
S TAT I S T I C A L S TAT I C T I M I N G A N A LY S I S & P H Y S I C A L D E S I G N

panagiotis - taxiarchis giannakou

Master thesis
Electrical & Computer Engineering

ECE
University of Thessaly

November 2015 – version 1.0

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/132825409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

supervisors:
George Stamoulis
Nestoras Eumorfopoulos
Panagiota Tsompanopoulou

Panagiotis - Taxiarchis Giannakou: Statistical Static Timing Analysis &
Physical Design, , Master thesis, c© November 2015

location:
Volos, Greece

time frame:
November 2015

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

To my family & friends

Dedicated to the loving memory of my father Apostolos Giannakou.

1958 – 2012

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

A B S T R A C T

In modern nano-scale technology, a great deal of effort goes towards
the optimization of the digital circuits in order to enhance the perfor-
mance of modern design. Transistor level optimization has achieved
remarkable results over the classic gate-level approach. Optimal tran-
sistor/device sizing is a very promising optimization method. How-
ever efforts to this end have been hindered by the sheer size of the op-
timization problem, modeling issues, and the DRC integration in the
newly sized cells. In the resizing problem’s domain layout resizing
has proven to be one of the trickiest parts of the continuous transistor
sizing procedure, as it involves layout manipulation which is con-
strained by a large number of layout design rules that must be taken
into consideration and many standard cell libraries are hand-drawn.
In this thesis, GDS2trim a layout manipulation tool for continuous
transistor sizing is presented along with its related technology and
theoretical basis. GDS2trim, by making use of key features such as
minimized input/output operations and parallelism, implements an
automated layout processing methodology both for design and cell
layouts allowing globalized circuit optimization within exceptional
performance margins.

v

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

Περίληψη

Στην σύγχρωνη τεχνολογία γίνεται μεγάλη προσπάθεια για την βελτιστοποίηση των
ψηφιακών κυκλωμάτων προκειμένου να επιτευχθεί περεταίρω βελτίωση της
απόδοσής τους. Η βελτιστοποίηση σε επίπεδο transistor έχει επιδείξει αξιόλογα
αποτελέσματα σε σχέση με την κλασσική προσέγγιση σε επίπεδο πύλης. Η
βελτιστοποίηση μεγεθών transistor είναι μια πολλά υποσχόμενη μέθοδος
βελτιστοποίησης. Ωστόσο οι προσπάθειες πρός αυτή τη κατεύθυνση δυχαιρένονται
απο το ίδιο το μέγεθος του προβλήματος, θέματα μοντελοποίησης, και θέματα
ενσωμάτωσης των κανώνων DRC στα νέα κελιά.
Στο χώρο του προβλήματος κλιμάκωσης, η κλιμάκωση του σχηματκού αποδικνύεται
οτι έιναι ένα απο τα πιο απαιτητικά τμήματα της διαδικασίας βελτιστοποίησης, καθώς
εμπλέκει την διαχείρηση σχηματικής πληροφορίας, η οποία υπόκειται σε ενα μεγάλο
αριθμό περιορισμών κανόνων σχεδίασης οι οποίοι πρέπει να ληφθούν υπ’όψιν και το
γεγονός οατι πολλές βιβλιοθήκες τυποποιημένων κελιών δεν είναι αυτόματα
παραγμένες, αλλα προϊόν ανθρώπινης σχεδίασης. Στα πλαίσια της παρούσας
μεταπτυχιακής εργασίας, περιγράφεται το εργαλείο gds2trim, το οποίο κάνοντας
χρήση πολύ συγκεκριμένων χαρακτηριστικών όπως ελαχιστοποιημένη είσοδο/έξοδο
και παραλληλοποίηση, υλοποιεί μία πλήρως αυτοματοποιημένη διαδικασία
διαχείρησης και επεξεργασίας σχηματικής πληροφορίας, για σχηματικά σχεδίασης
και τυποποιημένων κελιών, κάνοντας έτσι δυνατή την ολική βελτιστοποίηση του
κυκλώματος μέσα σε εξαιρετικά χρονικά πλαίσια.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— ? [?]

A C K N O W L E D G E M E N T S

First of all i would like to sincerely thank my family for the support
and love that have shown me during good & rough times as well as
my friends that stood for me and supported me.

Additionally, I would like to thank my supervisors George Sta-
moulis, Nestoras Eumorfopoulos, Panagiota Tsompanopoulou for pro-
viding guidance and valuable help throughout my entire course of
studies here in the department of Electrical & Computer Engineering,
University of Thessaly.

Last but not least, I would like to thank my colleagues in the Nan-
otrim project, for the exceptional cooperation and the advances we
achieved through our work.

vii

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

C O N T E N T S

1 introduction 1

1.0.1 Standard-Cell based design flow 1

1.0.2 Continuous transistor sizing 4

1.1 Problem description & Previous work 4

1.2 gds2trim approach 5

1.3 GDSII Standard 6

2 design rule checking (drc) management 9

2.1 Layout Generation 9

2.2 Design Rules 10

2.3 Scaling Methodology 11

3 implementation 17

3.1 Planning 17

3.2 Methodology 18

3.2.1 General Flow 18

3.2.2 Cell Resizing Details 20

3.2.3 Design Layout editing 24

3.3 Implementation 24

3.3.1 Utility Architecture 25

3.3.2 Implementation detailed specifications 27

4 interface to timing analysis 37

4.1 .Lib Interface 38

4.1.1 .SPEF Interface 39

5 results 41

5.1 Overview 41

5.1.1 Results 42

5.1.2 Engine Core Evaluation 42

5.1.3 gds2trim Evaluation 44

5.2 Key Characteristics 45

bibliography 49

ix

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

L I S T O F F I G U R E S

Figure 1 Standard-Cell based design flow 3

Figure 2 rdif file format sample (cell INV_X1) 15

Figure 3 GDSII Manipulation Utility Flow 19

Figure 4 Top View of the standard cell INV_X1 21

Figure 5 Isolated Diffusion Areas of cell INV_X1 22

Figure 6 Isolated Diffusion Areas of cell INV_X1 22

Figure 7 Boundary with coordinates and dimensions ex-
plained 23

Figure 8 Design Layout editing Overview 24

Figure 9 GDSII Data Representation 25

Figure 10 gds_Object inheritance 36

Figure 11 N19 Interconnection network 40

Figure 12 Resizing result of cell INV_X1 to INV_X1_0.55 44

Figure 13 Benchmark Runtimes 47

x

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

L I S T O F TA B L E S

Table 1 Design rules pertinent to gds2trim’s design di-
rectives methodology (adapted from http://

www.eda.ncsu.edu/wiki/FreePDK45:Contents) 13

Table 2 Design rules pertinent to contact move and metal
stretch operations (adapted from http://www.

eda.ncsu.edu/wiki/FreePDK45:Contents) 14

Table 3 Cell Generation Runtimes 43

Table 4 Synthetic Benchmarks 44

xi

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

A C R O N Y M S

GDS Graphic Database system

API Application Programming Interface

PDK Process Design Kit

DRC Design Rule Checking

SREF GDSII Reference element

DEF Design Exchange Format

SPEF Standard Parasitics Exchange Format

xii

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

1
I N T R O D U C T I O N

Abrief Introduction
to continuous
transistor sizing
problem & layout
manipulation

Modern integrated circuits are developed with several methodolo-
gies that span from fully-custom design techniques to automated
standard-cell based design flows.

High-end integrated circuits often utilize fully-customized designs
in order to achieve the desired levels of performance. This approach
involves custom macro cells, dynamic logic circuits, transistor-level
tools and handcrafted layouts. The former allow designers to tune the
performance of the design exactly to the target requirements regard-
ing the various performance metrics (area, delay and power). Nev-
ertheless, despite its flexibility and potentials, this methodology re-
quires a great deal of resources and design skills.

However many nanoscale integrated circuits, follow a different,
more automated design procedure called standard-cell design method-
ology. This methodology relies on standard cell libraries, synthesis
and place & route tools to implement the target design. Contrary to
the aforementioned fully customized approach, standard-cell based
design methodology is characterized by significantly shorter turn-
around times, allowing designers to meet product goals under in-
creased time-to-market time demands. Moreover designers can focus
on the designing process itself in terms of target design definition
and description. However, despite the former advantages, the imple-
mentation quality is far from optimal and the performance is limited,
due to the generalized scope of the automated methods and the fact
that this methodology relies on the availability of the standard-cell
libraries and the various design tools.

1.0.1 Standard-Cell based design flow

A very abstract view of the basic design methodology is presented in
Figure 1 and consists of the following steps:

• IC functionality is described in some Hardware Description Lan-
guage (HDL) like VHDL, Verilog or System-C. In this level of
abstraction the functionality of the system is validated either
using testbenches (input series followed by the expected output
series) or by formal methods. Timing accuracy is cycle accurate
at best, and only a vague idea of the final circuit-level timing can
be obtained. Power analysis is possible but still quite inaccurate
for fine tuning the circuit. Only design choices that involve large
swaths of the system can be analyzed for power.

1

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

2 introduction

• After HDL coding is completed and its functionality verified,
the HDL code is translated into a circuit through:

– An automated synthesis tool (like Synopsys Design Com-
piler), which uses predesigned logic gates to implement
the logic behavior of the HDL description while satisfying
constraints on the timing (and possibly power) of the cir-
cuit. The basic logic cells are already implemented both
at the circuit level and the layout level and are part of a
standard cell library

– The standard cell library comprises the transistor (in Ver-
ilog and SPICE format) and layout descriptions (in LEF/DEF
and GDSII formats) of a number of preselected logic gates,
which are used exclusively for the implementation of the
system described by the HDL. Furthermore, the standard
cell library comprises timing and power descriptions of the
aforementioned standard cells, usually in Liberty format.
This data is used for the timing and power analysis of the
circuit.

• The standard cell library comprises the transistor (in Verilog
and SPICE format) and layout descriptions (in LEF/DEF and
GDSII formats) of a number of preselected logic gates, which
are used exclusively for the implementation of the system de-
scribed by the HDL. Furthermore, the standard cell library com-
prises timing and power descriptions of the aforementioned
standard cells, usually in Liberty format. This data is used for
the timing and power analysis of the circuit.

• The standard cell library comprises the transistor (in Verilog
and SPICE format) and layout descriptions (in LEF/DEF and
GDSII formats) of a number of preselected logic gates, which
are used exclusively for the implementation of the system de-
scribed by the HDL. Furthermore, the standard cell library com-
prises timing and power descriptions of the aforementioned
standard cells, usually in Liberty format. This data is used for
the timing and power analysis of the circuit.

• The timing and power information is used to drive the next
step of the physical implementation which is the placement and
routing in the physical level, again using an automated platform
like for example Cadence’s SoC Encounter.

• Place and route significantly perturbs the timing and power
characteristics of the circuit as all the steps until now have been
interconnect oblivious or nearly. After place and route the actual
interconnect is in place, and, thus, the actual parasitic loading
on each individual net can be estimated. This has a significant

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

introduction 3

impact on both timing and power, and usually requires a few
iterations before the process converges to an acceptable output.

• The final step is to export the design into GDSII format and ship
it to the fabrication facility for production.

Figure 1: Standard-Cell based design flow

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

4 introduction

1.0.2 Continuous transistor sizing

Continuous transistor sizing is a key-enabler for the performance op-
timization of nanoscale integrated circuits and allows for significantly
more power-efficient chips. Many efforts have been made in the field
of continuous transistor sizing optimization problem as it closes the
performance gap between a full-custom design circuit implementa-
tion and a standard cell based one.

A serious problem that rises during such optimization efforts is the
layout resizing procedure. After defining the optimal transistor size
for each cell used in the design, new standard cells must be imple-
mented that incorporate the computed sizes. This is a rather compli-
cated task, as each process design methodology is constrained by a
large number of layout design rules. On top of that, many cells that
belong to the cell libraries are custom designed in order to meet the
desired performance metrics.gds2trim layout

manipulation tool In the context of this thesis, a methodology for automated layout
manipulation was designed and implemented, along with a layout
manipulation tool, gds2trim. The implemented tool provides a fully
automated layout manipulation solution that can be implemented in
a circuit-wide scale and provide fully implementable optimized lay-
outs without human intervention.

Furthermore in this stage of the overall flow, the optimization chan-
ges should be performed at the schematic representation of the input
design. This means that the input design has already been synthe-
sized, physically placed and routed and meets all the performance
standards that are defined by the designer. On top of that having the
schematic representation of a circuit (which is the final stage of the
standardized industrial IC design flow) means that the design is al-
ready checked for timing consistency as well as signal integrity, meets
all the power and timing constraints and has passed through the final
signoff analysis.

As a logical inference, all the changes performed by the developed
program should be of minimum impact on the schematic representa-
tion of the input design so as not to violate any of the circuit design
rules and to avoid the potential need of replacement and rerouting
of the entire design. In other words the optimization changes should
take place at the building blocks of the IC design the standard cells,
to avoid major changes in the design’s schematic representation.

1.1 problem description & previous work

Layout manipulation is a rather tricky procedure due to the large
number of layout design rules and the fact that most standard cell
libraries are hand-drawn. Even though there is a number of layout
generation tools for standard cells, none is "automated enough" to be

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

1.2 gds2trim approach 5

used in a large scale operation, as most of the results require partial
human intervention (e.g. Sagantec15 Cadabra16). This has led to ap-
proaches in which only a few cells are continuously resized, usually
on the critical path of the circuit, and then they would be manually
drawn and inserted in the standard cell library (Zenasis17, Open-
Silicon18). Clearly this approach does not permit globalized circuit
optimization and certainly leaves significant margins for further im-
provement.

The main challenge is the creation of a fully automated approach
regarding the layout manipulation process. The methodology should
be able to incorporate the new device sizes into the physical repre-
sentation of the standard cell, automatically creating the necessary
schematic files, as well as update the overall design with the proper
definitions of customized standard cells that reflect the results of the
resizing procedure.

1.2 gds2trim approach

The developed layout resizing methodology allows transistor sizes
to vary only between the values that fit within the original standard
cell footprint, constraining the optimality of the solution somewhat
in favor of ease of layout manipulation. By constraining transistor
sizes within this range, manipulation becomes tractable by an auto-
mated approach as only a small fraction of the design rules need to
be accounted for. Linear variations in transistor sizes are easy imple-
mentable and do not require human intervention. Thus, they can be
implemented in a circuit-wide scale and be readily transferred to the
actual layout. Moreover, this approach is compatible with a ’metal re-
spin’ production process, whereby a fabricated IC can be optimized
by changes in metal masks only, greatly reducing the cost compared
to a full silicon re-spin, and enabling interesting business models for
exploiting the proposed technology.

The key target of the overall processing by the utility developed, is
the reduction of the diffusion areas of the transistors within the rudi-
mental building blocks of an integrated circuit design, the standard
cells, in order to achieve the desired power and timing optimizations.

The main criterion which indicates the magnitude of the desired
sizing is determined by the analysis on the input design, which is
performed by the main resizing algorithm (not in this thesis’ context).

The resizes the transistors in the physical level (i.e. layout) and in-
corporates the resized modules within the chip-level GDSII file. The
resizing is done according to layout directives provided by the gate
modeling module in order to accelerate the relayout process and pre-
vent design rules errors in a correct by construction approach. This
module can handle both planar transistors and FinFETs as the utility
can downsize the diffusion area and remove fingers, if necessary.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

6 introduction

Inputs to this module are:

1. The cell scaling file, which includes the scaling factor for all
gates

2. The layout directives file, which guides the physical implemen-
tation utility to generate a correct by construction, DRC-clean
layout.

3. The global GDSII file for annotation

4. The standard cells’ GDSII files for resizing

This utility provides the finalized layout for both the chip-level and
the individual resized gates, so its outputs are:

1. The chip-level GDSII file annotated with the new cell names
referring to the resized gates

2. The GDSII files with the layout description of each resized cell.

1.3 gdsii standard

The design schematic representation that will be used as input to the
program will be in the GDSII format. GDSII stream format (Graphic
Database System) is the major standard in the semiconductor indus-
try for the schematic description of the IC design layouts.

Basic properties of the GDSII stream file format:

Integer Database
GDSII is an integer database. The basic unit of measurement
is a nanometer (10-9 meter).Since four byte signed integers are
used to describe a coordinate then the integer coordinates can
range from minus 232 to plus 232-1. (One bit must be reserved
for the plus/minus sign.)

Hierarchical
GDSII is organized in a hierarchical fashion. That is to say, that
a number of elements are grouped into a cell or structure, and
then that structure is used (or instanced or placed) many times.
Since digital IC’s are extremely repetitive, the database matches
the physical layout very well. Cells can be nested with no limi-
tation as to how deep the nesting goes (though I have yet to see
nesting more than 9 levels deep.) It is this nesting and hierar-
chy that allow one to describe an IC with one billion polygons
using a database on the order of 5 GB. Unfortunately, when one
needs to compute the actual position of the polygonal entities,
one must "reverse" this nesting; for large databases this turns
out to be a difficult computation to do quickly.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

1.3 gdsii standard 7

Binary
The database is binary for compactness. This means that any
software for reading or writing GDSII has to be able to extract
each byte and interpret the bits. There is no official ASCII equiv-
alent to the binary format.

Record Based
GDSII is divided into "records." Only a few record types make
up the great majority of the GDSII data.

The tool should effectively derive the schematic information from
the GDSII files provided as input as well as produce GDSII files at the
end of the process that are fully compliant with the GDSII file format.

Alongside with the GDSII definitions of the input design and the
library standard cells, GDSII mapping files are used to resolve the
mapping between GDSII layer entities and their physical counterparts
(diffusion area layers, metal layers, poly-silicon layers etc.).

After the production of the resized design, the DEF file of the in-
put design must be updated to contain the new cell type definitions.
This must be done for completeness of the design process as well as
verification purposes.

The resizing process should have the minimum impact on the de-
sign flow. This means that the overall logic, placement, routing cannot
be affected by the changes made during this phase of the processing.
Moreover the fundamental processing of the standard cell individu-
ally must take up the minimum possible runtime as the amount of
the total of cell instances to be resized can be arbitrarily large. As
a consequence, the tool must have fast access to various data struc-
tures provided by its environment that are effectively organized to
facilitate this purpose and should also edit the minimum amount of
information possible in order to achieve the physical resizing.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

2
D E S I G N R U L E C H E C K I N G (D R C) M A N A G E M E N T

2.1 layout generation

The physical implementation of the resized cells from the already ex-
isting layout of the cells included in the standard cell library is a key
capability, on which rests the success or failure of the entire approach
described in this thesis. This is due to the fact that this is the most
time consuming part of the tool flow along with the precharacteri-
zation procedure. Even with parallelization, special care should be
taken for designs of the order of 1 million gates. Furthermore, layout
generation has been the bane of similar approaches that have been
proposed in the past. A characteristic example is the Cadabra ATL
tool coupled with AMPS[E Yoneno and P Hurat, 2001, Power and Perfor-
mance Optimization of Cell-Based Designs with Intelligent Transistor Siz-
ing and Cell Creation, IEEE/DATC Electronic Design Processes Workshop,
pp. 155-162.], which resized all cells except sequential and special pur-
pose ones (i.e. tri-state buffers, clock tree buffers). The total number of
cells that was actually implemented in the physical layer was 187 out
of a total of 70,000 with an average time of 192 seconds per cell. Even
though computing resources have improved significantly, runtimes
are right at the 60-90 second range even in most recent implementa-
tions.[AI Reis and OC Andersen, 2013, Sizing a Cell Library, US Patent
No. 8,615,726] Even with extreme parallelism these approaches would
require weeks to implement all the cells in the tool’s target group.

Therefore,our approach was to implement a very fast layout resiz-
ing utility but we chose not to implement every new cell from scratch.
Rather, we opted to generate the new layout (especially given the fact
that no upsizing is permitted) from the already existing standard cell
layouts based on a set of design directives unique to each standard
cell. These design directives can be generated by experienced design-
ers who overview each standard cell layout in the library and pro-
vide the layout resizing utility with explicit instructions on how to
achieve the scaling factor calculated from the transistor sizing utility,
while taking into account all the design rules pertinent to the transfor-
mations applied to the original cell layout, resulting in a correct-by-
construction methodology. Thus, generating a resized layout becomes
a matter of the order of 0.1secs, which brings the total relayout time
to less than a day, if we take into account moderate parallelization of
the process on a multicore workstation. The subset of design rules,
only for the affected layers (active, contact, and in some case metal
1) are incorporated into the design directives and the layout manip-

9

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

10 design rule checking (drc) management

ulation utility is simply required to move or delete polygons and be
concerned with the correctness of the design, which has been already
taken care of. The end result is a flow that permits the completion of
the resizing process without DRC (Design Rule Check) errors and in
an acceptable timeframe for the users.

A set of design directives for the Nangate 45nm library has been
developed for the purposes of the tool’s development, in which after
studying the topology and the connectivity of standard cell, the de-
sign directives were generated, that implement without design rule
violations the resized cell at every scaling factor within the acceptable
range for the specific cell. The acceptable range for each cell is be-
tween 1 (maximum) and a minimum scaling factor. This set of design
directives can be used on every design implemented in the Nangate
45nm library.

2.2 design rules

Layout design rules are provided by the foundry to designers and in-
tend to ensure the correct and reliable implementation of the design
on silicon. The same holds true for the process Nangate’s 45nm stan-
dard cell library was created for. The entire set of design rules is 80

(see Appendix 1 for a complete list). However, due to the described
methodology’s limited intervention methodology only a fraction of
this set needs to be taken into account while generating the design
directives. More specifically, as gds2trim targets the active area only,
the pertinent design rules are shown in Table 1, since by resizing
the active area, evidently, active area and implant layers are affected
along with the possible removal of contacts that end up outside the
active area after the resizing has been done. This limits the design
rules to be taken into account to 12, a number that is manageable for
a designer.

Furthermore, in some cases where moving a contact and stretching
the associated metal can provide significantly lower minimum scaling
factor for the cell, and extra set of another 12 design rules need to be
considered, as they have to do with the interactions of metal 1 and
contacts. This set is shown in Table 2

The rest of the layers of the physical design are not affected as
no design rules can be violated by the Nanotrim methodology. More
specifically:

(a) metal layers 2 and up are not affected as they do not appear in
the Nangate standard cells

(b) metal 1 design rules are applied only in a subset of cases of
contact migration

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

2.3 scaling methodology 11

(c) well rules are automatically satisfied as the active area can only
be shrunk, and, therefore, the minimum well enclosure of the
active area is already there.

(d) via rules are not pertinent as they do not appear in the design
of the standard cells of the specific library, in the same fashion
as (a).

During design directive generation special care is taken so that the
design rules are observed over the entire range of scaling factors, leav-
ing no room for design rule violations after the automated layout
manipulation utility has finished resizing the cell.

2.3 scaling methodology

Based on the principles of sections 1 and 2, the tool’s scaling method-
ology relies heavily on the mask designers generating the appropri-
ate design directives in order to enable the timely and correct-by-
construction implementation of the layout of the resized cells. The
major points of the methodology are as follows:

(a) each design directive is applied to a single object in the polygon
database (GDSII) of the integrated circuit. For example, if the
shrinking of an active area results in the need to remove a spe-
cific contact, this is explicitly stated as an active area edge move
directive and a contact removal directive. There are no implicit
directives as this would make the entire approach slower.

(b) scaling of the p-type and n-type active areas is performed inde-
pendently even though it is by the same scaling factor since the
contact pattern in the two active areas might be different and
contact removal directives need to be issued at different scaling
factors for each active area. This is also due to the fact that it
is safe and desirable from a layout standpoint not to remove a
contact unless we absolutely have to. Furthermore, it is easier
during the design directive generation process to handle sepa-
rately the p-part and the n-part of a gate and then merge the
directives onto a single scaling scale.

(c) each scaling factor interval is self-contained (i.e. the are no "global"
statements) in order to speed up the scaling process and to min-
imize the probability of error.

(d) standard cell scaling is performed exclusively by shrinking the
active areas and by the removal of contacts that may exist within
the removed active area. Of course, electrical connectivity of the
circuit must be maintained at all times and design rule viola-
tions must be avoided.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

12 design rule checking (drc) management

(e) it was observed in certain cases that moving one or a few con-
tacts (and on occasion extending the metal line to make sure
that the metal overlap of a contact meets the design rule spec-
ifications) leads to significantly lower minimum scaling factor
than of the move did not occur. In these few cases, contact
moves were permitted and metal lines were slightly extended.
This could have been avoided if the standard cell layout had
been constructed specifically to enable the Nanotrim design
flow.

(f) in cases where there are fingered transistors within the resized
cell, scaling can occur either by shrinking the active area along
the vertical axis or along the horizontal axis (in this case remov-
ing parallel transistors). Obviously floating contacts are also re-
moved.

(g) the incorporation of the layout design rules is implemented by
the designer during design directive creation. Therefore, the lay-
out manipulation utility does not perform any DRC check as it
is assumed that the generated layout is correct by construction.
Of course this will be validated multiple times during the test-
ing of Nanotrim’s units and of the system as a whole.

(h) no design directives will be generated for cells that were deemed
unscalable by the library analysis, i.e. they have minimum scal-
ing factor of 1.0.

The result of the activity described in this chapter is a file (with
.rdif extension) that contains all the design directives for all the cells
in the library and for every permissible scaling factor such that all
the cases produced by the transistor sizing utility can be handled. It
should also be noted that the design directives interact with the layout
manipulation utility to produce a correct-by-construction layout for
the resized cells. AN example of a complete set of resizing directives
for a specific type of cell is listed in Figure

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

2.3 scaling methodology 13

Rule Value Description

IMPLANT.1 70 nm Minimum spacing of
nimplant/ pimplant to
channel

IMPLANT.2 25 nm Minimum spacing of
nimplant/ pimplant to
contact

IMPLANT.3/4 45 nm Minimum width/ spac-
ing of nimplant/ pim-
plant

IMPLANT.5 none Nimplant and pim-
plant must not overlap

ACTIVE.1 90 nm Minimum width of ac-
tive

ACTIVE.2 80 nm Minimum spacing of
active

ACTIVE.3 55 nm Minimum enclosure/s-
pacing of nwell/pwell
to active

ACTIVE.4 none saveDerived: active
must be inside nwell or
pwell

CONTACT.1 65 nm Minimum width of
contact

CONTACT.2 75 nm Minimum spacing of
contact

CONTACT.3 none saveDerived: contact
must be inside active
or poly or metal1

CONTACT.4 5 nm Minimum enclosure of
active around contact

Table 1: Design rules pertinent to gds2trim’s design directives method-
ology (adapted from http://www.eda.ncsu.edu/wiki/FreePDK45:

Contents)

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

14 design rule checking (drc) management

Rule Value Description

CONTACT.5 5 nm Minimum enclosure of
poly around contact

CONTACT.6 35 nm Minimum spacing of
contact and gate

CONTACT.7 90 nm Minimum spacing of
contact and poly

METAL1.1 65 nm Minimum width of
metal1

METAL1.2 65 nm Minimum spacing of
metal1

METAL1.3 35 nm Minimum enclosure
around contact on two
opposite sides

METAL1.4 35 nm Minimum enclosure
around via1 on two
opposite sides

METAL1.5 90 nm Minimum spacing of
metal wider than 90

nm and longer than 900

nm

METAL1.6 270 nm Minimum spacing of
metal wider than 270

nm and longer than 300

nm

METAL1.7 500 nm Minimum spacing of
metal wider than 500

nm and longer than
1.8um

METAL1.8 900 nm Minimum spacing of
metal wider than 900

nm and longer than 2.7
um

METAL1.9 1500 nm Minimum spacing of
metal wider than 1500

nm and longer than 4.0
um

Table 2: Design rules pertinent to contact move and metal stretch oper-
ations (adapted from http://www.eda.ncsu.edu/wiki/FreePDK45:

Contents)
[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

2.3 scaling methodology 15

Figure 2: rdif file format sample (cell INV_X1)

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3
I M P L E M E N TAT I O N

This section contains the full description of the implementation plan
of the GDSII manipulation utility along with the methodology fol-
lowed for the GDSII schematics processing. The whole flow is de-
scribed from the perspective of:

• input

• procedure

• output

3.1 planning

According to the specifications set in the previous section and in or-
der our program to conform to the state of the art standard cell design
flow with the minimum impact, the various widely used commercial
tools which participate in the above flow should be examined and
their outputs to be analyzed and evaluated. This would allow the
definition of the exact point at which the developed tool should inter-
vene and perform the desired optimizations.

More specifically a set of designs widely used for benchmarking
purposes by the EDA community, were used for synthesis, physical
placement and routing in order to produce their finalized schematic
representations in GDSII format files. After that, the GDSII stream
file formats were inspected both by a schematic viewing tool, and a
hexadecimal editing tool in order to specify the exact method that the
commercial hardware development tools structure the GDSII file of
an input design. Additionally, an ASCII text version of the GDSII files
was produced for further inspection by the viewing tool, to ensure the
integrity of the produced results.

The inspection of the above revealed the following results:

The produced stream from the commercial tool for physical place-
ment & routing contains all the placed standard cells as references to
the GDSII schematics of the standard cells contained in the PDK that
is provided to the tool, using the SREF type record. The matching
of the standard cells to their corresponding detailed descriptions is
achieved by using the exact library cell name as the name attribute of
the reference record (i.e. AND2_X1, INV_X1 for the used PDK)

All the vias are described as structures before the description of the
overall design and are later referenced with SREF records throughout
the design description.

17

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

18 implementation

All the other records are in strict compliance with the GDSII stream
file format specifications. A detailed description of the SREF record
is as follows:

SREF SNAME XY or SREF STRANS SNAME XY

Where SNAME is the record label containing the cell name, XY the
record containing the coordinates that denote the exact placement of
the cell and finally STRANS contains the description of the transfor-
mations made to the cell.

As a logical inference to the above, it is clear that the schematic in-
formation (boundaries, paths etc.) of the finalized design should not
necessarily be modified by the developed utility. The exact point at
which the developed utility should alter the design information is the
reference records of the standard cells and the altering of the original
schematic description of the standard cells (also GDSII file format)
according to the needs of every input design by creating modified
copies of them in order to be used in the resized design. In other
words, as the overall design description contains references to the
placed cell schematics it is clear that the resizing should be performed
in the individual schematic description of the cells contained in the
library

This kind of intervention is of minimum impact because modify-
ing the inner characteristics of a standard cell does not affect or alter
the physical dimensions of the standard cell. This allows the design’s
boundaries to remain unchanged during the sizing optimization, and
leads to no hazard of geometry or other functional violation that
would possibly demand replacement, rerouting and recheck of the
entire design.

Furthermore, according to the developed approach every custom
layout construction should be transformed and characterized as a
standard cell first and then treated by the manipulation utility for
resizing.

3.2 methodology

3.2.1 General Flow

After taking into account the formal GDSII specifications as well as
all the other requirements and the conclusions that were reached in
the former sub-section the main parts of the manipulation utility are
implemented as shown in figure 3:

The implemented approach takes as inputs the original (unsized)
GDSII layout representation of the input design, the provided by the
PDK standard cell layout files (in GDSII format), a configuration file
that contains the scaling factors as well as directives for the resizing
of each cell and the standard cells GDSII layout map file provided

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.2 methodology 19

Figure 3: GDSII Manipulation Utility Flow

by the PDK. On the next step, the analysis of the above files follows,
in order all the available information to be efficiently stored and or-
ganized so as to be easily recalled and processed. More specifically,
the input design layout is parsed and the various structures and ref-
erences are identified. The standard cell references are the points of
interest regarding the presented implementation. The standard cell
layout files, the specification file containing the DRC rules and the
scaling factors, as well as the standard cell layout map file are used in
later steps when the editing of the standard cell layouts takes place.
Moreover, the data types containing the information contained by the
former three file types are mapped to each standard cell library name
in order to be easily searchable and accessible.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

20 implementation

Subsequently, all the standard cell instances denoted by the refer-
ences (SREF fields - as described in the previous subsection) in the
original design layout are processed for resizing. For every standard
cell instance in the input design the resizing procedure takes place as
follows:

The utility searches the exact name of the reference name field in
the standard cell library (PDK) for the corresponding layout represen-
tation. Once found, the standard cell layout is copied and opened for
processing (resizing).

Utilizing the information held in the standard cell layout map file,
the implemented utility identifies the GDS layers that correspond to
the diffusion areas of the transistors of the cell. The utility isolates the
corresponding boundaries of the GDS layer and shrinks them to the
desired size. The exact way and criteria of the boundaries resizing
will be explained in following subsection of this chapter.

After resizing of the boundaries, the modified standard cell layout
is written in a new GDSII format file with the proper cell name that
corresponds to the resized cell uniquely. This is very important in or-
der to create correct references in the input design in order to include
the resized standard cell layouts as references.

Subsequently the utility modifies the name of the reference in the
design file that referred to the initial standard cell in order to reflect
the newly created resized standard cell.

Once this process is completed for every standard cell reference of
the input design, the latter will no longer contain references to the
initial standard cell layouts provided by the standard cell library, but
will contain references to the resized versions of them.

At this point it is important to make clear that the resizing is per-
formed exactly on the cell types contained in the input design and no
other cell type (of the same logic function) is chosen to be resized.

3.2.2 Cell Resizing Details

The area of concern as pointed out in previous sections of this report
is the diffusion area of the transistors of the standard cell to be resized.
In the GDSII layout representation, all the schematic information is
organized in layers that reflect the actual structural layers of the cell.
By using the information contained in the standard cell layout map
file, the layer containing the diffusion area description can be isolated
and manipulated according to the directions provided by the specifi-
cation file, which contains the scaling factors and the DRC directives
for every standard cell of the library. The diffusion areas are a set
of boundaries that belong to the same GDS layer the id number of
which is derived from the map file.

A schematic representation of a standard cell is shown in Figure 4.
The diffusion areas to be isolated and resized are marked with the

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.2 methodology 21

red dash. In Figure 5 the isolated diffusion areas to be resized are
shown.

Figure 4: Top View of the standard cell INV_X1

After the isolation step, every boundary of the layer is examined
for resizing. More specifically for each boundary the lower left coor-
dinate’s pair are treated as its key. According to this key the manip-
ulation utility can resolve the exact way of shrinking the boundaries
of the diffusion areas by looking up the directives database which is
derived by the resizing directives file. The resizing of a boundary can
be performed both along the x and y axis.

For every diffusion boundary there are two possible ways of resiz-
ing in y - axis:

1. Shrink the boundary from the bottom edge up.

2. Shrink the boundary from the top edge down.

3. Both of the above

The manipulation utility computes the actual magnitude of resiz-
ing by finding the vertical dimension of the boundary (height) and
scaling it by the scaling factor. According to this logic the new coor-
dinates of the cell are computed and written back into the boundary
attributes. It is important to point that this procedure takes place for
every boundary that belongs to the diffusion layer. The computation
of the new coordinates (following the annotation of Figure 7) is car-
ried out as follows:

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

22 implementation

Figure 5: Isolated Diffusion Areas of cell INV_X1

Figure 6: Isolated Diffusion Areas of cell INV_X1

The y-axis resizing directives, according to the specification de-
scribed in Â§1.1 can be either parametric or explicit. For the para-
metric directives the new y dimension of the boundary is computed.
Both in parametric and in explicit resizing, the new boundary coor-
dinates must be substituted in the GDSII boundary definition. Let yi’
denote the y coordinate of the boundary after resizing

• For top-down resizing:

y2’ : computed, y1’ = y1, y4’ = y4, y3’ = y2’

• For bottom-up resizing:

y1’ : computed, y2’ = y2, y4’ = y1’, y3’ = y3

• For both sides resizing:

y1’ : computed, y2’ : computed, y4’ = y1’, y3’ = y2’

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.2 methodology 23

Figure 7: Boundary with coordinates and dimensions explained

The tool also supports resizing in x-axis by explicit directives. The
resizing can take place in two directions: a) right to left and b) left to
right. Let xi’ be the resized x coordinates then:

• For left to right resizing:

x1’ : computed, x2 = x1’, x3’ = x3, x4’ = x4

• For right to left resizing:

x4’ : computed, x2 = x2’, x3’ = x4’, x1’ = x1

After the resizing of the diffusion area boundaries, the contact layer
must be examined for possible contact removal. Every contact marked
for removal is identified by its lower left corner in the directives file.
If a contact (which is also e boundary) is to be removed, its definition
is excluded in the resized GDS schematic.

In order to enhance the resizing capabilities of the tool, the addi-
tion and the removal of whole box boundaries is supported. The layer
of interest is specified first and then the removal or addition is per-
formed. In case of box removal, the methodology is the same with
the contact removal case. In the case of boundary addition, the lower
left and upper right corners of the box are provided by the direc-
tive. According to that, the dimensions of the box are calculated and
a boundary definition layer is created in the resized version of the
standard cell schematic.

Finally, when all the boundaries are resized and updated with the
new coordinates as attributes, a new (resized) standard cell is created
by writing the new updated information (as well as all the other infor-
mation contained in the original standard cell that was not modified)
into a new GDSII file.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

24 implementation

3.2.3 Design Layout editing

The described methodology in the former sub-section lies in the core
of the overall physical resizing mechanism described in this report.
The main functionality controlling the physical resizing procedure
prior to resizing the standard cells of the design, must first analyze
the top level schematic representation of the input design. By looking
up the GDSII mapping file that accompanies the schematic file, the
tool identifies the layer that contains the references of the various cells
the design is constructed of. By looking up the scale factors file and
the DEF file of the input design the tool can correctly identify every
cell and map the correct provided scale factor to it. After that identi-
fication/mapping procedure the core functionality described in sub-
section 3.2.2 is put to work for the actual resizing to take place. After
every cell of the design is examined for resizing and the new resized
versions are created, the tool writes each resized cell layout to GDSII
files and updates the reference records of the top level schematic. Fi-
nally, the top level schematic is written back to an updated GDSII
file.

Figure 8: Design Layout editing Overview

3.3 implementation

Below are described the main implementation technical details of the
manipulation utility. First the overall system architecture is presented.
Then a more detailed description of the implemented mechanisms
and functionalities is presented.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.3 implementation 25

3.3.1 Utility Architecture

According to the described specifications and methodology, the archi-
tecture of the inner memory representation of the layout information
is organized as shown in Figure 9:

Figure 9: GDSII Data Representation

The aforementioned data types form a generic GDSII data repre-
sentation scheme and can be used for storing both the input design
information and the standard cell layouts information in correspond-
ing object instances of course. The gds_object is a base class and all
the other element types described in the GDSII specs are derived
from this base class. More specifically all the other compounds of a
gds_element are derived from the gds_object class as shown in Figure
10.

The utility stores all the layout files necessary in different design ob-
jects which are then read or processed depending on the performed
task in each step as described in the methodology section. For the
input design the manipulation utility performs a search on the layer
list in order to find the layer in which the standard cell references are
stored. Then, the references are read in order to identify which stan-
dard cell layouts should be resized. After that the design objects that
contain the proper standard cells are recalled in order to be processed
and resized. After the processing the Libname field of these objects
is updated in order to reflect/identify the resized cell layout and the
information contained in them is written in new GDSII files. Finally,

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

26 implementation

the utility updates the reference names of the input design in order
to contain the right names of the newly written GDSII layouts.

The overall mechanism that provides the functionality described in
this report (will be referred as engine from this point on) is enclosed
in a top level object that organizes the main data types used by the
various sub processes and also provides a set of wrapping functions
that control and execute the various phases of the presented in 3.2.3
mechanism.

The main phases of the engine workflow are:

Engine Initialization This phase is executed first and its main target is to set vari-
ous engine attributes, initialize the data structures required for
the engine’s proper function as well as call the constructors of
other classes in order to recursively initialize all the necessary
underlying objects and functionalities.

Input reading Refers to the reading of the various input files as described in
previous sections of this report. More specifically the following

the following files are read and stored into the tools memory in
proper data structures:

1. GDSII Design layout file

2. GDSII Library cells layout files

3. Scaling Factors (.scf) files

4. Resizing directives (.rdif) files

5. Design’s DEF file

6. GDSII mapping files for design and library cells

The parsing system of the GDSII format tailored for the needs
of this project will be explained in later sub-section of this re-
port. The interfacing between the engine and the other inputs
are explained in detail in work package 5.2 report. There a plan-
ning of the engine’s interfacing as well as the structures and
functionalities that facilitate the data extraction and accessing
are thoroughly specified and analyzed.

Design analysis In this face the GDSII layout information are analyzed and op-
timally stored in various data structures. The proper objects are
created and organized in order to be ready for processing. More-
over during this phase associative data structures are made up
in order to expose the input data relations. This is very useful
for the correct identification of the cell instances on the GDSII
schematic, according to the DEF file and the scf file in order the
proper scale factor to be applied. A detailed explanation will
follow in later section.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.3 implementation 27

Resizing process This is the main task of the tools engine. In this stage the cells
are identified and are processed for resizing. All the cells that
are to be resized are processed according to the previously de-
scribed methodology. The code that performs the cell resizing
will be referred to as engine core.

Update definitions After the resizing of the individual cells, the overall design must
be updated in order its cell instance references to point the cor-
rect (resized) definitions of the cells. Additionally a new DEF
file is created with the COMPONENT section updated to in-
clude the new cell types’ definitions. The GDSII map, rdif and
scf files are not modified in any way.

Write output The final stage of the engine’s execution is the production of
the output files. This means that all the updated components
that are stored in tool’s memory are flushed in the proprietary
files. More specifically the new GDSII files are produced (both
an updated version of the overall schematic and the updated
library cell layouts) and the new DEF file is written.

Reports/ Display This section of the engine is an individual mechanism that is re-
sponsible for printing out various reports and summaries dur-
ing the execution of the engine. The kind and amount of the
displayed information can be adjusted according to the needs
of the designer.

Runtime/API The engine can be configured to perform its tasks through var-
ious ways. First, the whole engine operation can be explicitly
configured and executed by using its interfacing functionalities.
This is very useful when the engine is part of an automated
toolset. In this case the toolset via the engines API can directly
set the data structures that control the engines execution. Sec-
ondly, the engine can be manually configured via a simple script
that provides the necessary information for the engine to per-
form its tasks. Finally it can be manually directed through a
runtime environment via command line interface.

3.3.2 Implementation detailed specifications

3.3.2.1 GDSII Parsing and analysis mechanism

In order the resizing tool to meet its goals of minimum runtime re-
quirements and minimum interaction with the original layout files a
special way of accessing the layout information should be used. Addi-
tionally the observation that only specific areas of the original layout
files should be edited, led to the use of alternate file handling tech-
niques. Specifically, the method of memory mapped files was used
for performing IO with the GDSII files. This technique offers mini-
mized IO activity as the file contents are can be read in one or more

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

28 implementation

chunks and be directly mapped into the main memory of the system
only once. Moreover this technique is parallel-safe as many processes
can map the same memory region into their local memories. Once
the file is mapped all the contents of it are available to the processes’
memory. In a few words this means that for files that do not exceed
the systems physical memory (such as the library cell layout files)
the program does not need to perform IO operations (runtime costly)
and the accessing costs are reduced to reading and writing the main
memory of the program. For the memory mapping integration the
C++ Boost Interprocess library was used.

The file handling of the GDSII files is performed by the gds_FileHandler
class. This class is responsible for memory mapping the GDSII files
and flushing them back into the proper files once the editing is com-
plete. The class contains a vector of the GDSII file names provided as
input and a map that connects every filename to its memory mapped
region. The file names are given as parameter during the construction
of the handler object. The function map_files() performs the mem-
ory mapping of the files that are given to the handler object while
the flush_mem() function flushes the contents of the memory regions
back to the files. The flush_mem is defined to flush only one file at a
call. As it can be observed, the gds_SchematicAnalyzer - the class re-
sponsible for the layout analysis is declared as a friend class for ease
of data accessing.

After the memory mapping, the mapped regions (which can be ac-
cessed as tables of binary data) are analyzed by the gds_SchematicAnalyzer.
The gds_SchematicAnalyzer class provides functionalities for access-
ing the binary data with the proper order in order to derive the writ-
ten information. This class also initializes the GDS data structures de-
scribed in the architecture section in order to store the derived data.
This class also provides functionalities for updating the GDS defini-
tions after the resizing of the cells. This class reads the binary data of
the GDS files and is responsible for converting any updated informa-
tion into its binary data representation according to the specifications
of the GDSII File Format.

Listing: gds_FileHandler definition

1 class gds_FileHandler

{

private:

vector <char *> *designFiles;

mapped_mem mmap_stats;

6 map <string, mapped_region> *regions;

public:

gds_FileHandler (vector <char *> *files);

mapped_mem get_mapped_mem () {return mmap_stats;}

11

[November 16, 2015 at 12:12 - classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.3 implementation 29

void map_file (); //memory mapping function

void flush_mem (char *file); //flushing

function

friend class gds_SchematicAnalyzer;

16 };

The function map_file() first copies the input file and renames the
copy. The mapping and the processing in later stages are performed
on the copy of the GDS file. This methodology is followed for pro-
cessing the library cell GDSII layout files.

In order the new cell reference names to be correctly written in the
GDS file of the resized input design, apart from the copying of the
file, a pre-processing of the GDS records is carried out. More specif-
ically, the GDS records are scanned and the references are traced. If
a reference is listed as a cell that belongs to the target input library,
then the string type record of the reference is expanded. The purpose
of this is to provide the exact extra space required within the record
so that the updated name can be written without the hazard of a
possible truncation of the string. For example, the resized cell’s refer-
ence name AND2_X1_0.56 requires 5 character space more than the
original AND_X1 reference name. This additional space is provided
through the mapping mechanism.

A pre-processing is applied in the GDS files of the library-cells, in
order to provide the sufficient extra characters’ space in the text of
the structure name record, in order the cell to be in coherence with
the resizing mechanism standards.

The use of the GDS file pre-processing is mandatory due to the
limitations imposed by the used memory-mapping library. In spe-
cific, the boost interporcess memory map functionality does not allow
any changes in the memory mapped region, once the file is mapped.
This implies that there is no feasible way to provide the extra space
required during the schematic information processing without modi-
fying the characteristics of the memory region.

Finally it should be noticed that the copying of the files was carried
out utilizing the sendfile() function and not through the conventional
read-write mechanism. The sendfile() function allows the copy proce-
dure to be done at kernel space memory and not in the conventional
process memory, speeding up the whole procedure and minimizing
the IO cost.

FEATURE ENHANCEMENT: There is no straightforward way to
represent the identity information of each cell reference in the design.
That happens because the GDS standard is a schematical database

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

30 implementation

and does not contain any relational information capabilities or map-
ping data structures to facilitate a straightforward identity resolving.
In consequence, the identity representation of the cell references is
often chosen by the designer of the physical implementation tool that
generates the GDS representation of the design. In order the layout
manipulation tool to have enhanced compatibility with the existing
EDA workflows, two main identity representation schemas are sup-
ported. These come from the most widely used physical implemen-
tation tools used in the industrial community, namely, the Cadence
SoC Encounter physical implementation tool and the Cadence Cus-
tom IC Design system. The first uses a triplet of a TEXT - REFERNCE
- BOUNDARY records. The text contains the cell instance id, the ref-
erence contains the actual cell reference while the boundary record
denotes the physical area that the cell takes up on the design.

Rather than triplets, Custom IC Design System utilizes the PROPATTR
and PROPVAL attribute records that supplement a GDS reference el-
ement to mark the id of the cell instance the reference belongs to. A
convention is made that the first attribute of the reference element i.e
PROPATTR = 1, PROPVAL = <name>, is used to hold the id. This
convention is easily configurable in the parsers code, so that any at-
tribute number can be set as the id attribute.

The memory access operations are both parametric. For memory
read operation, starting from a certain base address, the memory is
read and interpreted as a data type specified each time, for an amount
specified too. Then the base pointer is moved by the same offset in
order to point in the first unread byte:

// READ_MEM macro mem copies to the dest the contents

3 // of the the memory region defined by the base and size

// parameters and updates the base to point to the next

// unread address.

#define READ_MEM(dest, base, type, ptr_type, offs) \

8 memcpy(dest, base, offs * sizeof(type)); \

base = static_cast<ptr_type>(base) + offs;

For memory write, there is no base pointer moving. Only the mem-
ory is set according to a base address and an offset.

#define SET_MEM(source, base, type, ptr_type, offs) \

memcpy(base, source, offs * sizeof(type)); \

3.3.2.2 Engine Core Implementation

This section describes the implementation details of the core resizing
utility, namely the algorithm that modifies the layouts of the library
standard cells. The overall control of the engine core is carried out

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.3 implementation 31

by the class trim_engineCore. This class initializes every necessary ob-
ject and mechanism in order to provide the complete functionality
of opening, resizing and writing back a cell layout file. This lies in
the center of the layout manipulation utility and in the fundamental
functionality that the tool provides. This class also provides a set of
functions that process boundaries. This class processes the internally
stored layout information. The definition of the class is as follows:

The engine core takes as inputs the GDSII layout information, the
resizing directives information and the scale factors and performs
the designated resizing of the cells. The resizing engine can support
boundaries with four or more edges. It can also support unsorted
coordinate sets in the boundaries description. Egnine Core

implementation
1

//

// Engine Core’s main object. Offers the core

// functionalities to resize a standard cell

// The correct directives must be priorly resolved

6 // by the core’s environment and be provided to it.

//

class trim_engineCore

{

11

private:

gds_FileHandler *_local_handler;

gds_SchematicAnalyzer *_local_loader;

16

gds_Design *_design;

cell_directives_t *_directives;

os_fileSysManager *_file_manager;

21 string cell_name;

float scale_f;

int diff_layer;

int contact_layer;

26 void orderPolygon(coordinates_t &poly_in);

void calculatePolygonHeight (gds_Object *obj_in, vector <

ydim_dir * > directives,

pair < long int, long int > ll, pair < long int, long int > ur);

31 void calculatePolygonWidth (gds_Object *obj_in, xdim_dir *
x_d);

public:

trim_engineCore();

36 void loadCell (string name);

[November 16, 2015 at 12:12 - classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

32 implementation

void setupCore (int diff_layer_in, int contact_layer_in, float

factor, os_fileSysManager *file_mngr);

cell_directives_t * resolveDirectives(directives_set_t *set,

string cell_name);

41 void trimCell ();

void rmContacts_zero_write(vector <coord_pair_t> contacts);

};

The trim_engineCore class is accompanied by a display class that
is responsible for displaying various reports and summaries of the
process. Currently the implemented report function produces a sum-
mary of the read layout and the objects that consists of.

3.3.2.3 GDS2trim Engine Implementation

The engine object of the tool is the central object of the tool’s soft-
ware architecture. This object is the realization of the tools internal
flow. It utilizes all the previously described mechanisms and classes
in order to perform the overall layout manipulation. The tool’s en-
gine connects and coordinates all the other objects and functionality
in a way that a robust outcome may be produced according to the
toolset’s specification. The description of the trim_engine class is as
follows:Tool’s engine

implementation
definition

class trim_Engine

{

private:

5

//input arguments

string _rdif_filename;

string _top_gds_filename;

string _scf_filename;

10 string _top_level_name;

string _lib_gds_dir;

string _work_dir;

//for future use

15 design_container_t *_lib_layouts;

design_container_t *_design_layouts;

//for current use

gds_Design *_design;

20

map<layer_type_t, int> *_layer_lookup;

trim_directivesHandler *_directives_dmn;

directives_set_t *_directives_top;

25

[November 16, 2015 at 12:12 - classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.3 implementation 33

scale_factors_t _scale_factors;

std::set<string> _cell_types;

cell_type_map_t _cell_instances;

30

os_fileSysManager *_file_manager;

gds_FileHandler *_local_handler;

gds_SchematicAnalyzer *_local_loader;

35

public:

trim_Engine();

40 void setArgs(string rdif_n, string gds_n, string scf_n, string

top_str, string lib_dir, string work_dir);

void initializeEngine();

void initializeDirectives(const char *file_name);

void initializeScaleFactors(const char *scf);

45

des_container_iter_t resolveLibLayout(string cell_name);

int loadTopLevelDesigns();

50 void testCore();

void execCore(float sc_factor, string type, string full_name);

void trimDesign();

void writeGDS();

55

void reportTopInstances ();

~trim_Engine();

};

This object is instantiated in the main function of the program
and its member functions are responsible for the proper execution
of the tools resizing flow. As it can be observed, this class contains all
the necessary information (i.e. program arguments, internal top-level
data structures) that allow the tool’s various objects to communicate
efficiently and at a minimum cost.

3.3.2.4 OS (Operating System) integration

In order to successfully cope with the increased IO demands and the
large scale of file handling and new file creation, the OS integration
module was created. This module handles all the necessary file nam-
ing and listing operations required by the resizing procedure. This
module is implemented through the os_fileSysManager class. This
class provides functionalities such as path and file assertions, cell li-

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

34 implementation

brary scanning for the available library cells, resizable cells checking,
cells excluded from resizing listing and workspace configuration. Ad-
ditionally, it holds all the necessary information regarding the paths
and the path configuration the tool uses. The definition of the afore-
mentioned class is listed below:Tool’s OS

integration
mechanism

class os_fileSysManager

{

5 private:

string _workspace_path_arg;

string _path_arg;

path_container_t *_lib_cell_paths;

10 std::set<string> *_lib_cell_list;

std::set<string> *_exclude_cell_list;

void initExcludeList();

15

public:

os_fileSysManager();

os_fileSysManager(string path_in);

20

void setPath (string arg) { this->_path_arg = arg;

}

string getPath() { return this->_path_arg; }

void setWorkspacePath (string work);

25 string getWorkspacePAth() { return this->
_workspace_path_arg; }

void addCellExclusion (string arg);

std::set<string> *getExclusionList() { return this->
_exclude_cell_list; }

30 char * queryFile(string filename);

fs_type_t queryPath(string path);

path_container_t *locateFiles(vector<string> key_list);

std::set<string> *mapLibCells();

bool is_ResizableCell(string name);

35

~os_fileSysManager ();

};

FUNCTIONALITY: The class is initialized with the cell library lo-
cation path and the workspace location path. The latter is the path
that will contain the resized design file along with the resized library
cell files. Then the available library cells list is created by scanning the

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

3.3 implementation 35

provided library location path. The excluded cell list is created, which
contains the cells that are excluded from the resizing procedure (such
as flip-flops or multiplexers). The created object is then passed to the
created filehandler objects and created by the engine and the engine
core instances. The object’s methods are called during the resizing
procedure, to assert correct path validity and check whether the cell
is excluded from resizing or not.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

36 implementation

Figure 10: gds_Object inheritance

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

4
I N T E R FA C E T O T I M I N G A N A LY S I S

The resizing algorithm used to suuply the scale factors to the gds2trim
tool performs the ULE method for delay evaluation and minimization
in paths composed of CMOS logic gates. Each path, that will be evalu-
ated, can be chosen arbitrarily from a pool of paths, but this technique
will not yield the best results. A choosing criterion must be used in
order to select the most suitable path every time. That criterion would
ideally be a combination of metrics, which is power consumption and
delay. The developed algorithm only uses the delay as a filter when
examining paths.

Timing analysis must be performed in order to sort the available
paths according to their criticality, that is extracting the paths with
the worst or best delay (Late / Early timing analysis). Since the resiz-
ing algorithm is very conservative, the timing analysis will only be
performed for the worst delay paths. There are different approaches
for timing analysis, such as static timing analysis, dynamic timing
analysis, statistical timing analysis, and each of them uses a different
methodology to analyze the circuit.

The static timing analysis procedure requires both cell and inter-
connect delay information in order to perform produce timing infor-
mation for a given input design. In order the delay of a standard cell
to be computed, the capacitive load this cell drives must be known,
prior to this computation. Thus the capacitive load of both cells’ in-
put pins and interconnect wires is required. Finally, all the possible
transitions, given a certain combination of input-output of a cell must
be defined (unateness).

Moreover, apart from the delay calculation for the standard cells
and interconnect wires, it is necessary the arrival times, input/output
transitions at the design’s primary inputs as well as the capacitive
load the design drives at its primary outputs must be determined.

Static timing analysis verifies circuit timing by "adding up propa-
gation delays along paths between clocked elements" in a circuit. It
checks the delays along each path against the specified timing con-
straints for each circuit path and reports any existing timing viola-
tions.

Dynamic timing analysis verifies circuit timing by applying test
vectors to the circuit. This approach is an extension of simulation
and ensures that circuit timing is tested in its functional context. This
method reports timing errors that functionally exist in the circuit and
avoids reporting errors that occur in unused circuit paths.

37

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

38 interface to timing analysis

Statistical timing analysis is a variation of the static timing analysis
which replaces the normal deterministic timing of gates and inter-
connects with probability distributions, and gives a distribution of
possible circuit outcomes rather than a single outcome.

Every method has its own advantages and disadvantages, but for
the purposes of the resizing algorithm, static timing analysis was se-
lected, to provide an estimate of the worst paths, with the least algo-
rithm complexity.

In the context of the Nanotrim continuous transistor sizing toolkit,
a timing analysis tool was developed in order to supply the required
timing information to the resizing algorithm in order to compute the
proper cell sizes and export the cell scaling factors that are subse-
quently used by the gds2trim tool. In the context of this thesis the
interface to the timing analysis tool is elaborated.

All the relevant information for the delay, input pins capacity and
the set of possible input-output transitions for each cell, is available in
the timing library file. The most widely used format for timing infor-
mation files is the Synopsys Liberty Timing Library format denoted by
the extension .lib. The wire delay is computed form the distributed
RC interconnection network, described in the Standard Parasitic Ex-
change Format file (.spef). Finally, he initialization information of the
timing analysis tool that includes the arrival times at the primary
inputs and its transitions as well as the capacitancies driven by the
design’s primary outputs, are included in the timer’s configuration
file.

4.1 .lib interface

In the listing that follows a .lib timing information section is shown
for the cell INV_X0.759036

1

cell ("INV_X0.759036") {

...

pin (A) {

6 capacitance : 1.025479; %input capacitance

direction : "input"; %of pin A

...

}

11 pin (ZN) {

direction : "output";

...

timing () {

%A-Z transition. Negative unativity

16 related_pin : "A";

timing_sense : "negative_unate";

...

[November 16, 2015 at 12:12 - classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

4.1 .lib interface 39

cell_fall ("tmg_ntin_oload_7x7") {

21 index_1(...);

index_2(...));

values(...)

...

}

26

%rise delay

cell_rise ("tmg_ntin_oload_7x7") {

index_1(...);

index_2(...);

31 values(...)

...

}

%fall time @ pin Z

36 fall_transition ("tmg_ntin_oload_7x7") {

index_1(...);

index_2(...);

values(...)

...

41 }

rise_transition ("tmg_ntin_oload_7x7") {

index_1(...);

index_2(...);

values(...))

46 ...

}

}

}

}

51 /* end of cell */

4.1.1 .SPEF Interface

A part of the SPEF file of the c17 physically implemented design
of the ISCAS 85 bennchmarking suit. In this example the net N19’s
distributed RC interconnection network is listed.

*NAME_MAP

3 *1 N23

*2 N22

*3 N7

*4 N6

*5 N3

8 *6 N2

*7 N1

*8 VDD

*9 VSS

[November 16, 2015 at 12:12 - classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

40 interface to timing analysis

*10 N16

13 *11 NAND2_6

*12 NAND2_5

*13 NAND2_

*14 N19

*15 NAND2_4

18 *16 N10

*17 NAND2_1

*18 N11

*19 NAND2_2

23 ...

*D_NET *14 0.1575969 #total capacitance of net 14

...

28 *CAP

1 *11:A2 0.0

2 *15:ZN 0.01060115

3 *14:3 0.02944625

33 4 *14:4 0.04005637 %distributed capacitance

5 *14:5 0.02683567

6 *14:6 0.04005637

7 *14:7 0.01060115

38 *RES

1 *14:3 *11:A2 22.5

2 *14:4 *14:5 22.5

3 *14:6 *14:7 22.5 %distributed resistance

4 *14:7 *15:ZN 22.5

43 5 *14:3 *14:5 0.7175533

6 *14:6 *14:4 2.026962

*END

An optical representation of the above interconnection network can
be shown in Figure 11:

Figure 11: N19 Interconnection network

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

5
R E S U LT S

5.1 overview

In this part of the project the main objective is to implement the phys-
ical layout manipulation system. First a relative search on the field
should be carried out in order to examine all the details of the phys-
ical implementation phase of the standard cell design flow and how
it is carried out by the state of the art tools that are used widely aca-
demically and in the industry. The research that was carried out by
carefully exploring the tools that provided physical implementation
solutions, their configuration options, and the data relationships that
existed through the various file formats that needed or should be
produced. A number of well specified file formats was inspected in
order to determine the way the resizing tool would efficiently extract
all the necessary information for the correct resizing procedure. A set
of third party tools was used in order to analyze the produced infor-
mation and thoroughly inspect the structure and information of all
the layout files produced by the physical implementation tools and
how this structure changes as various parameters are altered. More-
over emphasis was given not to interfere in any unnecessary stage of
the known physical implementation flow as well as to find out which
files should be edited and updated alongside with the GDSII files
in order to provide a well specified physical implementation of the
design in order to be actually constructed later.

After the research phase the goals and specifications of the resizing
tool implementation were set and the tool planning took place accord-
ing to them. The data structure organization was specified alongside
with the various mechanisms that the tool will support to carry out
its primary tasks. The data structures used facilitate the ease of access,
searching and the associativity between data of the various inputs of
the tool

After the total of the tool’s architecture and functionalities was spec-
ified the phase of development commenced. The used programming
language is C++. All the abstracted planning was modeled and im-
plemented using data containers and data types from verified and
optimally implemented libraries such as STL and Boost C++ libraries.
Emphasis is given in the object oriented programming principles as
well as the ease of maintenance and further extension of the code.

The engine core mechanism-the fundamental resizing functionality
and the integration with the workflow mechanisms were successfully
fully implemented and various unit tests were carried out in order

41

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

42 results

to ensure every component of the engine core flow works flawlessly.
Various versions of the directive file formats were used (gradually
more detailed), in order to enhance the resizing capabilities of the
tool. In the current phase with the engine core ready the main engine
mechanism of the tool is being under development and testing. All
the data structures are being well specified and mapped to actual C++
data structures and objects. The various functionalities that the tool
will provide as a system are being developed and thoroughly tested.

5.1.1 Results

The layout manipulation tool was tested in various cases of input
designs. The tool’s behavior and performance was inspected and an-
alyzed. The tool’s runtime testing was performed in two stages. First,
the engine core module was tested and profiled. Then, the whole tool
was executed with various input designs in order to evaluate its per-
formance. The two faces of the analysis are described in the following
sub-sections.

5.1.2 Engine Core Evaluation

In this step, the performance of the engine core was evaluated. This
was the first section of the tool to be profiled and analyzed as it is the
core functionality of the tool. Additionally, for the aforementioned
reason, the performance of the engine core mechanism is crucial for
the performance closure of the whole manipulation mechanism, as
it represents the majority of the workload carried out during the re-
sizing procedure. It is a functionality that may potentially apply to
the majority of a design’s cells, in contrast , i.e, to the main design
parsing or the scale factors/directives parsing mechanisms that are
evoked only once for every execution. This makes the engine core
performance a key value for the whole tool’s performance evaluation.

A large set of input library cell GDS files were provided as inputs
to the engine core module. The latter was configured to resize the
aforementioned cells to various scale factors. Emphasis was given so
that complex representative cases to be chosen as well (i.e. scale factor
regions that require the largest number of layout modifications for a
certain type of standard cell), in order to obtain a thorough image of
the module’s performance.

The Nangate 45nm OpenCell Library was used for the tests. The
evaluation took place on a system with the following characteristics:

• Intel Core i7 4-core @ 3.60GHz

• 16GB RAM DDR3

• 500 Gb Hard Disk

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

5.1 overview 43

The resized cell generation performance for representative cases is
shown in the table 4:

Std Cell Scale factor Produced Cell Execution Time (sec)

AND2_X1 0.79 AND2_X1_0.79 0.000166

AND2_X1 0.50 AND2_X1_0.50 0.000330

INV_X1 0.50 INV_X1_0.50 0.000293

INV_X1 0.35 INV_X1_0.35 0.000280

INV_X1 0.90 INV_X1_0.90 0.000309

OAI211_X1 0.55 OAI211_X1_0.55 0.000264

OAI211_X1 0.90 OAI211_X1_0.90 0.000465

AOI222_X1 0.37 AOI222_X1_0.37 0.000100

AOI222_X1 0.60 AOI222_X1_0.60 0.000213

Table 3: Cell Generation Runtimes

As it can be observed by Table 1, the engine core module shows
an overall exceptional performance as the execution time is below 0.5
millisecond and generally there was no case that caused an execution
time larger than 1 the one millisecond, a performance that allows
thousands of cells to be resized within seconds. This is of utmost
importance in modern designs, in which the potential number of cells
can be in the scale of millions.

Another useful observation is that the execution times differ, even
among the resized instances of the same cell times. This happens due
to the fact that the various scale factors that belong to different range
sets engage a different set of resizing directives within the same cell
type.

The produced GDS files are fully functional, as they can be opened,
read and processed by GDS layout editing and viewing tools. Ad-
ditionally, they are in appliance with the library’s design rules. A
graphical representation of a resizing case is given in Figure 12.

As it can be observed, the active regions are shrunk and two of the
contacts on the n-mos region are removed. This is an expected result,
according to the resizing directives provided for the specific resizing
configuration.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

44 results

Figure 12: Resizing result of cell INV_X1 to INV_X1_0.55

5.1.3 gds2trim Evaluation

In this section the whole system’s evaluation in terms of performance
is described. The main designs provided as inputs to the tool are the
ISCAS benchmarking circuits along with additional large scale bench-
marks used by the EDA community. Moreover, a synthetic benchmark
was constructed in order to evaluate the tool’s performance in the
case of a very large input set.

Moreover the results from the synthetic benchmarks are as listed in
Table .

Design Cells Runtime

ac97_ctrl 13375 1s

aes_core 22403 1,6s

aes_core_oneM 1M 120s

Table 4: Synthetic Benchmarks

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

5.2 key characteristics 45

5.2 key characteristics

In the context of the tool’s development, key characteristics were uti-
lized to enhance performance and render the tool highly configurable
and flexible for further future development. These features play a crit-
ical role in the overall good performance of the tool, and allow it to
alleviate modern techniques in order to cope with its highly demand-
ing task. A brief inspection of such key characteristics used by the
tool is:

minimized input / output demands The tool’s operations
are highly I/O demanding. This relies to the fact that reading and
updating GDS stream data involves multiple read and write opera-
tions within a single file. In the scale of an actual input design, this
cost is multiplied thousands, even millions of times, depending on
the total number of resizable cells the input design contains. This fact
can impose a significant performance barrier and even in cases of
massive input sets, render the whole resizing operation prohibiting
in terms of execution time and resources. This is tackled by using the
technology of memory mapped files in order to process the GDS files.
This technique requires only one read and write operation, at the be-
ginning and at the end of the file editing respectively. This brings
the I/O requirements of the tool to a minimum, as the minimum in-
teraction with the I/O subsystem is achieved. It must be mentioned
that the I/O subsystem is a usual bottleneck in I/O intensive appli-
cations. This allows the tool’s performance to be faster by orders of
magnitude, compared to the traditional I/O handling because all the
processing is carried out in machine’s main memory.

parallelism The tool’s architecture is designed so that every re-
sizing operation to be totally data-independent from another. This is
a key design concept that allows the tool to execute multiple resizing
operations in parallel. Every resizing operation can be modeled as a
standalone task along with the main design processing that is the ini-
tial task. This allows the utilization of both task-level parallelism and
data-level parallelism, making the tool versatile to be accelerated in
various perspectives and platforms such as servers or cloud comput-
ing machines.

boost interprocess The tool makes use of the boost interpro-
cess library. The latter is a versatile modern library for complex, high
performance memory operations. It offers mechanisms for memory
management, memory mapping and memory sharing. By utilizing
this library, the tool has enhanced versatility and extensibility in terms
of memory handling and management, a critical aspect of the tools
performance limits. By using this library, gds2trim can be easily ex-

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

46 results

tended to support multi-process execution with shared process mem-
ory models, a key feature for additional speedup.

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

5.2 key characteristics 47

Figure 13: Benchmark Runtimes

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

D E C L A R AT I O N

I confirm that this Master’s thesis is my own work and I have docu-
mented all sources and material used.

This thesis was not previously presented to another examination board
and has not been published.

Volos, Greece, November 2015

Panagiotis - Taxiarchis
Giannakou, November 16,

2015

[November 16, 2015 at 12:12 – classicthesis version 1.0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:57:42 EET - 137.108.70.7

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.0.1 Standard-Cell based design flow
	1.0.2 Continuous transistor sizing

	1.1 Problem description & Previous work
	1.2 gds2trim approach
	1.3 GDSII Standard

	2 Design Rule Checking (DRC) management
	2.1 Layout Generation
	2.2 Design Rules
	2.3 Scaling Methodology

	3 Implementation
	3.1 Planning
	3.2 Methodology
	3.2.1 General Flow
	3.2.2 Cell Resizing Details
	3.2.3 Design Layout editing

	3.3 Implementation
	3.3.1 Utility Architecture
	3.3.2 Implementation detailed specifications

	4 Interface to timing analysis
	4.1 .Lib Interface
	4.1.1 .SPEF Interface

	5 Results
	5.1 Overview
	5.1.1 Results
	5.1.2 Engine Core Evaluation
	5.1.3 gds2trim Evaluation

	5.2 Key Characteristics

	Bibliography
	Declaration

