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Ημερομηνία:      ……/..…/20…… 

 
Ο – Η Δηλ. 

 
 
 

(Υπογραφή) 
 (1) «Όποιος εν γνώσει του δηλώνει ψευδή γεγονότα ή αρνείται ή αποκρύπτει τα αληθινά 

με έγγραφη υπεύθυνη δήλωση του άρθρου 8 παρ. 4 Ν. 1599/1986 τιμωρείται με φυλάκιση 
τουλάχιστον τριών μηνών. Εάν ο υπαίτιος αυτών των πράξεων σκόπευε να προσπορίσει στον 
εαυτόν του ή σε άλλον περιουσιακό όφελος βλάπτοντας τρίτον ή σκόπευε να βλάψει άλλον, 
τιμωρείται με κάθειρξη μέχρι 10 ετών. 
 

 
Με ατομική μου ευθύνη και γνωρίζοντας τις κυρώσεις (1), που προβλέπονται από της διατάξεις της παρ. 6 του άρθρου 

22 του Ν. 1599/1986, δηλώνω ότι: 
1.    Δεν παραθέτω κομμάτια βιβλίων ή άρθρων ή εργασιών άλλων αυτολεξεί χωρίς να τα περικλείω σε 

εισαγωγικά και χωρίς να αναφέρω το συγγραφέα, τη χρονολογία, τη σελίδα. Η αυτολεξεί παράθεση χωρίς 
εισαγωγικά χωρίς αναφορά στην πηγή, είναι λογοκλοπή. Πέραν της αυτολεξεί παράθεσης, λογοκλοπή θεωρείται 
και η παράφραση εδαφίων από έργα άλλων, συμπεριλαμβανομένων και έργων συμφοιτητών μου, καθώς και η 
παράθεση στοιχείων που άλλοι συνέλεξαν ή επεξεργάσθηκαν, χωρίς αναφορά στην πηγή. Αναφέρω πάντοτε με 
πληρότητα την πηγή κάτω από τον πίνακα ή σχέδιο, όπως στα παραθέματα. 

2.    Δέχομαι ότι η αυτολεξεί παράθεση χωρίς εισαγωγικά, ακόμα κι αν συνοδεύεται από αναφορά στην πηγή σε 
κάποιο άλλο σημείο του κειμένου ή στο τέλος του, είναι αντιγραφή. Η αναφορά στην πηγή στο τέλος π.χ. μιας 
παραγράφου ή μιας σελίδας, δεν δικαιολογεί συρραφή εδαφίων έργου άλλου συγγραφέα, έστω και 
παραφρασμένων, και παρουσίασή τους ως δική μου εργασία.  

3.    Δέχομαι ότι υπάρχει επίσης περιορισμός στο μέγεθος και στη συχνότητα των παραθεμάτων που μπορώ να 
εντάξω στην εργασία μου εντός εισαγωγικών. Κάθε μεγάλο παράθεμα (π.χ. σε πίνακα ή πλαίσιο, κλπ), 
προϋποθέτει ειδικές ρυθμίσεις, και όταν δημοσιεύεται προϋποθέτει την άδεια του συγγραφέα ή του εκδότη. Το 
ίδιο και οι πίνακες και τα σχέδια 

4. Δέχομαι όλες τις συνέπειες σε περίπτωση λογοκλοπής ή αντιγραφής. 
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Abstract 

Mapping of real and complex environments is a commonly researched issue as 
methods for robot navigation are constantly improved. It can be useful to robots in 
order to move in the environment avoiding collisions which may harm them. Also it 
can be useful in mapping hazardous areas in which humans cannot enter. In this work 
we will present a method of mapping a real environment using Kinect depth sensor. 
Kinect sensor takes depth frames which are useful to both mapping the environment 
and setting a path. The experiments conducted for the purpose of this work took place 
in indoor environments (classroom and another room) and the translation between the 
captured frames was measured manually. In the first chapter we will make an 
introductive reference on mapping and robot navigation and why mapping is essential 
for navigation. Also we will discuss some works and papers which present methods 
for indoor mapping using Kinect-like sensors or other sensors. Furthermore we will 
talk about the equipment and tools used for the purpose of this work. In the second 
chapter we will describe the methodology used for implementing the method 
presented and take a look into the algorithms used for this purpose. In the third 
chapter we will discuss some experiments we have conducted and present the results 
of each of them which have been produced by using the methodology described in 
chapter 2. The results show that the method presented can map the environment with a 
small error. In chapter 4 we will discuss the meaning of the results and the efficiency 
of our method. Also we will talk about future work, which may improve this method. 
In the last chapter we show the references used in chapter 1 and generally in this 
work.  
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1 Introduction and related work 

In modern robot navigation, robots need to have data regarding their surroundings 
so they are able to track themselves in the environment and plan their path avoiding 
obstacles in order to survive. This problem is known as SLAM (Simultaneous 
Localization And Mapping) and can be solved using different methods. For solving 
this problem researchers use laser sensors, depth sensors (like Kinect), cameras and 
other types of devices. Depth sensors are commonly used because knowing the depth 
value in a frame can help in the identification of possible obstacles. Although data 
taken from a depth sensor can be useful, the sensor itself has some drawbacks such as 
the field of view which is relatively small (0.8m to 3.5m usually) compared to laser 
sensors. A combination of sensors is also commonly used (e.g. camera and laser 
sensor). In the past few years there has been a major research interest in this field and 
many methods were presented, some of which work in real-time and in complex 
environments. 

1.1 Related work 

There are many papers and experiments already published which are discussing 
and/or experimenting in SLAM algorithms. Some of them carry out experiments 
using Kinect depth sensor or similar sensors. 

 
• Map generation 

As described in a paper [4] there are two representations of the environment when 
talking about mapping: the metric and the topological. The metric can be either 
geometric or grid-based. In geometric representations features like walls or corridors 
are directly mapped in respect of the world coordinate system whereas in grid-based 
representations [8] each grid has its own position in the environment which is given 
by the cell coordinates (x, y). Topological representations [7] aim at presenting the 
environment as a set of regions which are usually represented as nodes. Metric 
approach is faster and easier to write and update but are unreliable in large 
environments. On the other hand topological approach is more complex [9] but is 
better for position estimation and path planning [6]. In response to proposals of 
combining metric and topological representations the authors suggest a new method. 
Their method is related to proposals by Thrun [9], Arleo [5] or Zelinsky [10] but in 
addition their method extracts the topological map from the metric representation on-
line.  

 
• Plane extraction and segmentation 
 
In a paper published in 2012 [14] the authors carry out experiments for indoor 

mapping using planes extracted by a method described in the paper. The authors 
preprocess their data by estimating the normal vectors and edge pixels taken by 
Kinect sensor. Then they apply the RANSAC algorithm if a group of points forming a 
plane is bigger than a predetermined threshold. After that they extract the boundary of 
the plane. When they have extracted all the planes in a frame they use a method in 
order to merge the different planes which represent the same region. From 
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experiments they have conducted we can see that this whole process is very fast and 
considered real-time. 

 
Another paper published in 2011 [28] suggests a method for real-time plane 

segmentation. The authors present a fast process for the computation of local surface 
normals. Then they cluster these normals and segment all the planes formed by the 
point clouds. The authors also refer to some related with their work papers. One of 
them [27] uses 2D virtual range scans for both collision avoidance and localization. 
Another features two types of virtual scans, virtual structure and obstacle maps. The 
first type models environmental structures such as walls in a virtual 2D laser range 
scan and the second information about closest obstacles [26]. From the experiments 
carried out by the authors we can see that the processing times of their method are 
very low. 

   
A different method for range image segmentation is presented in a paper published 

in 2012 [29]. The authors discuss several approaches on segmentation such as 
RANSAC-based segmentation and segmentation using Region Growing. In 
RANSAC-based segmentation a method suggests sequentially removing inliers from 
the original data set, and continuing the segmentation with the residual points [30]. 
Another approach is to first identify connected regions and apply RANSAC region-
wise [31]. A very interesting and efficient approach is to decompose unorganized 
point clouds using an octree subdivision and apply RANSAC only to subsets of the 
original point cloud [32]. In region growing segmentation a method connects 
neighboring points in 3D laser range scans to a mesh-like structure and then those 
scans are segmented recursively by merging connected patches that are likely to lie on 
the same planar surface [33]. The authors then talk about their approach. They first 
use a fast mesh construction and then perform segmentation. The mesh construction 
uses a quad mesh and several triangulations and the segmentation is done by a region 
growing segmentation method which has not many differences with the other region 
growing algorithms used elsewhere.  

 
• 2D Indoor Mapping using Kinect 
 
Another paper which was published in 2013 [15] suggests a method for converting 

Kinect’s 3D depth data to 2D map in order to use it for indoor SLAM. The authors 
describe this process and prove it is better than using 2D or 1D sensors because those 
sensors may miss some objects in the scene due to its shape and position. The 
production of the real-time map was carried out by a base station on which the robot 
transmitted the data collected from Kinect. 

 
A different method of mapping indoor spaces is suggested in a paper published in 

2016 [16]. The authors of this paper use a Coarse-to-Fine registration method of the 
RGB-D data taken from Kinect. More specifically they use methods to extract and 
detect 2D visual features and use them to perform coarse registration. Furthermore 
they use an image-based segmentation technique for detecting regions in RGB 
images. Their results show that this method can map an indoor environment with a 
small error.    
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• 3D modeling of indoor environments using Kinect-like sensors 

In a paper published in 2012 [19] the authors introduce RGB-D Mapping. This 
paper is an extension of their previous work (2010). They use a frame-to-frame 
alignment RANSAC and demonstrate that it performs better than the Euclidean-space 
RANSAC. Then they use FAST features and Calonder descriptors instead of scale-
invariant feature transform (SIFT) for feature identification. Last step in their work is 
to use sparse bundle adjustment (SBA) and show how to incorporate ICP constrains 
into SBA. Among others the authors refer to techniques for 3D mapping using range 
scanners [20][21][22] and stereo cameras [23][24][25]. 

 
• Indoor SLAM using laser sensors 
 
There are several other sensors like Kinect which can provide similar data. A 

paper published in 2010 [17] suggests using a 2D laser range finder and an 
omnidirectional camera for indoor SLAM. The authors present a fully automatic 
process to do that. They calibrated the laser and camera using Matlab Omnidirectional 
Calibration Toolbox and used Polar Scan Matching (similar to Iterative Closest Point 
but less computationally expensive) for matching the different scans. The final step 
was to extract vertical lines from camera images and laser scans. 

 
• Indoor Mapping with short range sensors 
 
A paper published in 2010 [18] proposes a method of indoor mapping using 

bumper sensors and a wall sensor that enables wall-following for odometry. The 
method first performs trace segmentation by fitting line segments to the noisy 
trajectory taken by the wall sensor. Then the authors apply a probabilistic rectification 
process to the segmented traces to obtain the orthogonal wall outlines. The map result 
is a list of line segments representing the wall outlines. The experiments they have 
conducted show that the method is robust to odometry noise and non-rectilinear 
obstacles along the walls. 

1.2 Purpose of this work 

The purpose of this work is to present a method of mapping indoor environments 
and identifying the regions in which a robot can navigate. This identification is done 
by processing a series of consecutive depth frames taken by Kinect sensor. Kinect 
provides 3D data which are processed in order to produce a 2D map of the regions 
which represent the floor. To produce this map we use plane extraction (we calculate 
the rotation using the planes extracted), manually measured translation between the 
frames (simulating robot odometry), a region growing algorithm and contour 
extraction methods.  
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1.3 Equipment and tools  

For the purpose of this work, we used Kinect for Windows. Furthermore several 
tools and programs were used to aid this effort. Those are: MatLab, Kinect SDK and 
Kinect Developer Toolkit. 

1.3.1 Kinect specifications  

Kinect is an RGB depth sensor, which was designed and developed by Microsoft 
for the video game console X-BOX 360 and for computers. It features an RGB 
camera, a depth sensor and an array of microphones as shown in figure 1 [1]. 
Microsoft has supplied the device with open source software, which can track 
movement and faces. Kinect contains a rotor (tilt) just above its base, which allows it 
to move the angle of its field of view. The range in which objects can be tracked by 
Kinect is from 0.8 to 3.5 meters. In order to compute depth, Kinect uses an infrared 
ray emitter. The infrared rays are reflected onto any object they meet in their way, and 
then return to the device. The depth image produced by Kinect is 640x480 pixels. 
Table 1 shows some more specifications [1] of Kinect for Windows sensor. 

 
 

Kinect 
 

Array Specifications 
 

Viewing angle 43° vertical by 57° horizontal field of view 
Vertical tilt range ±27° 
Frame rate (depth and color 
stream) 30 frames per second (FPS) 

Audio format 16-kHz, 24-bit mono pulse code modulation (PCM) 

Audio input characteristics 

A four-microphone array with 24-bit analog-to-
digital converter (ADC) and Kinect-resident signal 
processing including acoustic echo cancellation and 
noise suppression 

Accelerometer 
characteristics 

A 2G/4G/8G accelerometer configured for the 2G 
range, with a 1° accuracy upper limit. 

Table 1 – Kinect specifications 
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Figure 1 - Kinect features 

 
 
Kinect uses its own coordinate system. The camera is considered as the start of the 

system (0, 0, 0). X is the horizontal axis, Y is the vertical axis and Z is the depth axis. 
The sensor measures the distances in front of it as negative. The coordinate system of 
the sensor is shown in figure 2 [2]. 

 
Figure 2 - Kinect Coordinates  
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1.3.2 Installation of Kinect 

In order to install Kinect, some packages are required. First we need to install 
Kinect SDK, which can be downloaded through Microsoft’s official site. Then we 
must install the Kinect Developer Toolkit in order to gain access to the documentation 
and various open source implementations. As soon as the installation is completed, we 
can plug our device into our computer and let Windows automatically install Kinect’s 
drivers. If they fail to install the drivers, we can download them through Microsoft’s 
official site and install them manually. 

1.3.3 Kinect Fusion Explorer D2D 

Kinect Fusion Explorer is an open source implementation which is provided by 
Kinect Developer Toolkit. This software can be used to capture frames and make a 3D 
reconstruction model. There is a UI which gives the user plenty of choices (figure 3).   

 

 
Figure 3 - Kinect Fusion Explorer UI  

The UI is divided in two regions. The first region (marked as red) is the view 
region whereas the second region (marked as blue) is the control region. 

 
In view region, there are 3 windows: 

 
1. Live 3D reconstruction (marked as 1): Real time 3D triangle 

reconstruction of area using Kinect measurements. These measurements 
are being processed in order to create live feedback.  

2. Depth image (marked as 2): Depth image produced by Kinect 
measurements. Light colors (closer to white color) represent small 
distances and dark colors (closer to black color) represent big distances. 
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3. Raw data (marked as 3): Raw point coordinates without showing depth. 
 

In control region there are 5 sections: 
 

1. Mesh section (marked as 4):  Provides the button Create a Mesh, which 
saves the frames captured by Kinect, into a file. Three options are available 
for the file format: 
 
 STL (STereoLithography) 
 OBJ (Object File) 
 PLY (Polygon File Format) 

 
2. Depth threshold section (marked as 5): Provides options for setting 

minimum and maximum distance the Kinect can see (0.35 to 8 meters). 
 

3. Capture Section (marked as 6): Provides options for color capture, mirror 
capture, use of camera pose finder and pause capture (pause integration). 
Pause capture is only available when camera pose finder is disabled. This 
section also provides a button for resetting the reconstruction.  

 
4. Reconstruction volume settings section (marked as 7): Provides options for 

setting the number of voxels per meter as well as the maximum weight they 
have on the reconstruction process. 

 
5. Volume voxel resolution section (marked as 8): Provides options for setting 

the resolution of a frame for every axis. 

1.3.4 The PLY File Format 

PLY (Polygon File Format) is a computer format also known as Stanford Triangle 
Format. It is designed for saving 3D data coming out of 3D scanners (e.g. Kinect). As 
soon as Kinect is plugged into our computer, we can run Kinect Fusion Explorer D2D 
in order to capture a frame. We choose PLY format from mesh section and leave 
everything else in the default options. We press the Create Mesh button and save the 
file. PLY contains data for a point cloud, as well as the polygons formed by them. 

 
A PLY file always starts with the keyword: 

Ply 
 
The keyword PLY is followed by three lines, which gives us information on the 

data encryption (binary, ASCII):  
 

format ascii 1.0 
format binary_little_endian 1.0 
format binary_big_endian 1.0 

 
The following lines show how many vertices are included in the file and how they 

are described (x, y, z axis): 
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element vertex 12 
property float x 
property float y 
property float z 

 
 

Similar lines follow in order to show how many faces are included in the file: 
 
 

element face 10 
property list uchar int vertex_indices 

 
End of header follows: 

 
end_header 

 
The lines that follow are the actual data: point coordinates (vertices) in 3-column 

ascii format and the indices of the vertices that form the triangles (3 indices per line 
for each triangle). 
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2 Methodology  

The goal of this work is to create a map which shows the regions in which a robot 
can navigate. This map will be produced by processing a series of frames taken by 
Kinect sensor. The Kinect sensor is manually moved. To read these data from the 
PLY files taken by Kinect in order to process it in Matlab, we use a method [3] we 
found on Mathworks. Figure 4 shows the process used in order to produce this map. 
First we need to reduce the number of points and faces included in a frame, which will 
lead to better performance. The next step is to use a variation of region growing 
algorithm in order to mark the region that represents the floor.  After this process, we 
will find the contour of this region. Having already measured the ground truth contour 
manually we will compare it with the output contour and calculate the mean error in 
centimeters. 

 
 

 
Figure 4 - Methodology 
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2.1 Mathematical operators 

The cross product between two vectors is a vector which is normal to the plane 
defined by those two vectors. The symbol used to describe this operation is: 

𝒂𝒂��⃗ × 𝒃𝒃��⃗  
When it comes to triangles, the cross of the vectors of two of its edges is the 

normal vector of the triangle itself. The vector of a triangle’s edge is computed by 
subtracting the two points forming the edge. Given a triangle consisted of the points: 

𝑣𝑣1 = (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) 
𝑣𝑣2 = (𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2) 
𝑣𝑣3 = (𝑥𝑥3,𝑦𝑦3, 𝑧𝑧3) 

The vectors of its edges are: 
 

𝒆𝒆𝒆𝒆����⃗ = (𝑥𝑥2 –  𝑥𝑥1,𝑦𝑦2 –  𝑦𝑦1,𝑧𝑧2 –  𝑧𝑧1) 
𝒆𝒆𝒆𝒆����⃗ = (𝑥𝑥3 –  𝑥𝑥2,𝑦𝑦3 –  𝑦𝑦2,𝑧𝑧3 –  𝑧𝑧2) 
𝒆𝒆𝒆𝒆����⃗ = (𝑥𝑥3 –  𝑥𝑥1,𝑦𝑦3 –  𝑦𝑦1,𝑧𝑧3 –  𝑧𝑧1) 

The normal vector of the triangle is: 
𝑽𝑽��⃗ = 𝒆𝒆𝒆𝒆����⃗  × 𝒆𝒆𝒆𝒆����⃗  

To compute the angle between two vectors  𝒂𝒂��⃗ ,𝒃𝒃��⃗  , thus to determine if they can be 
considered as parallel we calculate the dot product between the two normalized 
vectors:  

𝒂𝒂��⃗ ∙ 𝒃𝒃��⃗ /|𝒂𝒂��⃗ |.|𝒃𝒃��⃗ | 
 
We will use this product later in region growing algorithm to check if this value is 

higher than a predetermined threshold. 

2.2 Decimation of point set  

The frame captured by Kinect consists of a set of points and a set of the faces 
formed by those points. Due to the size and complexity of data, triangle decimation is 
required. Decimation algorithms are used very often in computer graphics-related 
operations, since they drastically reduce the computational burdin of these operations. 
Several criteria are used for selecting which triangles to eliminate, as described in [35] 
and elsewhere. In our application, we apply decimation to significantly reduce the 
number of faces and points of a given PLY file (generated for each Kinect frame) and 
make data processing faster and easier. 

MatLab has a built-in function called reducepatch. This function’s parameters are 
the set of points, the set of faces formed by those points and the number of faces 
needed after the decimation. Then reducepatch reduces the number of faces, while 
attempting to preserve the overall shape of the original scene/object. After finishing 
that process, reducepatch returns a structure containing the reduced points and faces.   
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Figure 5 - Pre-decimation points  

 
Figure 6 - Post-decimation points  
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Figure 7 - Pre-decimation faces  

 
Figure 8 - Post-decimation faces  

 
The figures above show the original frame (figure 5 for points and figure 7 for 

faces) of a corridor and the results after decimation (figure 6 for points and figure 8 
for faces). The original frame had about 12000 points and 15000 faces. Using the 
reducepatch function the number of points was reduced to about 2000 and the number 
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of faces to 3000. As we can see in figures 2.b and 2.d the overall shape of the corridor 
was well preserved. The function can also work efficiently in cases of much bigger 
sets of points and faces (even millions). 

2.3 Identifying planar surfaces in the captured frame 

In order to identify the planar surfaces in a captured frame we must first extract all 
the planes by using RANSAC algorithm. RANSAC (Random Sample Consensus) 
[12] is an iterative method to estimate parameters of a mathematical model from a set 
of points. It is a non-deterministic algorithm in the sense that it produces a reasonable 
result only with a certain probability, which can be increased if the number of 
iterations is increased. In this case it can be used for estimating the parameters of all 
the planes on a points set. Those parameters are A, B, C, and D. Given the points (x, y, 
z) forming the plane, the equation of the plane is shown below: 

 
𝐴𝐴 · 𝑥𝑥 + 𝐵𝐵 · 𝑦𝑦 + 𝐶𝐶 · 𝑧𝑧 +𝐷𝐷 = 0 

2.3.1 Identifying one best fitting plane 

The pseudo-code of RANSAC algorithm is shown below. Consensus set is the set 
of points fitting a plane and data set the set of all the points in the scene. 
Step 1: 
Select three random points and compute the parameters (A, B, C and D) of the best 
fitting plane. 
Step 2: 
Calculate the distance of every point from the best fitting plane. If the distance is 
smaller than a predetermined threshold, add the point to the consensus set. The 
distance [13] is calculated by the equation: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  
𝐴𝐴 · 𝑥𝑥 +𝐵𝐵 · 𝑦𝑦 + 𝐶𝐶 · 𝑧𝑧 +𝐷𝐷

√𝐴𝐴2 +𝐵𝐵2 + 𝐶𝐶2
 

Step 3: 
If the number of points in consensus set is considerably high, the plane is considered 
good. 
Step 4: 
If plane is good, the plane parameters are calculated again based on the points in the 
consensus set.  
Step 5: 
Repeat steps 2, 3 and 4 until consensus set length stays the same. 

2.3.2 Identifying multiple planes 

 The process described above can be used for every plane in the scene. To do so, 
some further steps must be followed: 
Step 6: 
Remove consensus set points from data set. 
Step 7: 
Call RANSAC algorithm (2.3.1) until all the points fit a plane or the number of 
iteration exceeds a predefined value. 
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The parameters A, B, C and D are normalized in order to give better planes. To 
normalize the parameters we need to compute the plane’s normal vector value as 
shown below and then divide parameters A, B, C and D with it. If we define V = [A, 
B, C] and S = [A, B, C, D], then: 

|𝐕𝐕| =  √𝐴𝐴2 + 𝐵𝐵2 + 𝐶𝐶2   

𝐒𝐒𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 =
𝐒𝐒

|𝐕𝐕|
 

Except the parameters of each plane RANSAC can also give a random point (x, y, 
z) which is part of the plane and therefore it can be used as a seed point for the Region 
Growing algorithm. With RANSAC the process can be used not only for mapping the 
floor, but instead for mapping the whole scene. 

This whole process identifies all the best fitting planes in a scene. To determine 
which one of them represents each wall on the scene, we can check the normal vector 
of the planes. The normal vector’s orientation shows the rotation of the plane in the 
scene.    

 
We ran RANSAC on a test set of points forming 2 vertical planes. The results are 

show in figure 8.a. 
 

 
Figure 8.a – Points (red) and planes identified by RANSAC 

2.4 Region Growing Algorithm 

Region Growing [11] is a simple region-based image segmentation method which 
is very similar to clustering algorithms. The algorithm examines neighboring points of 
initial seed point(s) and determines whether these neighbors should be added to the 
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same region as the initial point(s). More specifically it uses a queue which contains 
the indexes of the points. In each loop the algorithm extracts the head of the queue, 
identifies its neighbors and determines whether it meets the criteria specified by user. 
The efficiency of this algorithm is depended on the correct selection of the initial seed 
point(s).  

Advantages： 
1. Can correctly separate the regions that have the same properties we 

define. 
2. Can provide the original images which have clear edges with good 

segmentation results. 
3. It is simple, as it only needs a small number of seed points to represent 

the property we want. 
4. It is flexible. It works well with multiple criteria at the same time. 
Disadvantages： 
1. Computationally expensive 
2. Sensitive to noise.  
 
Region Growing Algorithm variation 
For the purpose of this work, a variation of Region Growing algorithm was used. 

The purpose of this variation is to make Region Growing algorithm work with 
triangles. This variation gets a seed triangle, identifies its neighbor triangles and then 
determines whether to put them in the same region as the seed triangle. The criteria 
based on which the algorithm determine that, is whether the vertical vector of the 
triangle is parallel to the mean vector of the triangles which already are in the region. 
To fully enlighten the process a pseudo-algorithm is given below: 
Step 1:  
Get seed triangle by user. Compute normal vector of the seed triangle, set it as mean 
and insert the triangle in queue Q (neighbors queue).  
Step 2: 
Extract the first triangle from queue Q and insert it in queue area (region’s queue). 
Step 3: 
Identify the triangle’s neighbors. 
Step 4: 
For each neighbor: 

Step 4.a: 
 Compute normal vector. 
Step 4.b: 

If normal vector is parallel or quite parallel to the mean normal vector, insert it 
in queues area and Q.  

Step 4.c: 
   Re-compute mean vector by taking into account every triangle in queue area. 

Step 5: 
Repeat steps 2, 3 and 4 until queue Q is empty. 

 
Step-by-step example: 
To better understand this example, here is some clarification of the colors used in the 
figures below: 
Green: Triangles which are in region’s queue (area) and whose neighbors the 
algorithm is about to identify. 
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Gray: Triangles which are neighbors of the triangle investigated at that time (the 
extracted head of the queue Q), but not yet compared to the mean normal vector of the 
region’s queue (area) triangles. 
Yellow: Triangles which are neighbors of the triangle investigated at that time (the 
extracted head of the queue Q) and also pass the criteria to be considered part of the 
region. Their neighbors are not yet identified. 

The algorithm starts from a seed triangle which is given either by user (by hand) 
or by RANSAC algorithm (random point of the plane found by RANSAC which is 
part of a triangle). This triangle is put into the region’s queue (area) and marked 
green as shown in figure 9. At this time the queues status is: 

 
 

area 
1 - - - - - 

 
Q 

- - - - - - 
 
 

 
Figure 9 

 
The algorithm will now start identifying this triangle’s neighbors one by one. In 

figure 10 one of its neighbors is marked gray.  
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Figure 10  

Triangle’s (2) normal is quite parallel to the mean normal vector of all the 
triangles marked green, so it is marked yellow in figure 2.g. If the triangle’s normal 
vector was not acceptably parallel to the mean of the green triangles normal vectors it 
would remain gray. The triangle (2) is now put to the neighbors queue (Q). The 
updated status of the queues is: 

 
area 

1 - - - - - 
 

Q 
2 - - - - - 
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Figure 11  

 
The same process is used for the other neighbors of the triangle (1). The algorithm 

identifies the neighbor triangle 3 (figure 11) and then puts it in neighbors queue (Q) as 
it passes the pre-defined criteria (figure 12). After these steps the status of the queues 
is: 

 
area 

1 - - - - - 
 

Q 
2 3 - - - - 
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Figure 12  

 

 
Figure 13 

 
The algorithm identifies the last neighbor of triangle 1 using the same process 

(figure 2.j) and then puts it in the neighbors queue (Q) (figure 13). The updated status 
of the queues is: 
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area 

1 - - - - - 
 

Q 
2 3 4 - - - 

 
 
 

 
Figure 14  
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Figure 15  

 
At this point the algorithm has identified all neighbors of triangle 1 and 

determined whether they are part of the region. Now the algorithm extracts the head 
triangle of the neighbors queue (Q) marks it green and puts it in the region’s queue 
(area). So at this point the queues status is: 

 
 

area 
1 2 - - - - 

 
Q 

3 4 - - - - 
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Figure 16 

 
This whole process is repeated until there are no triangles left in neighbors queue 

(Q).  

2.4.1 Automating region growing algorithm 

Except for the parameters of a plane, RANSAC also identifies the subset of Kinect 
frame points fitting in the plane, according to a tolerance. From that subset we can 
select a single point to play the role of the seed point for the Region Growing 
Algorithm. This point should be located near in the center of mass of the points than 
lay on the plane in order to avoid problems caused by the points located near the 
outline of the plane. 

 
Given that 𝐴𝐴 · 𝑥𝑥 + 𝐵𝐵 · 𝑦𝑦 + 𝐶𝐶 · 𝑧𝑧 + 𝐷𝐷 = 0 defines a plane, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 are 

the mean coordinates of the points belonging to that plane (with a tolerance) and value 
is a predetermined number (in cm), the selected point (x0,y0,z0) must meet the criteria 
below: 

 
Case 1: 
The plane is defined mostly by axis X and axis Y (equivalently, C > A and C > B): 

 
𝑥𝑥0 > 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥0 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑  

𝑑𝑑𝑑𝑑𝑑𝑑  
𝑦𝑦0 > 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦0 < 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑 

 
Case 2: 
The plane is defined mostly by axis X and axis Z (equivalently, B > A and B > C): 
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𝑥𝑥0 > 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥0 < 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑  

𝑑𝑑𝑑𝑑𝑑𝑑  
𝑧𝑧0 > 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑧𝑧0 < 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑 

Case 3: 
The plane is defined mostly by axis Y and axis Z (equivalently, A > B and A > C): 
 

𝑦𝑦0 > 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑦𝑦 < 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑  
𝑑𝑑𝑑𝑑𝑑𝑑 

 𝑧𝑧0 > 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑  𝑑𝑑𝑑𝑑𝑑𝑑 𝑧𝑧0 < 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 +  𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣𝑑𝑑 
 

We run the automated region growing algorithm in the same test set used in 
RANSAC (2.3.2) and the results are shown in figure 16.a. 

 
Figure 16.a – Points of the floor (blue), seed point given by RANSAC (red) and  

points of the wall (green) 

2.5 Merging world points from different frames 

After performing region growing algorithm in every frame, we need to merge the 
frames in order to complete the mapping of the floor. To do this we need to know how 
much the Kinect sensor has moved between two frames. We can obtain this 
information manually (simulating robot odometry) or by the information extracted by 
planes (given by RANSAC). To better understand this information we will not use the 
coordinates system used by Kinect. Instead we will use the common coordinate 
system. The camera of the sensor is considered to be the center of the coordinates 
system (point 0, 0, 0). The sensor is moved only forward (-X axis), backwards (X 
axis), to the left (-Y axis) and to the right (Y axis). The sensor can also rotate left or 
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right only around Z axis. We define our first frame to be the coordinate system and 
then transform the following frames to match with it. 

 
As soon as we receive the translation and/or rotation of the sensor, using manually 

measurements and plane information, we can transform the points of each frame to 
make them match the first frame. The types of point transformation are described 
below: 

 
Type 1: Translation 
The Kinect sensor can move forward/backward/left/right. Given that T = [Tx, Ty, 

1] is the movement matrix (Tx represents movement in cm on X axis, Ty represents 
movement in cm on Y axis and on Z axis there is no movement), the transformation of 
the points is given by the equation below: 

 
pointstransformed = pointsoriginal +𝐓𝐓  

 
Type 2: Rotation 
We assume that the Kinect sensor can freely rotate around Z axis. Given that θ is 

the angle of the sensor rotation, the rotation matrix R is calculated as shown below: 
 

cos (𝜃𝜃) −sin (𝜃𝜃) 0
sin (𝜃𝜃) cos (𝜃𝜃) 0

0 0 1
 

 
The transformation of the points can be either one of the two types or a 

combination of them. If it is a combination of movement and rotation, the 
transformation is given by the equation below: 

 
pointstransformed = �R · pointsoriginal� +𝐓𝐓 

 
Using the planes which RANSAC gives as output we can estimate the rotation 

between two consecutive frames. Knowing the planes which represent the same 
surface before and after the rotation we can estimate the rotation angle as shown 
below. 

 
Given that [𝐴𝐴1,𝐵𝐵1,𝐶𝐶1,𝐷𝐷1] represent the surface (plane) in the frame before the 

rotation and [𝐴𝐴2,𝐵𝐵2,𝐶𝐶2,𝐷𝐷2] represent the same surface (plane) in the frame after the 
rotation, the formula for estimating the rotation angle is: 

 
angle = cos−1([𝐴𝐴1,𝐵𝐵1,𝐶𝐶1] ∙ [𝐴𝐴2,𝐵𝐵2,𝐶𝐶2]) 

 
Note that ‘∙’ in this case is the scalar product between two vectors. 

2.6 Contour extraction 

Now that we have merged the frames, we have a set of points describing the floor-
like region. The next step is to find the contour of this region. Although the 
identification of the convex hull of a set of points is a well-studied problem with 
efficient solutions [36], finding the non-convex hull is a problem hard to define 
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eg.[37]. Our approach is a practical and efficient solution of extracting the contour 
after embedding the real world points of the contour into a binary discrete image. 
Thus the proposed algorithm is parameterized by the size of the pixel used in 
converting the set of real world points into a binary image. Then we will find the 
pixels forming the contour of the binary image and convert them again to coordinates.  

 
• World coordinates to pixels  

 
To convert the coordinates of points to binary image, we will use a simple 

algorithm. At the end of this process the region will be white (1) and the background 
will be black (0). Given that pixel size is a predetermined value in cm, the size of this 
binary image is computed based on the given pixel size: 

 

number of rows =
|𝑚𝑚𝑑𝑑𝑥𝑥(𝑦𝑦)−𝑚𝑚𝑑𝑑𝑑𝑑(𝑦𝑦)|

(𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑)
 

 

number of columns =
|𝑚𝑚𝑑𝑑 𝑥𝑥(𝑥𝑥)− 𝑚𝑚𝑑𝑑𝑑𝑑 (𝑥𝑥)|

(𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑)
  

 
 
 
 
 

A simple linear algorithm: 
Step 1 
For every pixel (i, j) in binary image where i represents rows and j represents columns 
and pixel size is a predetermined value, compute the x and y coordinates forming the 
pixel:  

 
𝑥𝑥0 = 𝑚𝑚𝑑𝑑𝑑𝑑(𝑥𝑥) + (𝑗𝑗 − 1) · (𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑) 

𝑥𝑥1 = 𝑥𝑥0 + (𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑) 
 

𝑦𝑦0 = 𝑚𝑚𝑑𝑑𝑥𝑥(𝑦𝑦)− (𝑑𝑑 − 1) · (𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑) 
𝑦𝑦1 = 𝑦𝑦0 + (𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑) 

 
Step 2: 
If there are one or more points which are between the pixels coordinates, then that 
pixel in the binary image is marked as white (1). 
Step 3: 
Repeat steps 1 and 2. 

 
• Extraction of binary image contour 
 
In a binary image it is much easier to find the contour of a region. Several 

algorithms exist for extracting the contour of a connected component in a binary 
image [34], such as the Pavlidis algorithm. MatLab includes a built in function called 
bwtraceboundary which implements the track the contour of region / object in binary 
image. The algorithm starts from a pixel specified by the user and then follows its 
neighbors in order to complete the contour. The starting pixel must be part of the 

32 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7



contour of the region (white (1)). To consider a pixel as contour at least 3 of its 
neighbors must not be part of the region (black (0)). Connectivity can be 
parameterized by the user, thus the algorithm checks for 4 or 8 neighbors in each 
current pixel. User can also specify which neighbor will be the first to be checked by 
the function as well as the direction the function will follow which can be clockwise 
or counterclockwise. 

As soon as bwtraceboundary has found the contour it returns a matrix containing 
the rows and columns of the pixels forming the contour. 

 
• World pixels to coordinates 
 
In order to find the coordinates of the pixels forming the contour of the binary 

image, we will use a reverse algorithm similar to the one we used for converting the 
coordinates to a binary image. 

 
The coordinates of the pixels forming the contour can be computed using the pixel 

size which was used to convert them to binary. Given that i represents the rows and j 
represents the columns, the coordinates are computed using the equations below: 

 
𝑥𝑥 =  𝑚𝑚𝑑𝑑𝑑𝑑(𝑥𝑥) + ( 𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑) · 𝑗𝑗  

 
𝑦𝑦 =  𝑚𝑚𝑑𝑑𝑥𝑥(𝑦𝑦)− (𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑) · 𝑑𝑑 

2.7 Quantification of error  

As soon as we have found the point forming the contour we need to check if the 
result is close enough to the original contour. An easy way to compare the output 
contour with the true contour is to employ the Distance Transform (DT) of the 
ground-truth contour (which is embedded in a discrete binary image, as described 
above). Several efficient algorithms exist for computing the DT of a binary image 
[38]. We will use the built-in function bwdist scans a binary image and for every pixel 
computes the Euclidean distance between that pixel and the nearest non-zero (white) 
pixel of the binary image. 

We use the function bwdist on the true contour binary image. The contour binary 
image will be created with a predetermined small pixel size. The binary image of the 
contour may differ in size with the output binary image because we choose a 
relatively smaller pixel size to catch all the details of the ground truth contour. As a 
result the ground binary contour image will be always equal to or bigger than the 
output binary image. To compare the two images we need to transform the second 
image. This transformation can be done with Matlab’s built-in function imresize, 
which takes as parameters a binary image, the desired size of the image after 
transformation (rows and columns) and the name of the method to use for resizing the 
image. Then for every pixel of the output contour binary image we check its value in 
the true contour image. To find the error of the output contour we sum those values 
and then find their mean value. Given that pixel size is a predetermined value in cm 
we use the following formula to find the error in cm: 

 
𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑚𝑚 =  𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 · (𝑝𝑝𝑑𝑑𝑥𝑥𝑑𝑑𝑣𝑣 𝑑𝑑𝑑𝑑𝑧𝑧𝑑𝑑) 
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Figure 17 - Point set and ground truth contour 

 
 

 
Figure 18 - Binary ground truth contour 

 
   
Given the set of points shown at figure 17 (figure 18 binary contour), we will use 

this process to show how the algorithm corresponds to different pixel sizes. The 
ground binary contour will be calculated using a 3cm pixel size. 

 
We calculated the contour using 5cm and 20cm pixel sizes (figure 19 and figure 

20) and as we can see the accuracy of the algorithm is decreased if we increase the 
pixel size. Furthermore the mean error is increased. Setting the pixel size to 5cm gives 
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a contour with 0.66cm mean error whereas using a 20cm pixel gives a contour with 
4.34cm mean error. 

 
   

 
Figure 19 - Binary contour (5cm) 

 

 
Figure 20 - Binary contour (20cm) 

2.8 Removal of common points between frames 

Although there is a translation and/or rotation between the points of two 
consecutive frames, some points are inevitably common in both frames. Taking them 
into account twice would be both more computationally expensive and also not a very 
logic experiment. Because of that we must remove those points from one of the two 
frames (the second). To do so we will use Matlab’s built-in function inpolygon. This 
function takes as parameters a set of points which form a polygon and a set of points 
for testing and returns a matrix (same size with the test point set) containing 0 and 1. 

35 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:42:21 EET - 137.108.70.7



The value 0 represents that the points in the specific index are not part of the polygon 
and the value 1 represents the opposite. The simple steps of this process are shown 
below: 

 
Step 1:  
Calculate the contour of all the previous frames so far. 
Step 2: 
Use inpolygon function to identify which points of the following frame are included in 
the contour calculated in step 1 and remove those points 
Step 3: 
Re-calculate the contour using all previous frames and the following frame. 
Step 4: 
Repeat steps 1,2 and 3 until all frames are processed. 
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3 Experiments and results 

Using the methodology we described in chapter 3, we carried out some 
experiments. We used Kinect sensor to capture consecutive frames of an area and then 
using the process described in chapter 3, we managed to map the floor and calculate 
the error between the true contour and the output contour. 

3.1 Experiment 1 

3.1.1 Initialization 

In the first experiment we captured three consecutive frames of a region in which 
there are two vertical walls and the floor. We considered the first frame to be the 
reference coordinate system and we transformed the points of the following frames to 
match with it. In this experiment we only had rotation between the frames. The 
experiment’s initialization is shown in Table 2. The values shown in column 
Translation are in cm. 

 
Frame Translation Rotation 

1 [0, 0] 0o 
2 [0, 0] ~12o  
3 [0, 0] ~12o  

Table 2 – Experiment 1 initialization 

3.1.2 Decimation Results 

For decimation we used the same settings for each frame. The faces were reduced 
to 6000 which was empirically a good choice in order to avoid both holes and 
computational complexity. Choosing a smaller number of faces for decimation may 
result to “holes” in some regions of the frame and therefore will give wrong outputs. 
These “holes” are created because the decimation algorithm reduces points from 
regions which are linear in order to keep as many edge points as possible so that the 
overall shape is preserved. In case we choose a larger number of faces we may have 
better results in the shape of floor, but the cost of complexity and processing would be 
much higher. The frame shown in figure 21 shows the points of the first frame after 
decimation. 
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Figure 21 - Post-decimation points 

3.1.3 Plane extraction and rotation estimation 

RANSAC algorithm was used in every frame in order to identify all the planes in 
each of them. For this experiment the threshold for the maximum distance of a point 
from the plane was set to 0.8cm. The threshold of the percent of points needed to 
consider a plane good was set to 20%. The results of the seven consecutive frames are 
shown in figures 22 – 24 where the points of the frame are marked red. Note that the 
planes shown in the figures are not boundary correct but represent the set of points 
fitting them. 
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Figure 22 - Frame 1 planes and points 

 
 

 
Figure 23 - Frame 2 planes and points 
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Figure 24 - Frame 3 planes and points 

 
 
Table 3 shows all the planes found by RANSAC algorithm. The values shown are 

the normalized values of A, B, C and D of the planes in each frame and Table 3 the 
real and the algorithm’s estimation angle between every two frames. 

 
Frame Planes in frame Plane parameters [A, B, C, D] 

1 3 

Plane 1:  
[-0.8512,    0.5246,    0.0151,   -0.9047] 
Plane 2:  
[-0.0124,    0.0112,   -0.9999,   -0.3144] 
Plane 3:  
[-0.5050,   -0.8631,   -0.0021,   -0.8747] 

2 3 

Plane 1:  
[-0.6832,   -0.7302,    0.0001,   -0.8696] 
Plane 2:  
[-0.7171,    0.6967,    0.0156,   -0.9130] 
Plane 3:  
[ 0.0085,   -0.0010,    1.0000,    0.3101] 

3 3 

Plane 1:  
[-0.8407,   -0.5414,   -0.0098,   -0.8569] 
Plane 2:  
[ 0.0071,   -0.0085,   -0.9999,   -0.3137] 
Plane 3:  
[-0.5082,    0.8612,   -0.0032,   -0.9201] 

Table 3 – Experiment 1 plane parameters  
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Frames Real angle Estimated angle 

1 to 2 ~12o   12.5254o 
2 to 3  ~12o   15.3176o 

Table 4 – Experiment 1 estimated rotation angle 

3.1.4 Floor identification and merging results 

We used the variation of region growing algorithm on each of the three frames in 
order to find the region of the floor. The algorithm identified the points and faces that 
form the region of the floor. The result is shown in the figure below (figure 25). For 
this experiment we set the threshold (for identifying whether normal vectors are 
parallel enough to mean normal vector) to be 0.3. Note that values closer to 0 mean 
that the normal vector is closer to becoming parallel to the mean normal vector. 

 
Figure 25 – Points (blue) and triangles found by region growing  

Using the planes extracted by RANSAC we know the rotation angle between each 
frame and we can therefore calculate the rotation matrices. The rotation angle is 
−𝒆𝒆𝒆𝒆.𝟓𝟓𝒆𝒆𝟓𝟓𝟓𝟓𝐧𝐧 for the second frame and −𝒆𝒆𝟓𝟓.𝒆𝒆𝒆𝒆𝟑𝟑𝟑𝟑𝐧𝐧 for the third frame. The rotation 
matrices are shown below. 

 
   0.9753 0.2209 0
−0.2209 0.9753 0

0 0 1
 

 
 

   0.8918  0.4524 0
−0.4524 0.8918 0

0 0 1
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In figure 26 we can see the merged frames after their transformation (blue for 

frame 1, red for frame 2 and green for frame 3) and in figure 27 we can see the 
merged floor (blue for frame 1, red for frame 2 and green for frame 3). 

 
Figure 26 - Merged frames after transformation of points 

 
Figure 27 - Merged floor after performing region growing in all three frames (common 

points removed) 
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3.1.5 Contour extraction results 

Now that we have the merged floor we need to find its contour. In order to do so 
we must first convert the coordinates to binary. We choose the pixel size to be 2.5cm 
and the result is a binary image in which white represents the pixels which have at 
least one point in them and black represents the pixels which have no points in them. 
The output binary image is shown in figure 28. To find the contour of this binary 
image we will use bwtraceboundary. The algorithm automatically selects a starting 
pixel to start the process. The output returned by the function is shown in figure 29 
(marked in pink). The contour shown in figure 29.i is in pixels so the next step is to 
convert it to coordinates. To do that we will use the reverse procedure using the same 
pixel size (2.5cm). The result is shown in figure 30. 

 
 

            
Figure 28 - Binary image of floor    Figure 29 - Binary image of floor  

 
The result seems quite good as most of the points are within the contour (marked 

red in figure 30). Using the methodology described in chapter 2.7 we calculated the 
mean error between the original contour and the output contour shown in figure 30. 
The mean error in this experiment is 0.98cm.  
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Figure 30 - Floor contour coordinates (red) and points of the floor (black) 

3.2 Experiment 2  

3.2.1 Initialization  

In this experiment we captured seven consecutive frames of a classroom. We once 
again considered the first frame to be the reference coordinate system and we 
transformed the points of the following frames to match with it. In this case we had 
translation or rotation between the frames. The experiment’s initialization is shown in 
Table 5. The values shown in column Translation are in cm. 

 
Frame Translation Rotation 

1 [0, 0] 0o 
2 [-70, 0] 0o 
3 [-140, 0] 0o 
4 [-210, 0] 28o 
5 [-210, -70] 28o 
6 [-210, -140] 28o 
7 [-210, -210] 28o 

Table 5 – Experiment 2 initialization 
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3.2.2 Decimation Results  

First we decimated the points and faces of a frame. We again used the same 
method in every frame so each frame’s faces were reduced to 6000. The frame shown 
in figure 31 shows the points of the first frame after decimation.   

 
Figure 31 - Post-decimated points 

 
Decimation reduced the points and faces by a huge amount preserving the overall 

shape of the frame perfectly.   

3.2.3 Plane extraction and rotation estimation 

Once again we used RANSAC algorithm every frame in order to identify all the 
planes in each of them. In this case the threshold for the maximum distance of a point 
from the plane was set to 1.5cm. The threshold of the percent of points needed to 
consider a plane good was set to 12%. The results of the seven consecutive frames are 
shown in figures 32 – 38 where the points of the frame are marked red. Note that the 
planes shown in the figures are not boundary correct but represent the set of points 
fitting them. 
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Figure 32- Frame 1 planes and points 

 
 

 
Figure 33 - Frame 2 planes and points 
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Figure 34 - Frame 3 planes and points 

 
 

 
Figure 35 - Frame 4 planes and points 
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Figure 36 - Frame 5 planes and points 

 
 

 
Figure 37 - Frame 6 planes and points 
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Figure 38 - Frame 7 planes and points 

 
 
RANSAC has found all the planes in each frame. Table 6 shows the normalized 

values of A, B, C and D of the planes in each frame and Table 7 the real and the 
algorithm’s estimation angle between every two frames. 
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Frame Planes in frame Plane parameters [A, B, C, D] 

1 2 

Plane 1:  
[-0.0272,   -0.0042,   -0.9996,   -0.6363] 
Plane 2:  
[ 0.0105,    0.9999,   -0.0094,   -0.8790] 

2 2 

Plane 1:  
[ 0.0265,    0.0072,    0.9996,    0.6371] 
Plane 2:  
[ 0.0245,    0.9996,   -0.0105,   -0.8768] 

3 2 

Plane 1:  
[-0.0236,   -0.0015,   -0.9997,   -0.6288] 
Plane 2:  
[-0.0150,    0.9998,   -0.0100,   -0.8942] 

4 4 

Plane 1:  
[ 0.8671,    0.4968,   -0.0347,    1.8084] 
Plane 2:  
[-0.4879,    0.8729,    0.0074,   -0.8625] 
Plane 3:  
[ 0.8921,    0.4507,   -0.0327,    1.6700] 
Plane 4:  
[-0.0345,   -0.0041,   -0.9994,   -0.6524] 

5 4 

Plane 1:  
[-0.8759,   -0.4818,    0.0246,   -1.8337] 
Plane 2:  
[ 0.8616,    0.5062,   -0.0360,    1.6351] 
Plane 3:  
[-0.4861,    0.8739,    0.0094,   -1.5352] 
Plane 4:  
[ 0.0355,    0.0046,    0.9994,    0.6609] 

6 2 

Plane 1:  
[-0.8814,   -0.4715,    0.0295,   -1.8089] 
Plane 2:  
[ 0.0207,     0.0109,    0.9997,    0.6401] 

7 2 

Plane 1:  
[-0.8912,   -0.4521,    0.0373,   -1.8104] 
Plane 2:  
[ 0.0299,    0.0115,    0.9995,     0.6543] 

Table 6 – Experiment 2 plane parameters  
 

Frames Real angle Estimated angle 

1 to 2 0o  0.8024o 
2 to 3  0o  2.2609o 
3 to 4 28o 28.3604o 
4 to 5 0o  0.1650o 
5 to 6 0o  0.7235o 
6 to 7 0o 1.3244o 

Table 7 – Experiment 2 estimated rotation angle 
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3.2.4 Floor identification and merging results 

Using once again the variation of region growing algorithm on each of the seven 
frames we identified the region of the floor. The algorithm identified the points and 
faces that form the region of the floor. The result is shown in the figure below (39). 
For this experiment we set the threshold (for identifying whether normal vectors are 
parallel enough to mean normal vector) to be 0.3.  

 

 
Figure 39 - Points (blue) and triangles found by region growing 

 
   
Next step is to merge the seven frames together. Using the odometer we know that 

the distance between the first 2 frames is 70cm on the X axis. Kinect realizes the 
coordinates of X axis in front of it as negative, so in order to merge the first two 
frames we need to just subtract 70cm from the X axis coordinates of the second 
frame’s points. Frame 3 follows the same pattern so to merge it with the other two we 
need to subtract 140cm from the X axis coordinates of the third frame’s points. The 
fourth frame is a little different as it features both translation and rotation. The 
rotation is +28.3604o (as estimated in Table 7) around Z axis and in order to apply it 
to the points we must first create the rotation matrix which is shown below: 

 
0.8775 −0.4795 0
0.4795 0.8775 0

0 0 1
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To apply the rotation to the points we multiply the rotation matrix with the points 
of the fourth frame. The movement is the same as in frames 2 and 3, so we subtract 
210cm from the X axis coordinates of the fourth frame’s points. It is critical that we 
first rotate the points and then move them. Frame 5 also has both movement and 
rotation. The rotation is the same and the movement is on Y axis this time. The 
translation is 70cm to the left so it will be negative. We first apply the rotation by 
multiplying the points with the rotation matrix. Then we subtract 70cm from the Y 
axis coordinates of the fifth frame’s points. To make it match with the other frames 
we must also subtract 210cm form the X axis coordinates of the fifth frame’s points. 
Frames 6 and 7 follow the same pattern as frame 5 so we first rotate its points using 
the same rotation matrix and then subtract 210cm form the X axis coordinates. Lastly 
we subtract 140cm from the Y axis coordinates of the sixth frame’s points and 210cm 
from the Y axis coordinates of the seventh frame’s points. The result of the merged 
frames is shown in figure 40 (blue (right) for frame 1, red for frame 2, green for frame 
3, yellow for frame 4, purple for frame 5, black for frame 6 and blue (left) for frame 
7) and the merged floor after removing common points in each frame, in figure 41 
(blue (right) for frame 1, red for frame 2, green for frame 3, yellow for frame 4, purple 
for frame 5, black for frame 6 and blue (left) for frame 7).  

 
Figure 40 - Merged frames after transformation of points 
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Figure 41 - Merged floor after performing region growing in all three frames (common 

points removed) 

3.2.5 Contour extraction results 

Now that we have the merged floor we need to find its contour. In order to do so 
we must first convert the coordinates to binary. We choose the pixel size to be 5cm 
and the result is a binary image in which white represents the pixels which have at 
least one point in them and black represents the pixels which have no points in them. 
The output binary image is shown in figure 42. To find the contour of this binary 
image we will again use bwtraceboundary. The output returned by the function is 
shown in figure 43 (marked in pink). The contour shown in figure 43 is in pixels so 
the next step is to convert it to coordinates. To do that we will use the reverse 
procedure using the same pixel size (5cm). The result is shown in figure 44. 
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Figure 42 - Binary image of floor Figure 43 - Binary image    

contour (pink pixels) 

 

 
Figure 44 - Floor points (black) and contour (red) coordinates 

 
The result seems quite good as most of the points are within the contour (marked 

red in figure 44). Using the methodology described in chapter 2.7 we calculated the 
mean error between the original contour and the output contour shown in figure 44. 
The mean error in this case is about 1.34cm.  
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3.2.6 Experimenting with parameters 

The mean error of the output contour may vary with different parameters. The 
parameters which can be changed are the pixel size used for the binary image creation 
and the number of faces after decimation. To further analyze the process and to show 
the different results the algorithm can give as output, we experimented with those 
parameters. Table 8 shows the results in different values of these parameters. Looking 
at the values of Table 8 we can easily understand that bigger pixel size value results in 
greater error even if the number of faces is big. Furthermore we can see that a higher 
number of faces can result in less error which seems legit because the more faces and 
points there are in a frame the less “holes” will be present. 

 

Table 8 – Experiments with parameters 
  

Number of faces Pixel size Error 
1000 5cm 3.75cm 
1000 10cm 4.68cm 
1000 20cm 7.67cm 
3000 5cm 3.91cm 
3000 10cm 4.29cm 
3000 20cm 6.19cm 
6000 5cm 1.34cm 
6000 10cm 3.30cm 
6000 20cm 5.13cm 
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4 Conclusion and future work 

The results from the experiments conducted show that our method maps the 
environment efficiently with a relatively small error. In Table 9 we present the 
running times of each step of our method. The process is not real time as some steps 
take several seconds to complete. The main speed problems can be seen in reading 
process, in points / faces decimation process and in region growing process. 

 
Experiment Reading 

of file 
Decimation RANSAC Region 

Growing 
Total time 

1 ~3sec ~1.5sec ~15ms ~10sec  ~15.5sec 
2 ~10sec ~6sec ~40ms ~22sec ~40sec 
Table 9 – Running times for every step / frame in each of the two experiments. The process was 

performed on an AMD FX-6300 processor 
 

The process for each step takes ~15.5 seconds / frame to complete in the first 
experiment and ~40 seconds / frame in the second experiment. Table 10 shows the 
process of the overall contour extraction and calculation of error in each experiment. 

 
Experiment Contour extraction and error calculation 

1 ~1sec 
2 ~2sec 

 Table 10 – Running times in each of the two experiments. The process was performed on an AMD 
FX-6300 processor 

 
 
Future work 
 

Future work on this method can improve its efficiency and its speed. Some of 
them are presented below: 

 
• Implementation of a more efficient and faster method for reading the 

data captured by Kinect. A way to do this is to read directly from stream 
without saving data into a file. 

• Implementation of a faster method for decimating the points/faces of 
frames. 

• Calculation of translation between frames from the info of the planes 
extracted by RANSAC algorithm. 

• Calculation of rotation not only in z axis but also in x and y axis and 
translation on z axis. 

• Implementation of a method for merging planes representing the same 
surface in consecutive frames. 
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