ≥ i1 ≥ i. Continuing
inductively, the leftmost descendant of ∧n must be a ∧-node of type Mj

where j ≥ . . . ≥ i2 ≥ i1 ≥ i. This node may have successor children, so the
type of ∧n is Mj

∗. ¤

Definition 1.13 (Label sets). A label set is a subset of the set of generators
of F (p + 1) and their inverses. For every ∧-node pair in a reduced pair of
trees (S, T ), we can assign a label set λ(S,T )(∧i).

Table 2 gives the label sets for the various possible types of ∧-node pairs,
except for (L∅,L∅) which has label set ∅.

Definition 1.14 (Weight). We define the weight of the ith ∧-node pair of
the reduced pair (S, T ) to be the cardinality of the node pair’s label set;
that is,

µ(S,T )(∧i) = ‖λ(S,T )(∧i)‖.
The weight of the ∧-tree pair, µ (S, T ), is the sum of the weights of all the
∧-nodes in the tree pair.
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Domain Type (j1 ≤ i < j2, i1 < j ≤ i2)

LL R∅ RR Rj Mi
∅ Mi

j

LL {a, ā} {a} {a} {a} {c̄i, a} {c̄i, a}
R∅ {ā} ∅ {a, ā} {a, ā} {c̄i} {c̄i, a, ā}
RR {ā} {a, ā} {a, ā} {a, ā} {c̄i} {c̄i, a, ā}

Range Rj1 {ā} {a, ā} {a, ā} {a, ā} {c̄i, a, ā} {c̄i, a, ā}
type Mi1

∅ {ci1 , ā} {ci1} {ci1} {ci1} {c̄i, ci1} {c̄i, ci1}
Mi1

j1
{ci1 , ā} {ci1 , a, ā} {ci1 , a, ā} {ci1 , a, ā} {c̄i, ci1 , a, ā} {c̄i, ci1 , a, ā}

Rj2 {ā} {a, ā} {a, ā} {a, ā} {c̄i} {c̄i, a, ā}
Mi2

∅ {ci2 , ā} {ci2} {ci2} {ci2 , a, ā} {c̄i, ci2} {c̄i, ci2 , a, ā}
Mi2

j2
{ci2 , ā} {ci2 , a, ā} {ci2 , a, ā} {ci2 , a, ā} {c̄i, ci2} {c̄i, ci2 , a, ā}

Table 2. Label sets for all ∧-node types.

Even though we have required that a pair of trees must be reduced before
calculating the weight, it will be occasionally useful to determine the weight
of an unreduced tree pair. In such cases, we define the label set of a reducible
caret to be ∅ and thus its weight is 0. Furthermore, we note that in such
cases, it is important to consider only non-reducible carets in determining
∧-node type for the non-reducible carets.

Example 1.15. Figure 4 and Table 3 show the tree pair diagram and listing
of all the types and label sets for an example element of F (4).



10 S. BLAKE FORDHAM AND SEAN CLEARY

0

1
2

3 4
5

6³³³³³
©©©

¡¡ @
@

@©©©
¡¡ HHH³³³³³

©©©
¡¡ @

@
@¡¡ HHH

XXXXXX

¡¡ @@
HHH
PPPPPPPPPP

HHH@@¡¡ ³³³³³
©©© ¡¡ @@

w−→
0

1

2
3

©©©
¡¡ @@ HHHHHH

¡
¡

¡
¡¡

@@ PPPPP @@ HHH
PPPPP @@ HHH

PPPPP

¡¡ @@
HHH
PPPPP©©© ¡¡ @@

HHH
¡¡ @@

HHH
PPPPP

4
6

5

Figure 4. A tree pair diagram for element w in F (4)

i τ(∧i) λ(∧i) µ
0 (L∅,L∅) ∅ 0
1 (M2

1,M2
∅) {c2, c̄2, a, ā} 4

2 (M1
∅,LL) {c1, a} 2

3 (M1
∅,LL) {c1, a} 2

4 (RR,R2) {a, ā} 2
5 (R1,M3

∅) {c3, a, ā} 3
6 (M1

∅,M2
∅) {c̄1, c2} 2

Table 3. Caret pairings, label sets and weights for w from
Figure 4

We now compute the weights of the identity and generators.

Theorem 1.16 (Weight of the identity). For an element w ∈ F (p + 1),
µ(w) = 0 iff w = idF (p+1).

Proof. The identity is represented by a pair of trees where each tree consists
of a single ∧-node, so by the definition of weight, µ(idF (p+1)) = µ(L∅,L∅) =
0. Conversely, if w ∈ F (p + 1) is an element of weight zero then, in the
reduced pair of trees representing w, the ∧-nodes must all have zero weight
since weight is non-negative. The only types that have zero weight are
(L∅,L∅) and (R∅,R∅), so each tree must consist of a root node and n right
∧-nodes for some n ≥ 0. If the pair is reduced, then n must be zero and w
is the identity. ¤

Using the ∧-tree pairs of Figure 1 and adding up the appropriate weights,
we can easily prove the following theorem:

Theorem 1.17. For any generator g ∈ F (p + 1), µ(g) = 1. ¤

2. The Main Proof

We are interested in determining the minimal length of an element in
a group based on a geometric representation of the element. Assuming
we have a function ϕ from the words in the generators of a group to the
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nonnegative integers, we need to be able to determine whether or not ϕ is
the same as the minimal length function ` with respect to that generating
set. The following lemma from [3] gives a general criterion to characterize
such functions.

Lemma 2.1 (Classifying minimal length). Given a generating set X of a
group G and a function ϕ : G → {0, 1, 2, . . .}, if ϕ has the properties

(1) ϕ(idG) = 0,
(2) if ϕ(g) = 0 then g = idG,
(3) if g ∈ G and x ∈ X then ϕ(g)− 1 ≤ ϕ(gx̄),
(4) for any non-identity element g ∈ G, there is at least one generator

x of G such that ϕ(g)− 1 = ϕ(gx̄)

then ϕ(g) = `(g) for all g ∈ G.

Proof. Assume that xnxn−1 · · ·x2x1 is a minimal length representative of
g with respect to the generating set X of G. By definition of length,
`(gx−1

1 · · ·x−1
i ) = n − i for 1 ≤ i ≤ n, and ϕ(gx−1

1 · · ·x−1
i ) ≥ ϕ(g) − i

by property (iii). When we choose i = n, `(gx−1
1 · · ·x−1

n ) = `(idG) = 0 and
ϕ(gx−1

1 · · ·x−1
n ) = ϕ(idG) ≥ ϕ(g)− n. Therefore, by property (i) we have

ϕ(g) ≤ ϕ(idG) + n

≤ n

≤ `(g).

Now assume that ϕ(g) = n > 0. By property (iv), there exist generators
x1, . . . , xn such that ϕ(gx−1

1 · · ·x−1
n ) = 0. By property (ii), gx−1

1 · · ·x−1
n =

idG so xn · · ·x2x1 is a representative of g with respect to the generating set
X of G. Since this representation may not be minimal, we have

`(g) ≤ n = ϕ(g).

Therefore, `(g) = ϕ(g). ¤

Theorem 2.2 (Minimal length in F (p+1)). If w ∈ F (p+1) is represented
by the reduced pair (S, T ), the length of the minimal representative of w is

`(w) = µ (S, T ).

We have already established the first two conditions to apply Lemma 2.1,
so to prove Theorem 2.2, we now prove the third and fourth conditions in
the next two subsections.
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2.1. Condition 3: generators do not change weight by more than
one. Here, we consider the possible changes in weight from application of a
generator. As in F , to apply a particular generator to a reduced tree pair,
we may need to add carets to obtain an unreduced representative to which
that generator can be applied. First we consider the case in which no such
expansion is needed and then we consider the case when we need to add
one or more carets to apply a generator.

Theorem 2.3. If x is a generator that can be applied to S without the
addition of any ∧-nodes, and both (S, T ) and (xS, T ) form a reduced tree
pair with n carets, then there is exactly one ∧-node, ∧i with i < n, such
that

τ (S,T )(∧i) 6= τ (xS,T )(∧i).

Proof. If (xS, T ) is not reducible, T is fixed and none of its ∧-nodes change.
For S and xS, careful examination of the diagrams in Figure 1 reveals that
only one ∧-node changes type under the action of a generator. Specifically,
for a, the rightmost child of the root node in S changes from a node of type
R∗ to a node of type LL in the tree representing aS. For cp, the rightmost
grandchild of the root changes from a type R∗ to a type Mp

∗. And for i < p,
the generator ci changes the rightmost child of the root into a node of type
Mi

∗. The inverse generators simply reverse these changes. ¤

The previous theorem allows us to compare the weights of (S, T ) and
(xS, T ) by simply comparing the weights of single ∧-node in each as long
as the number of carets in (S, T ) remains the same as in (xS, T ).

Corollary 2.4. If (S, T ) is a reduced pair of trees and x is a generator of
F (p+1) such that (xS, T ) is also a reduced pair of trees then for some node
∧n,

(2.1) ∆ω = µ (xS, T )− µ (S, T ) = µ(xS,T )(∧n)− µ(S,T )(∧n).

¤

In cases where a ∧-node of (S, T ) becomes reducible after a generator
is applied to S or where a ∧-node needs to be added to S so that the
generator can be applied, we need to take more care. The following two
theorems describe the results of adding a ∧-node to (S, T ) or from reducing
an exposed ∧-node in (xS, T ).

Theorem 2.5. If x is a generator of F (p + 1) that cannot be applied to S
without first adding a ∧-node, then µ (xS, T ) > µ (S, T ).

Proof. In order to prove this theorem, we must choose S so that x cannot
be applied to S, but can be applied to the tree S′ formed by adding one or
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more ∧-nodes to S. Any nodes added to (S, T ) will be exposed ∧-nodes in
(S′, T ′) and by definition 1.14, these nodes will have zero weight in (S′, T ′).
We will examine each generator separately.

Case a:

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1 +

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

a−→ ¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1

If a cannot be applied to S, then the root of S must not have a child on
its rightmost branch and we must add the ∧-node, ∧n, to the last leaf of
both trees in (S, T ) (see the illustration above, where the + indicates the
location of adding the necessary caret). If we apply a to S′, all the ∧-nodes
of S have the same type in both S′ and aS′, and only ∧n changes type so

∆ω = µ(LL,R∅)− µ(S′,T ′)(∧n) = 1− 0 = 1.

Case ā:

¢
¢¢

A
AA p p p p p

Q
Q

QQ
1

p+1 2p+

¢
¢¢

A
AA p p p p p

Q
Q

QQ
0

ā−→ ¢
¢¢

A
AA p p p p p

Q
Q

QQ
0

¢
¢¢

A
AA p p p p p

Q
Q

QQ
1

p+1 2p

If ā cannot be applied to S, then the root of S must not have a child
on its leftmost branch and we must add the ∧-node, ∧0, to the first leaf of
both trees in (S, T ). If we apply ā to S′, ∧0 changes from an exposed node
in (S′, T ′) to type (L∅,L∅) in (āS′, T ′), and ∧1 changes from type (L∅,L∅)
to type (R∗,LL) so

∆ω = µ(L∅,L∅)− 0 + µ(R∗,LL)− µ(L∅,L∅) = 1.

Case ci (with i < p):

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1 +

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

ci−→ ¢
¢¢

A
AA

@
@@ p p p p p

Q
Q

QQ
m

0 1

¡
¡¡

¤
¤¤p p p

C
CC p p p

@
@@n

i

Similar to the a case above, adding ∧n to the last leaf of the trees and
applying ci gives

∆ω = µ(Mi
∅,R∅)− 0 = 1.

Case c̄i (with i < p): If the ith leaf of the root of S is empty then adding
the node, ∧n, to the trees allows us to apply c̄i to the new tree S′.
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¢
¢¢

A
AA

@
@@ p p p p p

Q
Q

QQ
m

0 1 p+

¡
¡¡

¤
¤¤p p p

C
CC p p p

@
@@n

c̄i−→ ¢
¢¢

A
AA

@
@@ p p p p p

Q
Q

QQ
m

0 1

¢
¢¢

A
AA

@
@@ p p p p p

Q
Q

QQ
n

i+1 p

Depending on i+1 , . . . , p , the type of ∧n in c̄iS
′ may be R∅, RR or Rj

with j ≥ i + 1, so
∆ω = µ(RN,Mi

∅)− 0 = 1

or
∆ω = µ(Rj ,Mi

∅)− 0 = 1.

Case cp: Two ∧-nodes on the rightmost leaf of the root are needed to apply
cp to S. One of both of these nodes may be missing, so we need to check
two cases.

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1 +

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

¢
¢¢

A
AA p p p p p

Q
Q

QQ

cp−→

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

If both the necessary ∧-nodes are missing in S, then we need to add two
nodes, ∧n and ∧n+1, to the last leaf of the root of S (as shown above).
Applying cp to S′ gives

∆ω = µ(Mp
∅,R∅)− 0 + µ(R∅,R∅)− 0 = 1.

¢
¢¢

A
AA p p p p p

Q
Q

QQ

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

p p+1 +

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

cp−→

¢
¢¢

A
AA p p p p p

Q
Q

QQ

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

p p+1

Assume that we only need to add one node, ∧n, before applying cp to S.
The type of ∧m depends on the contents of p+1 , . . . , 2p−1 . If ∧m is the
last ∧-node in (S, T ) then tm = τT (∧m) must be either LL or R∅, so

∆ω = µ(Mp
∅, tm)− µ(R∅, tm) = 1.
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If ∧m has a successor in (S, T ), then for any choice of tm,

∆ω = µ(Mp
j , tm)− µ(Rj , tm) = 1.

Case c̄p: Again, one or two ∧-nodes may be needed to be added S before
we can apply c̄p.

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1 +

¢
¢¢

A
AA p p p p p

Q
Q

QQ

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

c̄p−→

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

¢
¢¢

A
AA p p p p p

Q
Q

QQ

If we add two carets then

∆ω = µ(R∅,R∅)− 0 + µ(R∅,Mp
∅)− 0 = 1.

¢
¢¢

A
AA p p p p p

Q
Q

QQ

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

p+1 2p+

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

cp−→

¢
¢¢

A
AA p p p p p

Q
Q

QQ

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

p+1 2p

If we add one caret then

∆ω = µ(RN,Mp
∅)− 0 = 1.

¤

Theorem 2.6. If (S, T ) is a reduced pair of trees and x ∈ F (p+1) is a gen-
erator such that the pair (xS, T ) is not reduced, then µ (xS, T ) = µ (S, T )−1.

Proof. We need to examine each generator separately:

Case a:

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

p p+1 2p

a−→ ¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

p+1 2p

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1 p

If ∧m is reducible in (aS, T ), then 0 , . . . , p are all empty sub-trees and
m = 0 and n = 1. Since ∧0 is reducible, ∧1 must be the parent of ∧0 in
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T . Therefore, only the first two carets will be affected by the removal of ∧0

and

∆ω = µ (aS, T )− µ (S, T )
= µ(aS,T )(∧0)− µ(S,T )(∧0) + µ(aS,T )(∧1)− µ(S,T )(∧1)

= 0− µ(L∅,L∅) + µ(L∅,L∅)− µ(R∗,LL)
= −1.

Case ā: Reversing the arrow in the previous figure, we have a representative
of ā. If ∧n is reducible in (āS, T ), then p , . . . , 2p are all empty sub-trees
and ∧n is the rightmost ∧-node in the trees. If m = 0 then (S, T ) represents
ā and (āS, T ) is the identity so ∆ω = −1. If m > 0, tm = τT (∧m) must
be type LL or R∅ since ∧n is the only child of ∧m. Only the rightmost two
carets will be affected by the removal of ∧n and

∆ω = µ(āS,T )(∧n)− µ(S,T )(∧n) + µ(āS,T )(∧m)− µ(S,T )(∧m)

= 0− µ(LL,R∅) + µ(LL, tm)− µ(LL, tm)
= −1.

Case cp:

¢
¢¢

A
AA p p p p p

Q
Q

QQ

0

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

p

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

2p 3p

cp−→
¢
¢¢

A
AA p p p p p

Q
Q

QQ

0

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

3p

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

p 2p

If ∧m (in the above diagram) is reducible in (cpS, T ), then p , . . . , 2p

are all empty sub-trees and n = m + 1. The type of ∧n depends only on it
successor children, so its type is unchanged by the action of the generator.
On the other hand, ∧m−1 may change type in T if it is the parent of ∧m.
If ∧m−1 changes type, it must be a change from type Mi

p to type Mi
∅,

with i < p, or from Rp to type R∗. In S, ∧m−1 is either the root node or
the leftmost node of one of the subtrees 1 , . . . , p−1 . In either case, using
Table 2 it is clear that µ(cpS,T )(∧m−1)− µ(S,T )(∧m−1) = 0. Therefore,

∆ω = µ(cpS,T )(∧m)− µ(S,T )(∧m) + µ(cpS,T )(∧m−1)− µ(S,T )(∧m−1)

= 0− µ(R∅,Mp
∅) + 0

= −1.

Case c̄p: Using the previous figure, if ∧n is reducible in (c̄pS, T ), then the
subtrees 2p , . . . , 3p are all empty sub-trees and ∧n is the rightmost ∧-node
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in the tree pair so

µ(c̄pS,T )(∧n)− µ(S,T )(∧n) = 0− µ(R∅,R∅) = 0.

If ∧m has no child successors in S, then m = n− 1 and tm = τT (∧m) must
be either LL or R∅, so

∆ω = µ(c̄pS,T )(∧m)− µ(S,T )(∧m)

= µ(R∅, tm)− µ(Mp
∅, tm)

= −1.

If ∧m has a child successor, then ∧n−1 is unchanged by the action of the
generator and ∧m changes from type Mp

j to type Rj for some j < p. The
type of ∧m in T may be any type (other than L∅) so using Table 2, for any
type tm we have

∆ω = µ(c̄pS,T )(∧m)− µ(S,T )(∧m)

= µ(Rj , tm)− µ(Mp
j , tm)

= −1.

Case ci:

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

p 2p

ci−→ ¢
¢¢

A
AA

@
@@ p p p p p

Q
Q

QQ
m

0 2p

¡
¡¡

¤
¤¤p p p

C
CC p p p

@
@@n

i p+i

If ∧n (in the figure above) is reducible in (ciS, T ), then i , . . . , p+i are
all empty sub-trees and ∧n is any right type except Rj when j ≥ i so using
Table 2,

µ(ciS,T )(∧n)− µ(S,T )(∧n) = 0− µ(R∗,Mi
∅) = −1.

The type of ∧m is fixed, but the type of ∧n−1 may change in T . If the
removal of ∧n changes the type of ∧n−1, then tn−1 = τ(∧n−1) must change
from type Mj

i to type Mj
i1

or Mj
∅, where i < i1, or from Ri to R∗ where if

tn−1 = Ri1 then i < i1. In S, ∧n−1 must be type LL (if m = n− 1) or, by
Lemma 1.11, type Mj1

∅ with j1 < i. In any of these cases, we need to show
that ∆ωn−1 = µ(ciS,T )(∧n−1)− µ(S,T )(∧n−1) = 0.

If τS(∧n−1) = LL then ∆ωn−1 = 0 since µ(LL, t) = µ(LL, t′) as long as
t and t′ are the same basic types. If τS(∧n−1) = Mj1

∅ then, using the fact
that j1 < i < i1 ≤ j, the change in weight, ∆ωn−1, must be

µ(Mj1
∅ ,Mj

∅)− µ(Mj1
∅ ,Mj

i ) = 0,

µ(Mj1
∅ ,Mj

i1
)− µ(Mj1

∅ ,Mj
i ) = 0
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or
µ(Mj1

∅ ,R∗)− µ(Mj1
∅ ,Ri) = 0.

Case c̄i: If ∧n in the figure above is reducible in (c̄iS, T ), then p , . . . , 2p

are all empty sub-trees and ∧n is the rightmost ∧-node in the trees. In T ,
the parent of ∧n is a right ∧-node and removing ∧n will not change its type.
Similarly, ∧m is unchanged in c̄iS so

∆ω = µ(c̄iS,T )(∧n)− µ(S,T )(∧n)

= 0− µ(Mi
∅,R∅)

= −1.

¤
Theorem 2.7. For any reduced pair (S, T ) and any generator x in F (p+1),

µ (S, T ) = µ (xS, T )± 1.

Proof. It is clear from Theorem 2.5 and Theorem 2.6 that if a caret is
added or exposed in the process of applying a generator to the domain
tree of (S, T ) that µ (S, T ) = µ (xS, T ) ± 1. If (S, T ) and (xS, T ) are both
reduced then by Theorem 2.3 we need only show that for the ∧-node, ∧i,
described in Theorem 2.3, µ(S,T )(∧i) = µ(xS,T )(∧i)±1. In order to perform
this calculation, we need only demonstrate that in Table 2 the label sets of
the column representing µ(S,T )(∧i) differ by at most one element from the
entries in the column representing µ(xS,T )(∧i). Each row entry of the LL

column differs by one element from each if the entries in the same row of the
R∅, RR and Rj columns, and so on, for each ∧-node type change described
in Theorem 2.3. ¤
2.2. The fourth condition: at least one generator reduces length.
In order to show that the weight of a pair of ∧-trees is the same as the
length of the corresponding element of F (p+1), we need to show that there
is always at least one generator x that gives µ (xS, T )− µ (S, T ) = −1. For
any such generator x we say that x reduces the weight of (S, T ). From
Theorems 2.5 and 2.6, we need only test situations where x can be applied
to the ∧-tree S without needing to add carets and where (xS, T ) is not
reducible.

Theorem 2.8. If (S, T ) is a reduced pair of ∧-trees representing an element
of F (p + 1), and a generator x can be applied to S without adding carets,
there is at least one generator x′ where ∆ω = µ (x′S, T )− µ (S, T ) = −1.

To prove this theorem, we must either test each of the six major types
of generators (a, cp, ci, and their inverses), or for any given pair (S, T ), we
must choose x based on the arrangement and types of the nodes in (S, T ).
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In all the following proofs, we will make extensive use of Theorem 2.3 in
order to simplify the calculation of weight.

Lemma 2.9. Assuming (S, T ) is reduced, if c̄p can be applied to S without
adding carets, then one of the generators c̄p or a reduces the weight of (S, T ).

Proof. S must be a tree of the following form:

¢
¢¢

A
AA p p p p p

Q
Q

QQ

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

p p+1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

2p 2p+1 3p

c̄p−→

¢
¢¢

A
AA p p p p p

Q
Q

QQ

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

p p+1 2p

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

2p+1 3p

If one of the subtrees p+1 , . . . , 2p is not empty then it is clear from
Table 2 that

∆ω = µ(Rj , tm)− µ(Mp
j , tm) = −1

for any tm = τT (∧m).
If all the successor subtrees p+1 , . . . , 2p are empty, then ∧m changes

from type Mp
∅ to type R∅ or RR. Again from Table 2,

∆ω = µ(RN, tm)− µ(Mp
∅, tm) = −1

except in the cases where tm = RR and when tm = R∅ but τ (S,T )(∧n) 6=
(R∅,R∅). In the case that c̄p does not decrease the weight of (S, T ), if we
apply a to S then ∧n changes to a node of type LL and when τ (S,T )(∧n) 6=
(R∅,R∅),

∆ω = µ(LL,RN)− µ(RN,RN) = −1.

¤
Lemma 2.10. Assuming (S, T ) is reduced, if for some i < p, c̄i can be
applied to S without adding carets, then there is at least one generator x
where ∆ω = µ (xS, T )− µ (S, T ) = −1.

Proof. S must have the following form:

¢
¢¢

A
AA

@
@@ p p p p p

Q
Q

QQ
m

0 1 2p

¡
¡¡

¤
¤¤p p p

C
CC p p p

@
@@n

i p p+i

c̄i−→
¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

p p+1 2p

Assume one of the subtrees p+1 , . . . , p+i are not empty then, in S, ∧n

is type Mi
j for some j ≤ i. Applying c̄i to S gives

∆ω = µ(Rj , tn)− µ(Mi
j , tn) = −1
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for any tn = τT (∧n).
Assume now that none of the successor children, (except possibly the

right child) of ∧m have a successor child. If we choose i so that the ith child
of the root is the last successor child that is not of type R, this child is type
Mi

∅ and all the subtrees p+1 , . . . , 2p−1 are empty. Applying c̄i to S gives
∆ω = µ(R∗, tn) − µ(Mi

∅, tn) = −1 unless tn = τT (∧n) is R∅, RR, Rj2 or
Mi2

j2
where j2 > i. We now need to find a generator that reduces the weight

of (S, T ) in these cases.
By Lemma 2.9, we need only examine the cases where 2p is empty or

where if 2p is not empty, the root ∧-node of the 2p subtree has no left
child.

¢
¢¢

A
AA

@
@@ p p p p p

Q
Q

QQ
m

0 1 2p

¡
¡¡

¤
¤¤p p p

C
CC p p p

@
@@n

i p

c̄i−→
¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

p 2p

Case tn = R∅: If 2p is empty, then ∧n is the last ∧-node of (S, T ) and
applying c̄i gives

∆ω = µ(R∅,R∅)− µ(Mi
∅,R∅) = −1

if ∧n is not exposed in (c̄iS, T ) (if ∧n is removable then ∆ω = −1 by
Theorem 2.6).

If 2p is not empty, then we can assume ∧n+1 is the root of 2p and since
(S, T ) is reduced, sn+1 = τS(∧n+1) must be type RR or Rj for some j < p.
Applying a to S gives

∆ω = µ(LL,R∅)− µ(sn+1,R∅) = −1.

Case tn = RR: Since ∧n is not the last caret of (S, T ), 2p is not empty,
and tn+1 = τT (∧n+1) must be R∅ or RR. Applying a to S,

∆ω = µ(LL, tn+1)− µ(R∗, tn+1) = −1.

Case tn = Rj2 : Again ∧n is not the last caret of (S, T ), 2p is not empty
and by Lemma 1.12, τ (S,T )(∧n+1) = (R∗,Mi3∗ ) where i3 ≥ j2 > i.

When ∧n+1 has a right child in T , applying a gives

∆ω = µ(LL,Mi3
j3

)− µ(R∗,Mi3
j3

) = −1.

If ∧n+1 has no children in T , then ∧n+1 is removable in (ci3S, T ) (and
∆ω = −1), and if ∧n+1 only has a child of type R∗ in S. On the other
hand, if τS(∧n+1) = Rj , the first child of ∧n+1 in S, ∧q, is a ∧-node of type
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Mj
∗. If j > i3 then applying ci3 to S will cause ∧n+1 to be removable (since

j > i) in (ci3S, T ) giving ∆ω = −1. If j ≤ i3, applying a to S gives

∆ω = µ(LL,Mi3
∅ )− µ(Rj ,Mi3

∅ ) = −1.

Case tn = Mi2
j2

: Similar to the previous case, τ (S,T )(∧n+1) = (R∗,Mi3∗ )
so by applying a or ci3 in the appropriate situation will give ∆ω = −1.

Therefore, if c̄i can be applied to S, either c̄i, a or ci3 , for some i3 > i,
reduces the weight of (S, T ). ¤

Based on the results of the previous two lemmas, in any pair (S, T ) where
c̄i (for 0 < i ≤ p) can be applied to S, we can find a generator x that reduces
the weight of (S, T ). Therefore, for the remaining cases, we need only to
examine pairs where S has one of the two forms shown in Figure 2.2.

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0 1 p

S1 =
¢
¢¢

A
AA p p p p p

Q
Q

QQ
m

0

¢
¢¢

A
AA p p p p p

Q
Q

QQ
n

1 p

S2 =

Figure 5. Domain trees not reduced by c̄i.

Lemma 2.11. If (S1, T ) is reduced then ∆ω = µ(S1, T )− µ(āS1, T ) = −1.

Proof. By the definition of S1 in Figure 2.2, ∧n is the last caret of (S1, T )
and must be type tn = LL, R∅ or Mi

∅ in T . Therefore,

∆ω = µ(R∅, tn)− µ(LL, tn) = −1

for these three choices for tn. ¤

Lemma 2.12. If (S2, T ) is reduced, there is at least one generator of F (p+
1) where ∆ω = −1.

Proof. It is important to note that m = n−1 in S2. Applying a to S2 gives
∆ω = µ(LL, tn) − µ(R∗, tn) which is −1 unless τ (S2,T )(∧n) = (R∅,R∅) or
tn = τ(∧n) is type LL or Mi1

∅ where i1 < j when τS2(∧n) = Rj .
Case tn = LL: If 0 is empty then m = 0 and ∧0 will be exposed in

(aS2, T ) so ∆ω = −1 by Theorem 2.6. If 0 is not empty, tm = τT (∧m) is
either LL or Mi

∅. Applying ā to S2 gives

∆ω = µ(RN, tm)− µ(LL, tm) = −1.
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Case τ (S2,T )(∧n) = (R∅,R∅): In this case, p must be empty and ∧m

must be the left child of ∧n in T , since (S, T ) is reduced. Therefore, m 6= 0
so 0 is not empty and τ (S2,T )(∧m) = (LL,Mp

∅). Applying ā to S2 gives

∆ω = µ(R∅,Mp
∅)− µ(LL,Mp

∅) = −1.

Case tn = Mi1
∅ : If τS2(∧n) is either R∅ or RR then all the subtrees

1 , . . . , p−1 must be empty. If ∧n is childless in T , then ∧n will be exposed
in the pair (ci1S2, T ). If ∧n has a predecessor child in T , its immediate
predecessor, ∧m, must be type Mi2

∅ where 0 < i2 ≤ p. Since m > 0 in T ,
the subtree 0 must not be empty in S and applying ā to S2 gives

∆ω = µ(RN,Mi2
∅ )− µ(LL,Mi2

∅ ) = −1.

If τS2(∧n) = Rj with i1 < j, the first nonempty subtree of ∧n in S must
be j . As before, if ∧n is childless in T then ∧n will be exposed in (ci1S2, T );
if ∧n is not childless in T then m > 0 and τ(∧m) = Mi2

∅ . Applying ā to S2

gives
∆ω = µ(RR,Mi2

∅ )− µ(LL,Mi2
∅ ) = −1.

¤

Proof of Theorem 2.8. Based on the results of Theorem 2.6 and Lemmas
2.9 – 2.12, it is clear that there is always one generator that makes the
weight of (xS, T ) one less than the weight of (S, T ). ¤

2.3. Conclusion.

Proof of Theorem 2.2. We have shown that for any w ∈ F (p + 1) with
reduced tree representation (S, T ), µ (S, T ) satisfies all the following prop-
erties:

µ(w) = 0 iff w = idF (p+1) by Theorem 1.16, and from Theorem 2.7, we
know that for any generator x of F (p+1), µ (xS, T ) ≥ µ (S, T )−1. Finally,
Theorem 2.8 proves that there is at least one generator where µ (xS, T ) =
µ (S, T )− 1. Therefore, by Lemma 2.1, `(w) = µ (S, T ). ¤

Thus we measure word length with respect to the standard finite gener-
ating set effectively by summing the weights of the caret pairs. To find a
minimal length representative of a group element w given by a tree pair dia-
gram, we simply find successive generators g1, g2, . . . , gn which reduce word
length until we reach length 0 and then w = ḡn . . . ḡ2ḡ1 will be a minimal
length representative. For a word w given in terms of the infinite gener-
ating set in normal form, we use the process of leaf exponents from [2] to
construct a tree pair representative and then use the above process on the
tree pair. Similarly, for a word given in terms of the finite generating set,
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we can rewrite the word into a normal form in the infinite generating set
using the relations and then construct the tree pair to measure the length.
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