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Abstract. In this paper we derive precise asymptotic estimates for
the number of simple labeled K3,3-minor-free and maximal K3,3-
minor-free graphs on n vertices. Additionally, we establish limit laws
for parameters in random K3,3-minor-free graphs, as for instance the
expected number of edges. To establish these results, we translate
a decomposition for the corresponding graph class into equations for
generating functions and use singularity analysis.

1. Introduction

In this paper we are interested in the number of simple labeled K3,3-
minor-free and maximal K3,3-minor-free graphs, where maximal means that
adding any edge to such a graph yields a K3,3-minor. It is known that there
exists a constant c, such that there are at most cnn! K3,3-minor-free graphs
on n vertices. This follows from a result of Norine, Seymour, Thomas, and
Wollan [11] which states that every proper subclass of all graphs which
is closed under isomorphism and taking minors has at most cnn! graphs
on n vertices. Obviously, this gives also an upper bound on the number
of maximal K3,3-minor-free graphs as they are a proper subclass of K3,3-
minor-free graphs.

In [9], McDiarmid, Steger and Welsh give conditions where an upper
bound of the form cnn! on the number of graphs |Cn| on n vertices in graph
class C yields that (|Cn|/n!)

1
n → c > 0 as n → ∞. These conditions are

satisfied for K3,3-minor-free graphs, but not in the case of maximal K3,3-
minor-free graphs as one condition requires that two disjoint copies of a
graph of the class in question form again a graph of the class.

Thus we know that there exists a growth constant c for K3,3-minor-
free graphs, but not its exact value. For maximal K3,3-minor-free graphs
we only have an upper bound. Lower bounds on the number of graphs
in our classes can be obtained by considering (maximal) planar graphs.
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Due to Kuratowski’s theorem [8] planar graphs are K3,3- and K5-minor-
free. Hence, the class of (maximal) planar graphs is contained in the class
of maximal K3,3-minor-free graphs and we can use the number of planar
graphs and the number of triangulations as lower bounds. Determining the
number (of graphs of sub-classes) of planar graphs attracted considerable
attention [1, 5, 6, 2, 3] in recent years. Giménez and Noy [6] obtained
precise asymptotic estimates for the number of planar graphs. Already
in 1962, the asymptotic number of triangulations was given by Tutte [13].
Investigating how much the number of planar graphs (triangulations) differs
from (maximal) K3,3-minor-free graphs was also a main motivation for our
research.

In this paper we derive precise asymptotic estimates for the number of
simple labeled K3,3-minor-free and maximal K3,3-minor-free graphs on n
vertices, and we establish several limit laws for parameters in random K3,3-
minor-free graphs. More precisely, we show that the number gn, cn, and
bn of not necessarily connected, connected and 2-connected K3,3-minor-free
graphs on n vertices and the number mn of maximal K3,3-minor-free graphs
on n vertices satisfy

gn ∼ αg n−
7
2 ρ−n

g n!,

cn ∼ αc n−
7
2 ρ−n

c n!,

bn ∼ αb n−
7
2 ρ−n

b n!,

mn ∼ αm n−
7
2 ρ−n

m n!

where and αg
.= 0.42643 · 10−5, αc

.= 0.41076 · 10−5, αb
.= 0.37074 · 10−5,

αm
.= 0.25354 · 10−3, ρ−1

c = ρ−1
g

.= 27.22935, ρ−1
b

.= 26.18659, and ρ−1
m

.=
9.49629 are analytically computable constants. Moreover, we derive limit
laws for K3,3-minor-free graphs, for instance we show that the number of
edges is asymptotically normally distributed with mean κn and variance λn,
where κ

.= 2.21338 and λ
.= 0.43044 are analytically computable constants.

Thus the expected number of edges is only slightly larger than for planar
graphs [6].

To establish these results for K3,3-minor-free graphs, we follow the ap-
proach taken for planar graphs [1, 6]: we use a well-known decomposition
along the connectivity structure of a graph, i.e. into connected, 2-connected
and 3-connected components, and translate this decomposition into rela-
tions of our generating functions. This is possible as the decomposition for
K3,3-minor-free graphs which is due to Wagner [14] fits well into this frame-
work. Then we use singularity analysis to obtain asymptotic estimates and
limit laws for several parameters from these equations.
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For maximal K3,3-minor-free graphs the situation is different, as the de-
composition which is again due to Wagner has further constraints (it re-
stricts which edges can be used to merge two graphs into a new one). The
functional equations for the generating functions of edge-rooted maximal
graphs are easy to obtain but in order to go to unrooted graphs, special
integration techniques based on rational parametrization of rational curves
are needed. In this way we can derive equations for the generating func-
tions which involve the generating function for triangulations derived by
Tutte [13].

In the subsequent sections, we proceed as follows. First, we turn to
maximal K3,3-minor-free and K3,3-minor-free graphs in Sections 2 and 3
respectively. In each of these sections, we will first derive relations for the
generating functions based on a decomposition of the considered graph class
and then apply singularity analysis to obtain asymptotic estimates for the
number (and properties) of the graphs in these classes.

Throughout the paper variable x marks vertices and variable y marks
edges. Unless we specify the contrary, the graphs we consider are labeled
and the corresponding generating functions are exponential. We often need
to distinguish an atom of our combinatorial objects; for instance we want
to mark a vertex in a graph as a root vertex. For the associated generating
function this means taking the derivative with respect to the corresponding
variable and multiplying the result by this variable. To simplify the for-
mulas, we use the following notation. Let G(x, y) and G(x) be generating
functions, then we abbreviate G•(x, y) = x ∂

∂xG(x, y) and G•(x) = x ∂
∂xG(x).

Additionally, we use the following standard notation: for a graph G we de-
note by V (G) and E(G) the vertex- and edge-set of G.

2. Maximal K3,3-minor-free graphs

Already in the 1930s, Wagner [14] described precisely the structure of
maximal K3,3-minor-free graphs. Roughly speaking his theorem states that
a maximal graph not containing K3,3 as a minor is formed by gluing planar
triangulations and the exceptional graph K5 along edges, in such a way
that no edge glues two different triangulations. Before we state the theorem
more precisely, we introduce the following notation (similar to [12], see also
Section 3.1).

Definition 2.1. Let G1 and G2 be graphs with disjoint vertex-sets, where
each edge is either colored blue or red. Let e1 = (a, b) ∈ E(G1) and e2 =
(c, d) ∈ E(G2) be an edge of G1 and G2 respectively. For i = 1, 2 let G′i be
obtained by deleting edge e1 and coloring edge e2 blue if e1 and e2 were both
colored blue and red otherwise. Let G be the graph obtained from the union
of G′1 and G′2 by identifying vertices a and b by c and d respectively. Then
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we say that G is a strict 2-sum of G1 and G2. We say that a strict 2-sum
is proper if edges e1 and e2 are neither red.

Theorem 2.2 (Wagner’s theorem [14]). Let T denote the set of all labeled
planar triangulations where each edge is colored red. Let each edge of the
complete graph K5 be colored blue. A graph is maximal K3,3-minor-free if
and only if it can be obtained from planar triangulations and K5 by proper,
strict 2-sums.

Let A be the family of maximal graphs not containing K3,3 as a minor.
Let H be the family of edge-rooted graphs in A, where the root belongs to
a triangulation, and let F be edge-rooted graphs in A, where the root does
not belong to a triangulation.

Let T0(x, y) be the generating function (GF for short) of edge-rooted pla-
nar triangulations (the root-edge is included), and let K0(x, y) be the GF of
edge-rooted K5 (the root-edge is not included). Let A(x, y), F (x, y),H(x, y)
be the GFs associated respectively to the families A,F ,H. In all cases the
two endpoints of the root edge do not bear labels, and the root edge is ori-
ented; this amounts to multiplying the corresponding GF by 2/x2. Notice
that

K0 =
2
x2

∂

∂y

(
y10 x5

5!

)
= y9 x3

6
.

Since edge-rooted graphs from A are the disjoint union of H and F , we have

(2.1) H(x, y) + F (x, y) =
2
x2

y
∂A(x, y)

∂y
.

The fundamental equations that we need are the following:

H = T0(x, F )(2.2)
F = y exp (K0(x,H + F ))(2.3)

The first equation means that a graph inH is obtained by substituting every
edge in a planar triangulation by an edge-rooted graph whose root does not
belong to a triangulation (because of the statement of Wagner’s theorem).
The second equation means that a graph in F is obtained by taking (an
unordered) set of K5’s in which each edge is substituted by an edge-rooted
graph either in H or in F .

Eliminating H we get the equation

(2.4) F = y exp (K0(x, F + T0(x, F ))) .

Hence, for fixed x,

(2.5) ψ(u) = u exp (−K0(x, u + T0(x, u)) = u exp
(
−x3

6
(u + T0(x, u))9

)
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is the functional inverse of F (x, y).
In order to analyze F using Equation (2.3) we need to know the series

T0(x, y) in detail. Let Tn be the number of (labeled) planar triangulations
with n vertices. Since a triangulation has exactly 3n− 6 edges, we see that

T (x, y) =
∑

Tny3n−6 xn

n!
is the GF of triangulations. And since

T0(x, y) =
2
x2

y
∂T (x, y)

∂y
,

it is enough to study T .
Let now tn be the number of rooted (unlabeled) triangulations with n

vertices in the sense of Tutte and let t(x) =
∑

tnxn be the corresponding
ordinary GF. We know (see [13]) that t(x) is equal to

t = x2θ(1− 2θ)

where θ(x) is the algebraic function defined by

θ(1− θ)3 = x.

It is known that the dominant singularity of θ is at R = 27/256 and θ(R) =
1/4.

There is a direct relation between the numbers Tn and tn. An unlabeled
rooted triangulation can be labeled in n! ways, and a labeled triangulation
(n ≥ 4) can be rooted in 4(3n− 6) ways, since we have 3n− 6 possibilities
for choosing the root edge, two for orienting the edge, and two for choosing
the root face. Hence we have

tnn! = 4(3n− 6)Tn, n ≥ 4, t3 = T3 = 1.

The former identity implies easily the following equation connecting the
exponential GF T (x, y) and the ordinary GF t(x):

y
∂T

∂y
= y3 x3

4
+

t(xy3)
4y6

.

Hence we have

T0(x, y) =
2
x2

y
∂T

∂y
= y3 x

2
+

t(xy3)
2x2y6

.

The last equation is crucial since it expresses T0 in terms of a known alge-
braic function. It is convenient to rewrite it as

(2.6) T0(x, y) = y3 x

2
+

1
2
L(x, y)(1−2L(x, y)), where L(x, y) = θ(xy3).

The series L(x, y) is defined through the algebraic equation

(2.7) L(1− L)3 − xy3 = 0.
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This defines a rational curve, i.e. a curve of genus zero, in the variables L
and y (here x is taken as a parameter) and admits the rational (actually
polynomial) parametrization

(2.8) L = λ(t) = − t3

x2
, y = ξ(t) = − t4 + x2t

x3
.

This is a key fact that we use later.

We have set up the preliminaries needed in order to analyze the series
A(x, y), which is the main goal of this section. From (2.1) it follows that

A(x, y) =
x2

2

∫ y

0

H(x, t)
t

dt +
x2

2

∫ y

0

F (x, t)
t

dt.

The following lemma expresses A(x, y) directly in terms of H and F without
integrals.

Lemma 2.3. The generating function A(x, y) of maximal graphs not con-
taining K3,3 as a minor can be expressed as

(2.9) A(x, y) =

−x2

60

(
27(H + F ) log

(
F

y

)
+ 10L + 20L2 + 15 log(1− L)− 30F − 5xF 3

)

where L = L(x, F (x, y)), H = H(x, y) and F = F (x, y) are defined
through (2.7), (2.2) and (2.3).

Proof. Integration by parts gives

(2.10) A(x, y) =
x2

2

∫ y

0

H(x, t) + F (x, t)
t

dt =
x2

2
(H + F ) log(y)− x2

2
I

where

I =
∫ y

0

log(t) (H ′(x, t) + F ′(x, t)) dt

and derivatives are with respect to the second variable. Because of (2.5),
the change of variable s = F (x, t) gives t = ψ(s) and

log(t) = log(s)− x3

6
(
s + T0(x, s)9

)
.
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Since H = T0(x, F ) we have H ′ = T ′0(x, F )F ′ and so

I =
∫ F

0

(
log(s)− x3

6
(s + T0(x, s))9

)
(1 + T ′0(x, s)) ds

= −x3

6
(F + T0(x, F ))10

10
+

∫ F

0

log(s) (1 + T ′0(x, s)) ds

= − 1
10

(H + F ) log
(

F

y

)
+

∫ F

0

log(s) (1 + T ′0(x, s)) ds

where the last equality follows from Equation (2.3).
It remains to compute the last integral. From (2.6) it follows easily that

(2.11) T ′0 =
3y2x

2

(
1 +

1
(1− L)2

)
.

Now we change variables according to (2.8) taking s = ξ(t), so that L = λ(t).
Let ζ be the inverse function of ξ, so that t = ζ(s). Observe that ζ(s)
satisfies

ζ4 + x2ζ + x3s = 0.

Then we have
∫ F

0

log(s) (1 + T ′0(x, s)) ds

=
∫ ζ(F )

0

log(ξ(t))
(

1 +
3ξ(t)2x

2

(
1 +

1
(1− λ(t))2

))
ξ′(t) dt

After substituting the expressions for ξ(t) and λ(t), the integrand in the
last integral is equal to

f(x, t) = − 1
2x8

(
4 t3 + x2

) (
2 x5 + 3 t8 + 6 t5x2 + 6 t2x4

)
ln

(
− t4 + x2t

x3

)
.

The function f(x, t) can be integrated in elementary terms, resulting in
∫ ζ(F )

0

f(x, t)dt =
(
− 5ζ6

2x4
− ζ12

2x8
− ζ3

x2
− ζ4

x3
− ζ

x
− 3ζ9

2x6

)
log

(
−ζ4 + x2ζ

x3

)

+
7ζ6

6x4
− ζ3

6x2
+

ζ

x
+

ζ4

x3
+

ζ9

2x6
+

ζ12

6x8
− 1

2
log

(
1 +

ζ3

x2

)
,

where ζ = ζ(F ). All terms with ζ are powers of either of the two forms

−ζ4 + x2ζ

x3
= ξ(ζ(F )) = F, − ζ3

x2
= λ(ζ(F )) = L(x, F ),
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so we can write the integral of f(x, t) explicitly in terms of F and L =
L(x, F ),
(
−1

2
L4+

3
2
L3− 5

2
L2+L+F

)
log(F )+

L4

6
−L3

2
+

7L2

6
+

L

6
+

log(1− L)
2

−F.

We simplify this expression further using that, according to Equations
(2.2), (2.6) and (2.7),

(2.12) H = T0(x, F ) =
1
2

(
xF 3 + L(1− 2L)

)
=

1
2
(−L4 +3L3− 5L2 +2L).

Obtaining the final expression for A(x, y) is just a matter of going back
to Equation (2.10) and adding up all terms. ¤

Summarizing, we have an explicit expression for A in terms of x, y,
H(x, y) and F (x, y) which involves only elementary functions and the alge-
braic function L(x, y). Moreover, note that H(x, y) can be written in terms
of L(x, F ) by Equation (2.12). Our goal is to carry out a full singularity
analysis of the univariate GF A(x) = A(x, 1). To this end we first perform
singularity analysis on F (x) = F (x, 1).

Lemma 2.4. The dominant singularity of F (x) is the unique ρ > 0 such
that ρF (ρ)3 = 27/256. The approximate value is ρ ≈ 0.10530385. The value
F (ρ) ≈ 1.0005216 is the solution of

(2.13) t = exp

(
273

6 · 2563

(
1 +

59
512t

)9
)

.

Proof. The function F (x) satisfies

(2.14) Φ(x, F ) = exp
(

x3

6
(F + T0(x, F ))9

)
− F.

Thus the dominant singularity ρ of F (x) may come from T0 or from a
branch point when solving (2.14). Assume that there is no such branch
point. Then, since L(x, y) = θ(xy3) and the dominant singularity of θ is at
27/256, we have that L(ρ, F (ρ)) = 1/4 and ρF (ρ)3 = 27/256. Substituting
on Φ(x, F ) = 0 we obtain Equation (2.13), where t stands for F (ρ). The
approximate value is t ≈ 1.0005216, which gives ρ ≈ 0.10530385, slightly
smaller than R = 27/256 = 0.10546875.

We now prove that there is no branch point when solving Φ. If this were
the case, then there would exist ρ̃ ≤ ρ such that ∂F Φ(ρ̃, F (ρ̃)) = 0, where
(2.15)
∂

∂F
Φ(x, F (x)) =

3
1024

(−3L2+3L+2F +3xF 3)x3(2F +xF 3+L−2L2)8−1.
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follows by differentiating Equation (2.14), by using Φ(x, F (x)) = 0 and
Equations (2.7), (2.11), and (2.12).

Consider ∂F Φ(x, F, L) as a function of three independent variables, where
x ≥ 0, F ≥ 1 and 0 ≤ L ≤ 1/4. It follows easily that it is an increasing
function on any of them. Hence

0 = ∂F Φ(ρ̃, F (ρ̃), L(ρ̃, F (ρ̃))) ≤ ∂F Φ(ρ, F (ρ̃), 1/4),

since, by assumption, ρ̃ ≤ ρ. On the other hand ∂F Φ(ρ, t, 1/4) ≈ −0.9939,
so by comparing this with ∂F Φ(ρ, F (ρ̃), 1/4) we deduce that t < F (ρ̃). Since
1 = F (0) < t, by continuity of F (x) there exists a value x ∈ (0, ρ̃) such that
F (x) = t, and by the monotonicity of Φ(x, F ) for fixed F there is a unique
solution x to Φ(x, t) = 0. This solution is precisely x = ρ, contradicting
ρ̃ ≤ ρ.

¤

Proposition 2.5. Let ρ and t be as in Lemma 2.4. The singular expansions
of F (x) at ρ is

F (x) = t + F2X
2 + F3X

3 +O(X4),

where X =
√

1− x/ρ, and F2 and F3 are given by

F2 =
12t(128t + 71) log (t)

Q
, F3 =

96
√

6 t log(t)M3/2

Q5/2

M = 531 log(t) + 512t + 59, Q = 9(225 + 512t) log(t)− 512t− 59.

Proof. To obtain the coefficients of the singularity expansion, including the
fact that F1 = 0, we apply indeterminate coefficients Fi, Li of Xi to Equa-
tions (2.14) and

L(x)(1− L(x))3 − xF (x)3 = 0,

where X =
√

1− x/ρ, so that x = ρ(1−X2). These calculations are tedious,
but can be done with a computer algebra system such as Maple. ¤

Proposition 2.6. Let ρ and t be as in Lemma 2.4. The dominant singu-
larity of A(x) is ρ, and its singular expansion at ρ is

A(x) = A0 + A2X
2 + A4X

4 + A5X
5 +O(X6),

where X =
√

1− x/ρ and A0, A2, A4 and A5 are given by
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A0 =− 3C

20t6
(4608 log(t)t + 531 log(t) + 2560 log(3/4)− 5120t + 550)

A2 =
C

4t6
(4608 log(t)t + 531 log(t) + 3072 log(3/4)− 6144t + 542)

A4 =
3C

t6
(
16Q−1 log(t)(128t + 71)2 + 59 log(t) + 29(log(t)t− 2t+

log(3/4)) + 26)

A5 =
40
√

6C

3t6

(
M

Q

)5/2

where C = 35/225, and M and Q are as in Proposition 2.5.

Proof. We just compute the singular expansion

A(x) =
∑

k≥0

AkXk,

by plugging the expansions for F (x) and L(x) of Proposition 2.4 in (2.9).
¤

Theorem 2.7. The number An of maximal graphs with n vertices not con-
taining K3,3 as a minor is asymptotically

An ∼ a · n−7/2γnn!,

where γ = 1/ρ ≈ 9.49629 and a = −15A5/8π ' 0.25354 · 10−3.

Proof. This is a standard application of singularity analysis (see for example
Corollary VI.1 of [4]) to the singular expansion of A(x) obtained in the
previous lemma. ¤

3. K3,3-minor-free graphs

In this section, we derive the asymptotic number of K3,3-minor-free
graphs and properties of random K3,3-minor-free graphs.

3.1. Decomposition and Generating Functions. Let G(x, y), C(x, y)
and B(x, y) denote the exponential generating functions of simple labeled
not necessarily connected, connected and 2-connected K3,3-minor-free graphs
respectively. We will use the additional variable q to mark the number of
K5’s used in the “construction process” of a K3,3-minor-free graph (see be-
low for a more precise explanation), but we won’t give it explicitly in the
argument list of our generating functions to simplify expressions.

We want to apply singularity analysis to derive asymptotic estimates for
the number of K3,3-minor-free graphs. To achieve this, we first present a
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decomposition of this graph class which is due to Wagner [14]. Then we will
translate it into relations of our generating functions.

As seen in Theorem 2.2 above, Wagner [14] characterized the class of
maximal K3,3-minor-free graphs. As a direct consequence we also obtain
a decomposition for K3,3-minor-free graphs. We will present here a more
recent formulation of it, given by Thomas, Theorem 1.2 of [12]. Roughly
speaking the theorem states that a graph has no minor isomorphic to K3,3

if and only if it can be obtained from a planar graph or K5 by merging
on an edge, a vertex, or taking disjoint components. To state the theorem
more precisely, we need the following definition of [12].

Definition 3.1. Let G1 and G2 be graphs with disjoint vertex-sets, let k ≥ 0
be an integer, and for i = 1, 2 let Xi ⊆ V (Gi) be a set of pairwise adjacent
vertices of size k. For i = 1, 2 let G′i be obtained by deleting some (possibly
none) edges with both ends in Xi. Let f : X1 → X2 be a bijection, and let
G be the graph obtained from the union of G′1 and G′2 by identifying x with
f(x) for all x ∈ X1. In those circumstances we say that G is a k-sum of
G1 and G2.

Now, we can state the theorem as a consequence of Wagner’s theorem in
the following way.

Theorem 3.2 ([14], see also Theorem 1.2 of [12]). A graph has no minor
isomorphic to K3,3 if and only if it can be obtained from planar graphs and
K5 by means of 0-, 1-, and 2-sums.

Observe that for 2-connected K3,3-minor-free graphs we only have to take
2-sums into account as 0- and 1-sums do not yield a 2-connected graph.
In this way the decomposition of Wagner fits perfectly well into a result of
Walsh [15] which delivers us – similarly to the case of planar graphs (see [1])
– with the necessary relations for our generating functions.

The second ingredient for obtaining relations for our generating functions
is to use a well-known decomposition of a graph along its connectivity-
structure, i.e. into connected, 2-connected, and 3-connected components.
Eventually, we obtain the following Lemma.

Lemma 3.3. Let G(x, y), C(x, y) and B(x, y) denote the bivariate expo-
nential generating functions for not necessarily connected, connected and
2-connected K3,3-minor-free graphs. Then we have

G(x, y) = exp (C(x, y)) and C•(x, y) = x exp
(

∂

∂x
B (C•(x, y), y)

)
.(3.1)
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Moreover, let M(x, y) denote the bivariate generating function for
3-connected planar maps which satisfies

(3.2) M(x, y) = x2y2

(
1

1 + xy
+

1
1 + y

− 1− (1 + U)2(1 + V )2

(1 + U + V )3

)
,

where U(x, y) and V (x, y) are algebraic functions given by

(3.3) U = xy(1 + V )2, V = y(1 + U)2,

then we have

(3.4)
∂

∂y
B(x, y) =

x2

2

(
1 + D(x, y)

1 + y

)
,

where D(x, y) is defined implicitly by D(x, 0) = 0 and

(3.5)
M(x,D)

2x2D
+

qx3D9

6
− log

(
1 + D

1 + y

)
+

xD2

1 + xD
= 0,

where q marks the monomial for K5.

Proof. Equations (3.1) are standard and encode that a not necessarily con-
nected graph consists of a set of connected graphs and a connected graph
can be decomposed at a vertex into a set of 2-connected graphs whose ver-
tices can again be replaced by rooted connected graphs. For more detailed
proofs see for example [4](p.95) and [7](p.10).

Using Euler’s polyhedral formula, Equations (3.2) and (3.3) follow
from [10], where Mullin and Schellenberg derived the generating function
for rooted 3-connected planar maps according to the number of vertices and
faces.

Next, to derive the connection between 2-connected and 3-connected
graphs, we can use a result of Walsh. More precisely, by Proposition 1.2
of [15] we obtain Equations (3.4) and (3.5), where we have to add only a
monomial for K5 compared to the class of planar graphs. For more details
we refer to [1]. ¤

3.2. Singular Expansions and Asymptotic Estimates. We use the
relations of the generating functions obtained so far to derive singular ex-
pansions for the generating functions of the different connectivity levels.
We start from 3-connected K3,3-minor-free graphs and then go up the con-
nectivity hierarchy level by level. Eventually, this will allow us to derive
asymptotic estimates for the number of and properties of not necessarily
connected K3,3-minor-free graphs in the subsequent sections.

We start with 3-connected K3,3-minor-free graphs. We have to introduce
only a slight modification into the formulas already known for planar graphs
([1, 6]).
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From Lemma 3.3 we can derive analogously to [1] a singular expansion
for D(x, y). It will turn out that the singularity of D(x, y) changes only
slightly compared to the case of 2-connected planar graphs, but yields a
larger exponential growth rate.

To simplify expressions, we will use the following notation. The equation
Y (t) = y has a unique solution in t = t(y) in a suitable small neighbourhood
of 1. Then we denote by R(y) = ζ(t(y)). See Appendix A for expressions
for Y (t) and ζ.

Lemma 3.4. For fixed y in a small neighbourhood of 1, R(y) is the unique
dominant singularity of D(x, y). Moreover, D(x, y) has a branch-point at
R(y), and the singular expansion at R(y) is of the form

D(x, y) = D0(y) + D2(y)X2 + D3(y)X3 + O(X4)

where X =
√

1− x/R(y) and the Di(y), i = 0, . . . , 3 are given in Appen-
dix A.

To prove this lemma, one can mimic the proof of Lemma 3 in [1]. Al-
though we slightly changed the equations by adding a monomial for K5, one
can check that the same arguments still hold.

Next, we solve Equation (3.4) for B(x, y) by integrating according to y.
We omit the proof as it follows closely the lines of proof of Lemma 5 in [6].

Lemma 3.5. Let W (x, z) = z(1+U(x, z)). The generating function B(x, y)
of 2-connected K3,3-minor-free graphs admits the following expression as a
formal power series:

(3.6) B(x, y) = β(x, y, D(x, y),W (x,D(x, y))) +
qx5D(x, y)10

120
,

where

β(x, y, z, w) =
x2

2
β1(x, y, z)− x

4
β2(x, z, w),

and

β1(x, y, z) =

=
z(6x− 2 + xz)

4x
+ (1 + z) log

(
1 + y

1 + z

)
− log(1 + z)

2
+

log(1 + xz)
2x2

=

β2(x, z, w) =

=
2(1 + x)(1 + w)(z + w2) + 3(w − z)

2(1 + w)2
− 1

2x
log(1 + xz + xw + xw2)

+
1− 4x

2x
log(1 + w) +

1− 4x + 2x2

4x
log

(
1− x + wz − xw + xw2

(1− x)(z + w2 + 1 + w)

)
.

We can use this lemma to obtain the singular expansion for B(x, y).
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Lemma 3.6. For fixed y in a small neighbourhood of 1, the dominant sin-
gularity of B(x, y) is equal to R(y). The singular expansion at R(y) is of
the form

(3.7) B(x, y) = B0(y) + B2(y)X2 + B4(y)X4 + B5(y)X5 + O(X6)

where X =
√

1− x/R(y), and the Bi(y), i = 0, . . . , 5 are analytic functions
in a neighbourhood of 1.

Proof. From Equation (3.6) we can see that for y close to 1 the only singu-
larities come from the singularities of D(x, y); hence the first claim of the
theorem follows.

The singular expansion for B(x, y) can be obtained using Equation (3.6)
and the singular expansion for D(x, y). We substitute the singular expansion
for D(x, y), U(x,D(x, y)) in (3.6). Then we set x = ζ(t)(1 −X2) and y =
Y (t) and expand the resulting expression. Now, collecting and simplifying
the coefficients of the Xi for i = 1, . . . , 5 is a tedious calculation, but can
be done with a computer algebra system such as Maple. This yields the
expressions for the Bi(y) given in the appendix. ¤

For connected and not necessarily connected K3,3-minor-free graphs, we
can derive singular expansions by carrying out an analogous calculation as in
the proof of Theorem 1 in [6]. We only have to adapt for the different Di(y)
and Bi(y). One can easily check that the intermediate step of Claim 1 in [6]
still holds and the rest of the calculations stays the same. The coefficients of
the expansions, which we obtain in this way, can be found in Appendix A.

Lemma 3.7. For fixed y in a small neighbourhood of 1, the dominant sin-
gularity of C(x, y) and G(x, y) is equal to R(y). The singular expansions at
R(y) are of the form

(3.8) C(x, y) = C0(y) + C2(y)X2 + C4(y)X4 + C5(y)X5 + O(X6)

and

(3.9) G(x, y) = G0(y) + G2(y)X2 + G4(y)X4 + G5(y)X5 + O(X6)

where X =
√

1− x/R(y), and the Ci(y) and Gi(y), i = 0, . . . , 5, are ana-
lytic functions in a neighbourhood of 1.

From Lemmas 3.6 and 3.7 we obtain the following asymptotic estimates
using the “transfer theorem”, Corollary VI.1 of [4].
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Theorem 3.8. Let gn, cn, and bn denote the number of not necessarily
connected, connected and biconnected resp. K3,3-minor-free graphs on n ver-
tices. Then it holds

gn ∼ αg n−
7
2 ρ−n

g n!,(3.10)

cn ∼ αc n−
7
2 ρ−n

c n!,(3.11)

bn ∼ αb n−
7
2 ρ−n

b n!,(3.12)

where and αg
.= 0.42643 · 10−5, αc

.= 0.41076 · 10−5, αb
.= 0.37074 · 10−5,

ρ−1
c = ρ−1

g
.= 27.22935, and ρ−1

b
.= 26.18659 are analytically computable

constants.

3.3. Structural Properties. If we consider a random K3,3-minor-free
graph, i.e. drawing a K3,3-minor-free graph on n vertices uniformly at
random from all such graphs on n vertices, we can derive the following
properties using the algebraic singularity schema (Theorem IX.10) of [4].

Theorem 3.9. The number of edges in a not necessarily connected and con-
nected random K3,3-minor-free graph is asymptotically normally distributed
with mean µn and variance σ2

n, which satisfy

µn ∼ κn and σ2
n ∼ λn,

where κ
.= 2.21338 and λ

.= 0.43044 are analytically computable constants.

Recall that we introduced the variable q in the equations of the generating
functions above to mark the monomial for K5. We can use this variable to
obtain a limit law for the number of K5 used in the construction process
(following the above decomposition, see Theorem 3.2) of a random K3,3-
minor-free graph. The next theorem shows that a linear number of K5 is
used, but the constant is very small; this is exactly what one would expect as
the expected number of edges is only slightly larger than for planar graphs
(see Theorem 3.9 and [6]).

Theorem 3.10. Let C(G) denote the number of K5 used in the construction
of a random K3,3-minor-free graph G according to Theorem 3.2. Then C(G)
is asymptotically normally distributed with mean µn and variance σ2

n, which
satisfy

µn ∼ κn and σ2
n ∼ λn,

where κ
.= 0.92391 ·10−4 and λ

.= 0.92440 ·10−4 are analytically computable
constants. The same holds for a random connected K3,3-minor-free graph.

Acknowledgement. The authors want to thank Eric Fusy and Kon-
stantinos Panagiotou for many helpful discussions and for proof reading
earlier versions of this manuscript.
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3. M. Bodirsky, M. Löffler, C. McDiarmid, and M. Kang, Random cubic planar graphs,
(2006), Submitted.

4. P. Flajolet and R. Sedgewick, Analytic combinatorics, Book in preparation, April,
2006.
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14. K. Wagner, Über eine Erweiterung des Satzes von Kuratowski, Deutsche Mathematik
2 (1937), 280–285.

15. T. R. S. Walsh, Counting labelled three-connected and homeomorphically irreducible
two-connected graphs, Journal of Combinatorial Theory. Series B 32 (1982), no. 1,
1–11. MR MR649833 (83k:05058a)

Appendix A. Appendix

Here, we give the expressions for the coefficients of the singular expan-
sions of D(x, y), U(x, y), B(x, y), C(x, y) and G(x, y) as well as the ex-
pressions for the singularities. We use the same approach as in [1] and
parametrize the expressions in the complex variable t.
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h =
t2

8192(3t + 1)6(2t + 1)(t + 3)
(
13122qt9 + 45927qt8 − 1658880t7 +

+19683qt7 − 12496896t6 − 8847360t5 + 6832128t4 + 10399744t3

+4739072t2 + 958464t + 73728
)

Y (t) = − 2t + 1
(3t + 1)(t− 1)

e−h − 1

ζ = − (t− 1)3(3t + 1)
16t3

Q = 78732t9 − 1328940t8 − 26889705t7 − 153744066t6 − 415828997t5 −
−522964992t4 − 342073344t3 − 121237504t2 − 22151168t−
−1638400

K = 78732t11 + 472392t10 − 2668221t9 − 816345t8 + 92026557t7 +
+562023429t6 + 1040556032t5 + 926367744t4 + 455663616t3 +
+127336448t2 + 19005440t + 1179648

U0 =
1
3t

U1 = −
(
− 2

27
(3t + 1)K
t3(t + 1)Q

) 1
2

U2 = − (3t + 1)2

54t2(t + 1)2Q2

(
6198727824t20 + 180231719760t19

+891036025560t18 − 12902936763600t17 − 197722264231071t16

−1821396525148269t15 − 13816272361145022t14

−79424397121737354t13 − 324711461744767867t12

−931873748086896665t11 − 1881275802907541504t10

−2713502925437276160t9 − 2843653010633469952t8

−2190731661037666304t7 − 1246514524950953984t6

−521994799964094464t5 − 158674913803108352t4

−34025665074298880t3 − 4876321721155584t2

−418948289921024t− 16312285790208)

D0 = − 3t2

(3t + 1)(t− 1)
D1 = 0

D2 = − t(2t + 1)2

(3t + 1)(t− 1)Q
(
19683t8 + 118098t7 − 1592325t6 − 10616832t5

−30670848t4 + 7602176t3 + 24444928t2 + 9830400t + 1179648
)
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D3 =
131072
9Q2

((
− (3t + 1)K

t3(t + 1)Q

) 1
2 √

6t2(3t + 1)(t + 3)2(2t + 1)2K

)

P1 = 1549681956t24 − 68328432252t23 − 646991330895t22

+1383569088336t21 − 57934645367238t20 − 1030641858893628t19

−5581315778170878t18 − 9690527546116164t17

+14823917538797880t16 + 66591676440148968t15

−6807229356797163t14 − 121180156627243452t13

−38691868953118942t12 + 93938978979606528t11

+65141137737269248t10 − 21686663626104832t9

−36470289308778496t8 − 9659501232001024t7

+4668686142685184t6 + 4119895696351232t5

+1329802690691072t4 + 223343466774528t3

+17853474406400t2 + 207232172032t− 40265318400
P2 = −472392t12 − 2991816t11 + 15064542t10 + 10234512t9

−550526652t8 − 3556193688t7 − 7367383050t6 − 7639318528t5

−4586717184t4 − 1675345920t3 − 368705536t2 − 45088768t

−2359296

B0 =
1

4t6

(
− 9

256

(
t +

1
3

)2

(t− 1)6 ln
( −2 t− 1

3 t2 − 2 t− 1

)

+
(
− 3

32
t7− 9

512
t8+

7
128

t6+
1
32

t3− 15
256

t4− 3
16

t5− 1
512

+
3

128
t2

)
·

· ln
(

(3 t+1)2 (t−1)2

(t+1)4

)
+

(
t3 ln

(
1+

3
16

(t− 1)2

t

)

+
1
2

t3 ln

(
1
16

(t + 1)2 (3 t + 1)
t2

)

−3
8

(
t4 − 4

3
t3 + 2 t2 − 1

3

)
ln

(
− (t− 1)−1

))
t3

)

− (t− 1)2

41943040t4 (3 t + 1)5 (t + 3)

(
19683 t13 − 131220 t12 − 183708 t11

+360921744 t10 + 2005423731 t9 + 3887177580 t8 + 5603033310 t7

+4821770240 t6 + 2013921280 t5 + 229048320 t4 − 97157120 t3

−31436800 t2 − 2048000 t + 122880
)



ON THE NUMBER OF K3,3-MINOR-FREE GRAPHS 19

B1 = 0

B2 =
9

(
t + 1

3

)
(t− 1)3

1024 t6

(
2

(
t +

1
3

)
(t− 1)3 ln

( −2 t− 1
3 t2 − 2 t− 1

)

+
(

t− 1
3

)
(t+1)3 ln

(
(3t+1)2 (t−1)2

(t+1)4

)
+

32
3

t3 ln
(
−(t− 1)−1

))

+
(t− 1)4

8388608t4 (t + 3) (3 t + 1)5
(
19683 t11 − 13122 t10 − 190269 t9

+122862096 t8 + 626914188 t7 + 555393024 t6 + 28803072 t5

−163438592 t4 − 81084416 t3 − 14852096 t2 − 720896 t + 49152
)

B3 = 0

B4 = − P1

8388608t4(t + 3)(3t + 1)5Q

−9(t + 1
3 )2(t− 1)6(−2 ln(t + 1) + ln(2t + 1))

1024t6

B5 = −

√
3P2

t3(t+1)QP 2
2 (t− 1)6

2880(3t + 1)5(t + 1)tQ2
,

C0 = R + B0 + B2

C1 = 0
C2 = −R

C3 = 0

C4 = −R + R2

2B4−R

2

C5 = B5

(
1− 2B4

R

)− 5
2

G0 = eC0

G1 = 0
G2 = eC0C2

G3 = 0

G4 = eC0

(
C4 +

C2
2

2

)

G5 = eC0C5
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E-mail address: sgerke@inf.ethz.ch

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica
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