-

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by University of Thessaly Institutional Repository

Institutiong

https://core.ac.uk/display/132825605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

IMANEIIIXTHMIO OEXXAAIAX
2XOAH OETIKQN EIHNIXTHMQN
TMHMA IAHPO®OPIKHX ME E@QAPMOI'EX XTH

BIOIATPIKH

IMonynon kot Yo ptoypaenon popunot pue ypnon aredntipao faovg
Robot navigation and mapping using depth sensor

KovtovAiog Avactactog

IITYXIAKH EPI'AXIA

Emprénovica
Agmpraong Kovetavrivog
Enikovpog kadnyntig

Aapia, 2016

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Me aTouikr gou euBuvn Kail ywwpifovrag TIG KUPWOEIG @ 1rou TpoBAETTOoVTal atrd TNG dIaTAgEIS TNG TTap. 6 Tou dpBpou

22 Tou N. 1599/1986, dnAwvw OTI:

1. Adev mapabétw wouudtio Pifliov 1 apbpwv 1 epyaoiov dliwv avtolelel ywpis ve ta mepixieion o&
EIGAYWYIKA, KO Y WPIS VO OVOPEP® TO GVYYPaPEa, TH ypovoloyia, tn celida. H avtoleel mopdbeon ywpic
ELOAYWYIKA. Y O PIS avapopas. atny Tnyy, eival Aoyoriomn. Ilépoy e avtolelel mopdbeang, Aoyorlonn Bewpeitor
KO 1] TOPCPPOOT EOOPIWV OTTO EPYO. GALMV, COUTEPIAOUBOVOUEVMDV K01 EPYOV COUPOITHTAV LoV, KOOGS Kai i
Topobeon ororyelwy wov aAlor ovvéleloy 1 emelepydodnKav, ywpic ovopopd oty THyn. Avapépm TavToTe ue
TANPOTHTO. THY THYH KATW OTO TOV TIVOKA 1 GYE0L0, OTWS OTO. TOPO.GEUITA.

2. Aéyopar ot n avtoletel mapabeon ywpic E1GAYOYIKG, OKOUO. KI AV GODVOOIEDETOL OO OVAPOPC, GTHV TN OE
KGTO10 GALO GHUETIO TOV KEWEVOD 1) 0TO TEAOG TOV, eival avTiypoal. H avopopd otnv Tnyn oto TEA0G T.)Y. 110G
TOPOYPOPOL 1 WIAS OEAIDAS, OEV OIKOIOAOYEL OVPPOPN EOAPIWYV EPYOv GAAOD ocLYYpPOPER, E0TW Kol
TOPOPPATUEVDYV, KOL TOLOVTIOCN TOVS WG OIKI] OV EPYOTIA.

3. Aéyouar ot1 vEapyeEl EXIONS TEPLOPIOUOS 0TO UEYEHOC KAl TTH OLYVOTHTA TWV TOPAOEUCTOV TOV UTOPW VA
evtaéom oty gpyacio 1ov eviog eloaywyikov. Kale ueydio mopdbeua (m.y. oc mivaxa n mlaiolo, KAT),
TPoDTobetel e101KES poOUioels, Kol OTOY ONpoTIEdETL TPODTOGETEL TNV GEIR TOD OVYYPOPEn 1] TOV eK00TH. To
1010 KO 01 TIVOKES KoL TA aYE0L0,

4. Aéyouor 04eS TIG GVVETEIES O€ WEPITTW TN LOYOKAOTIG 1} AVTIYPOPHG.

Huepopnvia: ... /.....120......

(YTroypagn)
(1) «Onolog ev yvwoel Tou dnAwvel Yeudn yeyovoTa f apveital f anokpunTel Ta oAnBwvd
He €yypagn uneuBuvn dAAwaon tou GpBpou 8 nap. 4 N. 1599/1986 Twpeital pe QUAAKION
TOUAGXIOTOV TPpWwv pnvwv. EaGv o unaitiog autwv Twv npd ewv oKOMEUE VO NPOCNOPICEL OTOV
€0UTOV TOU I 0€ GAAOV NEPIOUCIAKO 6PEAOG BAANTOVTAG TPiTOV) oKONEUE va PAGWEL GAAOV,
TIHwPEiTaL pe KABEPE N pEXPL 10 eTwv.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Ml onynon kot yaptToypaenon poumot peypron aredntipa fadovg
Robot navigation and mapping using depth sensor

KovtovAiog Avactaciog

Tpwec Emrtponn:

Aeluraong Kovotavrivog, Enikovpog kabnynmg

[Maywvéxog Baoilelog, AvarAnpog kabnynmg

Méprov Evpunidong, Enikovpog xabnyntig

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Contents

AADSEIACT ...t re s 7
1 Introductionand related WOrK..........ccoiiiiiiiniii e 8
1.1 Related WOTK ..o s 8
1.2 Purpose 0fthiS WOIK..........ccccuiiiiiiiiiiees s 10
1.3 Equipment and t00IS..........cooviiiiiiiiii 11
1.3.1 KineCt SPECIfICALIONSccveeeiieieeiccie e 11
1.3.2 Installation 0f KiNeCt.......cccoveiiiiiiiiiiiceseeee e 13
1.3.3 Kinect Fusion Explorer D2D.........ccccovveiiiiiieiie e 13
1.3.4 The PLY File FOrmatcccooeiiiiieiiiiiniec e 14

2 Methodologyc.ooiiieee s 16
2.1 Mathematical OPErators.........ccocuvivieieieierescsee e 17
2.2 Decimation 0T POINT SELciiiiiieieieree e 17
2.3 Identifying planar surfaces inthe captured frame...........cccccoevevennen, 20
2.3.1 ldentifying one best fitting planecccooveeeveiv i, 20
2.3.2 ldentifying multiple planes..........ccccoovieiieiiic i 20

2.4 Region Growing Algorithm ..., 21
2.4.1 Automating region growing algorithm............cccoceveiininnine. 29

2.5 Merging world points from different frames...........cccccoiiiiiiinnnnn. 30
2.6 CONtOUr EXITACTIONueieeerieseesieeie e sie e nes 31
2.7 Quantification OF €10ccceiiee e 33
2.8 Removal of common points between framesc.cccceevvvevveveceenne. 35

3 EXperiments and reSUIScovoe e 37
3.1 EXPErIMENT L ..ottt 37

3. L1 INEAHZATION .o s 37
3.1.2 DeCimation RESUILSccvviiiiiiii e 37
3.1.3 Plane extraction and rotation estimationcc.ccoccveervrnnnnnnnn. 38
3.1.4 Floor identification and merging resultscccoovvvviniiennnnnn, 41
3.1.5 Contour extraction reSUltsc.covvviiiniinieiiie s 43

3.2 EXPEriMENT 2 ..ottt 44
3.2.1 INILIAHZATION .ot 44
3.2.2 Decimation RESUILSccveiiiiiiii e 45
3.2.3 Plane extraction and rotation estimationcceceveereerenennne. 45
3.2.4 Floor identification and merging resultscccoovvviiveiienenen, 51
3.2.5 Contour extraction reSUILScccocvereiienieeresie e 53
3.2.6 Experimenting With parametersccoccevvveieienencneseseseee 55

5

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

4 Conclusion and fULUE WOTKoo oo
D REIRIENCES ...

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Abstract

Mapping of real and complex environments is a commonly researched issue as
methods for robot navigation are constantly improved. It can be useful to robots in
order to move in the environment avoiding collisions which may harm them. Also it
can be useful in mapping hazardous areas in which humans cannot enter. In this work
we will present a method of mapping a real environment using Kinect depth sensor.
Kinect sensor takes depth frames which are useful to both mapping the environment
and setting a path. The experiments conducted for the purpose of this work took place
in indoor environments (classroom and another room) and the translation between the
captured frames was measured manually. In the first chapter we will make an
introductive reference on mapping and robot navigation and why mapping is essential
for navigation. Also we will discuss some works and papers which present methods
for indoor mapping using Kinect-like sensors or other sensors. Furthermore we will
talk about the equipment and tools used for the purpose of this work. In the second
chapter we will describe the methodology used for implementing the method
presented and take a look into the algorithms used for this purpose. In the third
chapter we will discuss some experiments we have conducted and present the results
of each of them which have been produced by using the methodology described in
chapter 2. The results show that the method presented can map the environment with a
small error. In chapter 4 we will discuss the meaning of the results and the efficiency
of our method. Also we will talk about future work, which may improve this method.
In the last chapter we show the references used in chapter 1 and generally in this
work.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

1 Introductionand related work

In modern robot navigation, robots need to have data regarding their surroundings
so they are able to track themselves in the environment and plan their path avoiding
obstacles in order to survive. This problem is known as SLAM (Simultaneous
Localization And Mapping) and can be solved using different methods. For solving
this problem researchers use laser sensors, depth sensors (like Kinect), cameras and
other types of devices. Depth sensors are commonly used because knowing the depth
value in a frame can help in the identification of possible obstacles. Although data
taken from a depth sensor can be useful, the sensor itself has some drawbacks such as
the field of view which is relatively small (0.8m to 3.5m usually) compared to laser
sensors. A combination of sensors is also commonly used (e.g. camera and laser
sensor). In the past few years there has been a major research interest in this field and
many methods were presented, some of which work in real-time and in complex
environments.

1.1 Related work

There are many papers and experiments already published which are discussing
and/or experimenting in SLAM algorithms. Some of them carry out experiments
using Kinect depth sensor or similar sensors.

e Map generation

As described in a paper [4] there are two representations of the environment when
talking about mapping: the metric and the topological. The metric can be either
geometric or grid-based. In geometric representations features like walls or corridors
are directly mapped in respect of the world coordinate system whereas in grid-based
representations [8] each grid has its own position in the environment which is given
by the cell coordinates (X, y). Topological representations [7] aim at presenting the
environment as a set of regions which are usually represented as nodes. Metric
approach is faster and easier to write and update but are unreliable in large
environments. On the other hand topological approach is more complex [9] but is
better for position estimation and path planning [6]. In response to proposals of
combining metric and topological representations the authors suggest a new method.
Their method is related to proposals by Thrun [9], Arleo [5] or Zelinsky [10] but in
addition their method extracts the topological map from the metric representation on-
line.

e Plane extraction and segmentation

In a paper published in 2012 [14] the authors carry out experiments for indoor
mapping using planes extracted by a method described in the paper. The authors
preprocess their data by estimating the normal vectors and edge pixels taken by
Kinect sensor. Then they apply the RANSAC algorithm if a group of points forming a
plane is bigger than a predetermined threshold. After that they extract the boundary of
the plane. When they have extracted all the planes in a frame they use a method in
order to merge the different planes which represent the same region. From

8

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

experiments they have conducted we can see that this whole process is very fast and
considered real-time.

Another paper published in 2011 [28] suggests a method for real-time plane
segmentation. The authors present a fast process for the computation of local surface
normals. Then they cluster these normals and segment all the planes formed by the
point clouds. The authors also refer to some related with their work papers. One of
them [27] uses 2D virtual range scans for both collision avoidance and localization.
Another features two types of virtual scans, virtual structure and obstacle maps. The
first type models environmental structures such as walls in a virtual 2D laser range
scan and the second information about closest obstacles [26]. From the experiments
carried out by the authors we can see that the processing times of their method are
very low.

A different method for range image segmentation is presented in a paper published
in 2012 [29]. The authors discuss several approaches on segmentation such as
RANSAC-based segmentation and segmentation using Region Growing. In
RANSAC-based segmentation a method suggests sequentially removing inliers from
the original data set, and continuing the segmentation with the residual points [30].
Another approach is to first identify connected regions and apply RANSAC region-
wise [31]. A very interesting and efficient approach is to decompose unorganized
point clouds using an octree subdivision and apply RANSAC only to subsets of the
original point cloud [32]. In region growing segmentation a method connects
neighboring points in 3D laser range scans to a mesh-like structure and then those
scans are segmented recursively by merging connected patches that are likely to lie on
the same planar surface [33]. The authors then talk about their approach. They first
use a fast mesh construction and then perform segmentation. The mesh construction
uses a quad mesh and several triangulations and the segmentation is done by a region
growing segmentation method which has not many differences with the other region
growing algorithms used elsewhere.

e 2D Indoor Mapping using Kinect

Another paper which was published in 2013 [15] suggests a method for converting
Kinect’s 3D depth data to 2D map in order to use it for indoor SLAM. The authors
describe this process and prove it is better than using 2D or 1D sensors because those
sensors may miss some objects in the scene due to its shape and position. The
production of the real-time map was carried out by a base station on which the robot
transmitted the data collected from Kinect.

A different method of mapping indoor spaces is suggested in a paper published in
2016 [16]. The authors of this paper use a Coarse-to-Fine registration method of the
RGB-D data taken from Kinect. More specifically they use methods to extract and
detect 2D visual features and use them to perform coarse registration. Furthermore
they use an image-based segmentation technique for detecting regions in RGB
images. Their results show that this method can map an indoor environment with a
small error.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

¢ 3D modeling of indoor environments using Kinect-like sensors

In a paper published in 2012 [19] the authors introduce RGB-D Mapping. This
paper is an extension of their previous work (2010). They use a frame-to-frame
alignment RANSAC and demonstrate that it performs better than the Euclidean-space
RANSAC. Then they use FAST features and Calonder descriptors instead of scale-
invariant feature transform (SIFT) for feature identification. Last step in their work is
to use sparse bundle adjustment (SBA) and show how to incorporate ICP constrains
into SBA. Among others the authors refer to techniques for 3D mapping using range
scanners [20][21][22] and stereo cameras [23][24][25].

e Indoor SLAM using laser sensors

There are several other sensors like Kinect which can provide similar data. A
paper published in 2010 [17] suggests using a 2D laser range finder and an
omnidirectional camera for indoor SLAM. The authors present a fully automatic
process to do that. They calibrated the laser and camera using Matlab Omnidirectional
Calibration Toolbox and used Polar Scan Matching (similar to Iterative Closest Point
but less computationally expensive) for matching the different scans. The final step
was to extract vertical lines from camera images and laser scans.

¢ Indoor Mapping with short range sensors

A paper published in 2010 [18] proposes a method of indoor mapping using
bumper sensors and a wall sensor that enables wall-following for odometry. The
method first performs trace segmentation by fitting line segments to the noisy
trajectory taken by the wall sensor. Then the authors apply a probabilistic rectification
process to the segmented traces to obtain the orthogonal wall outlines. The map result
is a list of line segments representing the wall outlines. The experiments they have
conducted show that the method is robust to odometry noise and non-rectilinear
obstacles along the walls.

1.2 Purpose of this work

The purpose of this work is to present a method of mapping indoor environments
and identifying the regions in which a robot can navigate. This identification is done
by processing a series of consecutive depth frames taken by Kinect sensor. Kinect
provides 3D data which are processed in order to produce a 2D map of the regions
which represent the floor. To produce this map we use plane extraction (we calculate
the rotation using the planes extracted), manually measured translation between the
frames (simulating robot odometry), a region growing algorithm and contour
extraction methods.

10

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

1.3 Equipment and tools

For the purpose of this work, we used Kinect for Windows. Furthermore several
tools and programs were used to aid this effort. Those are: MatLab, Kinect SDK and
Kinect Developer Toolkit.

1.3.1 Kinect specifications

Kinect is an RGB depth sensor, which was designed and developed by Microsoft
for the video game console X-BOX 360 and for computers. It features an RGB
camera, a depth sensor and an array of microphones as shown in figure 1 [1].
Microsoft has supplied the device with open source software, which can track
movement and faces. Kinect contains a rotor (tilt) just above its base, which allows it
to move the angle of its field of view. The range in which objects can be tracked by
Kinect is from 0.8 to 3.5 meters. In order to compute depth, Kinect uses an infrared
ray emitter. The infrared rays are reflected onto any object they meet in their way, and
then return to the device. The depth image produced by Kinect is 640x480 pixels.
Table 1 shows some more specifications [1] of Kinect for Windows sensor.

Amay Specifeations

Viewing angle 43° vertical by 57° horizontal field of view
Vertical tilt range +27°
Frame rate (depth and color

stream) 30 frames per second (FPS)

Audio format 16-kHz, 24-bit mono pulse code modulation (PCM)
A four-microphone array with 24-bit analog-to-
digital converter (ADC) and Kinect-resident signal
processing including acoustic echo cancellation and
noise suppression
Accelerometer A 2G/AG/8G accelerometer configured for the 2G
characteristics range, with a 1° accuracy upper limit.

Table 1 — Kinect specifications

Audio input characteristics

11

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Figure 1 - Kinect features

Kinect uses its own coordinate system. The camera is considered as the start of the
system (0, 0, 0). X is the horizontal axis, Y is the vertical axis and Z is the depth axis.
The sensor measures the distances in front of it as negative. The coordinate system of
the sensor is shown in figure 2 [2].

Figure 2 - Kinect Coordinates

12

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

1.3.2 Installation of Kinect

In order to install Kinect, some packages are required. First we need to install
Kinect SDK, which can be downloaded through Microsoft’s official site. Then we
must install the Kinect Developer Toolkit in order to gain access to the documentation
and various open source implementations. As soon as the installation is completed, we
can plug our device into our computer and let Windows automatically install Kinect’s
drivers. If they fail to install the drivers, we can download them through Microsoft’s
official site and install them manually.

1.3.3 Kinect Fusion Explorer D2D

Kinect Fusion Explorer is an open source implementation which is provided by
Kinect Developer Toolkit. This software can be used to capture frames and make a 3D
reconstruction model. There is a Ul which gives the user plenty of choices (figure 3).

Figure 3 - Kinect Fusion Explorer Ul

The Ul is divided in two regions. The first region (marked as red) is the view
region whereas the second region (marked as blue) is the control region.

In view region, there are 3 windows:

1. Live 3D reconstruction (marked as 1): Real time 3D triangle
reconstruction of area using Kinect measurements. These measurements
are being processed in order to create live feedback.

2. Depth image (marked as 2): Depth image produced by Kinect
measurements. Light colors (closer to white color) represent small
distances and dark colors (closer to black color) represent big distances.

13

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

3. Raw data (marked as 3): Raw point coordinates without showing depth.
In control region there are 5 sections:

1. Mesh section (marked as 4): Provides the button Create a Mesh, which
saves the frames captured by Kinect, into a file. Three options are available
for the file format:

= STL (STereoLithography)
= OBJ (Object File)
= PLY (Polygon File Format)

2. Depth threshold section (marked as 5): Provides options for setting
minimum and maximum distance the Kinect can see (0.35 to 8 meters).

3. Capture Section (marked as 6): Provides options for color capture, mirror
capture, use of camera pose finder and pause capture (pause integration).
Pause capture is only available when camera pose finder is disabled. This
section also provides a button for resetting the reconstruction.

4. Reconstruction volume settings section (marked as 7): Provides options for
setting the number of voxels per meter as well as the maximum weight they
have on the reconstruction process.

5. Volume voxel resolution section (marked as 8): Provides options for setting
the resolution of a frame for every axis.

1.3.4 The PLY File Format

PLY (Polygon File Format) is a computer format also known as Stanford Triangle
Format. It is designed for saving 3D data coming out of 3D scanners (e.g. Kinect). As
soon as Kinect is plugged into our computer, we can run Kinect Fusion Explorer D2D
in order to capture a frame. We choose PLY format from mesh section and leave
everything else in the default options. We press the Create Mesh button and save the
file. PLY contains data for a point cloud, as well as the polygons formed by them.

A PLY file always starts with the keyword:
L Ply |

The keyword PLY is followed by three lines, which gives us information on the
data encryption (binary, ASCII):

format ascii 1.0
format binary_little_endian 1.0
format binary big endian 1.0

The following lines show how many vertices are included in the file and how they
are described (X, y, z axis):

14

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

element vertex 12
property float x
property float y
property float z

Similar lines follow in order to show how many faces are included in the file:

element face 10
property list uchar int vertex_indices

End of header follows:

| end_header |

The lines that follow are the actual data: point coordinates (vertices) in 3-column
ascii format and the indices of the vertices that form the triangles (3 indices per line
for each triangle).

15

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

2 Methodology

The goal of this work is to create a map which shows the regions in which a robot
can navigate. This map will be produced by processing a series of frames taken by
Kinect sensor. The Kinect sensor is manually moved. To read these data from the
PLY files taken by Kinect in order to process it in Matlab, we use a method [3] we
found on Mathworks. Figure 4 shows the process used in order to produce this map.
First we need to reduce the number of points and faces included in a frame, which will
lead to better performance. The next step is to use a variation of region growing
algorithm in order to mark the region that represents the floor.
will find the contour of this region. Having already measured the ground truth contour
manually we will compare it with the output contour and calculate the mean error in

centimeters.

Goto
next
frame

Decimation of frame

Identify planes in frame
using RANSAC

Identify floor region using
Region Growing Algorithm

Produce contour

Delete points includedin
previous contour

Re-produce contour from
all frames so far

Institutional Repository - Library & Information Centre -
09/12/2017 12:42:21 EET - 137.108.70.7

Figure 4 - Methodology

16

University of Thessaly

After this process, we

Goto
next
frame

2.1 Mathematical operators

The cross product between two vectors is a vector which is normal to the plane
defined by those two vectors. The symbol used to describe this operation is:
axb
When it comes to triangles, the cross of the vectors of two of its edges is the
normal vector of the triangle itself. The vector of a triangle’s edge is computed by
subtracting the two points forming the edge. Given a triangle consisted of the points:
vl = (x1,y1,21)
v2 = (x2,y2,22)
v3 = (x3,y3,23)
The vectors of its edges are:

el = (x2- x1,y2 - y1,22 - z1)
eZ = (x3-x2,y3 - y2,23 - z2)
e3 = (x3- x1,y3 - y1,z3 - z1)
The normal vector of the triangle is:
V=elxeZ
To compute the angle between two vectors a,b , thus to determine if they can be

considered as parallel we calculate the dot product between the two normalized
vectors:

—

d- bl[d|.p|

We will use this product later in region growing algorithm to check if this value is
higher than a predetermined threshold.

2.2 Decimation of point set

The frame captured by Kinect consists of a set of points and a set of the faces
formed by those points. Due to the size and complexity of data, triangle decimation is
required. Decimation algorithms are used very often in computer graphics-related
operations, since they drastically reduce the computational burdin of these operations.
Several criteria are used for selecting which triangles to eliminate, as described in [35]
and elsewhere. In our application, we apply decimation to significantly reduce the
number of faces and points of a given PLY file (generated for each Kinect frame) and
make data processing faster and easier.

MatLab has a built-in function called reducepatch. This function’s parameters are
the set of points, the set of faces formed by those points and the number of faces
needed after the decimation. Then reducepatch reduces the number of faces, while
attempting to preserve the owverall shape of the original scene/object. After finishing
that process, reducepatch returns a structure containing the reduced points and faces.

17

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Figure 5 - Pre-decimation points

Figure 6 - Post-decimation points

18

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Figure 7 - Pre-decimation faces

Figure 8 - Post-decimation faces

The figures above show the original frame (figure 5 for points and figure 7 for
faces) of a corridor and the results after decimation (figure 6 for points and figure 8
for faces). The original frame had about 12000 points and 15000 faces. Using the
reducepatch function the number of points was reduced to about 2000 and the number

19

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

of faces to 3000. As we can see in figures 2.b and 2.d the overall shape of the corridor
was well preserved. The function can also work efficiently in cases of much bigger
sets of points and faces (even millions).

2.3 Identifying planar surfaces in the captured frame

In order to identify the planar surfaces in a captured frame we must first extract all
the planes by using RANSAC algorithm. RANSAC (Random Sample Consensus)
[12] is an iterative method to estimate parameters of a mathematical model from a set
of points. It is a non-deterministic algorithm in the sense that it produces a reasonable
result only with a certain probability, which can be increased if the number of
iterations is increased. In this case it can be used for estimating the parameters of all
the planes on a points set. Those parameters are A, B, C, and D. Given the points (X, Y,
z) forming the plane, the equation of the plane is shown below:

A-x+B-y+C-z+D =0

2.3.1 Identifying one best fitting plane

The pseudo-code of RANSAC algorithm is shown below. Consensus set is the set
of points fitting a plane and data set the set of all the points in the scene.
Step 1:
Select three random points and compute the parameters (A, B, C and D) of the best
fitting plare.
Step 2:
Calculate the distance of every point from the best fitting plane. If the distance is
smaller than a predetermined threshold, add the point to the consensus set. The

distance [13] is calculated by the equation:
A-x+B-y+C-z+D

distance =

Step 3:

If the number of points in consensus set is considerably high, the plane is considered
good.

Step 4:

If plane is good, the plane parameters are calculated again based on the points in the
consensus set.

Step 5:
Repeat steps 2, 3 and 4 until consensus set length stays the same.

2.3.2 Identifying multiple planes

The process described above can be used for every plane in the scene. To do so,
some further steps must be followed:

Step 6:
Remove consensus set points from data set.

Step 7:
Call RANSAC algorithm (2.3.1) until all the points fit a plane or the number of

iteration exceeds a predefined value.

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

The parameters A, B, C and D are normalized in order to give better planes. To
normalize the parameters we need to compute the plane’s normal vector value as
shown below and then divide parameters A, B, C and D with it. If we define V = [A,
B, C]land S =[A, B, C, D], then:

V= VAZ+ B+ C2
S

normal — m

Except the parameters of each plane RANSAC can also give a random point (X, Y,
z) which is part of the plane and therefore it can be used as a seed point for the Region
Growing algorithm. With RANSAC the process can be used not only for mapping the
floor, but instead for mapping the whole scene.

This whole process identifies all the best fitting planes in a scene. To determine
which one of them represents each wall on the scene, we can check the normal vector
of the planes. The normal vector’s orientation shows the rotation of the plane in the
scene.

We ran RANSAC on a test set of points forming 2 vertical planes. The results are
show in figure 8.a.

¥ o ¥

Figure 8.a — Points (red) and planes identified by RANSAC
2.4 Region Growing Algorithm

Region Growing [11] is a simple region-based image segmentation method which
is very similar to clustering algorithms. The algorithm examines neighboring points of
initial seed point(s) and determines whether these neighbors should be added to the

21

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

same region as the initial point(s). More specifically it uses a queue which contains
the indexes of the points. In each loop the algorithm extracts the head of the queue,
identifies its neighbors and determines whether it meets the criteria specified by user.
The efficiency of this algorithm is depended on the correct selection of the initial seed
point(s).
Advantages :
1. Can correctly separate the regions that have the same properties we
define.
2. Can provide the original images which have clear edges with good
segmentation results.
3. It is simple, as it only needs a small number of seed points to represent
the property we want.
4. ltis flexible. It works well with multiple criteria at the same time.
Disadvantages :
1. Computationally expensive
2. Sensitive to noise.

Region Growing Algorithm variation
For the purpose of this work, a variation of Region Growing algorithm was used.
The purpose of this variation is to make Region Growing algorithm work with
triangles. This variation gets a seed triangle, identifies its neighbor triangles and then
determines whether to put them in the same region as the seed triangle. The criteria
based on which the algorithm determine that, is whether the wvertical vector of the
triangle is parallel to the mean vector of the triangles which already are in the region.
To fully enlighten the process a pseudo-algorithm is given below:
Step 1:
Get seed triangle by user. Compute normal vector of the seed triangle, set it as mean
and insert the triangle in queue Q (neighbors queue).
Step 2:
Extract the first triangle from queue Q and insert it in queue area (region’s queue).
tep 3:
Identify the triangle’s neighbors.
Step 4:
For each neighbor:
Step4.a:
Compute normal vector.
Step 4.b:
If normal vector is parallel or quite parallel to the mean normal vector, insert it
in queues area and Q.
Step4.c:
Re-compute mean vector by taking into account every triangle in queue area.

Step 5:
Repeat steps 2, 3 and 4 until queue Q is empty.

:

L

Step-by-step example:

To better understand this example, here is some clarification of the colors used in the
figures below:

Green: Triangles which are in region’s queue (area) and whose neighbors the
algorithm is about to identify.

22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Gray: Triangles which are neighbors of the triangle investigated at that time (the
extracted head of the queue Q), but not yet compared to the mean normal vector of the
region’s queue (area) triangles.

Yellow: Triangles which are neighbors of the triangle investigated at that time (the
extracted head of the queue Q) and also pass the criteria to be considered part of the
region. Their neighbors are not yet identified.

The algorithm starts from a seed triangle which is given either by user (by hand)
or by RANSAC algorithm (random point of the plane found by RANSAC which is
part of a triangle). This triangle is put into the region’s queue (area) and marked
green as shown in figure 9. At this time the queues status is:

area

0.z * +

015t + . .
01k *

00z -

-0.05

01 *

D5 F* *

N2k *

'I:I25 C | 1 1 1
2.2 -2.14 -2 -2.05 -2 -1.95 -1.8

Figure 9

The algorithm will now start identifying this triangle’s neighbors one by one. In
figure 10 one of its neighbors is marked gray.

23

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

+* +* *
|:|2 B * + * ! + +
*
¥
IR SRR . .
+ . . *
o1t .
. * + +
0.05
* &
+ ‘.+
of Lt N
0.0s *
01t * .
015k« * . *
* -
ozt ¢
l - - . *
+ *
'I:I25 C | 1 | 1 | 1 |
22 215 221 205 2 -1.85 .18
Figure 10

Triangle’s (2) normal is quite parallel to the mean normal vector of all the
triangles marked green, so it is marked yellow in figure 2.g. If the triangle’s normal
vector was not acceptably parallel to the mean of the green triangles normal vectors it
would remain gray. The triangle (2) is now put to the neighbors queue (Q). The
updated status of the queues is:

area
1T-T-T-T-7-
Q
2T-T-1-T-7-
24

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

T
*

0z *
0151 + . +

0.1

T
*

0.0z -

0.0z

D15+ .

N2F +*
+ *

026 1 1 1
22 215 2.1 205 -2 -1.95 19

Figure 11

The same process is used for the other neighbors of the triangle (1). The algorithm
identifies the neighbor triangle 3 (figure 11) and then puts it in neighbors queue (Q) as
it passes the pre-defined criteria (figure 12). After these steps the status of the queues

IS:
area
1T-T-T-T-T7-
Q
2137-1-T-T-
25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

0z * +

0151 + . +

T
*

0.1

0.0z -

0.0z

D15+ .

N2F +*
+ *

026 1 1 1
22 215 2.1 205 -2 -1.95 19

Figure 12

0z * +

oask " v, . .

0.1

T
+*

00ar

.05

L5 F+ +

02t .
* *

‘D25 C 1 1 1 1

22 215 21 205 2 195 13

Figure 13

The algorithm identifies the last neighbor of triangle 1 using the same process
(figure 2.j) and then puts it in the neighbors queue (Q) (figure 13). The updated status
of the queues is:

26

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

area

0.z * +

015kt . .

0.1

T
*

00z -

0.0z

0.1

DA5F+ *

N2F

* *

O28F

1 1
2.2 -2.14 -2 -2.05 -2

Figure 14

27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

T
*

0z *
0151 + . +

0.1

T
*

0.0z -

0.0z

0.1

D15+ .

N2F +*
+ *

026 1 1 1
22 215 2.1 205 -2 -1.95 19

Figure 15

At this point the algorithm has identified all neighbors of triangle 1 and
determined whether they are part of the region. Now the algorithm extracts the head
triangle of the neighbors queue (Q) marks it green and puts it in the region’s queue
(area). So at this point the queues status is:

area
1[21-]-1-]-
Q
3[4-1-]-]-
28

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

0z * +

0151 + . +

0.1

T
*

0.0z -

0.0z

O1r

D15+ .

N2F +*

'I:I25 C | 1 1 1
2.2 -2.14 -2 -2.05 -2 -1.95 -1.8

Figure 16

This whole process is repeated until there are no triangles left in neighbors queue

Q).

2.4.1 Automatingregion growing algorithm

Except for the parameters of a plane, RANSAC also identifies the subset of Kinect
frame points fitting in the plane, according to a tolerance. From that subset we can
select a single point to play the role of the seed point for the Region Growing
Algorithm. This point should be located near in the center of mass of the points than
lay on the plane in order to avoid problems caused by the points located near the
outline of the plane.

Gventhat A-x+ B-y+ C-z+ D =0 defines a plane, x,,,;4, Ymia aNd z,,;4 are
the mean coordinates of the points belonging to that plane (with a tolerance) and value
is a predetermined number (in cm), the selected point (Xo,Yo0,20) Must meet the criteria
below:

Case 1:
The plane is defined mostly by axis X and axis Y (equivalently, C > A and C > B):

Xo > Xpmig — Value and x, < x,,;,, + value
and
Yo > Vmia — value and y, <y, + value

Case 2:
The plane is defined mostly by axis X and axis Z (equivalently, B > A and B > C):

29

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Xo > Xpig — value and x, < x,,;;, + value
and

Zy > Zpyig — value and z, < z,,;, + value

mid

Case 3:

The plane is defined mostly by axis Y and axis Z (equivalently, A > B and A > C):
Yo > Vmia —valueand y <y,., + value

and

Zy > Zpyig — value and z, < z,,;, + value

We run the automated region growing algorithm in the same test set used in
RANSAC (2.3.2) and the results are shown in figure 16.a.

0.8 -

0.6 -

0.4

Figure 16.a — Points of the floor (blue), seed point given by RANSAC (red) and
points of the wall (green)

2.5 Merging world points from different frames

After performing region growing algorithm in every frame, we need to merge the
frames in order to complete the mapping of the floor. To do this we need to know how
much the Kinect sensor has moved between two frames. We can obtain this
information manually (simulating robot odometry) or by the information extracted by
planes (given by RANSAC). To better understand this information we will not use the
coordinates system used by Kinect. Instead we will use the common coordinate
system. The camera of the sensor is considered to be the center of the coordinates
system (point 0, O, 0). The sensor is moved only forward (-X axis), backwards (X
axis), to the left (-Y axis) and to the right (Y axis). The sensor can also rotate left or

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

right only around Z axis. We define our first frame to be the coordinate system and
then transform the following frames to match with it.

As soon as we receive the translation and/or rotation of the sensor, using manually
measurements and plane information, we can transform the points of each frame to
make them match the first frame. The types of point transformation are described
below:

Type 1: Translation

The Kinect sensor can move forward/backward/left/right. Given that T = [Ty, Ty,
1] is the movement matrix (Tx represents movement in cm on X axis, Ty represents
movement in cm on Y axis and on Z axis there is no movement), the transformation of
the points is given by the equation below:

pOIHtStransformed = pomtsoriginal +T

Type 2: Rotation
We assume that the Kinect sensor can freely rotate around Z axis. Given that & is
the angle of the sensor rotation, the rotation matrix R is calculated as shown below:

cos(f8) -—sin(f) O
sin(8) «cos(8) O
0 0 1

The transformation of the points can be either one of the two types or a
combination of them. If it is a combination of movement and rotation, the
transformation is given by the equation below:

pOintStransformed = (R) pOintsoriginal) +T

Using the planes which RANSAC gives as output we can estimate the rotation
between two consecutive frames. Knowing the planes which represent the same
surface before and after the rotation we can estimate the rotation angle as shown
below.

Given that [A,,B,C;,D,] represent the surface (plane) in the frame before the
rotation and [4,, B,, C,,D,] represent the same surface (plane) in the frame after the
rotation, the formula for estimating the rotation angle is:

angle = cos~*([4,,B,,C,] " [A,, B,, C,])

Note that *-* in this case is the scalar product between two vectors.

2.6 Contour extraction

Now that we have merged the frames, we have a set of points describing the floor-
like region. The next step is to find the contour of this region. Although the
identification of the convex hull of a set of points is a well-studied problem with
efficient solutions [36], finding the non-convex hull is a problem hard to define

31

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

eg.[37]. Our approach is a practical and efficient solution of extracting the contour
after embedding the real world points of the contour into a binary discrete image.
Thus the proposed algorithm is parameterized by the size of the pixel used in
converting the set of real world points into a binary image. Then we will find the
pixels forming the contour of the binary image and convert them again to coordinates.

e World coordinates to pixels

To convert the coordinates of points to binary image, we will use a simple
algorithm. At the end of this process the region will be white (1) and the background
will be black (0). Given that pixel size is a predetermined value in cm, the size of this
binary image is computed based on the given pixel size:

|max (y) —min(y)|

number of rows = - -
(pixel size)

|ma x(x) — min(x)|
number of columns =

(pixel size)

A simple linear algorithm:

Step 1

For every pixel (i, j) in binary image where i represents rows and j represents columns
and pixel size is a predetermined value, compute the x and y coordinates forming the

pixel:
x0 =min(x) + (j — 1) - (pixel size)
x1 =x0+ (pixel size)
y0 = max(y) — (i — 1) - (pixel size)
y1 =y0 + (pixel size)
Step 2:

If there are one or more points which are between the pixels coordinates, then that
pixel in the binary image is marked as white (1).

Step 3:
Repeat steps 1 and 2.

e Extraction of binary image contour

In a binary image it is much easier to find the contour of a region. Several
algorithms exist for extracting the contour of a connected component in a binary
image [34], such as the Pavlidis algorithm. MatLab includes a built in function called
bwtraceboundary which implements the track the contour of region / object in binary
image. The algorithm starts from a pixel specified by the user and then follows its
neighbors in order to complete the contour. The starting pixel must be part of the

32

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

contour of the region (white (1)). To consider a pixel as contour at least 3 of its
neighbors must not be part of the region (black (0)). Connectivity can be
parameterized by the user, thus the algorithm checks for 4 or 8 neighbors in each
current pixel. User can also specify which neighbor will be the first to be checked by
the function as well as the direction the function will follow which can be clockwise
or counterclockwise.

As soon as bwtraceboundary has found the contour it returns a matrix containing
the rows and columns of the pixels forming the contour.

e World pixels to coordinates

In order to find the coordinates of the pixels forming the contour of the binary
image, we will use a reverse algorithm similar to the one we used for converting the
coordinates to a binary image.

The coordinates of the pixels forming the contour can be computed using the pixel
size which was used to convert them to binary. Given that i represents the rows and j
represents the columns, the coordinates are computed using the equations below:

x = min(x)+ (pixel size) - j

y = max(y) — (pixel size) - i
2.7 Quantification of error

As soon as we have found the point forming the contour we need to check if the
result is close enough to the original contour. An easy way to compare the output
contour with the true contour is to employ the Distance Transform (DT) of the
ground-truth contour (which is embedded in a discrete binary image, as described
above). Several efficient algorithms exist for computing the DT of a binary image
[38]. We will use the built-in function bwdist scans a binary image and for every pixel
computes the Euclidean distance between that pixel and the nearest non-zero (white)
pixel of the binary image.

We use the function bwdist on the true contour binary image. The contour binary
image will be created with a predetermined small pixel size. The binary image of the
contour may differ in size with the output binary image because we choose a
relatively smaller pixel size to catch all the details of the ground truth contour. As a
result the ground binary contour image will be always equal to or bigger than the
output binary image. To compare the two images we need to transform the second
image. This transformation can be done with Matlab’s built-in function imresize,
which takes as parameters a binary image, the desired size of the image after
transformation (rows and columns) and the name of the method to use for resizing the
image. Then for every pixel of the output contour binary image we check its value in
the true contour image. To find the error of the output contour we sum those values
and then find their mean value. Given that pixel size is a predetermined value in cm
we use the following formula to find the error in cm:

erTol,, = error,;. - (pixel size)

33

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

281+

0.4

Figure 17 - Point set and ground truth contour

Figure 18 - Binary ground truth contour

Given the set of points shown at figure 17 (figure 18 binary contour), we will use
this process to show how the algorithm corresponds to different pixel sizes. The
ground binary contour will be calculated using a 3cm pixel size.

We calculated the contour using 5cm and 20cm pixel sizes (figure 19 and figure
20) and as we can see the accuracy of the algorithm is decreased if we increase the
pixel size. Furthermore the mean error is increased. Setting the pixel size to 5¢cm gives

34

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

a contour with 0.66cm mean error whereas using a 20cm pixel gives a contour with
4.34cm mean error.

Figure 19 - Binary contour (5cm)

Figure 20 - Binary contour (20cm)
2.8 Removal of common points between frames

Although there is a translation and/or rotation between the points of two
consecutive frames, some points are inevitably common in both frames. Taking them
into account twice would be both more computationally expensive and also not a very
logic experiment. Because of that we must remove those points from one of the two
frames (the second). To do so we will use Matlab’s built-in function inpolygon. This
function takes as parameters a set of points which form a polygon and a set of points
for testing and returns a matrix (same size with the test point set) containing 0 and 1.

35

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

The value O represents that the points in the specific index are not part of the polygon
and the value 1 represents the opposite. The simple steps of this process are shown

o
@
o]
2

C;(alculléte the contour of all the previous frames so far.

Utsi iibolygon function to identify which points of the following frame are included in
the contour calculated in step 1 and remove those points

Rze-ca:?c.ulate the contour using all previous frames and the following frame.

Rfepe; steps 1,2 and 3 until all frames are processed.

o

4

36

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

3 Experiments and results

Using the methodology we described in chapter 3, we carried out some
experiments. We used Kinect sensor to capture consecutive frames of an area and then
using the process described in chapter 3, we managed to map the floor and calculate
the error between the true contour and the output contour.

3.1 Experiment 1

3.1.1 Initialization

In the first experiment we captured three consecutive frames of a region in which
there are two vertical walls and the floor. We considered the first frame to be the
reference coordinate system and we transformed the points of the following frames to
match with it. In this experiment we only had rotation between the frames. The
experiment’s initialization is shown in Table 2. The values shown in column
Translation are in cm.

Frame Translation Rotation

1 [0, 0] 0°
2 [0, 0] ~12°
3 [0, 0] ~12°

Table 2 — Experiment 1 initialization

3.1.2 Decimation Results

For decimation we used the same settings for each frame. The faces were reduced
to 6000 which was empirically a good choice in order to avoid both holes and
computational complexity. Choosing a smaller number of faces for decimation may
result to “holes” in some regions of the frame and therefore will give wrong outputs.
These *holes” are created because the decimation algorithm reduces points from
regions which are linear in order to keep as many edge points as possible so that the
overall shape is preserved. In case we choose a larger number of faces we may have
better results in the shape of floor, but the cost of complexity and processing would be
much higher. The frame shown in figure 21 shows the points of the first frame after
decimation.

37

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

—-1.4

06 —
—-1.2
0.4 —
02— L4
0—
—-0.8
-0.2 -
-0.4 0.6
0.6 0.6

Figure 21 - Post-decimation points

3.1.3 Plane extraction and rotation estimation

RANSAC algorithm was used in every frame in order to identify all the planes in
each of them. For this experiment the threshold for the maximum distance of a point
from the plane was set to 0.8cm. The threshold of the percent of points needed to
consider a plane good was set to 20%. The results of the seven consecutive frames are
shown in figures 22 — 24 where the points of the frame are marked red. Note that the
planes shown in the figures are not boundary correct but represent the set of points
fitting them.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

0.6

0.4

0.2

T T
05 0 04 02] 02 0.4 0e

¥
Figure 22 - Frame 1 planes and points

0.6

¥
Figure 23 - Frame 2 planes and points

39

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

DE ..

0.4

0.2

0.2

0.4
A5

Figure 24 - Frame 3 planes and points

Table 3 shows all the planes found by RANSAC algorithm. The values shown are
the normalized values of A, B, C and D of the planes in each frame and Table 3 the
real and the algorithm’s estimation angle between every two frames.

Frame Planes in frame Plane parameters [A, B, C, D]

Plane 1:

[-0.8512, 0.5246, 0.0151, -0.9047]
1 3 Plane 2:

[-0.0124, 0.0112, -0.9999, -0.3144]

Plane 3:

[-0.5050, -0.8631, -0.0021, -0.8747]

Plane 1:

[-0.6832, -0.7302, 0.0001, -0.8696]
5 3 Plane 2:

[-0.7171, 0.6967, 0.0156, -0.9130]

Plane 3:

[0.0085, -0.0010, 1.0000, 0.3101]

Plane 1:

[-0.8407, -0.5414, -0.0098, -0.8569]
3 3 Plane 2:

[0.0071, -0.0085, -0.9999, -0.3137]

Plane 3:

[-0.5082, 0.8612, -0.0032, -0.9201]

Table 3 — Experiment 1 plane parameters

40

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Frames Real angle Estimated angle

1to2 ~12° 12.5254°

2t03 ~12° 15.3176°
Table 4 — Experiment 1 estimated rotation angle

3.1.4 Floor identification and merging results

We used the variation of region growing algorithm on each of the three frames in
order to find the region of the floor. The algorithm identified the points and faces that
form the region of the floor. The result is shown in the figure below (figure 25). For
this experiment we set the threshold (for identifying whether normal vectors are
parallel enough to mean normal vector) to be 0.3. Note that values closer to 0 mean
that the normal vector is closer to becoming parallel to the mean normal vector.

Figure 25 — Points (blue) and triangles found by region growing

Using the planes extracted by RANSAC we know the rotation angle between each
frame and we can therefore calculate the rotation matrices. The rotation angle is
—12.5254° for the second frame and —15.3176° for the third frame. The rotation
matrices are shown below.

0.9753 0.2209
—0.2209 0.9753
0 0 1

o O

0.8918 0.4524 0
—0.4524 0.8918
0 0 1

41

o

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

In figure 26 we can see the merged frames after their transformation (blue for
frame 1, red for frame 2 and green for frame 3) and in figure 27 we can see the
merged floor (blue for frame 1, red for frame 2 and green for frame 3).

Figure 26 - Merged frames after transformation of points

Figure 27 - Merged floor after performing region growing in all three frames (common
points removed)

42

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

3.1.5 Contour extraction results

Now that we have the merged floor we need to find its contour. In order to do so
we must first convert the coordinates to binary. We choose the pixel size to be 2.5cm
and the result is a binary image in which white represents the pixels which have at
least one point in them and black represents the pixels which have no points in them.
The output binary image is shown in figure 28. To find the contour of this binary
image we will use bwtraceboundary. The algorithm automatically selects a starting
pixel to start the process. The output returned by the function is shown in figure 29
(marked in pink). The contour shown in figure 29.i is in pixels so the next step is to
convert it to coordinates. To do that we will use the reverse procedure using the same
pixel size (2.5cm). The result is shown in figure 30.

Figure 28 - Binary image of floor Figure 29 - Binary image of floor

The result seems quite good as most of the points are within the contour (marked
red in figure 30). Using the methodology described in chapter 2.7 we calculated the
mean error between the original contour and the output contour shown in figure 30.
The mean error in this experiment is 0.98cm.

43

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

I:IE T T T T T T T

0.4

0.2

O
=
T

o
o
T

_DB 1 1 1 | | 1 1
-1.3 -1.2 =11 -1 -0.8 -0.3 0.7 -0.6 0.5

Figure 30 - Floor contour coordinates (red) and points of the floor (black)
3.2 Experiment 2

3.2.1 Initialization

In this experiment we captured seven consecutive frames of a classroom. We once
again considered the first frame to be the reference coordinate system and we
transformed the points of the following frames to match with it. In this case we had
translation or rotation between the frames. The experiment’s initialization is shown in
Table 5. The values shown in column Translation are in cm.

Translation Rotation
1 [0, O] 0°
2 [-70, 0] 0°
3 [-140, 0] 0°
4 [-210, O] 28°
5 [-210, -70] 28°
6 [-210, -140] 28°
7 [-210, -210] 28°

Table 5 — Experiment 2 initialization

44

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

3.2.2 Decimation Results

First we decimated the points and faces of a frame. We again used the same
method in every frame so each frame’s faces were reduced to 6000. The frame shown
in figure 31 shows the points of the first frame after decimation.

Figure 31 - Post-decimated points

Decimation reduced the points and faces by a huge amount preserving the overall
shape of the frame perfectly.

3.2.3 Plane extraction and rotation estimation

Once again we used RANSAC algorithm every frame in order to identify all the
planes in each of them. In this case the threshold for the maximum distance of a point
from the plane was set to 1.5cm. The threshold of the percent of points needed to
consider a plane good was set to 12%. The results of the seven consecutive frames are
shown in figures 32 — 38 where the points of the frame are marked red. Note that the
planes shown in the figures are not boundary correct but represent the set of points
fitting them.

45

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

y -1 .25 .

Figure 32- Frame 1 planes and points

Y) ' b

Figure 33 - Frame 2 planes and points

46

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

) | ’ W

¥
Figure 35 - Frame 4 planes and points

47

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

-1 08 06 04 02 o 02 04 0B 08 1

Figure 37 - Frame 6 planes and points

48

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

A

=
]
|

=
fa]
|

TCLTTTE R

=
i
|

TANXE

-1 08 0B 04 02 o 02 04 0B 08 1

¥
Figure 38 - Frame 7 planes and points

RANSAC has found all the planes in each frame. Table 6 shows the normalized
values of A, B, Cand D of the planes in each frame and Table 7 the real and the

algorithm’s estimation angle between every two frames.

49

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Frame | Planes in frame Plane parameters [A, B, C, D]
Plane 1:

1 2 [-0.0272, -0.0042, -0.9996, -0.6363]
Plane 2:

[0.0105, 0.9999, -0.0094, -0.8790]
Plane 1:

5 2 [0.0265, 0.0072, 0.9996, 0.6371]
Plane 2:

[0.0245, 0.9996, -0.0105, -0.8768]
Plane 1:

3 2 [-0.0236, -0.0015, -0.9997, -0.6288]
Plane 2:

[-0.0150, 0.9998, -0.0100, -0.8942]
Plane 1:

[0.8671, 0.4968, -0.0347, 1.8084]
Plane 2:

4 4 [-0.4879, 0.8729, 0.0074, -0.8625]
Plane 3:

[0.8921, 0.4507, -0.0327, 1.6700]
Plane 4:

[-0.0345, -0.0041, -0.9994, -0.6524]
Plane 1:

[-0.8759, -0.4818, 0.0246, -1.8337]
Plane 2:

5 4 [0.8616, 0.5062, -0.0360, 1.6351]
Plane 3:

[-0.4861, 0.8739, 0.0094, -1.5352]
Plane 4:

[0.0355, 0.0046, 0.9994, 0.6609]
Plane 1:

6 2 [-0.8814, -0.4715, 0.0295, -1.8089]
Plane 2:

[0.0207, 0.0109, 0.9997, 0.6401]
Plane 1:

7 2 [-0.8912, -0.4521, 0.0373, -1.8104]
Plane 2:

[0.0299, 0.0115, 0.9995, 0.6543]

Table 6 — Experiment 2 plane parameters

| Frames | Real angle | Estimated angle
1to?2 0° 0.8024°
2103 0° 2.2609°
3to4 28° 28.3604°
4105 0° 0.1650°
S5to6 0° 0.7235°
6to7 0° 1.3244°

50

Institutional Repository - Library & Information Centre - University of Thessaly

09/12/2017 12:42:21 EET - 137.108.70.7

Table 7 — Experiment 2 estimated rotation angle

3.2.4 Floor identification and merging results

Using once again the variation of region growing algorithm on each of the seven
frames we identified the region of the floor. The algorithm identified the points and
faces that form the region of the floor. The result is shown in the figure below (39).
For this experiment we set the threshold (for identifying whether normal vectors are
parallel enough to mean normal vector) to be 0.3.

Figure 39 - Points (blue) and triangles found by region growing

Next step is to merge the seven frames together. Using the odometer we know that
the distance between the first 2 frames is 70cm on the X axis. Kinect realizes the
coordinates of X axis in front of it as negative, so in order to merge the first two
frames we need to just subtract 70cm from the X axis coordinates of the second
frame’s points. Frame 3 follows the same pattern so to merge it with the other two we
need to subtract 140cm from the X axis coordinates of the third frame’s points. The
fourth frame is a little different as it features both translation and rotation. The
rotation is +28.3604° (as estimated in Table 7) around Z axis and in order to apply it
to the points we must first create the rotation matrix which is shown below:

08775 —0.4795 0
0.4795 0.8775 0
0 0 1

51

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

To apply the rotation to the points we multiply the rotation matrix with the points
of the fourth frame. The movement is the same as in frames 2 and 3, so we subtract
210cm from the X axis coordinates of the fourth frame’s points. It is critical that we
first rotate the points and then move them. Frame 5 also has both movement and
rotation. The rotation is the same and the movement is on Y axis this time. The
translation is 70cm to the left so it will be negative. We first apply the rotation by
multiplying the points with the rotation matrix. Then we subtract 70cm from the Y
axis coordinates of the fifth frame’s points. To make it match with the other frames
we must also subtract 210cm form the X axis coordinates of the fifth frame’s points.
Frames 6 and 7 follow the same pattern as frame 5 so we first rotate its points using
the same rotation matrix and then subtract 210cm form the X axis coordinates. Lastly
we subtract 140cm from the Y axis coordinates of the sixth frame’s points and 210cm
from the Y axis coordinates of the seventh frame’s points. The result of the merged
frames is shown in figure 40 (blue (right) for frame 1, red for frame 2, green for frame
3, yellow for frame 4, purple for frame 5, black for frame 6 and blue (left) for frame
7) and the merged floor after removing common points in each frame, in figure 41
(blue (right) for frame 1, red for frame 2, green for frame 3, yellow for frame 4, purple
for frame 5, black for frame 6 and blue (left) for frame 7).

Figure 40 - Merged frames after transformation of points

52

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Figure 41 - Merged floor after performing region growing in all three frames (common
points removed)

3.2.5 Contour extraction results

Now that we have the merged floor we need to find its contour. In order to do so
we must first convert the coordinates to binary. We choose the pixel size to be 5cm
and the result is a binary image in which white represents the pixels which have at
least one point in them and black represents the pixels which have no points in them.
The output binary image is shown in figure 42. To find the contour of this binary
image we will again use bwtraceboundary. The output returned by the function is
shown in figure 43 (marked in pink). The contour shown in figure 43 is in pixels so
the next step is to convert it to coordinates. To do that we will use the reverse
procedure using the same pixel size (5cm). The result is shown in figure 44.

53

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

Figure 42 - Binary image of floor Figure 43 - Binary image
contour (pink pixels)

05

0&r

1.AF

-4 -3.5 -3 -2.4 -2 -1.5 -1

Figure 44 - Floor points (black) and contour (red) coordinates

The result seems quite good as most of the points are within the contour (marked
red in figure 44). Using the methodology described in chapter 2.7 we calculated the
mean error between the original contour and the output contour shown in figure 44.
The mean error in this case is about 1.34cm.

54

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

3.2.6 Experimenting with parameters

The mean error of the output contour may vary with different parameters. The
parameters which can be changed are the pixel size used for the binary image creation
and the number of faces after decimation. To further analyze the process and to show
the different results the algorithm can give as output, we experimented with those
parameters. Table 8 shows the results in different values of these parameters. Looking
at the values of Table 8 we can easily understand that bigger pixel size value results in
greater error even if the number of faces is big. Furthermore we can see that a higher
number of faces can result in less error which seems legit because the more faces and
points there are in a frame the less “holes” will be present.

Number of faces Pixel size Error

1000 5¢cm 3.75cm
1000 10cm 4.68cm
1000 20cm 7.67cm
3000 5cm 3.91cm
3000 10cm 4.29cm
3000 20cm 6.19cm
6000 5¢cm 1.34cm
6000 10cm 3.30cm
6000 20cm 5.13cm

Table 8 — Experiments with parameters

55

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

4 Conclusionand future work

The results from the experiments conducted show that our method maps the
environment efficienty with a relatively small error. In Table 9 we present the
running times of each step of our method. The process is not real time as some steps
take several seconds to complete. The main speed problems can be seen in reading
process, in points / faces decimation process and in region growing process.

Experiment | Reading | Decimation | RANSAC Region Total time
of file Growing

1 ~3sec ~1.5sec ~15ms ~10sec ~15.5sec
2 ~10sec ~6sec ~40ms ~22sec ~40sec

Table 9 — Running times for every step / frame in each of the two experiments. The process was
performed on an AMD FX-6300 processor

The process for each step takes ~15.5 seconds / frame to complete in the first
experiment and ~40 seconds / frame in the second experiment. Table 10 shows the
process of the overall contour extraction and calculation of error in each experiment.

Experiment Contour extraction and error calculation
1 ~1sec
2 ~2sec

Table 10 — Running times in each of the two experiments. The process was performed on an AMD
FX-6300 processor

Future work

Future work on this method can improve its efficiency and its speed. Some of
them are presented below:

e Implementation of a more efficient and faster method for reading the
data captured by Kinect. A way to do this is to read directly from stream
without saving data into a file.

e Implementation of a faster method for decimating the points/faces of
frames.

e Calculation of translation between frames from the info of the planes
extracted by RANSAC algorithm.

e Calculation of rotation not only in z axis but also in x and y axis and
translation on z axis.

e Implementation of a method for merging planes representing the same
surface in consecutive frames.

56

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

5 References

(1

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Kinect Specifications (Microsoft) - https://msdn.microsoft.com/en-
us/library/jj131033.aspx

Kinect coordinates image - http://aivarastumas.weebly.com/kinervo.html
PLY read method (Gabriel Peyr) -
https://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-
graph/content/toolbox graph/read ply.m

Cristina Urdiales, Antonio Bandera, Eduardo Perez, Alberto Poncela,
and Francisco Sandoval "Hierarchical planning in a mobile robot for
map learning and navigation", Volume 116 of the series Studies in
Fuzziness and Soft Computing pp 165-188

Arleo, A., Millan, J.R. and Floreano, D. (1999) "Efficient learning of
variable-resolution cognitive maps for autonomous indoor navigation",
IEEE Transac-tions on Robotics and Automation, Vol. 15, No. 6, pp. 990-
1000

Borenstein, J., Everett, H.R. and Feng, L. (1996) "Navigating mobile
robots: systems and techniques”, Wellesley, Massachusetts: A.K.
Peters, Ltd.

Matari c, M.J. (1994) "Interaction and intelligent behavior", Technical
Report AI-TR-1495, MIT, Al-Lab, Cambridge-USA.

Moravec, H. P. (1988) "Sensor fusion in certainty grids for mobile
robots", AlMagazine, Vol. 9, No. 2, pp. 61-74.

Thrun, S., Bucken, A., Burgard, W., Fox, D., Frohlinghaus, T., Hennig, D.,
Hofmann, T., Krell, M., and Schimdt, T. (1998) "Map learning and high-
speed navigationin RHINO", MIT/AAAI Press, Cambridge.

Zelinsky, A. (1992) "A mobile robot navigation exploration algorithm",
IEEE Transactions on Robotics and Automation, Vol. 8, pp. 707-717.
Region Growing (Wikipedia) -
https://en.wikipedia.org/wiki/Region growing

RANSAC (Wikipedia) -

https://en.wikipedia.org/wiki/Random sample consensus

Point to plane distance (Mathworld) -
http://mathworld.wolfram.com/Point-PlaneDistance.html

Tae-kyeong Lee, Seungwook Lim, Seongsoo Lee, Shounan An, and Se-
young Oh, Senior Member, IEEE (2012) "Indoor Mapping Using Planes
Extracted from Noisy RGB-D Sensors*", Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference
Kamarulzaman Kamarudin, Syed Muhammad Mamduh, Ali Yeon Md
Shakaff, Shaharil Mad Saad, Ammar Zakaria, Abu Hassan Abdullah and
Latifah Munirah Kamarudin (2013) "Method to Convert Kinect’s 3D

57

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

https://msdn.microsoft.com/en-us/library/jj131033.aspx
https://msdn.microsoft.com/en-us/library/jj131033.aspx
http://aivarastumas.weebly.com/kinervo.html
https://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph/content/toolbox_graph/read_ply.m
https://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph/content/toolbox_graph/read_ply.m
https://en.wikipedia.org/wiki/Region_growing
https://en.wikipedia.org/wiki/Random_sample_consensus
http://mathworld.wolfram.com/Point-PlaneDistance.html

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Depth Data to a 2D Map for Indoor SLAM ", Signal Processing and its
Applications (CSPA), 2013 IEEE 9th International Colloguium

Daniel R. dos Santos, Member, IEEE, Marcos A. Basso, Kourosh
Khoshelham, Elizeu de Oliveira, Jr., Nadisson L. Pavan, and George
Vosselman (2016) "Mapping Indoor Spaces by Adaptive Coarse-to-Fine
Registration of RGB-D Data", IEEE Geoscience and Remote Sensing
Letters (Volume: 13, Issue: 2, Feb. 2016)

Gabriela Gallegos and Patrick Rives (2010) "Indoor SLAM Based on
Composite Sensor Mixing Laser Scans and Omnidirectional Images",
Robotics and Automation (ICRA), 2010 IEEE International Conference
Ying Zhang, Juan Liu, Gabriel Hoffmann, Mark Quilling, Kenneth Payne,
Prasanta Bose, Andrew Zimdars (2010) "Real-Time Indoor Mapping for
Mobile Robots with Limited Sensing", Mobile Adhoc and Sensor
Systems (MASS), 2010 IEEE 7th International Conference

Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Renand Dieter Fox
(2012) "RGB-D mapping: Using Kinect-style depth cameras for dense 3D
modeling of indoor environments", The International Journal of
Robotics Research 0(0) 1-17

Thrun S, Burgard W and Fox D (2000) "A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping", In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA).

Triebel R and Burgard W (2005) "Improving simultaneous mapping and
localization in 3D using global constraints"”, In Proceedings of the
National Conference on Artificial Intelligence (AAAI).

Newman P, Sibley G, Smith M, Cummins M, Harrison A, Mei C, et al.
(2009) "Navigating, recognizing and describing urban spaces with vision
and laser", The International Journal of Robotics Research 28(11-12):
1406-1433.

Nister D (2004) "An efficient solution to the five-point relativepose
problem", IEEE Transactions on Pattern Analysis and Machine
Intelligence 26: 756-777.

Akbarzadeh A, Frahm JM, Mordohai P, Clipp B, Engels C, Gallup D, et al.
(2006) "Towards urban 3D reconstruction from video", In Pro-ceedings
of the Third International Symposium on 3D Data Processing,
Visualization and Transmission (3DPVT).

Konolige K and Agrawal M (2008) "FrameSLAM: From bundle
adjustment to real-time visual mapping", IEEE Transactions on Robotics
25(5): 1066—-1077.

58

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

D. Holz, C. Lorken, and H. Surmann "Continuous 3D Sensing for
Navigation and SLAM in Cluttered and Dynamic Environments", In Proc.
of the International Conference on Information Fusion (FUSION), 2008.
O. Wulf, K. O. Arras, H. I. Christensen, and B. Wagner "2D Mapping of
Cluttered Indoor Environments by Means of 3D Perception”, In Proc. of
the IEEE Intl. Conf. on Robotics and Automation (ICRA), 2004.

Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke (2011)
"Real-Time Plane Segmentation using RGB-D Cameras*", Volume 7416
of the series Lecture Notes in Computer Science pp 306-317

Dirk Holz and Sven Behnke (2012) "Fast Range Image Segmentation and
Smoothing using Approximate Surface Reconstruction and Region
Growing", Volume 194 of the series Advances in Intelligent Systems and
Computing pp 61-73

K.-M. Lee, P. Meer, and R.-H. Park "Robust adaptive segmentation of
range images", IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, pp. 200-205, 1998.

L. Silva, O. Bellon, and P. Gotardo "A global-to-local approach for robust
range image segmentation", In Proc. of the Int. Conference on Image
Processing (ICIP), Rochester, NY, USA, 2002, pp. 773-776.

R. Schnabel, R. Wahl, and R. Klein " Efficient RANSAC for point-cloud
shape detection. ", Computer Graphics Forum, vol. 26, no. 2, pp. 214—
226, 2007.

D. Hahnel, W. Burgard, and S. Thrun "Learning compact: 3D modelsof
indoor and outdoor environments with a mobile robot", Robotics and
Autonomous Systems, vol. 44, no. 1, pp. 15-27, 2003.

Ren, Mingwu, Jingyu Yang, and Han Sun. "Tracing boundary contours in
a binary image", Image and vision computing 20.2 (2002): 125-131.
Schroeder, William J., Jonathan A. Zarge, and William E. Lorensen.
"Decimation of triangle meshes", ACM Siggraph Computer Graphics.
Vol. 26. No. 2. ACM, 1992

Toussaint, Godfried T. "A historical note on convex hull finding
algorithms", Pattern Recognition Letters 3.1 (1985): 21-28.

Fadili, Mohamed-Jalal, Mahmoud Melkemi, and Abderrahim Elmoataz.
"Non-convex onion-peeling using a shape hull algorithm", Pattern
recognition letters 25.14 (2004): 1577-1585.

Breu, Heinz, et al. "Linear time Euclidean distance transform
algorithms", IEEE Transactions on Pattern Analysis and Machine
Intelligence 17.5 (1995): 529-533.

59

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7

	1 Introduction and related work
	1.1 Related work
	1.2 Purpose of this work
	1.3 Equipment and tools
	1.3.1 Kinect specifications
	1.3.2 Installation of Kinect
	1.3.3 Kinect Fusion Explorer D2D
	1.3.4 The PLY File Format

	2 Methodology
	2.1 Mathematical operators
	2.2 Decimation of point set
	2.3 Identifying planar surfaces in the captured frame
	2.3.1 Identifying one best fitting plane
	2.3.2 Identifying multiple planes

	2.4 Region Growing Algorithm
	2.4.1 Automating region growing algorithm

	2.5 Merging world points from different frames
	2.6 Contour extraction
	2.7 Quantification of error
	2.8 Removal of common points between frames

	3 Experiments and results
	3.1 Experiment 1
	3.1.1 Initialization
	3.1.2 Decimation Results
	3.1.3 Plane extraction and rotation estimation
	3.1.4 Floor identification and merging results
	3.1.5 Contour extraction results

	3.2 Experiment 2
	3.2.1 Initialization
	3.2.2 Decimation Results
	3.2.3 Plane extraction and rotation estimation
	3.2.4 Floor identification and merging results
	3.2.5 Contour extraction results
	3.2.6 Experimenting with parameters

	4 Conclusion and future work
	5 References

