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Abstract. The classical Painlevé theorem tells that sets of zero
length are removable for bounded analytic functions, while (some)
sets of positive length are not. For general K-quasiregular mappings
in planar domains the corresponding critical dimension is 2

K+1
. We

show that when K > 1, unexpectedly one has improved removabil-
ity. More precisely, we prove that sets E of σ-finite Hausdorff 2

K+1
-

measure are removable for bounded K-quasiregular mappings. On
the other hand, dim(E) = 2

K+1
is not enough to guarantee this prop-

erty. We also study absolute continuity properties of pull-backs of
Hausdorff measures under K-quasiconformal mappings, in particular
at the relevant dimensions 1 and 2

K+1
. For general Hausdorff mea-

sures Ht, 0 < t < 2 , we reduce the absolute continuity properties to
an open question on conformal mappings, see Conjecture 2.3.

1. Introduction

A homeomorphism φ : Ω → Ω′ between planar domains Ω, Ω′ ⊂ C is
called K-quasiconformal if it belongs to the Sobolev space W 1,2

loc (Ω) and
satisfies the distortion inequality

max
α
|∂αφ| ≤ K min

α
|∂αφ| a.e. in Ω (1.1)

It has been known since the work of Ahlfors [3] that quasiconformal map-
pings preserve sets of zero Lebesgue measure. It is also well known that they
preserve sets of zero Hausdorff dimension, since K-quasiconformal mappings
are Hölder continuous with exponent 1/K, see [20]. However, these maps
do not preserve Hausdorff dimension in general, and it was in the work
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of the first author [4] where the precise bounds for the distortion of di-
mension were given. For any compact set E with dimension t and for any
K-quasiconformal mapping φ we have

1
K

(
1
t
− 1

2

)
≤ 1

dim(φ(E))
− 1

2
≤ K

(
1
t
− 1

2

)
(1.2)

Furthermore, these bounds are optimal, that is, equality may occur in either
estimate.

The fundamental question we study in this work is whether the estimates
(1.2) can be improved to the level of Hausdorff measuresHt. In other words,
if φ is a planar K-quasiconformal mapping, 0 < t < 2 and t′ = 2Kt

2+(K−1)t ,
we ask whether it is true that

Ht(E) = 0 ⇒ Ht′(φ(E)) = 0, (1.3)

or put briefly, φ∗Ht′ ¿ Ht. Note that the above classical results of Ahlfors
and Mori assert that this is true when t = 0 or t = 2. In fact [4], for the
Lebesgue measure one has even precise quantitative bounds

|φ(E)| ≤ C |E| 1
K ,

a result which also leads to the sharp Sobolev regularity, φ ∈ W 1,p
loc (C) for

every p < 2K
K−1 .

As a first main result of this paper we prove (1.3) for t = 2
K+1 , i.e. for

the case of image dimension t′ = 1.

Theorem 1.1. Let φ be a planar K-quasiconformal mapping, and let E be
a compact set. Then,

M1(φ(E)) ≤ C
(
M 2

K+1 (E)
)K+1

2K

(1.4)

As a consequence,

H 2
K+1 (E) = 0 ⇒ H1(φ(E)) = 0

Here Mt denotes t-dimensional Hausdorff content. As one of the key
points in proving Theorem 1.1 we show that for planar quasiconformal map-
pings h which are conformal in the complement C \ E the inequality (1.4)
improves strongly: such mappings h essentially preserve the 1-dimensional
Hausdorff content of the compact set E,

M1(h(E)) ≤ CK M1(E) (1.5)

The constant CK depends only on K if h is normalized at ∞, requiring
h(z) = z +O(1/z). For the area the corresponding estimate was shown in
[4]. In fact, as we will see later, a counterpart of (1.5) for the t-dimensional
Hausdorff content Mt is the only missing detail for proving the absolute
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continuity φ∗Ht′ ¿ Ht for general t. Towards solving (1.3) we conjecture
that actually

Mt(h(E)) ≤ CMt(E), 0 < t ≤ 2

whenever E ⊂ C compact and h is normalized and conformal in C \ E ad-
mitting a K-quasiconformal extension to C. For a more detailed discussion
and other formulations see Section 2.

The reason our methods work only in the special case of dimension t = 1
is that the content M1 is equivalent to a suitable BMO-capacity [29]. For
dimensions 1 < t < 2, we do have interpolating estimates but unfortunately
we have to settle for the Riesz capacities. We have

Cα,t(h(E)) ≤ C Cα,t(E)

for any t ∈ (1, 2) and α = 2
t − 1. This fact has consequences towards the

absolute continuity of Hausdorff measures under quasiconformal mappings,
but these bounds are not strong enough for (1.3) when 1 < t′ < 2.

Recall that f is a K-quasiregular mapping in a domain Ω ⊂ C if f ∈
W 1,2

loc (Ω) and f satisfies the distortion inequality (1.1). When K = 1, this
class agrees with the class of analytic functions on Ω. The classical Painlevé
problem consists of giving metric and geometric characterizations of those
sets E that are removable for bounded analytic functions. Here Painlevé’s
theorem tells us that sets of zero length are removable, while Ahlfors [2]
showed that no set of Hausdorff dimension > 1 has this property. For the
related BMO-problem Kaufman [15] proved that the condition H1(E) = 0
is a precise characterization for removable singularities of BMO analytic
functions. Thus for analytic removability, dimension 1 is the critical point
both for L∞ and BMO. However, the solution to the original Painlevé prob-
lem lies much deeper and was only recently achieved by Tolsa ([27],[28]) in
terms of curvatures of measures. Under the assumption that H1(E) is fi-
nite, Painlevé’s problem was earlier solved by G. David [11], who showed
that a set E of positive and finite length is removable for bounded analytic
functions if and only if it is purely unrectifiable. Furthermore, the countable
semiadditivity of analytic capacity, due to Tolsa [27], asserts that this result
remains true if we only assume H1(E) to be σ-finite.

It is now natural to approach the Painlevé problem for K-quasiregular map-
pings. We say that a compact set E is removable for bounded K-quasiregular
mappings, or simply K-removable, if for every open set Ω ⊃ E, every
bounded K-quasiregular mapping f : Ω \ E → C admits a K-quasiregular
extension to Ω. In this definition, as in the analytic setting, we may replace
L∞(Ω) by BMO(Ω) to get a close variant of the problem.
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The sharpness of the bounds in equation (1.2) determines the index 2
K+1 as

the critical dimension in both the L∞ and BMO quasiregular removabil-
ity problems. In fact, Iwaniec and Martin previously conjectured [14] that
in Rn, n ≥ 2, sets with Hausdorff measure H n

K+1 (E) = 0 are removable
for bounded K-quasiregular mappings. A preliminary positive answer for
n = 2 was described in [7]. Generalizing this, in the present work we show
that surprisingly, for K > 1 one can do even better: we have the following
improved Painlevé removability.

Theorem 1.2. Let K > 1 and suppose E is any compact set with

H 2
K+1 (E) σ − finite.

Then E is removable for all bounded K-quasiregular mappings.

The theorem fails for K = 1, since for instance the line segment E = [0, 1]
is not removable.

For the converse direction, the work [4] finds for every t > 2
K+1 non-

K-removable sets with dim(E) = t. We make an improvement also here
and construct compact sets with dimension precisely equal to 2

K+1 yet not
removable for some bounded K-quasiregular mappings. For details see The-
orem 5.1.

The above theorems are closely connected via the classical Stoilow factor-
ization, which tells [7], [16] that in planar domains K-quasiregular mappings
are precisely the maps f representable in the form f = h ◦ φ, where h is
analytic and φ is K-quasiconformal. Indeed, the first step in proving Theo-
rem 1.2 will be to show that for a general K-quasiconformal mapping φ one
has

H 2
K+1 (E) σ-finite ⇒ H1(φ(E)) σ-finite

However, this conclusion will not be enough since there are rectifiable sets
of finite length, such as E = [0, 1], that are non-removable for bounded
analytic functions. Therefore, in addition, we need to establish that such
’good’ sets of positive analytic capacity actually behave better also under
quasiconformal mappings. That is, we show that up to a set of zero length,

F 1-rectifiable ⇒ dim(φ(F )) >
2

K + 1
For details and a precise formulation see Corollary 3.2.

The paper is structured as follows. In Section 2 we deal with the quasi-
conformal distortion of Hausdorff measures and of other set functions. In
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Section 3 we study the quasiconformal distortion of 1-rectifiable sets. Sec-
tion 4 gives the proof for the improved Painlevé removability theorem for
K-quasiregular mappings and other related questions. Finally in section 5
we describe a construction of non-removable sets.

2. Absolute Continuity

There are several natural ways to normalize the quasiconformal mappings
φ : C → C. In this work we mostly use the principal K-quasiconformal
mappings, i.e. mappings that are conformal outside a compact set and are
normalized by φ(z)− z = O

(
1
|z|

)
as |z| → ∞.

It is shown in the work [4] of the first author that for all K-quasiconformal
mappings φ : C→ C,

|φ(E)| ≤ C |E|1/K (2.1)
where C is a constant that depends on the normalizations. By scaling we
may always arrange

diam(φ(E)) = diam(E) ≤ 1 (2.2)

and then C = C(K) depends only on K. In order to achieve the result
(2.1), one first reduces to the case where the set E is a finite union of disks.
Secondly, applying Stoilow factorization methods the mapping φ is written
as φ = h ◦ φ1, where both h, φ1 : C → C are K-quasiconformal mappings,
such that φ1 is conformal on E and h is conformal in the complement of
the set F = φ1(E). Here one obtains the right conclusion for φ1,

|φ1(E)| ≤ C |E| 1
K

by including φ1 in a holomorphic family of quasiconformal mappings. Fur-
ther, one shows in [4, p. 50] that under the special assumption where h is
conformal outside of F , we have

|h(F )| ≤ C |F | (2.3)

where the constant C still depends only on K.
In searching for absolute continuity properties of other Hausdorff mea-

sures under quasiconformal mappings, such a decomposition seems unavoid-
able, and this leads one to look for counterparts of (2.3) for Hausdorff mea-
sures Ht or Hausdorff contents Mt. Here we establish the result for the
dimension t = 1.

Lemma 2.1. Suppose E ⊂ C is a compact set, and let φ : C → C be a
principal K-quasiconformal mapping, such that φ is conformal on C \ E.
Then,

M1(φ(E)) 'M1(E)
with constants depending only on K.
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In order to prove this result some background is needed. The space of
functions of bounded mean oscillation, BMO, is invariant under quasicon-
formal changes of variables [24]. More precisely, if φ is a K-quasiconformal
mapping and f ∈ BMO(C), then f ◦ φ ∈ BMO(C) with BMO-norm

‖f ◦ φ‖∗ ≤ C(K) ‖f‖∗
The space BMO(C) gives rise to a capacity,

γ0(F ) = sup |f ′(∞)|
where the supremum runs over all functions f ∈ BMO(C) with ‖f‖∗ ≤ 1,
that are holomorphic on C \ E and satisfy f(∞) = 0. Here f ′(∞) =
lim|z|→∞ z (f(z)− f(∞)). Observe that in this situation ∂f defines a dis-
tribution supported on F , and actually |〈∂f, 1〉| = |f ′(∞)|. It turns out [29]
that for any compact set E we have

γ0(E) 'M1(E). (2.4)

According to the theorem of Kaufman [15], in the class of functions f ∈
BMO(C) holomorphic on C \ E every f admits a holomorphic extension
to the whole plane if and only if M1(E) = 0. That is, γ0 characterizes
those compact sets which are removable for BMO holomorphic functions.
Because of these equivalences, to prove Lemma 2.1 it suffices to show that
γ0(φ(E)) ' γ0(E).

Proof of Lemma 2.1. Suppose that f ∈ BMO(C) is a holomorphic mapping
of C \E such that ‖f‖∗ ≤ 1 and f(∞) = 0. Then the function g = f ◦ φ−1

is in BMO(C) and ‖g‖∗ ≤ C(K). On the other hand, g is holomorphic on
C \ φ(E), and since φ is a principal K-quasiconformal mapping, g(∞) = 0
and

|g′(∞)| = lim
|z|→∞

|z g(z)| = lim
|w|→∞

|φ(w) f(w)| = |f ′(∞)|.

Hence, γ0(E) ≤ C(K) γ0(φ(E)). The converse inequality follows by sym-
metry, since also the inverse φ−1 is a principal mapping,. ¤

This lemma is a first step towards the results on absolute continuity, as
presented in the following reformulation of Theorem 1.1.

Theorem 2.2. Let E be a compact set and φ : C → C K-quasiconformal,
normalized by (2.2). Then

M1(φ(E)) ≤ C
(
M 2

K+1 (E)
)K+1

2K

where the constant C = C(K) depends only on K. In particular, if
H 2

K+1 (E) = 0 then H1(φ(E)) = 0.
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Proof. There is no restriction if we assume E ⊂ D. We can also assume
that φ is a principal K-quasiconformal mapping, conformal outside D. Now,
given ε > 0, there is a finite covering of E by open disks Dj = D(zj , rj),
j = 1, ..., n, such that

n∑

j=1

r
2

K+1
j ≤M 2

K+1 (E) + ε

Denote Ω = ∪n
j=1Dj . As in [4], we use a decomposition φ = h ◦ φ1, where

both φ1, h are principal K-quasiconformal mappings. Moreover, we may
require that φ1 is conformal in Ω ∪ (C \D) and that h is conformal outside
φ1(Ω).

By Lemma 2.1, we see that

M1(φ(E)) ≤M1(φ(Ω)) = M1(h ◦ φ1(Ω)) ≤ CM1(φ1(Ω))

Hence the problem has been reduced to estimating M1(φ1(Ω)). For this,
K-quasidisks have area comparable to the square of the diameter,

diam(φ1(Dj)) ' |φ1(Dj)|1/2 =

(∫

Dj

J(z, φ1) dA(z)

) 1
2

with constants which depend only on K. Thus, using Hölder estimates
twice, we obtain

n∑

j=1

diam(φ1(Dj))≤C(K)




n∑

j=1

∫

Dj

J(z, φ1)pdA(z)




1
2p




n∑

j=1

|Dj |
p−1
2p−1




1− 1
2p

as long as J(z, φ1)p is integrable. But here we are in the special situation
of [6, Lemma 5.2]. Namely, as φ1 is conformal in the subset Ω, we may take
p = K

K−1 and apply [6] to obtain

n∑

j=1

∫

Dj

J(z, φ1)pdA(z) =
∫

Ω

J(z, φ1)pdA(z) ≤ π

With the above choice of p one has p−1
2p−1 = 1

K+1 . Hence we get

n∑

j=1

diam(φ1(Dj)) ≤ C(K)




n∑

j=1

r
2

K+1
j




K+1
2K

≤ C(K)
(
M 2

K+1 (E) + ε
)K+1

2K

(2.5)
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But ∪jφ1(Dj) is a covering of φ1(Ω), so that actually we have

M1(φ(E)) ≤ CM1(φ1(Ω)) ≤ C(K)
(
M 2

K+1 (E) + ε
)K+1

2K

Since this holds for every ε > 0, the result follows. ¤
At this point we want to emphasize that for a general quasiconformal

mapping φ we have J(z, φ) ∈ Lp
loc only for p < K

K−1 . The improved bor-
derline integrability (p = K

K−1 ) under the extra assumption that φ∣∣Ω is

conformal was shown in [6, Lemma 5.2]. This phenomenon was crucial for
our argument, since we are studying Hausdorff measures rather than dimen-
sion. Actually, the same procedure shows that inequality (2.5) works in a
much more general setting. That is, still under the special assumption that
φ1 is conformal in ∪n

j=1Dj , we have for any t ∈ [0, 2]



n∑

j=1

diam(φ1(Dj))d




1
d

≤ C(K)




n∑

j=1

diam(Dj)t




1
t

1
K

(2.6)

where d = 2Kt
2+(K−1)t . On the other hand, another key point in our proof

was the estimate
M1(h(E)) ≤ CM1(E),

valid whenever h is a principal K-quasiconformal mapping which is confor-
mal outside E. We believe that finding the counterpart to this estimate is
crucial for understanding distortion of Hausdorff measures under quasicon-
formal mappings. We make the following

Conjecture 2.3. Suppose we are given a real number d ∈ (0, 2]. Then for
any compact set E ⊂ C and for any principal K-quasiconformal mapping h
which is conformal on C \ E, we have

Md(h(E)) 'Md(E) (2.7)

with constants that depend on K and d only.

One may also formulate a convenient discrete variant, which is actually
stronger than Conjecture 2.3.

Question 2.4. Suppose we are given a real number d ∈ (0, 2] and a finite
number of disjoint disks D1, ..., Dn. If a mapping h is conformal on C \
∪n

j=1Dj and admits a K-quasiconformal extension to C, is it then true that
n∑

j=1

diam (h(Dj))
d '

n∑

j=1

diam(Dj)d (2.8)

with constants that depend only on K and d ?
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We already know that (2.7) is true for d = 1 and d = 2; however for
Question 2.4 we know a proof only at d = 2. An affirmative answer to Con-
jecture 2.3, combined with the optimal integrability bound proving (2.6),
would provide the absolute continuity of φ∗Hd with respect to Ht, where
d = 2Kt

2+(K−1)t , 0 ≤ t ≤ 2 and K ≥ 1. Therefore, (2.7) would have important
consequences in the theory of quasiconformal mappings.

The positive answer to (2.7) for the dimension d = 1 was based on the
equivalence (2.4) and the invariance of BMO. Actually more is true: the
space V MO, equal to the BMO-closure of uniformly continuous functions,
is quasiconformally invariant as well. We may also describe V MO as con-
sisting of functions f ∈ BMO for which

lim
1
|B|

∫

B

|f − fB | = 0

as |B| + 1
|B| → ∞. As we now see, the invariance of VMO has interesting

consequences.

Theorem 2.5. Let E ⊂ C be a compact set, and φ : C → C a K-
quasiconformal mapping. If H 2

K+1 (E) is finite (or even σ-finite), then
H1(φ(E)) is σ-finite.

This result may be equivalently expressed in terms of the lower Hausdorff
content. To understand this alternative formulation of Theorem 2.5, we first
need some background. A measure function is a continuous non-decreasing
function h(t), t ≥ 0, such that limt→0 h(t) = 0. If h is a measure function
and F ⊂ C we set

Mh(F ) = inf
∑

j

h(δj)

where the infimum is taken over all countable coverings of F by disks of
diameter δj . When h(t) = tα, α > 0, Mh(F ) = Mα(F ) equals the α-
dimensional Hausdorff content of F . Moreover, the content Mα and the
measure Hα have the same zero sets. We will denote by F = Fd the class
of measure functions h(t) = td ε(t), 0 ≤ ε(t) ≤ 1, such that limt→0 ε(t) = 0.
The lower d-dimensional Hausdorff content of F is then defined by

Md
∗(F ) = sup

h∈Fd

Mh(F )

One has Md
∗ ≤ Md but it can happen that Md

∗(F ) = 0 < Md(F ). For
instance, if F is the segment [0, 1] in the plane, then M1

∗(F ) = 0 but
M1(F ) = 1. An old result of Sion and Sjerve [26] in geometric measure
theory asserts that Md

∗(F ) = 0 if and only if F is a countable union of
sets with finite d-dimensional Hausdorff measure. For a disk B, Md

∗(B) =
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Md(B), and for open sets U , Md
∗(U) 'Md(U). We may now reformulate

Theorem 2.5 as follows.

Theorem 2.6. Let E ⊂ C be a compact set, and φ : C → C a principal

K-quasiconformal mapping. If M
2

K+1∗ (E) = 0, then M1
∗(φ(E)) = 0.

For the proof, for any bounded set F ⊂ C define first

γ∗(F ) = sup |f ′(∞)| (2.9)

where the supremum is taken over all functions f ∈ V MO, with ‖f‖∗ ≤ 1,
which are holomorphic on C \ F and satisfy f(∞) = 0. Again here we may
replace |f ′(∞)| by |〈∂f, 1〉|. The V MO invariance leads to the following
analogue of Lemma 2.1.

Lemma 2.7. Let E be a compact set. For any principal K-quasiconformal
mapping φ : C→ C, conformal on C \ E, we have

γ∗(φ(E)) ' γ∗(E).

Proof. Consider f ∈ V MO which is analytic in C \ φ(E) and f(∞) = 0.
Set g = f ◦ φ. Then g ∈ V MO, g is analytic on C \ E, ‖g‖∗ ≤ C ‖f‖∗
and |g′(∞)| = |f ′(∞)| since φ is a principal K-quasiconformal mapping.
Consequently γ∗(φ(E)) ≤ C γ∗(E). ¤

It was shown by Verdera that this V MO capacity is essentially the 1-
dimensional lower content.

Lemma 2.8 ([29], p. 288). For any compact set E, M1
∗(E) ' γ∗(E).

With these tools we are ready to prove Theorem 2.6.

Proof of Theorem 2.6. Naturally, the argument is similar to that in Theo-
rem 2.2. Without loss of generality, we may assume that E ⊂ D and that
φ is a principal K-quasiconformal mapping. Furthermore, we may assume
that H 2

K+1 (E) is finite, and for any δ we have a finite family of disks Di

such that E ⊂ ∪iDi,
∑

i diam(Di)
2

K+1 ≤ H 2
K+1 (E) + 1 and diam(Di) < δ.

Set Ω = ∪iDi. Again, we have a decomposition φ = φ2 ◦ φ1, where both
φ1 and φ2 are principal K-quasiconformal mappings, and where we may
require that φ1 is conformal in (C \ D) ∪ Ω, and φ2 is conformal outside
φ1(Ω). Thus,

M1
∗(φ(E)) ≤M1

∗(φ(Ω))
By Lemma 2.8, the lower content can be replaced by the V MO capacity,

M1
∗(φ(Ω)) ≤ C γ∗(φ(Ω))

Since φ2 is conformal outside of φ1(Ω), from Lemma 2.7 we obtain

γ∗(φ(Ω)) = γ∗(φ2 ◦ φ1(Ω)) ' γ∗(φ1(Ω)) ≤ CM1
∗(φ1(Ω))
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where the last inequality uses again Lemma 2.8. It hence remains to esti-
mate M1

∗(φ1(Ω)). For this, take h ∈ F , h(t) = t ε(t), and argue as in The-
orem 2.2. Since K-quasiconformal mappings are Hölder continuous with
exponent 1/K,

Mh(φ1(Ω))

≤
∑

j

diam(φ1(Dj))ε(diam(φ1(Dj))) ≤ ε(CK δ1/K)
∑

j

diam(φ1(Dj))

≤ ε(CK δ1/K)
∑

j

(∫

Dj

J(z, φ1)
K

K−1 dm(z)

)K−1
2K

|Dj |1/2K

≤ ε(CK δ1/K)CK


∑

j

diam(Dj)
2

K+1




K+1
2K

≤ ε(CK δ1/K)CK

(
H 2

K+1 (E) + 1
)K+1

2K

Finally, taking δ → 0 we get Mh(φ(E)) = 0. This holds for any h ∈ F , and
the Theorem follows. ¤

One might think of extending the preceeding results from the critical
index 2

K+1 to arbitrary ones by using other capacities that behave like a
Hausdorff content. For instance, the capacity γα, associated to analytic
functions with the Lip(α) norm [21], satisfies

M1+α(E) ' γα(E)

but unfortunately, the space Lip(α) is not invariant under a quasiconformal
change of variables. Thus, other procedures are needed. It turns out that the
homogeneous Sobolev spaces provide suitable tools, basically since Ẇ 1,2(C)
is invariant under quasiconformal mappings. Here recall that for 0 < α < 2
and p > 1, the homogeneous Sobolev space Ẇα,p(C) is defined as the space
of Riesz potentials

f = Iα ∗ g

where g ∈ Lp(C) and Iα(z) = 1
|z|2−α . The norm is given by ‖f‖Ẇ α,p(C) =

‖g‖p. When α = 1, Ẇ 1,p(C) agrees with the space of functions f whose
first order distributional derivatives are given by Lp(C) functions. Let f ∈
Ẇ 1,2(C) and let φ be a K-quasiconformal mapping on C. Defining g = f ◦φ
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we have ∫

C
|Dg(z)|2dA(z) ≤

∫

C
|Df(φ(z))|2 |Dφ(z)|2 dA(z)

≤ K

∫

C
|Df(φ(z))|2 J(z, φ) dA(z)

= K

∫

C
|Df(w)|2 dA(w)

so that g ∈ Ẇ 1,2(C). In other words, every K-quasiconformal mapping φ
induces a bounded linear operator

T : Ẇ 1,2(C) → Ẇ 1,2(C), T (f) = f ◦ φ

with norm depending only on K. As we have mentioned before, this opera-
tor T is also bounded on BMO(C) [24]. Moreover, Reimann and Rychener
[25, p.103] proved that Ẇ

2
q ,q(C), q > 2, may be represented as a complex

interpolation space between BMO(C) and Ẇ 1,2(C). It follows that T is
bounded on the Sobolev spaces Ẇ

2
q ,q(C), q > 2. More precisely, there exists

a constant C = C(K, q) such that

‖f ◦ φ‖
Ẇ

2
q

,q
(C)

≤ C‖f‖
Ẇ

2
q

,q
(C)

(2.10)

for any K-quasiconformal mapping φ on C. These invariant function spaces
provide us with related invariant capacities. Recall (e.g. [1, pp.34 and 46])
that for any pair α > 0, p > 1 with 0 < αp < 2, one defines the Riesz
capacity of a compact set E by

Ċα,p(E) = sup{µ(E)p}
where the supremum runs over all positive measures µ supported on E, such
that ‖Iα ∗ µ‖q ≤ 1, 1

p + 1
q = 1. We get an equivalent capacity if we replace

positive measures µ by distributions T supported on E, ‖Iα ∗ T‖q ≤ 1, and
take the supremum of |〈T, 1〉|p.

To see the connection with equation (2.10) consider the set functions

γ1−α,q(E)=sup{|f ′(∞)|; f analytic in C \E, ‖f‖Ẇ 1−α,q ≤1 and f(∞) = 0}
Observe again that |f ′(∞)| = |〈∂f, 1〉| where this action must be understood
in the sense of distributions. With this terminology we have

Lemma 2.9. Suppose that E is a compact subset of the plane. Then, for
any p ∈ (1, 2),

Ċα,p(E)1/p ' γ1−α,q(E)

where α = 2
p − 1 and q = p

p−1 .
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Proof. On one hand, let µ be an admissible measure for Ċα,p. Then, Iα ∗ µ
is in Lq with norm at most 1. Define f = 1

z ∗µ. Clearly, f is analytic outside
E, f(∞) = 0 and f ′(∞) = µ(E). Moreover, up to multiplicative constants,

f̂(ξ) ' 1
ξ

µ̂(ξ) =
ξ

|ξ|
1
|ξ| µ̂(ξ) = R̂ Î1 µ̂

and consequently we can write

f =
1
z
∗ µ = R(I1 ∗ µ) = I1−α ∗R(Iα ∗ µ)

where R is a Calderón-Zygmund operator and ‖f‖Ẇ 1−α,q = ‖R(Iα ∗ µ)‖q .
‖Iα ∗ µ‖q.

For the converse, let f = I1−α ∗ g be an admissible function for γ1−α,q.
We have that, up to a multiplicative constant, T = ∂f is an admissible
distribution for Ċα,p because

Iα ∗ T = Rt(g)

where Rt is the transpose of R. Thus, Ċα,p(E)1/p ≥ |〈T, 1〉| = |f ′(∞)| and
the proof is complete. ¤

We end up with new quasiconformal invariants built on the Riesz capac-
ities.

Theorem 2.10. Let φ : C → C be a principal K-quasiconformal mapping
of the plane, which is conformal on C \ E. Let 1 < p < 2 and α = 2

p − 1.
Then

Ċα,p(φ(E)) ' Ċα,p(E)
with constants that depend only on K and p.

Proof. By the preceding Lemma it suffices to show that γ1−α,q (φ(E)) ≤
CKγ1−α,q(E).

Let f be an admissible function for γ1−α,q(φ(E)). This means that f
is holomorphic on C \ φ(E), f(∞) = 0 and that ‖f‖Ẇ 1−α,q ≤ 1. Then,
we consider the function g = f ◦ φ. Clearly, ∂(f ◦ φ) = 0 outside E and
g(∞) = 0. Moreover, for α = 2

p − 1 we have 1− α = 2
q . Hence, because of

equation (2.10),

‖g‖Ẇ 1−α,q ≤ CK‖f‖
Ẇ

2
q

,q ≤ C(K, q)

so that 1
C(K,q) g is an admissible function for γ1−α,q(E). Hence, as φ is a

principal K-quasiconformal mapping,

γ1−α,q(E) ≥ 1
C(K, q)

|f ′(∞)|

and we may take supremum over f . ¤
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The above theorem has direct consequences towards the absolute conti-
nuity of Hausdorff measures, but unfortunately these are slighly weaker than
one would wish for. In fact, there are compact sets F such that Cα,p(F ) = 0
and Hh(F ) > 0, for some measure function h(t) = tp ε(t). Thus, Theorem
2.10 does not help for Conjecture 2.3. We have to content with the following
setup:

Given 1 < d < 2 consider the measure functions h(t) = td ε(t) where
∫

0

ε(t)
1

d−1
dt

t
< ∞ (2.11)

Typical examples of such functions are h(t) = td| log t|−s or h(t) =
td| log t|1−d log−s(| log t|) where s > d− 1.

Corollary 2.11. Let E be a compact set on the plane, and φ : C → C a
principal K-quasiconformal mapping, conformal outside of E. Let 1 < d <
2. Then,

Mh(φ(E)) ≤ CMd(E)

for any measure function h(t) = td ε(t) satisfying (2.11). Moreover, if
Hd(E) < ∞ then Hh(φ(E)) = 0 for every such h.

Proof. By [1, Theorem 5.1.13], given a measure function h satisfying (2.11)
there is a constant C = C(h) with

Mh(φ(E)) ≤ C Cα,d(φ(E)), α =
2
d
− 1

By Theorem 2.10, Cα,d(φ(E)) ≤ C Cα,d(E) and using again [1, Theorem
5.1.9] we finally have Cα,d(E) ≤Md(E). ¤

Arguing now as in Theorems 2.2 and 2.6, we arrive at the following
conclusion.

Corollary 2.12. Let E be a compact set of the plane and suppose φ : C→ C
is a K-quasiconformal mapping. Let t ∈ ( 2

K+1 , 2) and d = 2Kt
2+(K−1)t . Then,

under the normalization (2.2),

Mh(φ(E)) ≤ C Cα,d(φ(E)) ≤ C
(Mt(E)

) 1
Kt , α =

2
d
− 1

for any measure function h satisfying (2.11). The constant C depends only
on h and K.

Here note that for 2
K+1 < t < 2 we always have 1 < d < 2 in the above

Corollary.
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3. Distortion of rectifiable sets

In general, if φ is a K-quasiconformal mapping and E is a compact set,
it follows from (1.2) that

dim(E) = 1 ⇒ 2
K + 1

≤ dim φ(E) ≤ 2K

K + 1
(3.1)

Here for both estimates one may find mappings φ and sets E such that
the equality is attained, see [4]. There all examples come from non regular
Cantor-type constructions. Thus the extremal distortion of Hausdorff di-
mension is attained, at least, by sets irregular enough. The main purpose
of this section is to prove that some irregularity is also necessary. Namely,
we show that quasiconformal images of 1-rectifiable sets cannot achieve the
maximal distortion of dimension.

Theorem 3.1. Suppose that φ : C → C is a K-quasiconformal mapping.
Let E ⊂ ∂D be a subset of the unit circle with dim(E) = 1. Then we have
the strict inequality

dim(φ(E)) >
2

K + 1

With similar but easier argument one may also prove that for such sets
E, neither can dim(φ(E)) attain the upper bound in (3.1). For details see
Remark 3.7.

From this Theorem we obtain as an immediate corollary the following
more general result.

Corollary 3.2. Suppose that E is a 1-rectifiable set, and let φ : C→ C be
a K-quasiconformal mapping. Then there exists a subset E0 ⊂ E of zero
length such that

dim φ(E \ E0) >
2

K + 1
.

Recall that a set E ⊂ C is said to be 1-rectifiable if there exists a set E0 of
zero length such that E \E0 is contained in a countable union of Lipschitz
curves, that is,

E \ E0 ⊂
∞⋃

j=1

Φj([0, 1])

where all Φj : [0, 1] → C are Lipschitz mappings. Alternatively [18] 1-
rectifiable sets can be viewed as subsets countable unions of C1 curves,
modulo a set of zero length. In particular, for any ε > 0 there is a decom-
position

E \ E′
0 =

∞⋃

i=1

Ei
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where E′
0 has zero length and each Ei can be written as Ei = fi(Fi), with

fi : C → C a (1 + ε)-bilipschitz mapping and Fi ⊂ ∂D. From this and
Theorem 3.1 we obtain Corollary 3.2.

To prove Theorem 3.1, first some reductions may be made. Recall [16]
that every K-quasiconformal mapping φ can be factored as φ = φn ◦ · · · ◦φ1

where each φj is Kj-quasiconformal, and K1 K2 · · · ·Kn = K. In particular,
given ε > 0, we can choose Kj ≤ 1 + ε for all j = 1, ..., n, when n is large
enough. On the other hand, recall that from the distortion of Hausdorff
dimension (1.2) we have

1
dim φ(E)

− 1
2
≤ K

(
1

dim E
− 1

2

)
(3.2)

If φ is such that equality in (3.2) holds for E, then every factor φj above
must give equality for the set Ej = φj−1 ◦ . . . φ1(E) and K = Kj . In other
words, if one of the mappings φj fails to satisfy the equality in (3.2), then so
will φ. By combining these facts, we deduce that in order to prove Theorem
3.1 we can assume that K = 1 + ε with ε > 0 as small as we wish.

For mappings with small dilatation it is possible achieve quantitative and
more symmetric local distortion estimates. In particular, Theorem 3.1 will
follow from the next lower bounds for compression of dimension.

Theorem 3.3. Suppose φ : C→ C is (1 + ε)-quasiconformal and E ⊂ ∂D.
Then for all ε > 0 small enough,

dim(E) ≥ 1− c0 ε2 ⇒ dim(φ(E)) ≥ 1− c1 ε2 (3.3)

where the constants c0, c1 > 0 are independent of ε.

Our basic strategy towards this result is to reduce it to the properties
of harmonic measure and conformal mappings admitting quasiconformal
extensions. Indeed, denote by µ the Beltrami coefficient of φ and let h be
the principal solution to ∂h = χDµ ∂h. Then h is conformal outside the
unit disk. Inside D it has the same dilatation µ as φ, and hence differs from
this by a conformal factor. Consequently, we may find Riemann mappings
f : D→ Ω := φ(D) and g : D→ Ω′ := h(D) so that

φ(z) = f ◦ g−1 ◦ h(z), z ∈ D (3.4)

Moreover, since the (1 + ε)-quasiconformal mapping G = g−1 ◦ h preserves
the disk, reflecting across the boundary ∂D one may extend G to a (1 + ε)-
quasiconformal mapping of C. At the same time, this procedure provides
both f and g with (1+ ε)2-quasiconformal extensions to the entire plane C.
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As the final reduction we now find from (3.4) that for Theorems 3.1 and
3.3 it is sufficient to prove the following result.

Theorem 3.4. Suppose that f : C → C is a (1 + ε)-quasiconformal map-
ping of C, conformal in the disk D. Let A ⊂ ∂D. There are constants c0,
c1 and γ0, γ1, independent of ε, such that for ε ≥ 0 small enough,

(i) dim(A) ≥ 1− c0 ε2 ⇒ dim(f(A)) ≥ 1− c1 ε2

and
(ii) dim(A) ≤ 1− γ0 ε2 ⇒ dim(f(A)) ≤ 1− γ1 ε2

Proof. The first conclusion (i) follows from Makarov’s fundamental esti-
mates for the harmonic measure [17], see also [22, p.231]. In the work [17]
Makarov proves that for any conformal mapping f defined on D, for any
Borel subset A ⊂ ∂D and for every q > 0 we have the lower bound

dim(f(A)) ≥ q dim(A)
βf (−q) + q + 1− dim(A)

(3.5)

Here βf (p) stands for the integral means spectrum. That is, for a given
p ∈ R, βf (p) is the infimum of all numbers β such that

∫ 2π

0

|f ′(reit)|pdt = O

(
1

(1− r)β

)
(3.6)

as r → 1−.
We hence need estimates for βf (p), and here for mappings admitting K-

quasiconformal extensions one has qualitively sharp bounds. Indeed, it can
be shown [22, p.182] that

βf (p) ≤ 9
(

K − 1
K + 1

)2

p2 (3.7)

for any p ∈ R. The constant 9 is not optimal but suffices for our purposes.
Choosing q = 1 in (3.5) gives immediately the first claim (i).

For general conformal mappings there is no bound for expansion of dimen-
sion, i.e. there is no upper bound analogue of (3.5). Hence the proof of (ii)
uses strongly the fact that mappings considered have (1 + ε)-quasiconformal
extensions. However, also here this information is easiest to use in the form
(3.7).

We first need to introduce some further notation. The Carleson squares
of the unit disk are defined as

Qj,k =
{
z ∈ D : 2−k ≤ 1−|z| < 2−k+1, 2−k+1πj ≤ arg(z) < 2−k+1π(j+1)

}
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Given a point z ∈ D \ {0}, let Q(z) denote the unique Carleson square
that contains z. Then it follows from Koebe’s distortion Theorem and
quasisymmetry [7], [16] that if D(ξ, r) is a disk centered at ξ ∈ ∂D, we have

diam(f(D)) ' diam(f(Q(z))) ' |f ′(z)|(1−|z|), for z = (1−r)ξ, (3.8)

whenever f : C→ C is a K-quasiconformal mapping, conformal in D.

Furthermore, assume we are given a family of disjoint disks Di = D(ξi, ri)
with centers ξi ∈ ∂D, i ∈ N, on the unit circle. Write then zi = (1 − ri)ξi,
and for any pair of real numbers 0 < α < δ < 1 define two subsets of indices,

Ig(α, δ) =
{
i ∈ N; |f ′(zi)| ≤ (1− |zi|)α

δ −1
}

Ib(α, δ) = N \ Ig(α, δ)

Diameter sums over the ’good’ indexes Ig(α, δ) are easy to estimate. We
have∑

i∈Ig(α,δ)

diam(f(Di))δ ≤ C
∑

i∈Ig(α,δ)

|f ′(zi)|δ (1− |zi|)δ ≤ C
∑

i∈Ig(α,δ)

(1− |zi|)α

where C depends only on K. In other words,
∑

i∈Ig(α,δ)

diam(f(Di))δ ≤ C
∑

i∈Ig(α,δ)

diam(Di)α (3.9)

It is well known that the integral means can be used to control the com-
plementary indexes Ib(α, δ). We give the technical details in a separate
Lemma:

Lemma 3.5. Assume that 0 < α = 1 −Mε2, for some M > 400, and let
δ = α(1 + Nε2), where 20

√
M < N < M . Then

∑

i∈Ib(α,δ)

diam(f(Di))δ ≤ C

where C is independent of Dj. Moreover, δ satisfies δ < 1 − γε2 where
γ = M −N > 0.

Proof. We classify the bad indexes Ib(α, δ) by defining for k = 1, 2, ..., and
m ∈ Z
Ik
m =

{
i ∈ Ib(α, δ); 2−k≤1− |zi| < 21−k, 2−1−m≤|f ′(zi)|(1− |zi|)≤2−m

}

and write qk
m = #Ik

m. By (3.8) |f ′(zi)| (1 − |zi|) is comparable to
diam(f(Di)), which is always smaller than diam(f(3D)). On the other
hand, if i ∈ Ik

m then

(2−k)
α
δ ≤ (1− |zi|)α

δ < (1− |zi|)|f ′(zi)| ≤ 2−m
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Hence the indexes m with Ik
m nonempty lie on an interval m0 ≤ m ≤ α

δ k.
From Koebe we also see that if i ∈ Ik

m then |f ′(w)|p ∼ 2p(k−m) for every
w ∈ Q(zi), with constants depending only on p. Combining this with (3.7)
gives for any τ > 0

qk
m ≤ C 2k( 9

4 ε2p2+τ+1− k−m
k p)

where C now depends on p and τ . We may take p = k−m
10kε2 and obtain

qk
m ≤ C 2(1+τ)k− k

(10ε)2 ( k−m
k )2

Since diam(f(Di)) is comparable to |f ′(zi)| (1− |zi|) ∼ 2−m for i ∈ Ik
m,

∑

i∈Ib(α,δ)

diam(f(Di))δ ≤ C

∞∑

k=0

α
δ k∑

m=m0

qk
m2−mδ (3.10)

≤ C

∞∑

k=0

α
δ k∑

m=m0

2k
�
1+τ−m δ

k− 1
100ε2 ( k−m

k )2
�

One now needs to ensure that the exponent 1 + τ −m δ
k − 1

100ε2

(
k−m

k

)2
is

negative. In particular, we want the exponent to attain its maximum at
m = α

δ k, and this is satisfied if

α

δ
≤ 1− 1

2
(10ε)2 δ

Under the assumptions of the Lemma this is easy to verify. Similarly one
verifies that the specific choices of the Lemma yield the maximum value

1 + τ − α− 1
(10ε)2

(
1− α

δ

)2

< 0

when τ is chosen small enough. It follows that the sum in (3.10) has a finite
upper bound depending only on the constants M , N . This proves Lemma
3.5. ¤

The dimension bounds required in part (ii) of Theorem 3.4 are now easy
to establish. For every α > 1 − γ0ε

2 we have coverings of A, consisting
of families of disks Dj = D(zj , rj) centered on ∂D and radius rj ≤ ρ → 0
uniformly small, such that the sums

∑
j diam(Dj)α are uniformly bounded.

On the image side, for each δ > 0
∑

i

diamf(Di)δ =
∑

i∈Ig(α,δ)

diamf(Di)δ +
∑

i∈Ib(α,δ)

diamf(Di)δ
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As soon as α < δ < 1, estimate (3.9) gives
∑

i∈Ig(α,δ)

diamf(Di)δ ≤ C
∑

i∈Ig(α,δ)

diam(Di)α

Furthermore, by Lemma 3.5, there exists an exponent α < δ < 1 − γ1 ε2

such that the series ∑

i∈Ib(α,δ)

diamf(Di)δ

is bounded independently of the covering Dj . Thus the entire sum∑
i diam(f(Di))δ remains bounded as supi diam(Di) → 0. This means

dim f(A) ≤ δ ≤ 1− γ1 ε2, and completes the proof of Theorem 3.4. ¤

By symmetry, c.f. (3.4), Theorem 3.4 proves bounds also for expansion
of dimension.

Corollary 3.6. There are constants c0, c1 > 0 such that if E ⊂ ∂D and
f : C→ C is K-quasiconformal with K = 1 + ε, then

dim(E) ≤ 1− c0 ε2 ⇒ dim(f(E)) < 1− c1 ε2

when ε > 0 is small enough.

Very recently, I. Prause [23] has obtained a different proof for Theorem
3.3 and Corollary 3.6, based in the ideas on [4] and a well known result from
Becker and Pommerenke [9] which says that

dim(Γ) ≤ 1 + 37
(

K − 1
K + 1

)2

(3.11)

for every K-quasicircle Γ.

Remark 3.7. Similarly as the compression bound (3.3) led to Theorem 3.1,
the inequality (3.11) yields improved upper estimates. We have hence the
symmetric strict inequalities:

If φ : C→ C is a K-quasiconformal mapping and E ⊂ ∂D with dim(E) =
1, then

2
K + 1

< dim(φ(E)) <
2K

K + 1
.

Moreover, for the dimension of quasicircles Smirnov (unpublished) has ob-
tained the upper bound

dim(Γ) ≤ 1 +
(

K − 1
K + 1

)2

,
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answering a question in [4]. It is still unknown if this bound is sharp; the best

known lower bounds so far [8] give curves with dimension 1 + 0.69
(

K−1
K+1

)2

.
The arguments we have used are related to the generalized Brennan con-

jecture, which says that

βf (p) ≤ p2

4

(
K − 1
K + 1

)2

for |p| ≤ 2
K + 1
K − 1

, (3.12)

whenever f is conformal in D and admits a K-quasiconformal extension to
C. This connection suggests the following

Question 3.8. Let E ⊂ R be a set with Hausdorff dimension 1, and let φ
be a K-quasiconformal mapping. Is it true that then

1−
(

K − 1
K + 1

)2

≤ dim(φ(E)) ≤ 1 +
(

K − 1
K + 1

)2

(3.13)

The positive answer for the right hand side inequality follows from
Smirnov’s unpublished work, while the left hand side is only known up
to some multiplicative constants. On the other hand, Prause [23] proves
the left inequality for the mappings that preserve the unit circle ∂D.

4. Improved Painlevé Theorems

A compact set E is said to be removable for bounded analytic functions
if for any open set Ω with E ⊂ Ω, every bounded analytic function on Ω\E
has an analytic extension to Ω. Equivalently, such sets are described by the
condition γ(E) = 0, where γ is the analytic capacity

γ(E) = sup{|f ′(∞)| : f ∈ H∞(C \ E), f(∞) = 0, ‖f‖∞ = 1}
Finding a geometric characterization for the sets of zero analytic capacity
was a long standing problem. It was solved by G. David [11] for sets of
finite length, and finally by X. Tolsa [27] in the general case. The difficulties
of dealing with this question motivated the study of related problems. In
particular, we have the question of determining the removable sets for BMO
analytic functions, that is, those compact sets E such that every BMO
function in the plane, holomorphic on C \ E, admits an entire extension.
This problem was solved by Kaufman (see [15]), who showed that a set E
has this BMO-removability property if and only if H1(E) = 0.

For the original case of bounded functions the Painlevé condition
H1(E) = 0 can be weakened. As is well known, there are sets E with
zero analytic capacity and positive length (see [13] for an example). In fact,
it is now known that among the compact sets E with 0 < H1(E) < ∞,
precisely the purely unrectifiable ones are the removable sets for bounded
analytic functions [11]. Moreover, if E has positive σ-finite length, this
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characterization still remains true, due to the countable semiadditivity of
analytic capacity [27].

The preceeding problems can be formulated also in the K-quasiregular set-
ting. More precisely, a set E is said to be removable for bounded (resp.
BMO) K-quasiregular mappings, if every K-quasiregular mapping in C\E
which is in L∞(C) (resp.BMO(C) ) admits a K-quasiregular extension to
C. For simplicity, we use here the term K-removable for sets that are re-
movable for bounded K-quasiregular mappings.

Obviously, when K = 1, in both situations L∞ and BMO we recover the
original analytic problem. Moreover, by means of the Stoilow factorization,
one can represent any bounded K-quasiregular function as a composition
of a bounded analytic function and a K-quasiconformal mapping. The cor-
responding result holds true also for BMO since this space, like L∞, is
quasiconformally invariant.

Therefore, when we ask ourselves if a set E is K-removable, we just
need to analyze how it may be distorted under quasiconformal mappings,
and then apply the known results for the analytic situation. With this basic
scheme, it is shown in [4, Corollary 1.5] that every set with dimension strictly
below 2

K+1 is K-removable. Indeed, the precise formulas for the distortion
of dimension (1.2) ensure that for such sets the K-quasiconformal images
have dimension strictly smaller than 1.

Iwaniec and Martin [14] had earlier conjectured that, more generally, sets
of zero 2

K+1 -dimensional measure are K-removable. A preliminary answer
to this question was found in [7], and actually it was that argument which
suggested Theorem 2.2. Using our results from above we can now prove
that sets of zero 2

K+1 -dimensional measure are even BMO-removable.

Corollary 4.1. Let E be a compact subset of the plane. Assume that
H 2

K+1 (E) = 0. Then E is removable for all BMO K-quasiregular map-
pings.

Proof. Assume that f ∈ BMO(C) is K-quasiregular on C \ E. Denote by
µ the Beltrami coefficient of f , and let φ be the principal solution to ∂φ =
µ∂φ. Then, F = f ◦φ−1 is holomorphic on C\φ(E) and F ∈ BMO(C). On
the other hand, as we showed in Theorem 2.2, H1(φ(E)) = 0. Thus, φ(E)
is a removable set for BMO analytic functions. In particular, F admits an
entire extension and f = F ◦φ extends quasiregularly to the whole plane. ¤

We believe that Corollary 4.1 is sharp, in the sense that we expect a
positive answer to the following



IMPROVED PAINLEV REMOVABILITY FOR QUASIREGULAR MAPPINGS 23

Question 4.2. Does there exist for every K ≥ 1 a compact set E with
0 < H 2

K+1 (E) < ∞, such that E is not removable for some K-quasiregular
functions in BMO(C).

Here we observe that by [4, Corollary 1.5], for every t > 2
K+1 there exists

a compact set E with dimension t, nonremovable for bounded and hence in
particular nonremovable for BMO K-quasiregular mappings.

Next we return back to the problem of removable sets for bounded K-
quasiregular mappings. Here Theorem 2.2 proves the conjecture of Iwaniec
and Martin that sets with H 2

K+1 (E) = 0 are K-removable. However, the
analytic capacity is somewhat smaller than length, and hence with Theo-
rem 2.5 we may go even further: If a set has finite or σ-finite 2

K+1 -measure,
then all K-quasiconformal images of E have at most σ-finite length. Such
images may still be removable for bounded analytic functions, if we can
make sure that the rectifiable part of these sets has zero length. But for
this Theorem 3.1 provides exactly the correct tools. We end up with the
following improved version of Painlevés theorem for quasiregular mappings.

Theorem 4.3. Let E be a compact set in the plane, and let K > 1. As-
sume that H 2

K+1 (E) is σ-finite. Then E is removable for all bounded K-
quasiregular mappings.

In particular, for any K-quasiconformal mapping φ the image φ(E) is
purely unrectifiable.

Proof. Let f : C → C be bounded, and assume that f is K-quasiregular
on C \ E. As in Corollary 4.1 we may find the principal quasiconformal
homeomorphism φ : C→ C, such that F = f ◦ φ−1 is analytic in C \ φ(E).
If we can extend F holomorphically to the whole plane, we are done. Thus
we have to show that φ(E) has zero analytic capacity.
By Theorem 2.5, φ(E) has σ-finite length, that is, φ(E) = ∪nFn where each
H1(Fn) < ∞. A well known result due to Besicovitch (see e.g.[18, p.205])
assures that each set Fn can be decomposed as

Fn = Rn ∪ Un ∪Bn

where Rn is a 1-rectifiable set, Un is a purely 1-unrectifiable set, and Bn is
a set of zero length. Because of the semiadditivity of analytic capacity [27],

γ(Fn) ≤ C (γ(Rn) + γ(Un) + γ(Bn))

Now, γ(Bn) ≤ CH1(Bn) = 0 and γ(Un) = 0 since purely 1-unrectifiable
sets of finite length have zero analytic capacity [11]. On the other hand,
Rn is a 1-rectifiable image, under a K-quasiconformal mapping, of a set
of dimension 2

K+1 . Thus applying Theorem 3.1 and Corollary 3.2 to φ−1
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shows that we must have H1(Rn) = 0. Therefore we get γ(Fn) = 0 for
each n. Again by countable semiadditivity of analytic capacity we conclude
γ(φ(E)) = 0. ¤

As pointed out earlier, the above theorem does not hold for K = 1.
Any 1-rectifiable set such as E = [0, 1] of finite and positive length gives a
counterexample. In the above proof the improved distortion of 1-rectifiable
sets was the decisive phenomenon allowing the result. In fact, such good
behavior of rectifiable sets has further consequences. For instance, even
strictly above the critical dimension 2

K+1 = 1− K−1
K+1 one may find removable

sets, as soon as they have enough geometric regularity.

Corollary 4.4. There exists a constant c ≥ 1 such that if E ⊂ ∂D is
compact and

dim(E) < 1− c

(
K − 1
K + 1

)2

then E is removable for bounded and BMO K-quasiregular mappings, K =
1 + ε, whenever ε > 0 is small enough.

Proof. This is a consequence of Corollary 3.6. If ε > 0 is small enough
and K = 1 + ε, then the K-quasiconformal images of E will always have
dimension strictly below 1, so that γ(φ(E)) = 0 for each K-quasiconformal
mapping φ. ¤

In conjunction with Question 3.8 we have

Question 4.5. Let K > 1. Is then every set E ⊂ ∂D with dim(E) <

1−
(

K−1
K+1

)2

removable for bounded and BMO K-quasiregular mappings

5. Examples of extremal distortion

The previous sections provide a delicate analysis of distortion of
1-dimensional sets under quasiconformal mappings but still leave open the
cases where dim(E) = 2

K+1 precisely but E does not have σ-finite 2
K+1 -

measure. Hence we are faced with the natural question: Are there compact
sets E, with dim(E) = 2

K+1 , that are non removable for some bounded
K-quasiregular mappings.

In this last section we give a positive answer and show that our results
are sharp in a quite strong sense. Indeed, to compare with the analytic
removability recall first that by Mattila’s theorem [19], if a compact set E
supports a probability measure with µ(B(z, r)) ≤ r ε(r) and

∫

0

ε(t)2

t
dt < ∞, (5.1)
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then the analytic capacity γ(E) > 0. On the other hand, if the integral
in (5.1) diverges, then there are compact sets E of vanishing analytic ca-
pacity supporting a probability measure with µ(B(z, r)) ≤ r ε(r) [27]. In a
complete analogy we prove

Theorem 5.1. Let K ≥ 1. Suppose h(t) = t
2

K+1 ε(t) is a measure function
such that ∫

0

ε(t)1+1/K

t
dt < ∞ (5.2)

Then there is a compact set E which is not K-removable and yet supports a
probability measure µ, with µ(B(z, r)) ≤ h(r) for every z and r > 0.

In particular, whenever ε(t) is chosen so that in addition for every α >
0 we have tα/ε(t) → 0 as t → 0, then the construction gives a non-K-
removable set E with dim(E) = 2

K+1 .

Proof. We will construct a compact set E and a K-quasiconformal mapping
φ such that Hh(E) ' 1, and at the same time φ(E) has a positive and finite
Hh′ -measure for some measure function h′(t) = t ε′(t) where

h′(t) = t ε′(t) with
∫ 1

0

ε′(t)2

t
dt < ∞

Mattilas theorem shows then γ(φ(E)) > 0, so that there exists non-constant
bounded functions h holomorphic on C \ φ(E). Thus with f = h ◦ φ we see
that E is not removable for bounded K-quasiregular mappings.

We will construct the K-quasiconformal mapping φ as the limit of a
sequence φN of K-quasiconformal mappings, and E will be a Cantor-type
set. To reach the optimal estimates we need to change, at every step in the
construction of E, both the size and the number mj of the generating disks.

Without loss of generality we may assume that for every α > 0, tα/ε(t) →
0 as t → 0.
Step 1. Choose first m1 disjoint disks D(zi, R1) ⊂ D, i = 1, ..., m1, so that

c1 := m1 R2
1 ∈ (

1
2
, 1)

For R1 small enough (i.e. for m1 large enough) this is clearly possible. The
function f(t) = m1 h(tR1) is continuous with f(0) = 0. Moreover, for each
fixed t

f(t) = m1(tR1)
2

K+1 ε(tR1) =
ε
(
t
√

c1/m1

)

(
t
√

c1/m1

) 2
K+1

t2c1 → ∞
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as m1 → ∞. Hence for any t < 1 we may choose m1 so large that there
exists σ1 ∈ (0, t) satisfying m1 h(σK

1 R1) = 1. A simple calculation gives

m1 σ1R1 ε(σK
1 R1)

K+1
2K (c1)

1−K
2K = 1 (5.3)

Next, let r1 = R1. For each i = 1, . . . , m1, let ϕ1
i (z) = zi + σK

1 R1 z and,
using the notation αD(z, ρ) := D(z, αρ), set

Di :=
1

σK
1

ϕ1
i (D) = D(zi, r1)

D′
i := ϕ1

i (D) = D(zi, σ
K
1 r1) ⊂ Di

As the first approximation of the mapping define

g1(z) =





σ1−K
1 (z − zi) + zi, z ∈ D′

i∣∣∣ z−zi

r1

∣∣∣
1
K−1

(z − zi) + zi, z ∈ Di \D′
i

z, z /∈ ∪Di

This is a K-quasiconformal mapping, conformal outside of
⋃m1

i=1(Di \D′
i).

It maps each Di onto itself and D′
i onto D′′

i = D(zi, σ1r1), while the rest of
the plane remains fixed. Write φ1 = g1.
Step 2. We have already fixed m1, R1, σ1 and c1. Consider m2 disjoint
disks of radius R2, centered at z2

j , j = 1, . . . , m2, uniformly distributed
inside of D, so that

c2 = m2 R2
2 >

1
2

Then repeat the above procedure and choose m2 so large that the equation

m1 m2 h(σK
1 σK

2 R1R2) = 1

has a unique solution σ2 ∈ (0, 1), as small as we wish. Then,

m1m2 σ1σ2R1R2 ε(σK
1 σK

2 R1R2)
K+1
2K (c1c2)

1−K
2K = 1

Denote r2 = R2 σ1r1 and ϕ2
j (z) = z2

j + σK
2 R2 z, and define the auxiliary

disks

Dij = φ1

(
1

σK
2

ϕ1
i ◦ ϕ2

j (D)
)

= D(zij , r2)

D′
ij = φ1

(
ϕ1

i ◦ ϕ2
j (D)

)
= D′(zij , σ

K
2 r2)

for certain zij ∈ D, where i = 1, . . . , m1 and j = 1, . . . ,m2. Now Let

g2(z) =





σ1−K
2 (z − zij) + zij z ∈ D′

ij∣∣∣ z−zij

r2

∣∣∣
1
K−1

(z − zij) + zij z ∈ Dij \D′
ij

z otherwise
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Clearly, g2 is K-quasiconformal, conformal outside of
⋃

i,j(Dij \D′
ij), maps

each Dij onto itself and D′
ij onto D′′

ij = D(zij , σ2r2), while the rest of the
plane remains fixed. Define φ2 = g2 ◦ φ1.

φ

D D

The induction step. After step N −1 we take mN disjoint disks of radius
RN , with union of D(zN

l , RN ) covering at least half of the area of D,

cN = mN R2
N >

1
2

(5.4)

As before we may choose mN so large that m1 . . .mNh(σK
1 . . .σK

N R1. . .RN )=
1 holds for a unique σN , as small as we wish. Note that lim

N→∞
σN = 0 and

m1 . . . mN σ1R1 . . . σNRN ε(σK
1 R1 . . . σK

N RN )
K+1
2K (c1 . . . cN )

1−K
2K = 1

Denote then ϕN
j (z) = zN

j + σK
N RN z and rN = RN σN−1rN−1. For any

multiindex J = (j1, ..., jN ), where 1 ≤ jk ≤ mk, k = 1, ..., N , let

DJ = φN−1

(
1

σK
N

ϕ1
j1 ◦ · · · ◦ ϕN

jN
(D)

)
= D(zJ , rN )

D′
J = φN−1

(
ϕ1

j1 ◦ · · · ◦ ϕN
jN

(D)
)

= D′(zJ , σK
N rN )

and let

gN (z) =





σ1−K
N (z − zJ) + zJ z ∈ D′

J∣∣∣ z−zJ

rN

∣∣∣
1
K−1

(z − zJ) + zJ z ∈ DJ \D′
J

z otherwise

Clearly, gN is K-quasiconformal, conformal outside of
⋃

J=(j1,...,jN )(DJ \
D′

J), maps DJ onto itself and D′
J onto D′′

J = D(zJ , σNrN ), while the rest
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of the plane remains fixed. Now define φN = gN ◦ φN−1.

Since each φN is K-quasiconformal and equals the identity outside the unit
disk D, there exists a limit K-quasiconformal mapping

φ = lim
N→∞

φN

with convergence in W 1,p
loc (C) for any p < 2K

K−1 . On the other hand, φ maps
the compact set

E =
∞⋂

N=1


 ⋃

j1,...,jN

ϕ1
j1 ◦ · · · ◦ ϕN

jN
(D)




to the set

φ(E) =
∞⋂

N=1


 ⋃

j1,...,jN

ψ1
j1 ◦ · · · ◦ ψN

jN
(D)




where we have written ψi
j(z) = zi

j + σiRiz, j = 1, ..., mi, i ∈ N.
To complete the proof, write

sN = (σK
1 R1) . . . (σK

N RN ) and tN = (σ1R1) . . . (σNRN ) (5.5)

Observe that we have chosen the parameters RN ,mN , σN so that

m1 . . . mN h(sN ) = 1 (5.6)

m1 . . . mN tN ε(sN )
K+1
2K (c1 . . . cN )

1−K
2K = 1 (5.7)

Claim. Hh(E) ' 1.
Since diam(ϕ1

j1
◦ · · · ◦ ϕN

jN
(D)) ≤ δN → 0 when N →∞, we have by (5.6)

Hh(E) = lim
δ→0

Hh
δ (E) ≤ lim

δ→0

∑

j1,...,jN

h(diam(ϕ1
j1 ◦ · · · ◦ ϕN

jN
(D)))

= m1 . . .mN h(sN ) = 1

For the converse inequality, take a finite covering (Uj) of E by open disks
of diameter diam(Uj) ≤ δ and let δ0 = infj(diam(Uj)) > 0. Denote by
N0 the minimal integer such that sN0 ≤ δ0. By construction, the family
(ϕN0

jN0
◦· · ·◦ϕ1

j1
(D))j1,...,jN0

is a covering of E with theMh-packing condition
[18]. Thus,

∑

j

h(diam(Uj)) ≥ C
∑

j1,...,jN0

h(diam(ϕN0
jN0

◦ · · · ◦ ϕ1
j1(D))) = C

Hence, Hh
δ (E) ≥ C and letting δ → 0, we get that

C ≤ Hh(φ(E)) ≤ 1
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proving our first claim.

A similar argument, based this time on (5.7), gives that Hh′(φ(E)) ' 1
for a measure function h′(t) = tε′(t), as soon as for all indexes N

ε′(tN ) = ε(sN )
K+1
2K (c1 . . . cN )

1−K
2K (5.8)

Claim. One can find a continuous and nondecreasing function ε′(t)
satisfying (5.8) and ∫ 1

0

ε′(t)2

t
dt < ∞ (5.9)

Indeed, let us first choose a continuous nondecreasing function v(t) so that
v(t) → 0 as t → 0 and so that (5.2) still holds in the form

∫

0

ε(t)1+1/K

t v(t)
dt < ∞ (5.10)

In the above inductive construction we can then choose the σj ’s so that
v(σK

1 · · ·σK
N ) ≤ 2−N(1−1/K) for every index N . Now (5.4) and (5.8) imply

ε′(tN )2 ≤ ε(sN )1+1/K 2N(1−1/K) ≤ ε(sN )1+1/K

v(sN )

On the other hand by (5.5) we also have tN−1/tN ≤ sN−1/sN and so we may
extend ε′(t), determined by (5.8) only at the tN ’s, so that it is continuous,
nondecreasing and satisfies

∫

0

ε′(t)2
dt

t
≤

∫

0

ε(s)1+1/K

v(s)
ds

s
< ∞

Hence the claim follows. Combining it with Mattila’s theorem [19] completes
the proof of the Theorem. ¤

Lastly let us note that if we do not care for the analytic capacity of the
target set, a straightforward modification of the previous Theorem, normal-
izing the disks of the construction so that mN tN η(tN ) = 1, gives

Corollary 5.2. Let K ≥ 1 and let h(t) = t η(t) be a measure function such
that

• η is continuous and nondecreasing, η(0) = 0 and η(t) = 1 whenever
t ≥ 1.

• lim
t→0

tα

η(t)
= 0 for all α > 0.
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There exists a compact set E ⊂ D and a K-quasiconformal mapping φ such
that

dim(E) =
2

K + 1
and Hh(φ(E)) = 1 (5.11)
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