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ABSTRACT 

The RNA revolution has turned non-coding RNA (ncRNA) from dark-matter into a 

biological research hotspot. Accumulating evidence from multiple Next Generation 

Sequencing (NGS) experiments has recently introduced the regulatory roles of ncRNAs 

in a wide range of biological processes. This thesis focuses on the development of 

computational algorithms for the functional characterization of non-coding transcripts, 

while investigating in-depth their in-between interactions. The methodologies 

developed during this thesis combine advanced next-generation sequencing (NGS) data 

analyses and state-of-the-art Machine Learning algorithms in order to perform 

automated analyses and to monitor the corresponding results. 

This doctoral thesis studies specific categories of RNA transcripts: microRNAs 

(miRNAs) and long non-coding RNAs (lncRNAs). miRNAs are single stranded RNA 

molecules approximately 22 nucleotides long. They have been deemed central post-

transcriptional gene regulators and play a key role in numerous biological processes. 

Therefore, miRNAs are intensively studied for their potential as biomarkers and/or 

therapeutic targets. Apart from their involvement in physiological processes, 

microRNAs appear to be associated with a plethora of pathological conditions.  

Although microRNAs are mainly considered mRNA repressors, there are studies 

supporting miRNA-lncRNA interactions. lncRNAs are long non-coding transcripts that 

can also regulate gene expression. To this end, DIANA-LncBase database was designed 

in order to characterize the entire spectrum of miRNA interactions with lncRNAs. 

LncBase supports a compendium of experimentally supported miRNA-lncRNA 

interactions. It contains more than 70,000 interactions derived from the analysis of 

numerous NGS experiments and specific low-throughput techniques, across 66 

different types spanning 36 tissues in human and mouse species. DIANA-TarBase 

update was also part of the thesis. TarBase v7 is considered the largest available 

repository of miRNA-mRNA interactions as compared to any of the relevant databases. 

It hosts more than half a million interactions from published experiments on 356 

different cell types (59 tissues), belonging to 24 species. The detailed cataloguing of 

RNA interactions unveiled a set of approximately 400 unique viral-miRNA:lncRNA 

interacting pairs in human virus-infected cells.  This type of regulation adds an extra 

layer of complexity in the miRNA interactome, and perplexes the network with the 

inclusion of virus-encoded and human transcript interactions. 

By analyzing more than 150 raw CLIP-Seq datasets, DIANA-TarBase v7.0 and DIANA-

LncBase are the first relevant databases to provide an unprecedented amount of 

experimentally supported interactions in many different cell types and tissues. 

Furthermore, RNA sequencing data were analyzed to accurately assess miRNA and 

transcript expression in the investigated cell types. Optimized pipelines were 

developed for the analysis of sequencing data, while a machine learning approach has 

been applied for the identification of miRNA binding sites.  
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The adopted methodology for AGO-CLIP-Seq data analysis was compared against 

other available state-of-the-art implementations and has been proven robust and 

advantageous.  

During the course of the Doctoral thesis, the continuous archiving of experimental data 

from low and high-throughput methodologies, along with extensive evaluation of the 

available AGO-CLIP-Seq analysis programs, revealed that there was room for 

algorithms’ further improvement and optimization. State-of-the-art CLIP-guided target 

identification implementations currently manage to identify approximately half of the 

experimentally validated binding sites. To this end, a novel algorithm was developed 

for CLIP-Seq data analysis. The algorithm was trained and extensively tested on a 

comprehensive collection of accurate positive and negative miRNA-target interactions 

from numerous experimental data sources. It was additionally evaluated against all 

leading implementations, including CLIP-Seq analysis adopted by TarBase/LncBase. 

The results depict that the new approach not only significantly outperforms other 

implementations in terms of accuracy but also manages to increase sensitivity, 

predicting sites that were not detected by any other algorithm. 

The functional significance of miRNA interactions with coding and non-coding 

transcripts was further assessed with the evolutionary conservation of the miRNA 

binding sites. The thesis additionally associates the catalogued interactions to diseases 

and molecular pathways, providing new insights in ncRNA function.  

DIANA-microT web server was upgraded and enhanced with automated analyses 

pipelines (workflows) that can be applied to NGS-derived data. The ready-to-use 

modules seamlessly integrate DIANA supported algorithms for the identification of 

miRNA-gene interactions and miRNA-targeted pathway analyses. 

During the course of the Doctoral thesis, the candidate took part in 8 scientific studies 

involving computational approaches for determining the activity of the non-coding 

transcripts and in four of them the candidate is first author. The studies are published 

in international peer-reviewed scientific journals, while the total citations received to 

date are 310. 

 

SUBJECT AREA: Computational Biology 

KEYWORDS: microRNA, lncRNA, HITS-CLIP, PAR-CLIP, target prediction, 

experimentally verified targets 
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ΠΕΡΙΛΗΨΗ 

Η επανάσταση του RNA μετέφερε τα μη κωδικά μετάγραφα (non-coding RNAs)  στο 

επίκεντρο της βιολογικής έρευνας. Τα τελευταία χρόνια, στοιχεία από πολυάριθμα 

πειράματα αποκαλύπτουν πολλαπλούς ρυθμιστικούς ρόλους των μη κωδικών 

μεταγράφων στο γονιδίωμα σε ένα ευρύ φάσμα βιολογικών διεργασιών. H εργασία 

αυτή εστιάζει στην ανάπτυξη αλγορίθμων για την κατανόηση της λειτουργίας μη 

κωδικών μορίων και διερευνά εκτενώς τις αλληλεπιδράσεις μεταξύ ομάδων κωδικών 

και μη κωδικών μεταγράφων. Οι μεθοδολογίες που αναπτύχθηκαν κατά τη διάρκεια 

της διδακτορικής διατριβής συνδύασαν προηγμένες αναλύσεις δεδομένων 

αλληλούχησης επόμενης γενεάς και συμπεριέλαβαν αλγορίθμους αιχμής Μηχανικής 

Μάθησης, για την πραγματοποίηση αυτόματων αναλύσεων καθώς και εποπτείας των 

αντίστοιχων αποτελεσμάτων.  

H εργασία εστιάζει στη μελέτη ειδικών κατηγοριών μορίων: τα microRNAs (miRNAs) 

και τα long non-coding RNAs (lncRNAs). Τα miRNAs είναι μονόκλωνα  μόρια RNA 

μήκους περίπου 22 νουκλεοτιδίων. Θεωρούνται βασικοί μετα-μεταγραφικοί ρυθμιστές 

της έκφρασης των γονιδίων και διαδραματίζουν καθοριστικό ρόλο σε πληθώρα 

βιολογικών διαδικασιών. Αποτελούν αντικείμενο έντονης μελέτης τα τελευταία χρόνια 

για τη δυναμική τους ως πιθανοί θεραπευτικοί στόχοι καθώς πέρα από το ρόλο τους σε 

φυσιολογικές διεργασίες, εμφανίζονται να εμπλέκονται σε ένα ευρύ φάσμα 

παθολογικών καταστάσεων. Βάσει τελευταίων ερευνών, τα miRNAs στοχεύουν και 

άλλα μη κωδικά RNAs, τα lncRNAs. Τα lncRNAs είναι μακρά μη κωδικά μετάγραφα 

και μέρος αυτών σχετίζεται με την ρύθμιση της γονιδιακής έκφρασης. 

Προκειμένου να χαρακτηριστεί ολόκληρο το φάσμα των αλληλεπιδράσεων των 

miRNAs με lncRNAs, σχεδιάστηκε η βάση δεδομένων DIANA-LncBase που 

υποστηρίζει τον μεγαλύτερο κατάλογο πειραματικά επιβεβαιωμένων miRNA-lncRNA 

αλληλεπιδράσεων. Περιέχει πάνω από 70.000 αλληλεπιδράσεις από πληθώρα 

πειραμάτων αλληλούχησης επόμενης γενεάς και ειδικές τεχνικές μικρής 

διεκπεραιωτικής ικανότητας σε 66 διαφορετικούς τύπους κυττάρων, που εκτείνονται σε 

36 ιστούς του ανθρώπου και του μυός. Στη παρούσα διατριβή ανανεώθηκε και η βάση 

δεδομένων DIANA-TarBase, η βάση με τον εκτενέστερο κατάλογο πειραματικά 

επιβεβαιωμένων αλληλεπιδράσεων μεταξύ μικρών RNA και κωδικών γονιδίων στόχων 

παγκοσμίως. Περιέχει περισσότερες από 500.000 αλληλεπιδράσεις από 28 διάφορες 

πειραματικές μεθοδολογίες, καλύπτοντας 356 κυτταρικούς τύπους και 59 διαφορετικούς 

ιστούς. Κατά τη λεπτομερή καταγραφή του χάρτη των αλληλεπιδράσεων των μορίων 

στο επίπεδο του RNA σημειώθηκαν για πρώτη φορά και αλληλεπιδράσεις των μικρών 

RNAs που παράγονται από ιούς με τα μακρά μη κωδικά μετάγραφα του ανθρώπου. Η 

αναγνώριση τέτοιων αλληλεπιδράσεων έγινε σε ανθρώπινες κυτταρικές σειρές που 

έχουν προσβληθεί από κάποιο στέλεχος ιού. Αυτά τα δεδομένα βάζουν ένα ακόμη 

επίπεδο πολυπλοκότητας στις αλληλεπιδράσεις των μη κωδικών μορίων, καθώς 

χρειάζεται να μελετηθούν και αυτές μεταξύ των μεταγράφων του ιού και του ανθρώπου.
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Τα δεδομένα NGS που αναλύθηκαν, για την ανεύρεση στόχων των microRNAs με τα 

(μη)κωδικά μετάγραφα για το σχηματισμό των βάσεων LncBase και TarΒase, 

περιλαμβάνουν πάνω από 150 βιβλιοθήκες CLIP-Seq. Παράλληλα, συλλέχθηκαν και 

αναλύθηκαν δεδομένα αλληλούχησης για την έκφραση των microRNA και των 

μεταγράφων στα κύτταρα όπου πραγματοποιήθηκαν τα CLIP-Seq πειράματα. 

Αναπτύχθηκαν αλγόριθμοι για την ανάλυση των δεδομένων αλληλούχησης, ενώ ο 

εντοπισμός των αναγνωριστικών θέσεων πρόσδεσης των microRNAs στα μετάγραφα 

έγινε με μηχανική μάθηση. Η μεθοδολογία που υιοθετήθηκε συγκρίθηκε με 

αντίστοιχους αλγορίθμους αιχμής, ενώ εμφάνισε πληθώρα πλεονεκτημάτων σε κάθε 

σύγκριση. 

Κατά τη διάρκεια της διδακτορικής διατριβής, η συνεχής αρχειοθέτηση και ανάλυση 

πειραματικών δεδομένων από χαμηλής και υψηλής διεκπεραιωτικής ικανότητας 

μεθοδολογίες, μαζί με την εκτενή αξιολόγηση των διαθέσιμων CLIP-Seq 

προγραμμάτων, αποκάλυψε ότι υπήρχε περιθώριο για περαιτέρω βελτίωση. Οι 

διαθέσιμοι αλγόριθμοι αιχμής που εντοπίζουν στόχους των miRNAs μέσα από την 

ανάλυση CLIP-Seq δεδομένων επιτυγχάνουν την ορθή αναγνώριση σε περίπου μισές 

πειραματικά επικυρωμένες αλληλεπιδράσεις. Για το σκοπό αυτό, αναπτύχθηκε ένας 

καινοτόμος αλγόριθμος για την ανάλυση AGO-CLIP-Seq δεδομένων. Ο αλγόριθμος 

εκπαιδεύτηκε και δοκιμάστηκε εκτενώς σε μια υψηλής ποιότητας, ολοκληρωμένη 

συλλογή θετικών και αρνητικών αλληλεπιδράσεων των miRNAs με γονίδια βάσει 

πολυάριθμων πειραματικών δεδομένων. Επιπλέον αξιολογήθηκε έναντι παρόμοιων 

εφαρμογών αιχμής, συμπεριλαμβανομένου και του αλγορίθμου ανάλυσης CLIP-Seq 

δεδομένων των TarBase / LncBase. Τα αποτελέσματα παρουσίασαν ότι η νέα 

αλγοριθμική προσέγγιση ξεπερνά σημαντικά τις άλλες εφαρμογές όχι μόνο όσον αφορά 

την ακρίβεια, αλλά παράλληλα καταφέρνει να αυξήσει την ευαισθησία μέσω της 

πρόβλεψης περιοχών πρόσδεσης των μικρών RNA που δεν είχαν εντοπιστεί από 

οποιοδήποτε άλλο αλγόριθμο. 

Παράλληλα, η λειτουργική σημασία των αλληλεπιδράσεων των miRNAs με τις 

διάφορες κατηγορίες μεταγράφων μελετήθηκε μέσω της διερεύνησης της εξελικτικής 

συντήρησης των περιοχών πρόσδεσης σε κωδικές και μη κωδικές ακολουθίες. Η 

διδακτορική διατριβή περιλαμβάνει και τη μελέτη του χάρτη των αλληλεπιδράσεων 

των μορίων στο επίπεδο του RNA σε σχέση με ασθένειες και μοριακά μονοπάτια, 

γεγονός που θα βοηθήσει να προσδιοριστούν άγνωστες μέχρι τώρα πτυχές της δράσης 

των μικρών RNAs. Παράλληλα, αναβαθμίστηκαν και σχηματίστηκαν νέες 

λειτουργικότητες για τον εξυπηρετητή του DIANA-microT και πραγματοποιήθηκε η 

δημιουργία αυτόματων ροών ανάλυσης (workflows), δεδομένων που προκύπτουν από 

πειράματα NGS. Οι έτοιμες αναλύσεις διασυνδέουν εργαλεία του DIANA που αφορούν 

αλληλεπιδράσεις των μικρών RNAs με γονίδια και την εμπλοκή τους σε μοριακά 

μονοπάτια.  

Κατά τη διάρκεια της διδακτορικής διατριβής, η υποψήφια έλαβε μέρος σε 8 

επιστημονικές μελέτες που περιλαμβάνουν υπολογιστικές προσεγγίσεις για τον 
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προσδιορισμό της δράσης των μη κωδικών μεταγράφων, και σε τέσσερις από αυτές 

είναι πρώτη συγγραφέας. Οι μελέτες δημοσιεύτηκαν σε διεθνή έγκριτα περιοδικά και οι 

συνολικές αναφορές που έχουν λάβει έως τώρα είναι 310. 
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1. INTRODUCTION 

1.1 ncRNAs 

The traditional view of molecular biology argued that the primary and almost exclusive 

role of RNA is to carry genetic information in order to be subsequently translated into 

protein. However, the discovery of functional non-coding transcripts other than those 

participating in the translational machinery (ribosomal RNAs and tRNAs) broadened 

the long-established RNA role and revised the “central dogma”. Non-coding RNAs 

(ncRNAs), although initially considered as “junk”, have been deemed as important key 

regulators in various biological processes. A large percentage of the mammalian 

genomes and other complex organisms are transcribed into ncRNAs comprising a 

hidden layer of regulation in a plethora of physiological and pathological processes. 

ncRNAs originate from different regulatory regions within the genomes and are 

characterized by high versatility. It has been observed that ncRNAs may derive from 

intragenic, intergenic, intronic regions of protein coding genes or even from 

transposons and pseudogenes (1). ncRNAs can be divided into many subcategories, 

such as, ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small interfering RNAs 

(siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar 

RNAs (snoRNAs), long noncoding RNAs (lncRNAs), etc. 

Currently, we can observe an unprecedented expansion of the so-called “regulatory 

RNA” field thanks to emerging new technological developments. Extensive sequencing 

experiments during the past decade and deep sequencing data produced by large 

consortia, including the Encyclopedia of DNA Elements Consortium (ENCODE) (2,3) 

revealed that the majority of the transcribed eukaryotic genomes corresponds to 

functional non-coding RNA elements, while only 3% of these regions produce protein 

coding transcripts. Numerous high-throughput experiments suggest that ncRNAs 

define the complexity of an organism and regulate numerous biological processes 

including splicing, editing, transcription, translation, various levels of gene expression, 

development and epigenetic mechanisms (4). 

 

1.2 microRNAs 

miRNAs are small noncoding RNAs (~22 nts) and are considered central post-

transcriptional gene regulators, acting through transcript degradation, cleavage and/or 

translation suppression in the case of mRNAs (5). Since their first identification in  1993 

(6), the number of annotated miRNAs and miRNA-related publications increased in a 

super linear rate, clearly depicting their central position in the RNA revolution (7). 

More than 21,000 miRNAs have been identified in various organisms, while their 

number in the human genome surpasses 2,500 (8). 

The first microRNAs were discovered in 1993 in Caenorhabditis elegans (9) by Ambros, 

Lee and Feinbaum. The researchers observed that the lin-4 gene produced a non-coding 

RNA segment of about 22 bases long, that bound to the 3’ untranslated end (3'-

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs 

Maria D Paraskevopoulou   31 

UnTranslated Region, 3'-UTR) of lin-14 mRNA. The interaction between the lin-4 non-

coding RNA and lin-14 led to translational repression of the latter. The above 

phenomenon was reinforced by another research study in C. elegans, where the miRNA 

let-7 was identified to target the 3'UTR region and induce suppression of lin-41 gene 

expression (10). Let-7 appeared to be conserved in other organisms, supporting the 

putative existence and regulatory role of other small non-coding RNA molecules (11). 

These early discoveries inaugurated the detection of large numbers of novel miRNA 

sequences in various organisms and also established their function as regulators of gene 

expression (12). Current studies indicate that more than half of human genes are 

regulated by miRNAs. 

1.2.1 miRNA Biogenesis 

Most miRNAs in mammals are transcribed by RNA polymerase II (RNA polymerase II, 

Pol II) (13), while few appear to be transcribed by RNA polymerase III (RNA 

polymerase III, Pol III) (14). At the same time a large number of transcription factors 

(TFs) associated with Pol II activity are taking part in the transcription process of 

miRNA genes (15). More than half of the miRNAs are derived from intragenic loci, 

embedded in protein coding introns, while ~45% originate from intergenic transcripts. 

The initially generated long primary miRNA transcripts are of thousand kilobases long 

(pri-miRNAs) and are 5’ capped, spliced and polyadenylated at the 3’ end.  

The first stages of pri-miRNA transcript preprocessing are carried out in the cell 

nucleus. The pri-miRNAs form local stem-loop structures and usually contain at least 

one hairpin structure, termed as miRNA precursor sequence (precursor miRNA, pre-

miRNA). In the primary maturation step, miRNA transcripts are cleaved by RNase III 

enzyme Drosha which processes pri-miRNAs into the ~60-100nt hairpin structure of the 

miRNA precursor (pre-miRNA) (16). The precursor sequences comprise several bulges 

and regions of imperfect complementarity. The rapid cleavage of pri-miRNAs by 

Drosha in the nucleus hinders their identification with conventional sequencing 

techniques. 

During the pri-miRNA cleavage process, Drosha cooperates with DiGeorge syndrome 

Critical Region 8 (DGCR8) in humans and Pasha in Drosophila melanogaster and C. 

elegans (17-19). Protein DGCR8 and Drosha form the Microprocessor complex. Precursor 

sequences are subsequently exported from the nucleus to the cytoplasm, where their 

nuclear transport is accomplished by exportin-5 (20) and Ran-GTP. miRNA precursors 

are cleaved by Dicer enzyme in the cytoplasm, a highly conserved protein found in 

most eukaryotes. The produced double stranded mature transcripts are approximately 

19-22nt long (21).  

miRNA interacts with the RNA-induced silencing complex (RISC) to form the miRNA-

induced silencing complex (miRISC). Both strands of the miRNA duplex-intermediate 

can be potentially functional. However, usually one strand (guide strand) accumulates 

as the mature miRNA and is loaded into the RISC complex along with a highly 
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conserved protein of the Argonaute (AGO) family. The other strand, termed as the 

“passenger” strand, is released and degraded. Perfect base pairing between the guide 

strand and the mRNA-target can lead to degradation (22), whereas in cases of imperfect 

complementarity miRNAs can direct gene silencing by translational repression, which 

is accompanied by degradation of mRNA in P-bodies (Processing bodies). Figure 1 

summarizes the steps of microRNA biogenesis starting from the miRNA gene 

transcription to the mature miRNA function in the cytoplasm. 

 

 

Figure 1: Summary of miRNA biogenesis. (1) miRNA gene transcription and formation of the pri-

miRNA, (2) creation of pre-miRNA structures from cooperative Drosha-DGCR8 activity, (3) pre-

miRNA nuclear export assisted by exportin 5 and Ran-GTP,  (4) pre-miRNA is cleaved by Dicer 

enzyme to form the mature transcripts. (5) miRNAs loaded in the RISC complex post-transcriptionally 

regulate protein coding genes through mRNA cleavage, direct translational repression and/or mRNA 

destabilization in the cytoplasm. 
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1.2.2  miRNA Function 

miRNAs are considered central post-transcriptional regulators of gene expression. As 

described in the previous section, mature miRNA sequences are incorporated in the 

RISC complex and induce gene silencing. They target genes usually by partial or 

complete base pairing with specific miRNA recognition elements (MREs) on the mRNA 

sequences (23). More precisely, miRNA and target gene interactions usually require  6-8 

base-paired nucleotides, the  so-called seed (24) at the 5' miRNA end. It should be noted 

that the degree of base pairing of the miRNA seed region with the mRNA plays a very 

important role in the efficiency of the interaction. miRNAs were primarily detected to 

effectively target specific mRNA 3′ untranslated regions (3’-UTRs), where highly 

conserved MREs exist (25). Recent findings showed bona fide miRNA interactions with 

MREs located also in 5’-UTR regions as well as within the coding sequence (CDS) (26). 

miRNAs play a key role in numerous biological processes such as stem cell 

proliferation, division and differentiation, immunity, cell signaling, apoptosis and 

metabolism. Apart from their normal role, a large number of studies describe their 

implication in a vast array of diseases, such as cancer, viral infections, cardiovascular 

diseases, metabolic disorders, autoimmune pathologies, as well as neuropsychiatric 

pathological conditions. miRNAs can affect gene expression in various tissues. 

Therefore, possible changes in the concentration of miRNAs caused by epigenetic 

silencing or deregulated transcription factors, genetic disorders/abnormalities, deletion 

and amplification events can lead to the deregulation of their respective target genes 

(27-31). miRNAs are therefore intensively studied for their potential as therapeutic 

targets. 

1.3 Identification of miRNA targets 

One of the most important processes in miRNA research is the detection of their targets. 

Identification of miRNA-gene interactions can be performed with either computational 

approaches or experimental methodologies. 

Accurate cataloguing of miRNA targets is crucial to the understanding of their function. 

To this end, numerous wet lab methodologies have been developed, enabling the 

validation of predicted miRNA interactions or the high-throughput screening and 

identification of novel miRNA targets (32). Currently available methodologies can 

elucidate different parts of the equation and are often used complementarily in 

investigative studies. On the other hand there are multiple programs based on simple to 

more sophisticated algorithms that perform target prediction. 

Despite the contribution of both experimental methodologies and computational 

approaches, a large part of the miRNA targets, even for the well-studied organisms 

such as mouse and human, remains unexplored. 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs 

Maria D Paraskevopoulou   34 

1.3.1 In silico approaches for the identification of de novo miRNA:mRNA 

interactions 

In silico miRNA target identification is a crucial step in most miRNA-based 

experiments, since the miRNA interactome has not yet been adequately mapped, even 

for the most well-studied model organisms. Although the available experimental 

techniques are utilized to verify genuine targets, the first step in the analysis is the 

computational determination of miRNA-gene interactions. Early miRNA-related 

research efforts have highlighted the necessity of computational analyses in order to 

assist the experimental identification of miRNA targets. This has resulted to the 

development of numerous miRNA target prediction algorithms (33), which are now 

considered indispensable for the design of relevant experiments. These algorithms 

identify in silico miRNA targets as candidates for further experimentation or for 

computational processing, such as target enrichment analyses. Predictions of the 

available computational algorithms can be acquired from relevant miRNA:gene 

interaction databases or web servers (33,34). 

The first target prediction program was developed in 2003, following the observation 

that miRNAs present high abundance in the cell, and since then more sophisticated 

implementations have been developed. 

Significant nucleotides for the identification of binding sites are located at the 5' end of 

the mature miRNA sequence. Statistical analysis conducted by the group of Lewis and 

collaborators revealed certain highly conserved motifs across species in the 3'UTR 

region of mRNAs that match 2-7 positions of the miRNA 5’ end (35). These 6 

nucleotides constitute the so-called seed region of the miRNA, which until now remains 

one of the most important features in target prediction (36). Other important features 

are considered the evolutionary conservation, dinucleotide base content and structural 

accessibility of the miRNA binding site as well as the base pairing stability (37).  

Available algorithms can utilize diverse techniques and features, including machine 

learning, physics models, target site context and accessibility, pairing stability and 

conservation. These implementations often produce diverse outcomes as a result of 

their distinct analysis pipelines. Each algorithm is also trained on different experimental 

data and utilizes unique sets of features. The best of these algorithms in terms of 

performance achieve sensitivity and specificity of approximately 60% and 30% 

respectively. Moreover, most of them are trained to provide in silico predictions in the 

3’UTR regions of the mRNAs, while very few have been tested for identifying targets in 

their 5'UTR and coding regions (38,39). 
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1.3.1.1  Overview of de novo Target Prediction Algorithms 

In the following section, a brief overview of the most widely utilized target prediction 

algorithms is provided. 

TargetScan (40) is considered one of the first available programs with high sensitivity 

and precision. Its algorithm is mainly focused on the identification of miRNA binding 

sites with perfect complementarity in the seed region (7 or 8 consecutive nucleotides of 

perfect complementarity). Based on experimental evidence, these sites exhibit the 

highest repressing activity. Even though TargetScan algorithm follows a seed-

dependent scoring system, it additionally identifies centered and offset 6mer miRNA 

sites. TargetScan algorithm provides a context score for each binding site which derives 

from a quantitative model that incorporates 14 distinct features, such as the first 

binding position on the 5′ end of the miRNA, binding type of the target site, local AU 

content and 3′ supplementary pairing.  

It supports an extra mode specifically designed to rank sites from higher to less 

conserved target sites based on an aggregate conservation score. These two basic modes 

of the TargetScan algorithm can be jointly used for the assessment of the efficacy of each 

target site. TargetScan predictions are miRNA-family based, where miRNAs are 

clustered according to their seed similarity. The latest version can provide predictions 

for miRNAs of miRBase Release 21.  

The algorithm has been trained on microarray data with clear siRNA/miRNA induced 

repression using a multiple/stepwise linear regression and has been tested in its 

efficiency to detect targets in the 3′-UTR region of protein coding transcripts.  

miRanda (41) implementation scores the candidate target sites with a support vector 

regression algorithm, mirSVR. miRanda/mirSVR is specifically trained to identify 

potent repressing miRNA interactions. The model takes into account binding site 

complementarity, conservation, binding energy, site position in 3′UTRs and A/U 

flanking content. It was trained on a set of nine miRNA transfection experiments 

performed on HeLa cells. miRanda utilizes a pre miRBase 18 miRNA nomenclature. 

MIRZA-G (42) is a recently developed target prediction algorithm able to detect both 

canonical and non-canonical miRNA binding sites and siRNA off-targets. Features such 

as, the flanking nucleotide composition, site structural accessibility, location within the 

3′UTR and evolutionary conservation are deemed important for this algorithm. miRZA-

G algorithm is based on a generalized linear model that additionally incorporates 

duplex base binding energy measurements derived from the MIRZA biophysical model 

(43). The training and the testing of miRZA-G model performance was evaluated 

against a set of 26 miRNA transfection microarray datasets. MIRZA-G utilizes miRNA 

sequences downloaded from miRBase version 20. 

 

mirMark (44) is a computational framework that incorporates multiple characteristics 

of miRNA binding sites in order to assess putative miRNA-mRNA 3’UTR interactions. 
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Subsequently, the model utilizes distinct levels of classification for the evaluation of the 

binding sites and miRNA-mRNA interactions, respectively. The authors selected a 

random forest learning scheme for having the best performance for these two separate 

classification levels. The initial detection of miRNA-targeted regions is accomplished 

with the miRanda algorithm. Decisive features for mirMark performance are considered 

the base pairing, the nucleotide composition, the site structural accessibility and 

evolutionary conservation. The model has been trained on negative instances of mock 

miRNA-gene interactions as well as on positive experimentally supported miRNA-

mRNA interactions retrieved from miRecords (45) and miRTarBase (46). Finally, the 

algorithm’s performance has been tested on PAR-CLIP data. miRNA sequences utilized 

by miRmark are obtained from miRBase release 19. 

mBSTAR (47) is a multiple instance learning framework developed for the 

identification of miRNA-gene interacting pairs. The mBSTAR model incorporates a 

random forest classifier utilizing 40 distinct features, such as nucleotide frequencies, 

duplex structure internal loops, bulges, and minimum free energy. The training and the 

testing of the algorithm was assessed on experimentally derived miRNA-mRNA 

interactions from miRecords (45), Tarbase v6.0 (7) and starBase (48). mBSTAR supports 

miRNAs obtained from miRBase release 20. 

MirTarget (49) is a computational model that identifies canonical miRNA seed binding 

events in mRNA targets.  The algorithm has been applied in 5 different organisms 

(human, mouse, rat, dog or chicken).  MirTarget predictions are being deposited in 

miRDB web server (http://mirdb.org).  It adopts an SVM-recursive feature elimination 

approach (RFE) in order to detect the most prominent independent features. The model 

incorporates several features, such as the target site conservation, accessibility 

(calculated with RNAfold), nucleotide usage per duplex position, location on the 3’UTR 

as well as other 3’UTR related characteristics. Although it has been developed based on 

3’UTR characteristics, it also provides predictions for CDS and 5’UTR regions. 

MirTarget has been trained on canonical chimeric miRNA-target pairs derived from 

CLIP-Seq experiments (50,51). The testing of this implementation was performed on 

miRNA inhibition microarray datasets. 

Initial research efforts have unveiled that miRNAs regulated gene expression through 

their binding on the 3’UTR of protein coding genes (6). However, accumulated 

experimental evidence has revealed that miRNA binding sites within coding sequences 

are also functional in controlling gene expression (52).  

 

PACCMIT/PACCMIT-CDS (53) (Prediction of ACcessible and/or Conserved 

MIcroRNA Targets) is a recently developed algorithm that comprises two modules for 

the prediction of miRNA binding sites (with seed complementarity) on the 3’UTR and 

CDS regions of the mRNAs. Candidate miRNA binding regions are pre-filtered based 

on their structural accessibility and/or evolutionary conservation. Subsequently, the 
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predictions are scored following a Markov model that includes the information of the 

overrepresented targets versus a random background. PACCMIT includes the 

information of weakly and highly conserved miRNAs as introduced from TargetScan 

algorithm. The model has been trained and evaluated on proteomics and PAR-CLIP 

data. 

DIANA-microT-CDS (54) is specifically trained on both 3′-UTR and CDS regions. The 

experimental positive and negative sets of MREs are derived from PAR-CLIP data 

performed in HEK293 cells (26). Candidate miRNA binding sites are subsequently 

combined in a general linear model trained on a set of 13 distinct microarray datasets 

that measure mRNA expression changes following transfection or knockout of a 

specific miRNA. The algorithm identifies (non)canonical 6mer to 9mer binding sites in 

3’UTR and CDS regions. Target sites with buldges, G:U wobble, seed mismatches that 

correspond to non-canonical bindings are supported by additional 3’ pairing. Features 

of great importance for the microT-CDS algorithm are the target conservation, site 

accessibility that is estimated with Sfold program, binding free energy as calculated 

with RNA-Hybrid, AU flanking dinucleotides and the binding type. The algorithm 

adopts distinct conservation score models for the CDS and 3’UTR regions in 30 and 16 

species, respectively. microT-CDS provides a final score for each miRNA-gene 

interaction combining the synergistic efficiency of MREs detected in CDS and 3′UTR 

results with a general linear model.  

Further details on the microT-CDS algorithm and the utilized training sets, can be 

found in the relevant publication by Reczko et al. (38). DIANA-microT-CDS provides 

increased accuracy and the highest sensitivity at any level of specificity over other 

available state-of-the-art implementations, when tested against pulsed stable isotope 

labeling by amino acids in cell culture (pSILAC) proteomics datasets (55) and HITS-

CLIP data . microT-CDS adopts a miRBase v18 nomenclature. 

 

1.3.2 Experimental Methods for the identification of miRNA:mRNA interactions 

Experimental techniques are usually divided into low yield and high-throughput 

methods, depending on their application scope and the number of obtained results per 

experiment. The most commonly used low yield techniques are reporter genes, qPCR 

and western blotting. Reporter genes are used for binding site validation, while qPCR 

and western blot or ELISA assays are usually combined to identify interactions that 

induce mRNA decay and/or translation suppression.   

The first high-throughput techniques that became available could be  considered as an 

increased throughput/lower accuracy version of specific techniques (56).  Microarrays 

can be utilized to identify possible miRNA-gene interactions, as a high-throughput 

version of qPCR and northern blotting, while quantitative proteomic techniques can be 

seen as a high yield generalization of ELISA assays and western blots. Novel NGS 
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experiments have offered a high-throughput/increased accuracy combination that has 

revolutionized the way we identify miRNA-gene interactions. These techniques are 

based on NGS sequencing of mRNA sites bound by the Argonaute (AGO) protein and 

are often accompanied by sequencing of small-RNAs, as well as complementary 

experiments such as RNA-Seq and ribosome profiling (26,57). 

HITS-CLIP (High-throughput sequencing of RNA isolated by crosslinking 

immunoprecipitation) was the first technique that offered for the first time a 

transcriptome-wide map of miRNA binding sites (57). The identified regions are 

usually wide and perplex the identification of the exact miRNA binding location, which 

is performed algorithmically. PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced 

Crosslinking and Immunoprecipitation) is a modified CLIP-Seq methodology, 

incorporating 4-thiouridine in the nascent RNAs, which are subsequently detected as T-

to-C transition sites in the AGO-miRNA-RNA cross-linked regions (26). Compared to 

the results obtained by HITS-CLIP, the boundaries of the identified binding locations 

are sharper and significantly narrower, while T-to-C mutations close to the region 

occupied by the RISC complex contribute to the identification of the exact MRE (58). 

Despite the accurate detection of the crosslinked region, these methods cannot directly 

reveal the specific miRNA participating in the interaction, which has to be 

bioinformatically identified. A more recent variant of the PAR-CLIP methodology (51) 

as well as the CLASH (crosslinking, ligation, and sequencing of hybrids) and CLEAR 

(covalent ligation of endogenous Argonaute-bound RNAs)-CLIP protocols (50,59) 

incorporate an extra ligation step, concatenating the miRNA to the mRNA binding 

region. The derived chimeric miRNA-mRNA fragments are subsequently sequenced 

and bioinformatically separated for the concurrent identification of the targeted 

mRNAs, binding sites and interacting miRNAs. Another important distinction between 

CLIP-Seq approaches is the reliance on either endogenous or exogenous AGO 

expression for the identification of AGO–miRNA–mRNA complexes. Nevertheless, the 

class of CLIP-Seq/CLASH experiments can reveal thousands of miRNA-gene 

interactions in each analysis and has significantly altered the scope and scale of relevant 

research projects.  

Each technique has its own merits and disadvantages. An overview of available 

experimental techniques is presented in Table 1, along with short comments on their 

intended use, obtained results and expected throughput. 
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Method Throughput Intended Use 

Reporter Genes(32) Low Validation of miRNA:UTR (or binding region) 

interaction 

Northern 

Blotting(32) 

Low Relative effect of miRNA on mRNA levels 

qPCR(32) Low Quantification of miRNA effect on mRNA levels 

Western Blot(32) Low Relative assessment of miRNA effect on protein 

concentration 

ELISA(32) Low Quantification of miRNA effect on protein concentration 

5′ RLM-RACE(32) Low Identification of cleaved mRNA targets 

Microarrays(32) High High throughput assessment of miRNA effect on mRNA 

expression 

RNA-Seq(32) High High throughput assessment of miRNA effect on mRNA 

expression 

Quantitative 

Proteomics (e.g. 

pSILAC(55)) 

High 
High throughput assessment of miRNA effects on 

protein concentration 

RPF-Seq 
High 

High throughput assessment of ribosome protected 

fragments 

PARE / Degradome-

Seq(60) 
High 

High Throughput identification of cleaved mRNA 

targets 

Biotin miRNA 

tagging(32) 
High/Low 

Pull-down of biotin-tagged miRNAs and estimation of 

bound transcript content using qPCR (Low yield), 

microarrays (High throughput) and RNA-Seq (High 

Throughput) 

IMPACT-Seq(61) High 
Pull-down of biotin-tagged miRNAs, identification of 

interacting pairs and binding regions. 

PARE / Degradome-

Seq(60) 
High 

High Throughput identification of cleaved mRNA 

targets 

3Life(62) High High Throughput Reporter Gene Assay 

miTRAP(63) High miRNA trapping by RNA baiting 

AGO-IP 
High Identification of enriched transcripts (miRNAs and 

mRNAs) in AGO immunoprecipitates 

HITS-CLIP(57) High Sequencing of AGO binding regions on targeted 

transcripts 

PAR-CLIP(26) High Sequencing of AGO binding regions on targeted 

transcripts 

CLASH(50) / PAR-

CLIP + Ligation(51), 

CLEAR CLIP (59) 

High Sequencing of AGO binding regions on targeted 

transcripts. Production of chimeric miRNA-mRNA reads 

for the identification of interacting pairs. 

Table 1: Index of experimental techniques utilized for the identification of miRNA-gene interactions. 

(Vlachos IS and Paraskevopoulou MD et al, 2014) (64) 
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1.3.2.1 Description of a CLIP-Seq protocol 

CLIP-Seq techniques, which constitute a combination of AGO immunoprecipitation and 

NGS, have revolutionized miRNA-gene interactions research and enabled the detection 

of transcriptome-wide miRNA target sites. Typical PAR/HITS-CLIP protocols include 

the following steps (Figure 2) (65): 

 

 

Figure 2: Steps followed in a typical PAR-CLIP-Seq experiment. (Copyright Paraskevopoulou MD)  

 

 PAR-CLIP requires the incorporation of photoactivatable thioribonucleosides (4SU) 

into nascent transcripts. 

 Crosslinking by using long-wavelength 365 and 254 nm UV in PAR-CLIP and HITS-

CLIP respectively.  

 Cell lysis.  

 Isolation of crosslinked RNA–AGO complexes is achieved by immunoprecipitation. 
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 Sample processing by a ribonuclease (RNase) in order to partially digest the 

covalently bound RNAs.  

 Radiolabeling of RNA segments crosslinked to immunoprecipitated AGO proteins.  

 3’ adapter ligation.  

 Crosslinked AGO proteins are further purified by SDS–PAGE. After recovery of the 

RNA from the purified radioactive band the RNA is carried through a small RNA 

cDNA library preparation protocol for sequencing. 

 The co-purified RNA molecules are reverse-transcribed and amplified with the aid 

of 5’ and 3’ adaptors. 

 In PAR-CLIP experiments, the reverse transcription of the crosslinked-modified 

RNAs followed by PCR amplification, leads to a characteristic mutation that is used 

to identify the AGO binding sites (T-to-C when using 4SU and G-to-A when using 

6SG). 

 

1.4 State-of-the-art implementations for AGO-CLIP-Seq analysis. 

PARalyzer (66) is considered the first model dedicated to the analysis of PAR-CLIP 

data. It was not developed though to identify miRNA binding sites from AGO PAR-

CLIP. It is a generic model that identifies enriched regions for RNA-binding proteins 

from the analysis of PAR-CLIP deep sequencing data. PARalyzer adopts a kernel 

density estimator to quantify thymine-to-cytosine transitions. The kernel density 

approach is applied to crosslinked regions with normalized read counts and values of 

T-to-C conversions along with relative background signal estimations. Notably, for the 

detection of binding events this implementation has to be complemented with other 

algorithms such as cERMIT (67), mEAT (26) and MEME (68) depending on the intended 

use.  

There are other algorithms similar to PARalyzer such as CLIPZ (69), miCLIP (70) and 

Wavcluster (71) that can be utilized to identify candidate RBP binding regions from the 

analysis of PAR/HITS-CLIP sequencing data. 

MIRZA (72) is a biophysical model that has been designed to identify miRNA binding 

sites in Ago2-bound enriched regions. Model parameters have been deduced from 

PAR-CLIP AGO CLIP-Seq datasets.  MIRZA implementation adopts 27 distinct energy 

parameters for the assessment of putative miRNA-transcript duplexes and assigns 

position-dependent binding energies. It predicts the frequencies with which RISC 

complexes are associated to different mRNA fragments and calculates a ‘binding site 

quality’ quantifying miRNA total affinity for each targeted fragment. Decisive features 

for MIRZA-adopted scoring scheme include, base pairing, base energies in the miRNA 

seed region (position 2-7) as well as energies at the 3’ compensatory base-pairing 

(positions 13-16) and 18-19 positions. It takes into consideration several other 
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parameters such as, the (a)symmetric loops and bulges formed in miRNA-target 

hybrids, mRNA fragment abundance as estimated from the CLIP-Seq experiment and 

miRNA expression values. The MIRZA model additionally identifies non-canonical 

miRNA sites.   

The algorithm utilizes a simulated annealing approach for the optimization of 100 

parameters, starting from random initializations. It has been trained on 2,988  

crosslinked regions derived from four Ago2-PAR-CLIP  datasets (73) and evaluated 

against 38 transfection microarray datasets comprising 26 distinct miRNAs. It has been 

compared against several other implementations that perform de novo miRNA target 

prediction and do not depend on CLIP-Seq experiments. The model presents some 

limitations, such as it discards miRNA sequences shorter than 21 nucleotides and 

requires AGO bound fragments to have 30-51 nts length and to be centered at the most 

abundant T-to-C crosslinked position/nucleotide. Moreover, it does not immediately 

process CLIP-Seq data but requires the input files in the specified format to be prepared 

by the user. 

PARma (74) is a more recent implementation specifically designed to analyze PAR-

CLIP datasets for the identification of AGO-miRNA binding events. The algorithm 

focuses on enriched regions that include T-to-C conversion sites. 

PARma initially recognizes clusters of overlapping sequencing reads and subsequently 

uses these regions to infer statistically significant overrepresented kmers. Retrieved k-

mers constitute the initial predictions for miRNA-family binding sites, following a seed-

based miRNA clustering, and are subsequently forwarded for further evaluation to the 

core algorithm. PARma learning framework adopts 3 distinct/independent 

probabilistic models that consider positions of T-to-C conversions, RNase T1 cleavage 

sites (guanosines) upstream and downstream of the seed region. A likelihood is 

assigned to every putative miRNA binding region within the peak, taking into account 

the observed positions of transitions and guanosine cleavage sites. The adopted 

learning framework is fitted iteratively with an EM approach to infer required 

parameters.  

The most probable miRNA seed family is associated with each cluster. Each prediction 

is accompanied by Cscore and MAscore scores for the cluster and miRNA activity, 

respectively. The first score describes the probability that a cluster is a correct miRNA-

AGO bound region, while the latter reflects the efficacy of the miRNA regulator. The 

algorithm may produce at some cases more than one prediction for wider peaks that 

may have been produced from distinct clusters in close vicinity with overlapping 

spurious reads. PARma implementation has been trained on different PAR-CLIP 

experiments on B-cells. It was evaluated against PAR-CLIP datasets of EBV infected 

cells, as well as by comparing DG75 and BCBL1 B-cell lines expressing different sets of 

miRNAs. BCBL1 is a Kaposi's sarcoma-associated herpesvirus (KSHV) infected cell line 

presenting 25 distinct virus encoded miRNAs. Notably, PARma can perform parallel 

analysis of multiple PAR-CLIP datasets.  
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microMUMMIE (75). The group that initially developed PARalyzer, subsequently 

designed microMUMMIE algorithm to specifically address miRNA activity through the 

analysis of PAR-CLIP data. The model depends on PARalyzer predicted clusters which 

are provided as input to the microMUMMIE algorithm. The latter framework is 

preferentially applied to transcript 3’ untranslated regions.  

microMUMMIE utilizes a six-state hidden Markov model (HMM). More precisely, state 

1 corresponds to the background modeling, states 2, 4, 5, 6 model the cluster flanking 

regions and state 3 models the AGO enriched region. The fifth state comprises a 41-

metastate submodel that identifies different types of miRNA seed pairing (6mer3-8, 

6mer2-7, 7mer-m8, 7mer-m1, 7mer-A1, 8mer-A1 and 8mer-m1). The model is 

accordingly parameterized in order to prioritize predicted seed bindings near the 3’ 

cluster ends. miRNA seed complementarity, T-to-C conversions relative to binding 

sites, evolutionary conservation and sequence characteristics are deemed decisive 

features for this implementation. Shuffled miRNA sequences are included in the model 

in order to simulate decoy bindings and evaluate miRNA predicted sites via signal-to-

noise ratios (SNR). Estimates of conservation can be optionally derived from TargetScan 

branch-length conservation scores (BLS). 

It was trained and evaluated for its predictive accuracy against other algorithms on EBV 

infected lymphoblastoid cell lines. In the performed comparisons the authors included 

the 100 top expressed miRNAs.  

1.5 Databases of miRNA-mRNA interactions 

Low yield and especially high-throughput experimental techniques have already 

identified hundreds of thousands of miRNA-gene interactions in different taxa, species, 

tissues, cell lines and experimental conditions. This wealth of information is fragmented 

and hidden in thousands of manuscripts, supplemental materials, figures and raw NGS 

datasets.  

DIANA-TarBase (76) was initially released in 2006 and was the first database aiming to 

catalogue published experimentally validated miRNA-gene interactions. Since then, a 

handful of similar projects (45,77) index and map experimentally identified miRNA 

interactions utilizing manual article curation, in order to maintain a high quality level of 

database entries. The sixth version of DIANA-TarBase (rel. Dec 2011) (56) inaugurated a 

new generation of such projects, incorporating for the first time novel methodologies, 

including CLIP-Seq experiments. The release of DIANA-TarBase v6.0 increased the 

available target space by 16.5 – 175-fold, to 65,000 manually curated experimentally 

validated interactions. This radical increase in collected interactions was a prelude of 

the upcoming paradigm shift introduced by the new high-throughput methods.  
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The current release, DIANA-TarBase v7.0 has pushed the envelope further and 

provides more than half a million entries derived from 28 different low/high 

experimental methodologies, 356 cell types and 59 tissues. More than 250 miRNA-

related NGS datasets have been analyzed and approximately 7,500 validated specific 

miRNA-gene interactions have been indexed in 24 species. 

miRTarBase (46) is the only similar database that has allocated resources to the curation 

of targets from high-throughput experiments. The last available version (release 6, Sep 

2015) hosts 366,181 entries derived from low yield as well as high-throughput 

experiments. miRTarbase interactions include ~22,500 genes and >3,500 mature 

miRNAs from 18 different species. Other databases are updated less frequently or 

catalogue significantly smaller sets of interactions. miRecords (45) was first deployed in 

2009 and focuses mostly on curating interactions from low yield experiments. The last 

update of the database (Apr 2013) comprises 2,705 interactions with 2,028 derived from 

low yield methodologies. There are also databases hosting CLIP-Seq sequencing results 

and/or that enable the online analysis of such datasets, such as starBase(48) and 

CLIPZ(78). These databases differ significantly from the aforementioned repositories, 

since their aim is to catalogue CLIP datasets and binding regions from any RNA 

binding protein (RBP). 

1.6 LncRNAs 

Recent transcriptome-wide NGS studies unveiled a large number of lncRNA transcripts 

and introduced their regulatory roles in the cell (79). LncRNAs are typically longer than 

200nts, and are characterized by compartmental, tissue, disease and developmental 

stage-specific expression. Even though they generally exhibit poor sequence 

conservation, and were initially considered "transcriptional noise”, recent studies have 

described lncRNA conserved function (80-85). There are several examples of well-

characterized lncRNAs such as Xist and Air that present intrinsic functions, despite 

their low primary conservation (85).  

LncRNAs are spatially classified into four main categories (sense, antisense, intergenic, 

bidirectional) according to their loci of origin and transcription orientation as compared 

to protein coding genes (86,87): 

 Sense or antisense: lncRNAs overlapping non-intronic parts of protein-coding 

genes, located in the same or the opposite strand. 

 Sense or antisense intronic: lncRNAs overlapping intronic parts of protein-coding 

genes, located in the same or the opposite strand. 

 Bidirectional: transcribed in a “head to head” orientation and located in close 

proximity to a protein-coding gene.  

 Intergenic: lncRNAs located exclusively within intergenic regions. 
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Figure 3: Spatial classification of lncRNAs into four main categories (sense, antisense, intergenic, 

bidirectional) according to their loci of origin and transcription orientation as compared to protein 

coding genes. (Copyright Paraskevopoulou MD) 

LncRNAs have common characteristics with the protein coding transcripts. Many 

lncRNAs are polyadenylated, 5’ capped and spliced. Most lncRNAs transcribed by 

RNA polymerase II, and few of the RNA polymerase III (82). Their low abundance is 

probably connected with the underestimation of lncRNA transcript length and number 

of exons (88). Even though they generally do not have a clearly defined open reading 

frame (ORF) (87) and any coding ability, recent studies used ribosome profiling and 

revealed that some of them may encode short peptides (89). Table 2 summarizes the 

main similarities / differences of mRNA with lncRNA. 

 

Characteristics mRNA lncRNA 

Function protein coding regulatory, structural roles 

ORF Yes few or no ORF 

Cap structure Yes yes /no 

Polyadenylation Yes Yes 

Translation Yes No 

Splicing Yes Yes /No 

Subcellular localization cytoplasm predominantly nucleus, 

cytoplasm 

Conservation highly conserved less conserved than protein 

coding genes 

Table 2: Comparison of lncRNA-mRNA characteristics. 
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1.6.1 lncRNA Functions  

LncRNAs exhibit numerous functions, many of which are under debate or remain to be 

uncovered (90). They perform different roles in all cell compartments, controlling gene 

expression in cis and/or trans by participating in almost every known level of 

regulation. lncRNAs promote chromatin modifications, mediating gene silencing; can 

act as guide molecules and scaffolds for proteins, contributing to the formation of 

cellular substructures; they are also shown to control protein synthesis, RNA 

maturation and transport (91,92); some of them encode small non coding RNAs. 

a.  Identification of lncRNAs that regulate miRNA transcription 

LncRNAs (such as Meg3, Dleu2, H19, Ftx, etc) can function as pri-miRNA host genes 

(93). Genomic regions where miRNA transcripts and lncRNAs overlap can have 

dual/multiple functionality. Different biological processes can either trigger lncRNA 

function or promote the activation of the miRNA biogenesis pathway. Several well-

known polycistronic miRNA gene clusters, including members of let-7 family, derive 

form intergenic regions that also encode lncRNAs.  

The characterization of pri-miRNA transcripts remains widely unknown and is 

hindered by practical obstacles (94). The rapid cleavage of primary miRNA transcripts 

by Drosha enzyme in the nucleus does not allow complete transcript annotation with 

conventional approaches. microTSS (94) is a versatile computational framework that 

enables tissue specific identification of miRNA transcription start sites. Its current 

version requires RNA-Seq datasets in order to detect expressed regions upstream of 

miRNA precursors. The area around the 5’ of the RNA-Seq signal is scanned for 

H3K4me3, Pol2 and DNase enrichment, corresponding to putative regions for pri-

miRNA transcription initiation. The candidate miRNA promoters are scored based on 3 

distinct SVM models, trained on deep sequencing data. 

The annotation of intergenic pri-miRNA transcripts with microTSS can enable the 

identification of overlapping lncRNAs, the revision of lncRNA and pri-miRNA 

annotation that in many cases is considered incomplete, the detection of common 

lncRNA - miRNA promoter regions as well as further support lncRNA-centered 

functional analyses. This machine learning approach outperforms any other similar 

existing methodologies and can be easily applied on any cell line/tissue of human or 

mouse species utilizing RNA-Seq, Chip-Seq and DNase-Seq data. microTSS is available 

for free download at www.microrna.gr/microTSS. 

b. Experimentally verified miRNA-lncRNA interactions 

LncRNAs have also been shown to function as “sponges” coordinating miRNA 

function. Most of these interactions take place in the cytoplasm, while there are also 

examples of miRNAs targeting lncRNAs in the nucleus. PTEN pseudogene competes its 

coding counterpart for miRNA binding; CDR1as/ciRS-7 circular antisense transcript 

acts as a sponge by harboring multiple miRNA binding sites, while it is also cleaved in 

the nucleus through a miRNA-AGO mediated mechanism; linc-MD1, a muscle-specific 
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lncRNA, functions in the nucleus as a pri-miRNA host gene, while it also exports in the 

cytoplasm acting in a “target mimetic” fashion for two miRNAs. An extended collection 

of functional direct miRNA-lncRNA interactions is described in Table 3. 

Several other lncRNA-miRNA indirect interactions have been identified by low 

throughput expression experiments that quantify miRNA effect on mRNA levels and 

vice versa (95,96). There are also lncRNAs that originate from highly conserved genomic 

regions (ultra-conserved regions - UCRs) and are considered candidate miRNA targets 

(97). In a recent study, authors utilized lentiviral small hairpin RNAs to suppress 147 

lncRNAs. The results of their approach demonstrated that lncRNAs, although mainly 

detected in the cell nucleus, appear to be sensitive in AGO-sRNA-mediated regulatory 

mechanisms (98). 

A significant portion of miRNA-lncRNA interactions remains obscure and unexplored. 

To this end, new technological advances and NGS experiments can assist the process of 

miRNA (non)coding target characterization. 
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lncRNA miRNA 
Cell 

Type/Tissue 
Species Compartment 

Low-

throughput 

experiment 

CDR1as/ 

ciRS-7(99-101) 

miR-671, miR-7 embryonic 

kidney, brain 

H. sapiens,  

M. musculus, 

C. elegans, 

Zebrafish 

nucleus, 

cytoplasm 

Reporter, qPCR, 

Northern blot 

HULC(102) miR-372, miR-433-

3p, miR-557, miR-

622, miR-134-5p, 

miR-613, miR-1236-

3p 

Liver H. sapiens cytoplasm, 

nucleus 

Reporter, qPCR 

BACE1-

AS(103) 

miR-485-5p Brain H. sapiens,  

M. musculus 

cytoplasm Reporter, qPCR 

PTENP1(104) sequesters miRNAs 

that target PTEN 

Prostate H. sapiens cytoplasm Reporter 

linc-

MD1(105) 

miR-133a, miR-

135b, miR-206 

Muscle H. sapiens,  

M. musculus 

cytoplasm Reporter, qPCR 

H19(106-108) miR-106a, miR-17-

5p, miR-20b, let-7, 

miR-141, miR-200, 

miR-429, miR-675 

myoblast, 

muscle, liver, 

brain 

H.sapiens,  

M. musculus 

cytoplasm Reporter, qPCR 

MALAT1(109

,110) 

miR-101, miR-217, 

miR-9, miR-125b 

ESCC, brain, 

bladder 

H. sapiens nucleus Reporter, qPCR 

GAS5(111) miR-21 Breast H. sapiens,  

M. musculus 

cytoplasm Reporter, qPCR 

PCAT-1(112) miR-3667-3p Prostate H. sapiens cytoplasm, 

nucleus 

Reporter, qPCR 

MDRL(113) miR-361 Cardiomyocyte

s 

M. musculus nucleus, 

cytoplasm 

Reporter, qPCR, 

Northern blot 

HOTAIR(114) miR-34a, miR-130a prostate, 

gallbladder 

H. sapiens,  

M. musculus 

- Reporter, qPCR, 

Northern blot 

UFC1(115) miR-34a liver  H. sapiens, 

M. musculus 

cytoplasm Reporter, qPCR 

HOST2(116) miR-1266,let-7b Ovary H.  sapiens - Reporter, qPCR 

Table 3: miRNA-lncRNA experimentally verified interactions from different low yield experimental 

techniques. lncRNA target mimetic function has been recorded in the cytoplasm as well as the cell 

nucleus. Certain interactions are conserved in more than one species. (Paraskevopoulou MD et al, 

2015)(117) 
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1.7 ceRNA Activity 

It is hypothesized that “competing endogenous RNA” (ceRNA) interactions exist in the 

transcriptome (Figure 4). In this level, mRNAs, pseudogenes, and ncRNAs 

communicate through a competing language, forming a large-scale regulatory network. 

miRNAs have been considered as the controllers of the ceRNA activity. In this large 

network of in-between transcript interactions; miRNAs target other RNAs (mRNAs, 

pseudogenes, lncRNAs), while the latter may act as sponges for miRNAs, mediating 

their regulatory role. To this end, the formation of a complete map of their endogenous 

interactions is considered essential. This activity has been reported both in the nucleus 

and in the cytoplasm. 

 

Figure 4: Overview of the ceRNA activity in nucleus and cytoplasm. miRNAs loaded in the RISC 

complex post-transcriptionally regulate protein coding genes through mRNA cleavage, direct 

translational repression and/or mRNA destabilization in the cytoplasm.  lncRNAs compete with 

mRNAs for miRNA binding by acting as ‘sponge’ molecules in both cell compartments. 

(Paraskevopoulou MD et al., 2016) (118). 

 

1.8 Databases of miRNA-lncRNA interactions 

DIANA-LncBase v1 (119) is considered as the first extensive database dedicated to the 

cataloguing of miRNA-lncRNA interactions and provided the largest collection of 

experimentally supported entries. LncBase v2 (117) currently hosts more than 10 million 

in silico predicted and ~70,000 experimentally supported interactions for an integrative 

meticulously curated collection of lncRNA transcripts. The new database enables the 

identification of miRNA-lncRNA regulatory interactions in numerous tissues, cell types 

and conditions, validated with low yield or high-throughput experimental 

methodologies. 
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miRcode (39) hosts predicted miRNA binding sites on human lncRNA transcripts 

retrieved from GENCODE v11 (120), while LNCipedia (121) accompanies lncRNA 

entries with miRNA canonical predictions by using the MirTarget2 algorithm (122). 

starBase (48) provides a collection of binding events for different RNA binding 

proteins. For AGO-binding sites, it can intersect miRanda/mirSVR-predicted (41) 

miRNA binding sites with the identified CLIP-Seq enriched regions spanning lncRNA 

transcripts. NPInter (123) integrates information from other repositories and literature 

regarding non coding regulation and interactions, including ncRNA-protein and 

ncRNA:miRNA binding events. It supports lncRNA annotation from different 

resources, while lncRNA-miRNA interactions are obtained from external databases 

such as Starbase. LncReg and lncRNome (124,125) aim to catalogue lncRNA-associated 

regulatory events. These databases also host a restricted number of miRNA binding 

sites on lncRNAs. These sites are either derived by text mining or are in silico inferred 

from high-throughput datasets.  

 

1.9 Pattern Recognition 

Pattern Recognition is considered an extremely broad scientific area that aims to detect 

and classify entities/objects in noisy and complicated environments. It is an intelligent 

machines system utilized for making data-driven predictions or decisions expressed as 

outputs. Depending on the type of application these objects can be found in any kind of 

format such as image, sound and simple measurements. In this field, different Machine 

learning and Statistical Decision Theory methods are utilized (126). The machine 

learning field deals with the development of techniques and methodologies, commonly 

referred as algorithms that allow computers to adopt learning behaviors. It aims to 

change and adapt the software behavior, based on the experience provided by the 

analysis of previous cases. Some of the most promising methodologies include, 

Artificial Neural Networks (126), Support Vector Machines (126,127) and Random 

Forests (128). 

Machine learning has a broad spectrum of applications including text classification, 

economics, medical diagnosis and bioinformatics. 

1.9.1 Machine Learning 

Machine learning frameworks are initially developed based on the comprehension of a 

features dataset, commonly referred to as the “training set”. The evaluation of a model 

on its ability to make the correct decision in an unknown set different from training (test 

set), is considered crucial. This ability is known as generalization and is a central goal in 

machine learning models (129). The selection of the right training and test sets is pivotal 

to a model’s predictive performance. There are different ways to assess and optimize a 

model learning process (bootstrapping, cross validation, Jackknife resampling). 

Machine learning applications, where the training data are provided along with their 

outcomes are referred as supervised. Such cases are further divided in classification and 
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regression problems if the training samples are categorized on discrete output classes or 

assigned on one or more continuous values, respectively. On the other hand, on 

unsupervised learning frameworks (e.g. clustering techniques), the output of the 

training instances is not known a priori. In such models, the goal is to perform 

exploratory data analysis for the identification of data distributions, rules and patterns 

that may enable their clustering into groups. Finally, there are machine learning 

approaches termed as “Reinforcement learning”, where the models are interactively 

developed from the environment and make decisions based on new data observations 

to maximize the reward/gain.  

Notably, the process of designing a learning framework can be assisted by prior 

knowledge of a theoretic model based on previous observations and experiments. 

However, many of the machine learning problems are not coupled with such 

information and therefore require exploratory, data-driven analyses. The lack of this 

prior model knowledge can be bypassed with the use of advanced non-parametric 

methodologies (e.g. Support Vector Machines, Neural Networks etc.). 

1.9.2 Machine Learning models 

This section aims to indicatively present a series of machine learning models adopted to 

support ncRNA related studies and discuss the intrinsic details of how these algorithms 

function. In addition, state-of-the-art learning frameworks that were applied during this 

thesis are described in the following sections. 

1.9.2.1 Generalized Linear Models 

Generalized Linear Models (GLM) were introduced by Nelder and Wedderburn (1972) 

(130), and are a broad class of models, which is considered as an extension of the 

general linear models. This category comprises linear regression, logistic regression and 

Poisson regression. A simple GLM model utilizes a linear combination of observed 

variables (linear predictor), in order to infer/predict the expected outcome of unseen 

inputs (response variable). The response variables can follow an exponential 

distribution such as Gaussian, binomial, gamma, Poisson or non-exponential 

distributions.  The parameters of the models for maximum likelihood derivation are 

being calculated iteratively with least squares techniques or Bayesian approaches.  

GLMs additionally adopt an invertible linearizing link function to capture the 

association between the linear predictors and the response variable.  

GLMs can be highly adapted and expanded to more complex and sophisticated 

learning models, exhibiting a high plasticity in their analytical properties. However, 

they face important restrictions when processing high dimensional datasets. 

1.9.2.2 Naive Bayes Classifier (131) 

Naïve Bayes (NB) Classifier belongs to a family of ML models that have evolved from 

the strength and elegance of the Bayes Theorem. This methodology is one of the most 

popular among researchers and has frequently demonstrated its usefulness in solving 
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difficult bioinformatics problems, many times more accurately than other more 

sophisticated techniques. NB adopts a simplistic approach, based exclusively on the 

Bayesian theorem and assuming that each parameter is independent and unrelated with 

the others. NB seeks to assign in each instance a class that maximizes a product of 

posterior probabilities (probability of a class occurrence for a set of features). A general 

technique that can be utilized towards this direction is the expectation-maximization 

(EM) algorithm.  In an NB approach, the prior class probabilities can be assumed equal 

or be estimated from the training data. The distribution of features can be either 

considered continuous (e.g. Gaussian) or discrete (e.g. multinomial and Bernoulli) 

The “naive” independence hypothesis implies that the (non)existence of a variable does 

not correlate with the behavior of the others. Even though its foundation is over-

simplistic, in practice it demonstrates robustness and excellent generalization 

capabilities.  A series of works have been elaborated in order to locate the intrinsic 

details of how this simple classifier performs so well in real world situations, including 

medical and bioinformatics applications. It has been applied to different miRNA-related 

research projects, including miRNA-target prediction (132). 

1.9.2.3 Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is considered a regression or classification tool for 

two or more groups. It is used in ML to identify a linear association between the 

features of a model. Using a fairly large number of predictors, the LDA creates optimal 

dividing lines between instances that define the identity of each group. This method can 

be additionally applied for dimensionality reduction. 

1.9.2.4  Artificial Neural Networks (ANN) (133) 

Artificial neural networks are considered as reference supervised/unsupervised 

machine learning algorithms for regression and classification. ANNs are mathematical 

models capable of nonlinear statistical data processing. Inspired by the structure and 

function of mammalian biological neural networks, they comprise interconnecting 

artificial neurons of adaptive importance for information exchange. In a supervised 

learning context, the weights of these connections are being tailored on the training 

data. Weight selection is performed most of the times by the minimization of an error 

function relevant to the network architecture. This function is usually a metric, 

describing the deviation of real values that serve as targets and the predicted outcome. 

ANNs are characterized by their network architecture, topology, number of hidden 

layers and included neurons. The final decision is characterized by the appropriate 

weight selection. As soon as the neural network is trained, it exhibits good 

generalization ability and robust predictive accuracy. They have been successfully 

applied to many different problems in Bioinformatics (134,135). 

Notably, ANNs can be efficiently combined to form Ensemble Classifiers and avoid 

entrapment in local minima during the training process. 
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1.9.2.5 Support Vector Machines (SVMs) (127) 

 Support Vector Machines are a powerful family of supervised learning methods, used 

for classification and regression purposes.  They were initially proposed by Vladimir 

Vapnik and belong today to the frontline of methodologies in the field of machine 

learning. They have been successfully applied in numerous problems and are 

considered as some of the most robust methodologies with excellent generalization 

capabilities. They belong to the group of kernel based methods that can provide sparse 

solutions. In brief, a support vector machine constructs a set of hyperplanes to address 

regression or classification problems in a very high or even infinite dimensional space. 

Given a classification problem, an SVM aims to define a hyperplane bwx  that best 

separates the classes. In order to find the maximum-margin hyperplane (equivalent to 

maximizing 2 ∕║w║ following specific constraints) that divides the points belonging to 

the different classes w, b should appropriately be chosen. It achieves high accuracy by 

optimizing the decision hyperplane to be the one that provides maximum margin 

between the classes (in case of classification). This classification framework is adopted 

for linearly separable hyperplanes. It is possible to use a nonlinear hyperplane by first 

mapping the sample points in a higher dimensional space via nonlinear mapping. This 

procedure, called a ‘kernel trick’, introduces additional dimensions to enable linear 

classification in the transformed space.  

Many extensions of the original methodology have been proposed that allow 

mislabeled examples (soft margin classifiers), nonlinear support vector classifiers, 

multiclass support vector classifiers etc. Common kernels adopted for non-linear SVM 

are sigmoid, polynomial and Gaussian radial basis functions (RBF). 

 They have been applied successfully in a very large variety of problems and are 

rigorously researched, since this category of models provides very high performance, in 

terms of sensitivity and specificity, and robust generalization. 

1.9.2.6 Relevance Vector Machines (RVMs) (136) 

Relevance Vector Machines (RVMs) are a classifying method introduced by Tipping, 

which is in terms of sparsity equivalent to Support Vector Machines. The main 

difference between SVMs and RVMs, is that the second machine learning algorithm is 

probabilistic in nature, which is regarded as one of the most important issues in terms 

of decision making. It is obvious that when probabilistic classifiers capture the 

uncertainty in the prediction they are preferred from the hard point classifiers like SVM.  

RVM algorithm proposed by Tipping can achieve significant accuracy, generalize well 

and are considered as computationally efficient. The main concept in RVM algorithms 

is that they identify the patterns in the training set that seem to be more representative, 

which are considered as the Relevance Vectors. These patterns correspond to nonzero 

weights and are used in the predicting phase. It has been observed that RVMs exhibit a 
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good performance in the classification procedure with similar generalization abilities as 

SVMs. 

  

1.9.2.7 Decision trees (137) 

Decision Trees are a machine learning framework that assigns observations of variables 

to target values (predictions). They can be utilized to address classification or regression 

problems. In decision trees, the leaves correspond to the target values that can be 

discrete or continuous. In classification trees, the leaves are represented by the 

predicted classes or probabilities for the classes. The interior nodes are linked to input 

features, while the interconnecting branches describe the possible outcomes of a specific 

feature. The learning process in decision trees is accomplished by partitioning and 

evaluating the training. This step can be performed either recursively or following other 

splitting criteria of the initial dataset into subsets, such as normalized information gain 

or entropy. The C5.0 model belongs to the family of decision trees and is an updated 

version of previous algorithms (C4.5, ID3). It is faster, more efficient in memory usage 

and additional. Moreover, it provides boosted learning to improve the performance of 

weak decision trees as well as weighting of variables and misclassified cases. Even 

though they do not exhibit exceptionally high accuracy (maybe because of the high 

variance of the data), they can often provide robust predictions for different feature 

distributions and for datasets comprising missing values and/or correlated features. 

1.9.2.8 Random Forests (128)  

Random Forests (RFs) are ensemble classifiers that were developed by Leo Breiman and 

Adele Cutler. They incorporate multiple models to achieve better predictive 

performance. RFs preserve most of the appealing features of the decision trees with the 

ability to deal with both classification and regression problems. RFs are considered as a 

streamlined version of bagging. The basic concept of the algorithm is that it combines 

Breiman’s “bagging” idea and the random selection of features, in order to construct a 

set of decision trees with controlled variation. Some of the basic RF characteristics 

render the algorithm preferable against other machine learning methods. RF models 

can be efficiently applied, since they can process thousands of input variables without 

prior feature selection and data preprocessing; define the most appropriate/prominent 

set of descriptors (utilized as an alternative feature selection approach); handle datasets 

with missing values without downgrading the achieved accuracy. A predicted class in 

random forest approach is the one that occurs most frequently as an output by 

individual trees. The construction of each tree during the learning procedure is 

achieved through a number of specific steps. For instance, if a model has N training 

instances and M number of variables in the classifier: m input variables (with m<=M) 

are utilized to determine the decision at a node tree. A set of n training instances is 

chosen from the pool of N training rows, whereas the rest of the samples are used as the 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs 

Maria D Paraskevopoulou   55 

test set for error rate estimation. For each node, a set of m random variables is chosen in 

order to make the prediction in the specific node. This procedure is carried out for the 

definition of the best combination of m variables in the training set. Moreover, each tree 

is fully grown and not pruned. While the forest building progresses, the algorithm 

estimates the generalization error. Random forests utilize proximities between pairs of 

cases in order to detect outliers and provide useful views of the data. In the prediction 

phase, each test sample traverses the tree till it reaches a leaf node. The result comes 

from the average vote of all trees, since the procedure is iterated over all trees in the 

ensemble classifier.  

Compared to other machine learning techniques such as SVMs and neural networks, 

this classifier has relatively fewer applications in bioinformatics, but is rapidly gaining 

popularity.  

1.9.2.9 Gradient Boosting Machines (GBMs) (138) 

Gradient boosting is a category of highly adaptive ensemble machine learning models 

that can be utilized in different regression and classification applications. They are 

composed by large /small trees that are sequentially fitted to reweighted versions of the 

training data. This breakthrough invention of Freud and Schapire has a different 

learning strategy than classic ensemble algorithms such as random forests. GBMs 

gradually increase the number of included models, adding a new weak learner on each 

iteration, and finally decide based on weighted average voting. More precisely, they 

perform sequentially training where initial simple learners fit models to the data, while 

subsequent ones analyze the data for error cases of prior learners (error residuals), and 

finally try to provide the correct predictions in the following steps. This procedure is 

commonly referred as stage-wise additive modeling where the main goal is to minimize 

a loss function. Boosting models can vary depending on the different optimization 

approaches and loss function distributions (Bernoulli, Poisson, Adaboost, Gaussian, and 

Laplace).  

GBMs can convert combinations of weighted weak learners into complex predictors, 

where the results of new trees represent partial solutions to the entire problem. They 

are sensitive to noise and extreme values. There are different ways to leverage trees for 

achieving better performance and to avoid overfitting, such as monitoring the number 

the included trees. Boosting learners are robust algorithms that often achieve better 

accuracy than random forests and bagging algorithms. 

1.9.3 Feature Preprocessing 

The preprocessing of a dataset’s features is often necessary for many predictive models 

and is commonly used in cases requiring dimensionality reduction and elimination of 

outliers. In many machine learning frameworks, the initial variables set is often 

transformed in a new feature space to achieve their easier interpretation as well as 
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increased model performance. Features may also be preprocessed, not only for 

dimensionality reduction but in order to facilitate faster computations. 

Spatial sign transformation is a relatively new method, which was proposed in 2006 by 

Serneels and partners (139). This process projects the predictors into a multidimensional 

sphere. The transformed features present a more robust behavior to outlying 

observations. This technique locates all sampled variables in equal distance from the 

center of a sphere. An interesting characteristic of this process (in contrast to 

conventional methods, such as centering / scaling) is that the predictive parameters are 

independently transformed simultaneously and not sequentially. This technique is able 

to increase the performance of a learning method without the removal of predictors. 

1.9.3.1 Methodologies for parameter Selection 

In machine learning applications a common issue is that when increasing the number of 

measured parameters, it forces the necessity to further increase the number of studied 

instances, in order to provide accurate predictions. This is often described as “the curse 

of dimensionality”. To circumvent this problem, since it is often technically unfeasible 

in terms of resources and time to increase the instances accordingly, a variety of 

methods has been devised for selecting the most prominent descriptors. These methods 

are considered indispensable components in demanding machine learning problems. 

Exhaustive search of predictors is considered as a computationally challenging 

approach for parameter selection. In exhaustive search, all possible subsets of features 

are evaluated for their performance. Other methods adopt search algorithms and/or 

utilize score functions to assess the predictive accuracy of subset of features. In many 

applications, stepwise regression is used to identify promising variables. Moreover, one 

popular machine learning approach is to combine a Recursive Feature Elimination 

algorithm to identify the most informative features and iteratively evaluate the 

performance of Support Vector Machines following lowly weighted predictor removal. 

For the development of machine learning models it is also highly recommended to 

reduce features presenting high correlation and to remove non-informative predictors 

that exhibit near to zero variance. Other techniques that are utilized towards this 

direction are presented below. 

Filtering / selection methodologies (e.g. distance Kullback-Leibler, Wilcoxon's exact 

test, ROC AUC, etc) evaluate and rank every parameter individually based their 

predictive accuracy. Disadvantage of these methodologies is that they reflect the 

behaviors of parameters in one dimension, ignoring the other measured data and their 

in-between associations. 

Information gain methods for feature selection. For a particular set of descriptors, 

feature selection can be accomplished using the information gain measure of Quinlan 

(137). This measure considers that higher information is associated with higher 

separation ability (e.g. active/inactive compounds). Higher information gain is related 

to lower information entropy of the subsets defined by the presence and absence of 
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particular features. Another commonly used approach for feature selection is the 

minimum-redundancy-maximum-relevance (mRMR) (140). It enables the identification 

of sets of non-redundant features through association, distance and mutual information 

measures. 

Methodologies for extracting novel parameters. These methodologies usually combine 

the measured characteristics/features in order to extract new variables presenting 

higher predictive accuracy. Often, the results of these methodologies can be used for 

selecting the most informative variables and transform the data into a smaller subspace 

comprising uncorrelated or independent descriptors. Typical algorithms that can be 

utilized for this purpose are principal component analysis (PCA), discriminant analysis 

and independent component analysis (ICA). 

Optimization Algorithms. They are considered methodologies that can identify the 

most prominent parameters by optimizing the performance of an algorithm. Genetic 

algorithms (GAs), swarm optimization algorithms, search algorithms (e.g Best-first 

search) etc. belong to this class of techniques. 
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2. Methods 

This section provides a complete overview of the implemented computational 

approaches for the identification of miRNA-mRNA-lncRNA endogenous interactions 

and their functional interpretation. The algorithmic steps described in the following 

sub-sections can be summarized accordingly: 

1. Identification of in silico predicted miRNA targets. Development of a microT web 

server for the indexing of miRNA-mRNA interactions.  

2. Formation of automated analysis pipelines for functional analysis of miRNA 

targets and the seamless interconnection of workflows with the DIANA microT 

web server.  

3. Development of a DIANA-Taverna Plug-in and deployment of DIANA-related 

services. 

4.  In silico analysis of raw (small)RNA-Seq datasets and AGO-CLIP-Seq libraries for 

the identification of miRNA-gene interactions.  

5. Applied methods for the development of DIANA-TarBase v7, a database 

dedicated to the cataloguing of experimentally derived miRNA-mRNA pairs.  

6. Applied methods for the release of DIANA-LncBase v2, a repository devoted to 

the indexing of experimentally supported miRNA-lncRNA interactions.  

7. Evaluation of the LncBase/Tarbase AGO-CLIP-Seq algorithm for miRNA target 

identification. 

8. Implementation of a Novel Algorithm for AGO-CLIP-Seq data analysis. 

a. Collection of numerous low/high throughput experiments to reveal the 

impact of miRNA targeting on gene expression and to deduce putative 

positive/negative miRNA-target interactions. 

b. Compilation of a training set comprising positive and negative CLIP-Seq-

guided miRNA binding sites. 

c. Feature extraction and assessment. 

d. Proposed learning framework for the identification of miRNA targeted 

regions through the analysis of AGO-CLIP-Seq data. 

e. Evaluation of the proposed algorithm. 
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2.1 Computational identification of miRNA-target interactions  

Collected Transcripts.  

Ensembl v75 has been utilized for protein coding transcript annotation, while miRNA 

identifiers and sequences were obtained from miRBase v18 nomenclature (141). 

Annotation for lncRNA transcripts was derived from GENCODE v21 (120). GENCODE 

provides the largest available collection of high quality lncRNA transcripts, spatially 

classified into four main categories (sense intronic, sense overlapping, antisense and 

intergenic) according to their transcription orientation and locus of origin relative to 

protein coding genes. Transcripts annotated as ‘processed transcripts’ also clustered in 

the larger lncRNA family were included in the performed analyses. The finalized 

lncRNA collection includes all GENCODE indexed transcripts as its main annotation, 

and also integrates lncRNAs contained in RefSeq (142) and the publication of Cabili et 

al. (88) presenting less than 90% sequence similarity with GENCODE entries. This 

integration was essential due to the highly dissimilar spliced transcripts that exist 

between different lncRNA resources. The final set of lncRNA transcripts comprised 

1,830 sense, 10,201 antisense, 18,029 long non-coding intergenic RNAs (lincRNAs) and 

2,163 processed transcripts for Homo sapiens. The respective set for Mus musculus 

consisted of 399 sense, 2,642 antisense, 4,542 lincRNA and 1,689 processed transcripts. 

2.1.1 In silico predicted interactions. 

miRNA-mRNA in silico predicted interactions. In silico target prediction for human and 

mouse spliced mRNA sequences was performed using DIANA-microT-CDS algorithm 

(54).  

miRNA-lncRNA in silico predicted interactions. In silico target prediction for human and 

mouse spliced lncRNA sequences was performed with an appropriately adjusted 

DIANA-microT algorithm (54). MREs were scored separately and each miRNA:lncRNA 

interacting pair was characterized by a cumulative score which signifies the interaction 

strength.  

 

2.2 Methods for the development of DIANA-microT web server 

One of the major aims of this thesis goals was to specify a comprehensive catalogue of 

miRNA-mRNA in silico interactions. To this end, DIANA-microT web server v5 was 

implemented to provide a reference archive of computationally predicted miRNA-

mRNA interactions. 

DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to 

miRNA target prediction/functional analysis and it is being widely used from the 

scientific community, since its initial launch in 2009. During the thesis course, DIANA-
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microT v5.0 (54), the new version of the microT server, has been significantly enhanced 

with an improved target prediction algorithm, DIANA-microT-CDS (38). The new 

algorithm microT-CDS can identify miRNA targets in 3’UTR, as well as in CDS regions. 

microT-CDS is the only algorithm available online, specifically designed to identify 

miRNA targets both in 3’ untranslated region (3’UTR) and in coding sequences (CDS).  

2.2.1 Release of DIANA-microT web server v5  

The web server was completely redesigned, in order to host a series of sophisticated 

workflows, which can be used directly from the on-line web interface, enabling users 

without the necessary bioinformatics infrastructure to perform advanced multi-step 

functional miRNA analyses. DIANA-microT web server v5.0 also supports a complete 

integration with the Taverna Workflow Management System (WMS) (143), using an in-

house developed DIANA-Taverna Plug-in. This plugin provides ready-made modules 

for miRNA target prediction and functional analysis, which can be used to form 

advanced high throughput analysis pipelines.  

2.2.2 Formation of Automated Analysis pipelines 

As high-throughput data have become the new backbone of biological research, there is 

an increasing need to support advanced high throughput analysis pipelines. DIANA-

microT web server v5.0 was completely redesigned in order to provide the necessary 

building blocks to easily incorporate miRNA functional analyses in complex pipelines. 

The new DIANA-microT web server facilitates users not having access to extensive 

computational infrastructures and support, in order to perform ready-to-deploy 

sophisticated analyses.  

A series of workflows have been prepared, which can be used as standalone modules, 

as a foundation for custom pipelines or to be incorporated into pre-existing algorithms. 

These pipelines can be utilized to analyze user data derived from small scale and high 

throughput experiments directly from the DIANA-microT web server interface, without 

the necessity to install or implement any kind of software. For the identification of 

miRNAs having functional impact in differentially expressed genes, the user can 

specify the species and two lists of differentially expressed mRNAs (microarray/RNA-

Seq) and miRNAs (microarray/sRNA-Seq), respectively. The gene list has to contain 

ENSEMBL gene identifiers, while the miRNA list should be composed of miRNA 

names/identifiers according to miRBase nomenclature. miRNA and gene identifiers can 

optionally be followed by fold change values. In this case, the workflows automatically 

match suppressed genes with overexpressed miRNAs (and vice versa).  

Detailed descriptions of the automated analysis pipelines are provided in the relevant 

results section. 
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2.2.3 DIANA-microT web server integration with Taverna WMS   

DIANA-microT web server enables advanced users to create novel or to enhance 

existing pipelines with miRNA target identification and functional analysis tools. To 

this end, DIANA-microT web server v5.0 provides a complete integration with the 

Taverna Workflow Management System, using our in-house developed DIANA-

Taverna Plug-in. 

 

2.2.3.1 Description of the DIANA-Taverna Plugin Services 

DIANA-microT-ANN (v4) service. The user can directly access the web server and 

identify miRNAs predicted to target selected genes AND/OR to find gene targets of 

selected miRNAs. The input/output ports of the DIANA-microT-ANN (v4) service are 

described below. 

 

Figure 5: DIANA-microT-ANN (v4) service 

The user has to specify the input ports of the DIANA-microT_v4 (microT-ANN) service 

in the Taverna plugin: 

 Gene_List: DIANA-microT_v4 can be queried using a gene name/identifier or with 

a list of gene names/identifiers (gene names OR Ensembl v69 gene ids separated 

by a carriage return / newline character).  Example value: FBgn0086758. 

 miRNA_List: DIANA-microT_v4 can be queried with a miRNA name/identifier, 

or with a list of miRNA names/identifiers (miRNA names OR MIMAT ids are 

separated by a carriage return / newline character).  Example value: dme-let-7-

5p. 

 threshold:  A prediction score cut off value for presented predictions, ranging 

from 0.3 to 1. If no threshold is defined by the user, prediction results are 

provided for a default value of 0.7. 

The output ports (provided results) of the DIANA-microT_v4 (microT-ANN) service in 

the Taverna plugin are presented below: 

 Interactions:  Predicted microRNA-gene interactions. 

 Participating Genes: Ensembl v69 gene ids of the targets present in the predicted 

interactions. 

 Participating miRNAs: mature miRNA names (miRBase v18) of the miRNAs taking 

part in the predicted interactions. 

 report: General information about the provided results. 
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DIANA-microT-CDS (v5) Service. DIANA-microT-CDS service follows the exact same 

syntax as DIANA-microT v4, presenting the same input/output ports as shown below. 

 

Figure 6: DIANA-microT-CDS (v5) Service 

 

DIANA-TarBase v6.0 Service. This is a service to query directly DIANA-TarBase v6.0, the 

database indexing manually curated experimentally validated miRNA-gene 

interactions.  The user can perform a query by using a gene name or Ensembl gene 

identifier (preferred) AND/OR miRNA name (miRBase 18+ nomenclature) / MIMAT 

ID. The input ports of the DIANA-TarBase v6.0 service are described below. 

 

Figure 7: DIANA-TarBase v6.0 Service 

The user has to specify at least one of the input ports of the DIANA-TarBase v6.0 

service in the Taverna plugin: 

 Gene_List: DIANA-TarBase v6.0 can be queried with a gene name/identifier or 

with a list of gene names/identifiers (gene names OR Ensembl 69 gene ids 

separated by a newline character).  Example value: TUSC2. 

 miRNA_List: DIANA-TarBase v6.0 can be queried with a miRNA name/identifier 

or with a list of miRNA names/identifiers (miRNA names OR MIMAT ids are 

separated by a newline character).  Example value: hsa-let-7a-5p. 

DIANA-miRPath v2.1 service. This service queries DIANA-miRPath server and identifies 

significantly targeted pathways by the selected miRNA(s). The miRNA-gene 

interactions can be derived directly from TarBase or can be computationally predicted 

using DIANA-microT-CDS. In case where more than one miRNAs are queried, DIANA 

miRPath identifies significantly targeted pathways by assessing the combinatorial effect 

of the selected miRNAs. The input/output ports of the DIANA-miRPath service are 

described below.  

 

Figure 8: DIANA-miRPath v2.1 service 
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The user has to specify at least one of the input ports of the DIANA-miRPath service in 

the Taverna plugin: 

 Gene filtering:  A url to a file containing a list of gene name/identifiers separated by 

a newline character. The user can upload to a public url a predefined list of genes 

that are expressed in investigated tissues. MiRNA targets will be automatically 

filtered based on this list and will use only the expressed subset of genes for the 

pathway enrichment analysis. 

 List miRNA - Validation: DIANA-miRPath can be queried with a miRNA 

name/identifier followed by the source of interactions (Tarbase or microT-CDS) 

or with a list of miRNA names/identifiers, each accompanied by the relevant 

interaction source (miRNA names OR MIMAT ids – interaction source pairs are 

separated by a newline character). miRNA name – interaction source terms can 

be separated by commas, spaces or tab characters.  If no interaction source is 

provided for a miRNA then the service enables the microT-CDS as a default. 

Example value: hsa-mir-125b-5p Tarbase. 

 Merging Genes: union/intersection 

 Merging Pathways: union/intersection 

 Species:  E.g. human, mouse 

 Statistics Conservative: true/false 

 Statistics FDR: true/false 

 threshold_microT:  A cut off value for presented predictions (when microT-CDS is 

utilized as an interaction source), ranging from 0.3 to 1.  

The output ports (provided results) of the DIANA-miRPath service in the Taverna 

plugin are the following: 

 miRNAs-Pathways: DIANA-miRPath results, containing information such as 

Pathway KEGGid, Pathway description, Number of Associated genes, Gene 

Names, pValue Participating miRNAs. 

 Pathways: A list with the pathways KEGGids significantly targeted by the selected 

miRNA(s). 

report: General information about the provided results. 
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2.3 AGO-CLIP-Seq guided analysis for miRNA-target identification 

The complex network of miRNA-lncRNA-mRNA regulatory machinery is difficult to be 

determined by exploring individual pairs of interactions. To this end, an in house 

algorithm was implemented in order to analyze CLIP-Seq data on different cell types 

and tissues for mouse and human species. 

The analysis of CLIP-seq data is summarized in the following steps (Figure 9): 

Preprocessing of deep sequencing data. Raw CLIP-Seq data were initially quality checked 

with FastQC (144) and further processed for contaminant removal with a combined use 

of Minion (145), Trimgalore (146) and Trimmomatic (147). 

Alignment of reads. Alignment of CLIP-Seq reads against the reference genome was 

performed with  GMAP/GSNAP (148), accordingly parameterized in order to identify 

reads in splice junctions. 

Identification of CLIP-Seq enriched regions. Regions enriched in CLIP-Seq reads were 

formed by overlapping reads. In PAR-CLIP data, peaks were filtered to retain only 

regions with adequate T-to-C (sense strand) or A-to-G (antisense strand) incorporation 

in the same position (>5% of the reads).  

Annotation of peaks. A comprehensive reference set of transcripts including mRNAs, 

lncRNAs and pseudogenes was utilized for the annotation of enriched CLIP-Seq 

regions. 

 

 

Figure 9: Raw CLIP-seq data were initially processed for contaminant removal and reads were aligned 

against the reference genome. Enriched regions in CLIP-Seq signal are formed from overlapping 

reads. Peaks were annotated in transcript loci. A CLIP-peak-guided MRE search algorithm was 

utilized to compute interactions of expressed miRNAs. (Paraskevopoulou MD et al., 2016). (118) 
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Guided MRE identification. An in-house developed CLIP-peak-guided MRE search 

algorithm was subsequently utilized to identify interactions of expressed miRNAs. The 

algorithm utilizes the search space that is defined by the AGO binding peaks for MRE 

identification. It takes into account CLIP-Seq-induced mutations and the number of 

reads in peaks. The AGO enriched regions are subjected to an MRE detection algorithm. 

The implemented dynamic algorithm slides a 9 nucleotide-long window along each 

transcript and identifies the best possible alignment with the miRNA “extended” seed 

(nucleotides 1-9 on the miRNA 5’end). This procedure can detect different binding 

types, ranging from 6mer to 9mer (Table 4). The adopted pipeline includes features of 

miRNA binding type, miRNA-lncRNA/miRNA-mRNA duplex free energy, site 

accessibility, AU flanking content, and conservation. The CLIP-Seq-based characteristics 

are used to pinpoint the MRE location, while the miRNA-target binding features are 

combined and scored by a general linear model (GLM) classifier, as initially described 

by Rezcko et al. in microT-CDS algorithm (38), in order to identify the microRNA 

responsible for the binding (Figure 9). 

 

Binding types 

binding type 1 : 9mer Canonical (perfect seed match) 

binding type 2 : 9mer 

binding type 3 : 8mer Canonical (perfect seed match) 

binding type 4 : 8mer 

binding type 5 : 7mer Canonical (perfect seed match) 

binding type 6 : 7mer 

binding type 7 : 9mer with G:U wobble (8 matches + wobble + 3’ binding) 

binding type 8 : 8mer with G:U wobble (7 matches + wobble + 3’ binding) 

binding type 9 : 8mer with target bulge (8 matches + bulge + 3’ binding) 

binding type 10 : 8mer with miRNA bulge (8 matches + bulge + 3’ binding) 

binding type 11 : 8mer with mismatch 

binding type 12 : 7mer with G:U wobble (6 matches + wobble + 3’ binding) 

binding type 13 : 6mer Canonical 

binding type 14 : 6mer (6 matches + 3’ binding) 

Table 4: Different binding types from 6mer to 9mer identified by the adopted algorithm. 
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Use of biological replicates in CLIP-Seq data. In CLIP-Seq experiments that comprised 

biological replicates, an interaction had to be present in at least 2 samples (Figure 10). 

This filtering step increases the robustness of the identified results, minimizing 

technical and biological variability. The variance among different libraries was 

estimated as well as the percentage of target sites that were rejected after applying this 

filtering step. For variance estimation, the identified MREs were compared between 

CLIP-Seq replicates and the most deeply sequenced replicate (i.e. having the highest 

number of detected interactions).  The use of the aforementioned filtering step removed 

a median of 63% (IQR = 3) of the total identified MREs in human CLIP-Seq libraries, 

and 40% (IQR = 14) in mouse. Certainly, a percentage of these MREs can be bona fide 

binding sites and not technical noise but it has been decided to prioritize robust and 

high quality experimentally supported results. 

 

 

Figure 10: Example of identified MREs in PAR-CLIP AGO enriched regions. The peaks have adequate 

T-to-C incorporation and do not overlap with CLIP background signal. 
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2.4 Methods for the development of the DIANA-TarBase repository  

Despite the evident advancements in the process of cataloguing miRNA targets, the 

majority of studies examining miRNA regulatory networks and their effect on 

molecular pathways usually rely on in silico predictions, since they require increased 

numbers of interactions. Aim of TarBase v7.0 (149) was to push the envelope further 

and to provide for the first time hundreds of thousands of high quality manually 

curated experimentally validated miRNA-gene interactions, enhanced with the most 

detailed meta-data available to date. 

2.4.1 Text-mining pipeline selection of miRNA related articles 

The number of publications that describe miRNA-mRNA regulation is increasing. The 

collection of the related literature is already considered as a demanding and time 

consuming practice. The manual curation can be assisted by text-mining pipelines 

successfully applied for the inquiry of miRNA-gene interactions. 

The selection of the most information-rich articles for manual curation is a complex 

process, since thousands of manuscripts published per year have “microRNA” or 

“miRNA” keywords in their abstract or title. DIANA-TarBase 6.0 introduced a text-

mining assisted pipeline for identification of articles which would be subsequently 

subjected to manual curation. This pipeline has been significantly extended and 

enhanced, in order to be able to capture all the advancements in the experimental 

methodologies. The text mining algorithm has been iteratively fine-tuned based on the 

feedback of curators following the analysis of hundreds of manuscripts.  

In brief, the subset of MedLine articles having the terms “microRNA” or “miRNA” (and 

variations) in their title, abstract, keywords or MeSH terms are selected for analysis by 

the text mining algorithm. Abstracts and publication meta-data are downloaded in 

XML format from MedLine and subjected to Named Entity Recognition. Gene mentions 

were initially identified using AIIAGMT (150). The pipeline was subsequently updated 

to utilize GNAT libraries and online services (151) for gene name tagging and 

normalization. An extensive in-house-developed dictionary comprising all established, 

as well as novel experimental methodologies is utilized to recognize miRNAs, methods, 

important verbs and interaction terms. Sentences with a high probability for interaction 

(e.g. hosting gene, miRNA, and interaction terms) are scored based on the methods 

found within the text. Highest scored articles will be forwarded for manual curation, as 

well as articles containing high throughput methods relevant to miRNA function (e.g. 

AGO PAR-CLIP). The developed methodology has now been enhanced in order to be 

able to analyze freely-available complete articles and meta-data from PubMed Central. 

This pipeline has diminished the probability of curators analyzing low or no interaction 

articles, which pose a significant overhead in manual curation processes.  
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2.4.2 Collected Data 

Τhe types of collected data and meta-data have significantly increased, in order to 

facilitate the extensive testing and validation of prediction algorithms, as well as to 

empower regulatory investigations with experimentally derived miRNA-gene 

interactions. Each interaction is now accompanied with detailed information regarding 

the performed experimental procedure, including tissue, cell type and condition. 

Furthermore, a more relaxed database schema permits the description of more complex 

experiments and interactions involving multiple cell types or even species (e.g. miRNA-

gene interactions between the host and a viral miRNA or vice versa, experiments where 

a 3’UTR from one species is being tested using a cell type of a different species).  

Until now, databases usually distinguished experimental protocols into basic categories 

(e.g. specific and high-throughput) or into a handful of major methodology classes (e.g. 

Sequencing, Proteomics, Blotting, etc.). The new database schema enables the 

characterization of each methodology with two identifiers: a) a methodology class (12 

classes) and b) a specific subtype (20 method subtypes). By utilizing twin-identifiers, it 

is now possible to distinguish two closely related methods that have different 

information content (e.g. biotin pull-down of miRNA targets + microarray transcript 

quantification vs biotin pull-down + qPCR transcript quantification).  

A new field has been introduced to the database schema for marking interactions 

derived from chimeric reads from CLASH or modified CLIP-Seq experiments. These 

interactions have higher information content, since miRNA and mRNA sequences 

reside on the same read, enabling the accurate identification of both actors, as well as 

the exact site of the interaction. Even though these high quality interactions are 

currently limited, the new database schema enables their detailed cataloguing. 

Specific attention was paid on archiving the exact binding site of each interaction, since 

such information is crucial for testing target prediction algorithms or for identifying 

regulatory regions on a transcript (e.g. deciphering the effect of a variant on a 3’UTR 

region). The curation pipeline was extended with tools and techniques that enabled the 

curators to identify targeted regions using any relevant information available within the 

manuscript or supplemental material (genomic/transcript coordinates, cloning primers, 

mutation sites, etc). Any experimental information used by the curators for the 

identification of the targeted regions is kept within the database. Binding sites were also 

identified by analyzing an extensive array of CLIP-Seq methods. By including binding-

site level data into the database, TarBase v7.0 can present positive/negative results 

from experimental validations of distinct binding sites on the same transcript. 

Details concerning the database of experimentally supported miRNA-mRNA 

interactions and the updated interface of TarBase v7.0 are provided in the relevant 

result sections.  
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2.5 Methods for the development of the DIANA-LncBase repository 

DIANA-LncBase v1 (119) is considered as the first extensive compendium dedicated to 

cataloguing miRNA-lncRNA interactions and providing the largest collection of 

experimentally supported entries. One of the major aims of this thesis was to 

extensively study miRNA-(non)coding targets and to provide further insights for this 

still obscure mechanism. To this end, the largest collection of (in)direct low and high-

throughput methodologies and relevant publications was compiled. The analyzed 

experiments span numerous cell types across different experimental conditions for 

human and mouse species. Since lncRNA function is characterized by tissue specificity, 

a large number of RNA sequencing data was processed to complement miRNA-

lncRNA putative interactions with transcript expression. This wealth of information 

and results inferred from the analysis were included in the updated version of LncBase. 

2.5.1 Collected Data 

An extensive collection of manuscripts has been manually curated, while more than 150 

raw NGS datasets harboring miRNA interactions with (non)coding transcripts were 

analyzed, in order to unveil and explore the lncRNA target-mimetic function. 

Experimental methodologies. miRNA-lncRNA experimentally supported interactions from 

low yield and high-throughput methodologies were extracted from manually curated 

publications and raw sequencing data. LncBase v2 supports miRNA-lncRNA 

interactions derived from more than 150 CLIP-Seq (24 PAR-CLIP, 129 HITS-CLIP) 

libraries across a wide range of cell types, corresponding to the largest collection of 

AGO-CLIP data compared to any other relevant resource.  

2.5.2 Tissue/cell type expression 

Collected expression data. Raw RNA-Seq datasets were retrieved from ENCODE (2,3), 

UCSC (152) and Gene Expression Omnibus (GEO) (153) repositories in order to assess 

lncRNA transcript expression in a wide range of cell types for both human and mouse 

species. RNA-Seq data corresponding to similar cell types with those in CLIP-Seq 

samples were preferentially selected. All RNA-Seq libraries were depleted of ribosomal 

RNAs. Whole transcriptome and poly-A selected libraries were analysed. The analysis 

of deeply sequenced RNA samples enabled the extensive identification of expression 

patterns for targeted lncRNAs. Details concerning the accession codes of the processed 

RNA-Seq samples and library specifications are provided in Table 5. Raw datasets were 

quality checked and pre-processed to minimize contaminant sequences. Expression at 

transcript level was estimated using RSEM (154). Raw reads were aligned against 

human transcriptomes compiled from Ensembl 75 (GRCh37), RefSeq Release 106 

(GRCh38) (142) and Cabili et al. (88) as well as mouse transcriptomes derived from 

Ensembl 81 (GRCm81) (155) and RefSeq Release 104 (GRCm38.p2). Transcript 

expression information, extracted from analysed RNA-Seq data across 24 tissues and 

cell types in Cabili et al., was also incorporated in LncBase v2. 
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Accession Repository 
Cell 
Type/Tissue 

Total 
Reads 

Species Sequencing 

ENCFF001REK 
ENCFF001REJ 

encodeproject.org GM12878 195M Homo sapiens PE, 101bp 

ENCFF000FOM 
ENCFF000FOV 

encodeproject.org HeLa-S3 242M Homo sapiens PE,76bp 

ENCFF000GET 
ENCFF000GEQ 

encodeproject.org HMepC 293M Homo sapiens PE, 101bp 

ENCFF002DKX 
ENCFF002DKY 

encodeproject.org MCF-7 121M Homo sapiens PE,100bp 

ENCFF109IUU 
ENCFF322VHJ 

encodeproject.org HREpiC 212M Homo sapiens PE,101bp 

ENCFF000GHA 
ENCFF000GGZ 

encodeproject.org hMSC-BM 379M Homo sapiens PE, 101bp 

wgEncodeCshlLongRnaSeqA
549CellPapFastq - Rep1 

hgdownload.cse.ucsc.edu A549 190M Homo sapiens PE,76bp 

wgEncodeCshlLongRnaSeqH
epg2CellPapFastq – Rep1 

hgdownload.cse.ucsc.edu HepG2 248M Homo sapiens PE,76bp 

wgEncodeCshlLongRnaSeqH
uvecCellPapFastq – Rep1 

hgdownload.cse.ucsc.edu HUVEC 174M Homo sapiens PE,76bp 

wgEncodeCshlLongRnaSeqK
562CellPapFastq – Rep1 

hgdownload.cse.ucsc.edu K562 227M Homo sapiens PE,76bp 

wgEncodeCshlLongRnaSeqS
knshraCellPapFastq – Rep2 

hgdownload.cse.ucsc.edu SK-N-SH 234M Homo sapiens PE,76bp 

wgEncodeCshlLongRnaSeqH
1hescCellPapFastq – Rep1 

hgdownload.cse.ucsc.edu H1 hESC 250M Homo sapiens PE,76bp 

wgEncodeCshlLongRnaSeqI
mr90CellPapFastq – Rep1 

hgdownload.cse.ucsc.edu IMR90 217M Homo sapiens PE,101bp 

wgEncodeCshlLongRnaSeq
WbrainE14halfFastq – Rep1 

hgdownload.cse.ucsc.edu Brain 341M Mus 
musculus 

PE,101bp 

wgEncodeCshlLongRnaSeqH
eartAdult8wksFastq –Rep1 

hgdownload.cse.ucsc.edu Heart 149M Mus 
musculus 

PE,76bp 

wgEncodeCshlLongRnaSeqK
idneyAdult8wksFastq – Rep1 

hgdownload.cse.ucsc.edu Kidney 186M Mus 
musculus 

PE,76bp 

wgEncodeCshlLongRnaSeqL
iverAdult8wksFastq – Rep1 

hgdownload.cse.ucsc.edu Liver 160M Mus 
musculus 

PE,76bp 

wgEncodeCshlLongRnaSeqL
ungAdult8wksFastq – Rep1 

hgdownload.cse.ucsc.edu Lung 141M Mus 
musculus 

PE,76bp 

wgEncodeCshlLongRnaSeqT
hymusAdult8wks – Rep1 

hgdownload.cse.ucsc.edu Thymus 160M Mus 
musculus 

PE,76bp 

ENCFF001IDD 
ENCFF001ICW 

encodeproject.org C2C12 (60h) 280M Mus 
musculus 

PE,75bp 

ENCFF001IUF 
ENCFF001IUD 

encodeproject.org Frontal 
Cortex 

371M Mus 
musculus 

PE, 101bp 

ENCFF001NEG 
NCFF001NEC 

encodeproject.org MEL 281M Mus 
musculus 

PE, 101bp 

GSM973235 ncbi.nlm.nih.gov/geo ES-E14 341M Mus 
musculus 

PE, 101bp 

GSM1370364 ncbi.nlm.nih.gov/geo HEK-293 395M Homo sapiens PE, 50bp 

GSM1133247 ncbi.nlm.nih.gov/geo LCLBAC 68M Homo sapiens PE, 50bp 

GSM1133250 ncbi.nlm.nih.gov/geo LCLBACD2 45M Homo sapiens PE, 50bp 

GSM1133251 ncbi.nlm.nih.gov/geo LCLBACD3 74M Homo sapiens PE, 50bp 

GSM1133248 ncbi.nlm.nih.gov/geo LCLBACD1 77M Homo sapiens PE, 50bp 

GSM1133249 ncbi.nlm.nih.gov/geo LCLBACD1 74M Homo sapiens PE, 50bp 

Table 5: Details concerning the analysed RNA-Seq samples. The table presents accession codes and 
sequencing specifications for each library. RNA-Seq datasets were retrieved from ENCODE(2,3), 
UCSC(152) and Gene Expression Omnibus (GEO)(153) repositories in order to assess lncRNA 
transcript expression in various cell types and tissues. (Paraskevopoulou MD et al, 2015)(117) 
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Further information concerning the database of experimentally supported miRNA-

lncRNA interactions and the updated LncBase v2 interface are provided in the relevant 

result sections. 

2.6 Comparison of TarBase/LncBase AGO-CLIP-Seq data analysis algorithm with 

other CLIP-Seq Target Identification applications 

For the evaluation of the in-house developed CLIP-Seq data analysis algorithm, 

different implementations identifying miRNA targets with CLIP-Seq have been utilized. 

The list of tested algorithms included microMUMMIE (75), MIRZA (72), and PARMA 

(74) The evaluation of programs’ performance was based on their accuracy in predicting 

both miRNA-mRNA interactions, as well as their ability to correctly identify 

experimentally verified miRNA binding sites. 

The computational algorithms were assessed for their performance in distinct high 

quality validation sets comprising ~300 Luciferase Reporter Gene Assays and ~1,700 

chimeric interactions in HEK293T cells, respectively. The chimeric interactions were 

retrieved from 1 CLASH library (156). An additional evaluation of TarBase/LncBase 

AGO-CLIP-Seq algorithm incorporated an extended set of ~850 interactions validated 

with Luciferase Reporter Gene Assays. 

 

Figure 11: Summary of the performance evaluation pipeline for CLIP-Seq analysis algorithms. SAM 

files produced by different aligners were utilized for CLIP target identification. Total predicted MREs 

(miRNA Recognition elements) in CLIP-Seq enriched regions were filtered in order to retain only 

miRNAs and transcripts contained in the validation set composed of 2,000 Reporter gene and chimeric 

miRNA interactions. (Copyright Paraskevopoulou Maria) 
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2.7 Implementation of a novel Algorithm for the AGO CLIP-Seq data analysis 

 
Most of the current in silico implementations devoted to the analysis of AGO-CLIP 

sequencing data still lack a robust A-to-Z pipeline in order to sufficiently catalogue 

miRNA-target interactions.  

MIRZA algorithm does not support the direct processing of the raw or aligned CLIP-

Seq data, and requires to be supplied with a specific format for the clusters and the 

miRNAs. In addition, it has several limitations such as the length of the provided 

clusters (30-51 nts) and miRNAs (21 nts), the required supplementary information of 

miRNA expression values and the formation of clusters centered on the position with 

maximum T-to-C conversion sites.  

microMUMMIE has to be complemented with other implementations, which are 

considered essential for its core algorithm. However, these extra steps of calculations 

are not seamlessly incorporated in the microMUMMIE pipeline but have to be 

generated independently by the user. Moreover, microMUMMIE mainly focuses on the 

analysis of miRNA binding sites in the 3’UTR regions, even though CLIP-Seq 

experiments can be efficiently applied to discover transcriptome-wide miRNA 

interactions.  

The main restriction of PARma is that it adopts a family miRNA-seed clustering 

approach and relies on the identification of miRNA-seed binding sites in AGO-peaks 

comprising statistically significant overrepresented kmers. It also requires a specific 

input format of AGO enriched regions with relevant conversion sites that has to be 

prepared by the user. Notably, the latter two implementations do not cover the whole 

spectrum of miRNA binding types.  

All the aforementioned algorithms are preferably applied for the analysis of PAR-CLIP 

data. They are not appropriate for the processing of other CLIP-Seq experiments 

including, HITS-CLIP, CLASH or iCLIP. This is due to the fact that they strongly 

depend on the induced T-to-C conversions in the AGO crosslinked regions to pinpoint 

miRNA binding sites. Moreover, they do not process AGO enriched regions that do not 

have T-to-C substitutions, omitting a large amount of highly covered PAR-CLIP 

clusters. Importantly, the evaluation of the described implementations against the 

adopted AGO-CLIP-Seq analysis pipeline of TarBase and LncBase repositories revealed 

that there is room for further improvement for all algorithms and optimization in order 

to attain increased accuracy.  

It should also be noted that there are no available implementations incorporating the 

wealth of high/low throughput released experiments specific for miRNA-gene 

interactions. To this end, a novel Algorithm was developed primarily for PAR-CLIP 

data analysis, with the potential to be generalized for other CLIP-Seq variants. The 

collected low-yield and high-throughput experimental data sources for the derivation 

of positive and negative miRNA-target interactions as well as the algorithm’s 

deployment and testing are described in the following sections.  
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2.7.1 Collection of experimental datasets 

A comprehensive collection of low/high-throughput experimental datasets was created 

in order to extract putative miRNA-target interactions. More precisely, Reporter gene 

Assays, CLASH, CLEAR-CLIP, PAR-CLIP, RNA-Seq, microarrays, quantitative 

proteomics (pSILAC), Ribosome profiling sequencing (Ribo-Seq) were utilized to 

generate positive and negative instances. Direct interactions retrieved from Reporter 

Gene Assay techniques and high quality miRNA-target chimeras derived from CLASH 

and CLEAR-CLIP constitute a source of specific MRE regions and were included as 

positive cases. On the other hand, indirect high-throughput methodologies such as 

RNA-Seq and microarrays are experiments that measure mRNA expression changes 

after transfection, silencing or knockout of a specific miRNA and therefore were 

processed for the derivation of both positive and negative instances. Ribosome profiling 

sequencing after miRNA overexpression can reveal differences in ribosome-bound 

transcripts and for that reason it is a valuable component for detecting functional 

(positive) miRNA effects or negative instances.  pSILAC experiments were also 

included in the training set since they can reveal the strong or weak impact of a miRNA 

deregulation on protein concentration.   

Friedersdorf M and Keene J (157) generated background PAR-CLIP libraries aiming to 

study non-specific RBP binding events and reveal patterns of true protein-RNA 

interactions. These datasets were additionally incorporated to deduce negative miRNA 

binding sites in the respective CLIP-Seq clusters. 

Finally, random CLIP data, at the level of raw reads, were generated in order to provide 

an extra source for the creation of decoy clusters and MRE regions.  

 

2.7.1.1 Direct miRNA-target interactions derived from high/low throughput 

techniques 

The positive collection incorporates interactions retrieved from 377 publications and 

comprises more than 30,000 direct miRNA-target interactions, spanning approximately 

200 cell types. Positive cases validated with Luciferase Reporter assays are obtained 

from DIANA-TarBase v7.0 (64). Luciferase expression vectors are usually tested with 

whole 3’UTR mRNA sequences that may harbor more than one candidate miRNA 

binding sites. However, TarBase repository also indexes a considerable amount of 

luciferase data, where specific candidate binding regions are cloned in the relevant 

vectors. To this end, only short RNA fragments (<200 nts) tested with reporter assays 

were included in the positive set. These instances correspond to miRNA-target 

interactions spanning more than 40 tissues, while the majority of them are tested on 

Human Embryonic Kidney (HEK-293), Mammary Gland (MCF7 or MDAMB231) and 

Cervix tissue (HeLa). 

Chimeric miRNA-target fragments are derived from two CLASH (50) and CLEAR-CLIP 

(59) experiments.  CLEAR-CLIP has been performed on a neoplastic cell line (Huh7.5) in 
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liver tissue, while CLASH-supported interactions correspond to T-REx 293 cells. These 

two datasets comprise 28,000 miRNA direct interactions. 

Moreover, Grosswendt S et al. (51) observed the existence of miRNA-target ligated pairs 

in already published PAR-CLIP experiments. The authors introduced an in silico 

pipeline for the identification of chimeric miRNA-gene fragments, and they applied 

their method on already released experiments to form a collection of such events. A 

selected set of these precompiled chimeric miRNA interactions were included in the 

algorithm. These interactions cover 5 different cell lines: Human Embryonic Kidney 

cells (HEK293, Kishore et al. (73)), BC-1 and BC-3 primary effusion lymphoma-derived 

cell lines infected with Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated 

herpesvirus (KSHV) (Gottwein et al. (158)),  EBV-infected lymphoblastoid cell lines 

(Skalsky et al. (159)) and Human Embryonic stem Cells (hESC, Lipchina et al. (160)).  A 

concise description of the positive miRNA interactions from the different experiments is 

provided in Table 6. 

 

Experiment Species Cell Line 
Number of 

miRNAs 
Interactions Studies 

Luciferase Reporter human 197 165 714 371 

CLASH human 1 176 1,573 1 

CLEAR-CLIP human 1 482 27,335 1 

Chimeric miRNA-targets  
(Grosswendt S et al.) 

human 4 262 12,511 4 

Table 6: Summary of the positive miRNA interactions and associated cell types, derived from the 

different direct experiments. 

 

2.7.1.2 RNA-Seq datasets 

A set of 9 different experimental conditions (shown in Table 7), corresponding to RNA 

sequencing datasets, were analyzed in order to infer positive and negative gene changes 

after miRNA overexpression. In total, the transcriptome-wide differential expression in 

three human cell lines (HEK-293T, HeLa and U2OS) was calculated for two miRNAs 

(miR-1 and miR-155). These datasets were released from a recent publication by 

Eichhorn et al. (161). 
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RNA Sequencing Datasets 

# Cell Line miRNA miRNA treatment Post-Transfection Cell Harvest 
Time/Experimental Condition 

1 HEK-293T hsa-miR-1-3p Overexpression 24h 

2 HELA hsa-miR-1-3p Overexpression 24h 

3 HELA hsa-miR-155-5p Overexpression 24h 

4 U2OS (total) hsa-miR-1-3p Overexpression 32h/poly(A)-selected total RNA 

5 U2OS (total) hsa-miR-155-5p Overexpression 32h/poly(A)-selected total RNA 

6 U2OS (cyto) hsa-miR-1-3p Overexpression 32h/poly(A)-selected cytoplasmic RNA 

7 U2OS (cyto) hsa-miR-155-5p Overexpression 32h/poly(A)-selected cytoplasmic RNA 

8 U2OS (ribo) hsa-miR-1-3p Overexpression tRNA and rRNA depleted RNA 

9 U2OS (ribo) hsa-miR-155-5p Overexpression tRNA and rRNA depleted RNA 

Table 7: Description of RNA Sequencing datasets after miRNA overexpression utilized to extract 

positive and negative instances for the training of a novel AGO-CLIP-Seq-guided Algorithm for 

miRNA-target identification. 

 

2.7.1.3 Microarray datasets 

Different experimental conditions (shown in Table 8) were analyzed from 52 microarray 

studies. In total, the transcriptome-wide differential expression in 53 human cell lines 

was calculated for 65 miRNAs that were either overexpressed or knocked-down/out. 

Human cell lines from Affymetrix chips were analyzed. Affymetrix microarray raw files 

(.CEL) from experiments listed in Supplementary Table 8 were analyzed in-house. 

miRNA-treated and control samples were appropriately combined in order to perform 

background correction, quantile normalization and log2 expression calculation. These 

processing steps were implemented using Robust Multi-Array Average (RMA) with affy 

(162) or oligo (163) R-packages. Annotation enrichment of each probe set was 

accomplished using the chip-specific annotation R-packages hgu133a2.db, 

hgu133plus2.db or hugene10sttranscriptcluster.db. Each experiment was examined 

independently of other cell lines or miRNA treatments. log2(FC) and p-values were 

calculated with limma package (164), following the guidelines for Single-Channel 

Designs.  

Importantly, since microarray analyses were performed at a probe set level, there was a 

considerable portion of gene instances comprising one-to-many associations (gene 

referring to multiple probe sets). In these cases, a majority rule was applied to same-

gene probe sets in order to determine up/down-regulation of transcript expression. 

Subsequently, a median log2(FC) was calculated including only the gene-associated 

probe sets that exceeded either a positive or negative threshold (>0.5 or <-0.5, 

respectively), depending on the type of the regulation decided by the majority rule in 

the previous step. This probe-to-gene level transition allowed the incorporation of 

deregulated genes derived from microarray analyses, into the positive and negative 

training sets. 
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Summary of  Microarray Datasets 

# Cell Line miRNA miRNA 
treatment 

Post-Transfection  
Cell Harvest Time 

1-2 113/6-4L, 131/4-5B1 hsa-miR-30d-5p Overexpression 60h 

3 AGS hsa-miR-210-3p Overexpression 36h 

4 CALU3 hsa-miR-138-5p Overexpression 48h 

5-7 CCL86, CRL1432, CRL1596 hsa-miR-26a-5p Overexpression 72h 

8 DLD1 hsa-miR-143-3p Overexpression 24h 

9 DLD1 hsa-miR-145-5p Overexpression 24h 

10 DU145 hsa-miR-224-5p Overexpression 48h 

11 DU145 hsa-miR-452-5p Overexpression 48h 

12 H4 hsa-miR-103a-3p Overexpression 48h 

13 H4 hsa-miR-107 Overexpression 48h 

14 H4 hsa-miR-15b-3p Overexpression 48h 

15 H4 hsa-miR-16-5p Overexpression 48h 

16 H4 hsa-miR-195-5p Overexpression 48h 

17 H4 hsa-miR-320b Overexpression 48h 

18 HEK-293 hsa-miR-212-3p Overexpression - 

19 HEK-293 hsa-miR-124-3p Overexpression 15h 

20 HEK-293 hsa-miR-7-5p Overexpression 15h 

21-22 HELA hsa-let-7b-5p Overexpression 8h, 32h 

23-24 HELA hsa-miR-1-3p Overexpression 8h, 32h 

25-26 HELA hsa-miR-155-5p Overexpression 8h, 32h 

27-28 HELA hsa-miR-16-5p Overexpression 8h, 32h 

29-30 HELA hsa-miR-30a-5p Overexpression 8h, 32h 

31 HEPG2 hsa-miR-191-5p Anti-miR - 

32-38 HEPG2 hsa-miR-124-3p Overexpression 4h, 8h, 16h, 24h, 32h, 
72h , 120h 

39 HEY hsa-miR-429 Overexpression 48h 

40 HEY hsa-miR-128-3p Overexpression 48h 

41 HEY hsa-miR-7-5p Overexpression 48h 

42 HUH7 hsa-miR-517a-3p Overexpression - 

43 HUH7.5 hsa-miR-27a-3p Anti-miR - 

44 HUH7.5 hsa-miR-27a-3p Overexpression - 

45-46 HUVEC hsa-miR-210-3p Anti-miR, 
Overexpression 

24h 

47 HUVEC hsa-miR-126-3p Anti-miR 72h 

48 IMR90 hsa-miR-29a-3p Knock-down 48h 

49 K562 hsa-miR-34a-5p Overexpression 24h 

50 LNCAP hsa-miR-106b-5p Overexpression 24h 

51 LNCAP hsa-miR-130a-3p Overexpression 24h 

52 LNCAP hsa-miR-203a-3p Overexpression 24h 

53 LNCAP hsa-miR-205-5p Overexpression 24h 

54 LNCAP hsa-miR-1-3p Overexpression 24h 

55 LNCAP hsa-miR-206 Overexpression 24h 

56 LNCAP hsa-miR-27b-3p Overexpression 24h 

57-60 MCF10A hsa-miR-20a-5p Silencing 0h, 0.5h, 1h, 2h post 
EGF stimulation 

61-64 MCF10A hsa-miR-671-5p Silencing 0h, 0.5h, 1h, 2h post 
EGF stimulation 
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65 MCF7 hsa-miR-95a-3p Overexpression 24h 

66 MCF7 hsa-miR-101-3p Overexpression 24h 

67 MCF7FR hsa-miR-221-3p Silencing 72h 

68 MCF7FR hsa-miR-222-3p Silencing 72h 

69 MHH-ES-1 hsa-miR-483-5p Overexpression 48h 

70 MHH-ES-1 hsa-miR-483-3p Overexpression 48h 

71 MKN45 hsa-miR-210-3p Overexpression 36h 

72 MSK543 hsa-miR-124-3p Overexpression 24h 

73 MSK543 hsa-miR-380-3p Overexpression 24h 

74 MSK543 hsa-miR-433-3p Overexpression 24h 

75 MSK543 hsa-miR-448 Overexpression 24h 

76 MSK543 hsa-miR-132-3p Overexpression 24h 

77 PAG C81-61 hsa-miR-20a-5p Overexpression 3d 

78 PAG C81-61 hsa-miR-17-5p Overexpression 3d 

79 PC3 hsa-miR-224-5p Overexpression 48h 

80 PC3 hsa-miR-452-5p Overexpression 48h 

81 SKHEP1 hsa-miR-21-5p Anti-miR 16h 

82 SW1783 hsa-miR-376a-5p Overexpression 24h 

83-84 U87 hsa-miR-376a-5p Overexpression 24h, 72h 

85-86 U87, HS683 hsa-miR-20a-5p Overexpression - 

87 HTERT-RPE1 hsa-miR-129-2-3p Overexpression 72h 

88 FLS hsa-miR-23b-3p Overexpression - 

89 HAEC hsa-miR-34a-5p Overexpression 48h 

90 HAEC hsa-miR-34b-5p Overexpression 48h 

91 HAEC hsa-miR-34c-5p Overexpression 48h 

92 HAEC hsa-miR-449b-5p Overexpression 48h 

93 HAEC hsa-miR-449a Overexpression 48h 

94 HDF hsa-miR-29a-3p Inhibition 48h 

95-97 GBM4, GBM6, GBM8 hsa-miR-10b-5p Inhibition 24h 

98-100 HEK-293, HEK-293T, HSF2 hsa-miR-941 Overexpression 24h 

101 HT29 hsa-miR-146a-5p Overexpression 2w after lentiviral 
infection 

102 H929 hsa-miR-214-3p Overexpression - 

103 MDAMB231 hsa-miR-200c-3p Overexpression - 

104 MDAMB231 hsa-miR-205-5p Overexpression - 

105 MDAMB231 hsa-mir-375 Overexpression - 

106 U1810 hsa-miR-214-3p Antagomir 24h 

107 HCT116 hsa-miR-34a-5p Overexpression 2w after retroviral 
infection 

108 HCT116 hsa-miR-147a Overexpression 3d 

109 SUM159 hsa-miR-203a-3p Overexpression - 

110 U87-2M1 hsa-miR-10b-5p Inhibition - 

111 A549 hsa-miR-7-5p Overexpression 24h 

112-113 Jurkat hsa-miR-146a-5p Overexpression, 
Knock-down 

48h 

114 Melanoma-metastatic Liver 
Cells 

hsa-miR-182-5p Anti-miR administered twice 
per week over 4 
weeks 

115-116 P3HR1 hsa-miR-28-5p Overexpression 12h, 24h 

Table 8: Description of miRNA inhibition/overexpression/KO microarray datasets utilized to extract 

positive and negative instances for the training of a novel AGO-CLIP-Seq-guided algorithm for 

miRNA-target identification. 
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2.7.1.4 Ribosome Profiling Datasets  

Ribosome Profiling Datasets.  Ribo-Seq datasets that correspond to 5 experimental 

conditions were retrieved from a recent publication by Eichhorn et al. (161). As 

described in Table 9, the data refer to three human cell lines (HEK-293T, HeLa and 

U2OS) and two human miRNAs (miR-1 and miR-155) that were overexpressed in the 

relevant experiments.  Fold change values as calculated from differential expression 

analyses of control vs post-transfection states enabled the formation of positive and 

negative miRNA-mRNA interactions. 

 Ribosome Profiling Datasets 

# Cell Line miRNA miRNA treatment Post-Transfection Cell 
Harvest Time 

1-2 HEK-293T, HELA hsa-miR-1-3p Overexpression 24h 

3 HELA hsa-miR-155-5p Overexpression 24h 

4 U2OS hsa-miR-1-3p Overexpression 32h 

5 U2OS hsa-miR-155-5p Overexpression 32h 

Table 9: Description of ribosome profiling datasets after overexpression of a specific miRNA. These 

sets were utilized to extract positive and negative instances for the training of a novel Algorithm for 

the analysis of AGO CLIP-Seq data. 

 

2.7.1.5 Quantitative Proteomics Datasets  

A collection of 6 distinct pSILAC (provided in Table 10) experimental datasets were 

derived from the Selbach et al. publication (55). In this study, quantitative proteome-

wide profiles were assessed in HeLa cells following the individual overexpression of 5 

human miRNAs (let-7b, miR-1, miR-16, miR-30a and miR-155) or knock-down of let-7b. 

The precompiled median log2(Fold-change) values from relevant publication were 

accordingly processed to deduce miRNA-gene associations reflecting the 

positive/negative impact of miRNA overexpression to protein concentration. 

 pSILAC Datasets 

# Cell Line miRNA miRNA 
treatment 

Post-Transfection Cell Harvest Time 

1 HELA hsa-let-7b-5p Overexpression 8h post-transfection and 24h pSILAC labelling 

2 HELA hsa-miR-1-3p Overexpression 8h post-transfection and 24h pSILAC labelling 

3 HELA hsa-miR-16-5p Overexpression 8h post-transfection and 24h pSILAC labelling 

4 HELA hsa-miR-30a-5p Overexpression 8h post-transfection and 24h pSILAC labelling 

5 HELA hsa-miR-155-5p Overexpression 8h post-transfection and 24h pSILAC labelling 

6 HELA hsa-let-7b-5p Knock-down 8h post-transfection and 24h pSILAC labelling 

Table 10: Description of miRNA overexpression/KO pSILAC datasets utilized to extract positive and 

negative instances for training a novel Algorithm for the analysis of AGO CLIP-Seq data. 
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Differential expression analyses of miRNA-(un)treated cell lines were performed for the 

aforementioned high-throughput experimental datasets. More precisely, the entries 

corresponding to positive and negative miRNA-mRNA interactions for microarrays 

and quantitative proteomics (pSILAC) experiments were defined by applying a strict -1 

or +1 log2(Fold Change) threshold.  

For Ribosome profiling and RNA sequencing experiments, gene expression values were 

initially filtered with a threshold of >10 RPKM. Subsequently, the remaining genes in 

these experiments (Ribo/RNA-Seq) were selected with a -0.5 or 0.5 log2(Fold Change) 

threshold for positive and negative interactions respectively.  

The selection of fold change thresholds was performed after observation of their 

distribution in each of the processed datasets. Notably, since multiple datasets were 

integrated for the algorithm development, it has been observed that specific miRNA-

gene interactions appeared to be both positive and negative in different experimental 

settings. Such conflicting outcomes were removed. 

 

2.7.1.6 CLIP deep sequencing datasets 

A collection of 24 PAR-CLIP datasets derived from 8 studies were incorporated to the 

pipeline (Table 11).  Each independent experiment provided AGO cluster information 

comprising the signal of raw aligned reads and transition sites. 

These AGO-bound clusters were combined with the positive and negative miRNA-

target interactions, as identified by different low and high-throughput experiments, in 

order to infer multiple descriptors for each targeted region. MRE regions located within 

PAR-CLIP peaks were subsequently utilized for feature extraction. 

It should be noted that indirect experiments cannot provide the exact MRE region. In 

order to address this issue, an extra step was included to scan transcripts participating 

is indirect interactions for miRNA-specific binding sites. This analysis, in many cases, 

revealed more than one candidate MRE per miRNA-target pair. In such instances, 

identifying overlapping MREs with AGO clusters introduced one or more positive or 

negative instances in the training set.  

The following sections describe the derivation of extra negative miRNA-target instances 

from background PAR-CLIP and randomly simulated PAR-CLIP experiments 

respectively. 
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Experiment Species Cell line Cell condition Samples 

1-2 PAR-CLIP human HEK293 
enzymatic digestion: complete T1 digestion, 

protein: Ago2 
2 

3-4 PAR-CLIP human HEK293 
enzymatic digestion: mild MNase 

digestion, protein: Ago2 
2 

5 PAR-CLIP human MCF7 monoclonal anti-AGO2 (C1.9E8.2) 1 

6 PAR-CLIP human hESC monoclonal anti-AGO2 (C1.9E8.2) 1 

7 PAR-CLIP human C8166 
hiv-1 strain: NL4-3, length of infection 

(days): 3 
1 

8 PAR-CLIP human TZM-bl 
hiv-1 strain: WT/BaL,  length of infection 

(days): 3 
1 

9 PAR-CLIP human TZM-bl 
hiv-1 strain: WT/BaL,  length of infection 

(days): 3, engineered cells to stably express 
HIV-1-specific amiRNAs 

1 

10 PAR-CLIP human BC-1 
primary effusion lymphoma (PEL) cell line, 
latently infected with both KSHV and EBV 

1 

11 PAR-CLIP human BC-3 
primary effusion lymphoma (PEL) cell line, 

latently infected only with KSHV 
1 

12 PAR-CLIP human EF3DAGO2 
EBV B95-8-infected lymphoblastoid cells, 

antibody: Anti-Ago2 (clone 9E8) 
1 

13 PAR-CLIP human LCL35 
EBV B95-8-infected lymphoblastoid cells, 

antibody: Anti-Ago2 (clone 9E8) 
1 

14 PAR-CLIP human LCLBAC 
LCL-BAC lymphoblastoid cells infected by 

EBV B95-8 BACmid,  
antibody: Anti-Ago2 (clone 9E8) 

1 

15 PAR-CLIP human LCLBACD1 

LCL-BACD1 lymphoblastoid cells infected 
by EBV B95-8 BACmid, mutationally 

inactivated for miR-BHRF1-1 expression, 
antibody: Anti-Ago2 (clone 9E8) 

1 

16 PAR-CLIP human LCLBACD3 

LCL-BACD3 lymphoblastoid cells infected 
by EBV B95-8 BACmid, mutationally 

inactivated for miR-BHRF1-3 expression, 
antibody: Anti-Ago2 (clone 9E8) 

1 

17-20 PAR-CLIP human HEK-293 
3 samples stable expressing  

Flag/HA–AGO1- antibody: FLAG,  
1 sample with antibody: AGO2 11A9 

4 

21-24 PAR-CLIP human HEK-293 
immunoprecipitated protein: AGO1,AGO2, 

AGO3, AGO4 respectively 
4 

Table 11: Summary of the collected PAR-CLIP experiments in human species, obtained from 8 studies. 

These datasets provided the source of PAR-CLIP signal (raw reads and transitions) which was 

combined with experimentally validated positive/negative instances of miRNA-targeted regions.  

 

2.7.1.7 Background CLIP deep sequencing datasets 

PAR-CLIP sequencing experiments of HEK-293 cells, stable expressing a non-RBP 

control (FLAG-GFP) and treated with FLAG-tagged antibody, enabled the detection of 

non-specific protein-bindings. These recently published experiments can be exploited to 

decipher background CLIP signal (157). 
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Consequently, they were accordingly processed to produce negative PAR-CLIP regions 

for miRNA binding. The identification of negative MREs within the background 

clusters was performed for miRNAs expressed in the HEK-293 cell line. 

  

2.7.1.8 Random CLIP-Seq  

An in silico pipeline was implemented to simulate PAR-CLIP libraries. The randomly 

produced CLIP-Seq data, at the level of raw reads, provided an extra source for 

negative clusters and MRE regions. MRE control instances derived from the simulated 

PAR-CLIP clusters were generated for all the miRNAs encountered on positive or 

negative interactions and were supported by (in)direct, low/high-throughput 

experiments. 

2.7.2 Compilation of positive and negative training sets 

The unified set of positive MRE-instances was compiled from chimeric miRNA-target 

fragments, direct miRNA bindings supported by Reporter Gene Assays as well as 

miRNA-target interactions derived from RNA sequencing experiments, quantitative 

proteomics and ribosome profiling. Positive MREs exceeded 11 thousand and are 

mainly placed in coding and 3’ untranslated regions of the mRNAs. miRNA-targeted 

regions presented an overlap with clusters from at least one AGO-PAR-CLIP 

sequencing library. The respective negative set, defined by different indirect high-

throughput experiments, background PAR-CLIP libraries as well as by randomly 

generated CLIP datasets, was appropriately filtered to avoid any conflict with positive 

instances (both at interaction and at miRNA binding site level). Notably, specific 

attention was paid to create positive and negative sets with similar ratios in terms of 

MRE biotype annotation (Table 12).   

This comprehensive collection of miRNA interactions enabled the development of a 

novel AGO-CLIP-Seq-guided Algorithm intended for miRNA-target identification. 
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Positive Instances miRNAs in interactions targeted regions miRNA-target pairs 

Chimeric 238 5,201 5,885 

Reporter 94 168 179 

RNA-Seq 2 309 309 

Microarrays 52 4,553 4,663 

pSILAC 5 123 123 

RPF 2 507 507 

Negative Instances miRNAs in interactions targeted regions miRNA-target pairs 

RNA-Seq 2 274 274 

Microarrays 51 3,106 3,118 

pSILAC 5 36 36 

RPF 2 497 497 

Background CLIP-Seq 360 9,946 10,031 

Simulated CLIP-Seq 200 8407 8523 

Table 12: Overview of miRNA-target positive/negative instances as identified by different 
indirect/direct low and high-throughput experiments as well as by randomly simulated CLIP datasets. 
miRNA-targeted regions presented an overlap with clusters from at least one PAR-CLIP sequencing 
library. No overlap was allowed between positive and negative miRNA-gene interactions and their 
related MRE-instances. 

 

2.7.3 Feature set description 

A set of approximately 300 descriptors was created for the comprehensive compendium 

of positive and negative instances. The extracted features comprised coverage 

measurements derived from the CLIP-Seq signal; substitution ratios and distance of 

substitutions from the MRE start; base and dinucleotide contents for the miRNA site as 

well as its respective flanking regions; location of the MRE within the cluster; 

complexity features for the MRE and proximal upstream/downstream sequences; 

energy-related variables for the duplex structure; paired positions and nucleotides of 

the miRNA-target hybrid; (mis)matches, bulges, loops and wobble pairs for miRNA 

and MRE sub-domains that participate in the duplex formation (seed, after-seed, 3’ 

compensatory and tail region); binding type; conservation scores for the MRE and 

upflank/downflank-MRE regions. There are also features describing binding length 

ratios of miRNA and/or target regions, as well as metrics for sequence content 

skewness/asymmetry and biases of codon usage. Major categories are described in 

more detail in the following paragraphs. 
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Expression Features. The first category of features corresponds to coverage 

measurements derived from the analyzed PAR-CLIP experimental datasets. The 

descriptors were designed for AGO enriched regions (clusters) as well as the relevant 

miRNA targeted regions (MREs). Cluster and MRE RPKM measurements correspond to 

the normalized read coverage of the peak and the miRNA binding region, respectively. 

Aligned reads residing within the cluster or the MRE are normalized for CLIP 

sequencing depth and relevant region length. In addition to the RPKM values, the raw 

number of overlapping reads is included as an extra feature. MRE coverage relative to 

cluster coverage is another informative feature especially useful for binding sites 

located on broader peaks or near the cluster’s 3’ or 5’ end. 

Substitution Features. Another category of features was created to describe substitution 

ratios based on CLIP-Seq aligned reads. In PAR-CLIP experiments it is expected to 

observe T-to-C conversion sites in the AGO-miRNA crosslinked regions. Other 

transitions may also be detected in the vicinity of a binding site (MRE). These non T-to-

C events may constitute false positive sources of conversions due to sequencing artifacts 

or cell type-specific variations (165). However, it is possible that they correspond to 

other crosslinking-induced mutation sites, generated during the reverse transcription. 

Therefore, information of every putative substitution ratio upstream/downstream the 

MRE start and different mutation positions was included in the developed model. 

Additional features describing substitution distances from relative MRE start were also 

added. Substitution ratios and distances for each or all transition types were combined 

to extract other meta-descriptors.  

Sequence Complexity and Energy Features. A set of thermodynamic properties including 

entropy (dS), enthalpy (dH), free energy (dG) and melting temperature (Tm) were 

estimated for the MRE sequences. Additional sequence measurements were 

incorporated in the model such as BLAST’s DUST score for masking low complexity 

sequences (166), MRE complexity calculated with the Shannon-Wiener Index (167), as 

well as quantitative metrics of nucleotide/base composition asymmetry (GC-skew, AT-

skew, purine-skew, Ks-skew). 

Conservation Features. Conservation is a feature that is deemed important in miRNA-

target interactions and therefore it has been adopted from many in-silico prediction 

algorithms. In the specific model, phastCons pre-computed scores from genome-wide 

multiple alignments were utilized to deduce evolutionary rates of miRNA targeted 

regions as well as their flanking regions (Figure 12). Regions conservation signal were 

estimated as mean intensities of the overlapping phastCons base-wise scores. Moreover, 

separate descriptors were utilized to describe conservations of the most 5' MRE binding 

nucleotides and all binding nucleotides of the MRE in each miRNA-target duplex. 

PhastCons precompiled values were downloaded from the UCSC repository (152) in 

bigwig format.  
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Figure 12: Pre-calculated phastCons base-wise conservation scores (mean values) overlapping 

positive/negative MRE start sites along with upstream/downstream flanking regions (± 50 nts). 

Positive/negative MRE conservation scores are spatially classified to 3’UTR, CDS, intergenic and 

intronic transcript regions. Distribution of conservation base scores are centered in the MRE start sites 

(position 0). Notably, positive MREs residing on CDS and 3’UTR regions present a significant increase 

of conservation scores around the MRE-start.  (Copyright Paraskevopoulou Maria) 

 

Content Features of MRE and flanking regions. Single/di-nucleotide composition 

descriptors were generated for the miRNA binding site and the upstream or 

downstream MRE regions. 

miRNA-target duplex Features. The duplex structure energy of putative miRNA-target 

pairs was estimated using the RNAduplex algorithm of the Vienna package (168). 

Different features have been established to describe loops, miRNA or MRE bulges and 

mismatches, GU wobbles and AU base pairing features. Several publications discuss the 

varying impact of mismatches, internal loop formations, miRNA or target bulges in 

conjunction with their position within the duplex structure (169-171). Moreover, 

miRNA sequence can be divided into distinct domains with different levels of 

importance after the 5' anchor (nt 1): (i)seed region (2-8 positions), (ii) central region (9-
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12 positions), (iii) 3’ supplementary/compensatory region (13-16 positions), (iv) tail 

region (17-3’miRNA end) (Figure 13). Following a miRNA-target duplex construction, 

relevant domains can be defined in the MRE region based on the binding anchors of 

miRNA sub-regions. To this end, the aforementioned descriptors were designed for 

each miRNA and/or target sub-domains as well as for the entire duplex structure. 

Finally, miRNA binding and MRE binding length were incorporated in the feature set. 

 

 

Figure 13: Snapshot of the different binding types identified by the novel Algorithm for CLIP-guided 
miRNA-target identification.  (Copyright Paraskevopoulou Maria)   
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Matches per miRNA/MRE region. Binary binding vectors of miRNA/MRE position base 

pairing were added to the model, where each element in the vectors constitutes a 

distinct descriptor. Moreover, extra features were created to describe the total and 

consecutive matches in the miRNA-target structure as well as in MRE and miRNA 

relevant domains (seed, central, 3’ supplementary region, tail). Base composition 

descriptors (A, T, G, C) of the (un)paired nucleotides were also included. 

Binding Type descriptor. Accumulating evidence from low-yield and sequencing 

experiments revealed the high abundance of non-canonical miRNA binding sites. For 

instance, the analysis of CLASH-Seq experimental data has shown that a significant 

portion of the identified miRNA-target chimeras correspond to non-canonical base 

pairings. Moreover, another high-throughput experiment enabled the detection of 

centered miRNA binding events (5-15 position) that may be potent sites for target 

repression. Other non-canonical sites with nucleation target bulges in the seed region 

are considered also effective to mediate mRNA repression (40,171-173). To this end, the 

adopted binding categories in the TarBase/LncBase CLIP-Seq algorithm were revisited 

in order to cover the whole spectrum of the putative miRNA-target base pairings. The 

extended binding codes incorporated in the novel CLIP-Seq learning framework are 

described in Table 13. 

New Binding Codes Description 

9mer.3prime 9mer canonical site (matches in 1-9 positions  of the 
miRNA) with additional  compensatory 3′ binding 

9mer 9mer canonical site (matches in 1-9 positions  of the 
miRNA) 

9mer.GU miRNA base pairing in 1-9 positions with a GU wobble 
pair 

9mer.nonCanonical miRNA non canonical base pairing in 1-9 positions, with  
a target bulge and/or a GU wobble pair 

8mer.3prime 8mer canonical site (matches in 1-8 or 2-9 positions of the 
miRNA)  or 8mer1A with additional  compensatory 3′ 
binding 

8mer 8mer canonical site (matches in 1-8 or 2-9 positions of the 
miRNA) 

8mer1A 7mer canonical site (matches in 2-8 positions of the 
miRNA) with additional A in position 1 (match or 
mismatch) 

8mer.GU miRNA base pairing in 1-8 or 2-9 positions with a GU 
wobble pair 

8mer.nonCanonical miRNA non canonical base pairing in 1-9 positions  with 
mismatch or mirna bulge and/or a target bulge and/or a 
GU wobble pair 

7mer.3prime 7mer canonical site (matches in 2-8 positions of the 
miRNA)  or 7mer1A, with additional  compensatory 3′ 
binding 
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7mer 7mer canonical site (matches in 2-8 positions of the 
miRNA)   

7mer1A 6mer canonical site (matches in 2-7 positions of the 
miRNA) with an additional A in position 1 (match or 
mismatch) 

7mer.GU miRNA base pairing in 2-8 positions with a GU wobble 
pair 

7mer.nonCanonical miRNA non canonical base pairing in 1-8 positions  with 
a mismatch or miRNA bulge and/or a target bulge 

7mer.nonCanonical.GU miRNA non canonical base pairing in 1-8 positions  with 
a mismatch or miRNA bulge and/or a target bulge 
and/or a GU wobble pair 

6mer.3prime 6mer canonical site (matches in 2-7 positions  of the 
miRNA) with additional  compensatory 3′ binding 

6mer 6mer canonical site (matches in 2-7 positions  of the 
miRNA) 

offset6mer 6mer canonical site (matches in 3-8 positions of the 
miRNA) 

6mer.nonCanonical.3prime miRNA non canonical base pairing in 2-8 positions  with 
a mismatch  or miRNA bulge and/or a target bulge,  
with additional  compensatory 3′ binding 

6mer.nonCanonical miRNA non canonical base pairing in 2-8 positions  with 
a mismatch  or miRNA bulge and/or a target bulge 

5mer 5mer canonical site (matches in 2-6 or 3-7 positions  of 
the miRNA) with additional  compensatory 3′ binding 

5mer.nonCanonical miRNA non canonical base pairing in 2-8 positions  with 
a mismatch and/or a target bulge and/or miRNA bulge,  
with additional  compensatory 3′ binding 

seedless miRNA non canonical base pairing after position 4 with 
at least 7 matches after the seed region 

seedless.3prime miRNA non canonical base pairing after position 4 with 
at least 7 matches after the seed region and additional 
compensatory 3’ binding 

centered miRNA base pairing with at least 8 consecutive matches 
in 4-15 positions 

imperfect.centered miRNA base pairing with at least 8 matches in 4-15 
positions and/or less than 2 GU wobble pairs. 

3prime miRNA base pairing after the position 13 with at least 7 
matches 

Table 13: Detailed description of the updated miRNA binding type categories that can be recognized 
by the novel Algorithm developed for the analysis of AGO CLIP-Seq data. 
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2.7.4 Feature Preprocessing and Assessment 

The identification of informative descriptors from a primary large feature set collection 

constitutes a hard and demanding task. Since there is no silver bullet for the selection of 

the most prominent feature subsets, a hybrid approach was adopted comprising 

different techniques for dimensionality reduction. More precisely, automated 

methodologies (such as information gain measures and minimum-redundancy-

maximum-relevance technique), hierarchical parameter selection and heuristics, 

including distance Kullback-Leibler, Wilcoxon's exact test, ROC AUC were 

implemented. Notably, the different sub-groups of negative and positive datasets were 

compared and evaluated to identify (dis)similar patterns in their respective feature 

distributions. For non-parametric multiple group comparisons, Kruskal-Wallis test 

along with Mann-Whintey's U test (as a non-parametric post-hoc test) and the 

Benjamini-Hochberg's False Discovery Rate (FDR) correction (in order to control family-

wise type I error rate and to identify significant differences between groups) were 

utilized. 

Moreover, specific attention was paid to eliminate highly correlated descriptors as well 

as features presenting close to zero variance. Correlations were assessed using the non-

parametric Spearman's rho coefficient. All tests were two-sided. Differences were 

considered as statistically significant if the null hypothesis could be rejected with >95% 

confidence (p<0.05).  

This combinatorial process of feature evaluation enabled the ranking of every 

parameter individually based on its predictive accuracy and additionally facilitated the 

identification of possible associations between the input variables. 

2.7.5 Novel algorithm Learning Framework for CLIP-Seq analysis 

The adopted pipeline revealed different candidate feature vectors that were assessed for 

their predictive performance on independent test sets with several machine learning 

models including SVM, Naïve Bayes, Random forest, Adaboost and Gradient Boosting. 

Several feature subsets attained higher predictive accuracy in distinguishing the true 

AGO bound regions (cluster). On the other hand, others were proven of greater efficacy 

for predicting the correct miRNA binding sites.  

Moreover, many of the cluster/region related descriptors had a strong impact and were 

favored by several learning frameworks compared to binding and MRE-derived 

features, in case of co-occurrence. These models usually resulted in a high number of 

predicted MREs per peak, presenting a weak ability to recognize the true miRNA 

binding sites. Thus region-related features were included in a separate base classifier 

and were subsequently combined with binding features in a meta-classifier. After the 

evaluation of different feature sub-vectors with different classifiers we concluded in the 

following learning model. 
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The proposed implementation comprises 6 distinct base Random Forest classifiers 

(Figure 14):  

 

 

Figure 14: Overview of the adopted pipeline for the development of a novel learning framework for 

CLIP-guided miRNA-target identification. (Copyright Paraskevopoulou MD) 

 

1)  Region features: CLIP-sequencing-derived features, such as RPKM coverage, 

substitution frequencies and distances from the MRE start as well as 

overlapping/upstream/downstream MRE region content, conservation, 

sequence energy, complexity, content asymmetry, and biases of codon usage. 

2)  MRE general: MRE-related descriptors including the degree of overlap with the 

respective cluster, conservation of the most 5' MRE binding nucleotides and all 

MRE binding nucleotides, MRE location within the cluster, MRE binding type 

well as metrics for duplex matched nucleotide content skewness. 

3)  Binding Vector: Binary binding vectors of miRNA/MRE position base pairing 

were added to the model, where each element in the vectors constitutes a distinct 

descriptor.  
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4)  miRNA-target duplex: miRNA-target duplex structure energy, miRNA or MRE 

bulges and mismatches, GU wobbles and AU base pairing features for the 

specified miRNA and/or target and relevant sub-domains. 

5)  Base pairing: base composition descriptors (A, T, G, C) of the (un)paired 

nucleotides were also included. 

6) Matches per miRNA/MRE domain: total and consecutive matches in the miRNA-

target structure as well as in MRE and miRNA relevant sub-domains.  

A boosting meta-classifier was implemented to assemble the generated output of the 

base classifiers. The predictive accuracy of the final model as well as its evaluation 

against other state-of-the-art implementations is presented in the relevant result section. 
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3. Results 

3.1 DIANA-microT web server v5 

The updated microT web server incorporates miRBase version 18 (174) and Ensembl 

version 69 (175) nomenclature. The in silico-predicted miRNA-gene interactions in Homo 

sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11 

million in total. 

3.1.1 Web Server Update and Extension  

The selection of DIANA-microT-CDS as its core algorithm renders the new web server 

the only available online resource capable of incorporating miRNA targets in 3’UTR as 

well as in CDS regions. The new web server enables users to attain high quality 

predicted miRNA-gene interactions in all relevant in silico pipelines. 

The server is compatible with the new miRNA nomenclature (3p/5p) introduced in 

miRBase v18, as well as with previous miRNA naming conventions. It currently 

supports 7.3·106 H. sapiens, 3.5·106 M. musculus, 4.4·105 D. melanogaster and 2.5·105 C. 

elegans interactions between 3,876 miRNAs and 64,750 protein coding genes. Gene (175) 

and miRNA (176) expression data have been incorporated into the web server, enabling 

the user to perform advanced result filtering based on tissue expression. Furthermore, 

users can also restrict predictions between uploaded lists of expressed genes and/or 

miRNAs. For example, this feature can be used to identify interactions between a list of 

repressed (or overexpressed) genes and overexpressed (or repressed) miRNAs, in the 

case of a differential expression analysis pipeline.  

Moreover, the web server hosts an updated version of the KEGG database providing a 

relevant search module based on KEGG pathway descriptions (177). A redesigned 

optional user space has also been implemented, which provides personalized features 

and facilitates the interconnection between the web server and the available DIANA 

software and databases (Figure 15). 

3.1.2 DIANA-microT web server v5 Interface 

The DIANA-microT web server provides in silico predictions of miRNA:mRNA 

interactions in a user-friendly interface. Specific attention has been paid to the web 

server interface, which follows the DIANA design framework, in order to be instantly 

familiar to users of previous versions or other DIANA tools. On the other hand, online 

help, informative tooltips and easy-to-use menus, minimize the learning curve of new 

users.  A snapshot of the DIANA-microT web server interface is provided in Figure 15. 

The interface hosts extensive information for predicted miRNA:target gene interactions 

such as, a global score for each interaction, as well as detailed information for all 

predicted target sites. Each target site can be individually visualized and the user can 
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examine its local prediction score, target site conservation and the miRNA-mRNA 

binding structure. The server provides also connectivity to online biological databases 

and offers links to nomenclature, sequence and protein databases.  

 

 

Figure 15: Example of a submitted query in the DIANA-microT web server v5.0. The interface presents 

information regarding each predicted miRNA:mRNA interactions. miRNA and gene-related 

information, as well as advanced search options have been expanded. Links to external databases, 

graphical representation of the binding sites as well as miRNA recognition element (MRE) 

conservation and prediction scores are displayed in the relevant sections. The left side of the page is 

devoted to the personal user space, reporting latest searches and bookmarks (Paraskevopoulou MD et 

al, 2013)(54). 

 

3.1.3 Advanced pipelines supported by the microT-web server v5 

DIANA-microT web server v5.0 hosts integrated analyses in the form of ready-made 

advanced pipelines, covering a wide range of inquiries regarding predicted or validated 

miRNA-gene interactions and their impact on metabolic and signaling pathways. These 

pipelines can be utilized to analyze user data derived from small scale or high 

throughput experiments directly from the DIANA-microT web server interface, without 

the necessity to install or implement any kind of software.  

The supported advanced workflows can perform extensive miRNA-related analyses on 

results derived from high throughput techniques, such as microarrays or NGS. More 

precisely, workflows can analyze mRNA and miRNA expression data (expression and 

fold change) with suppressed genes automatically matched with overexpressed 

miRNAs and vice versa. 
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Supported workflows can perform enrichment analyses of experimentally validated 

targets derived from DIANA-TarBase v6.0 (7) and/or predicted interactions from 

microT-CDS. This enrichment analysis methodology is considered crucial in order to 

identify miRNAs that regulate the differentially expressed genes.  

The prediction score threshold can significantly affect the analysis steps that follow. 

One available pipeline performs miRNA target prediction for the differentially 

expressed genes using different microT score thresholds and meta-analysis statistics, 

followed by pathway enrichment analysis. This pipeline is optimized by automatic 

repetitions of different prediction thresholds (from sensitive to more stringent), in order 

to minimize the effect of the selected settings to the derived results. By utilizing meta-

analysis statistics, the server combines the p-values from each repetition into a total p-

value for each miRNA, signifying its effect on the selected genes for all utilized 

thresholds (178,179). In the last step of the pipeline, the identified miRNAs are subjected 

to a functional analysis, where pathways controlled by the combined action of these 

miRNAs are detected using DIANA-miRPath v2.1 (179). 

Other supported pipelines can handle miRNA and gene lists, in order to perform the 

enrichment analysis or even select the type of utilized interactions (predicted or 

experimentally validated). In the latter, the algorithm “personalizes” the target 

identification module for each miRNA. It initially identifies the number of available 

interactions in DIANA-TarBase and DIANA-microT-CDS (validated vs predicted) and 

automatically selects to use validated targets only for well-annotated miRNAs. 

Computationally identified interactions are used otherwise.  

The new DIANA-microT web server enables users to perform such analyses directly 

from the on-line user interface, and/or create even more extensive pipelines 

programmatically or by using visual tools (Taverna WMS). 

Furthermore, the web server also supports direct programmatic access to all 

aforementioned utilities in the form of services, in order to facilitate users having 

already implemented pipelines with scripting or programming languages. 

 

3.1.3.1 Example workflows 

The implemented workflows make use of DIANA-Lab services through the DIANA-

web-server plug in. In order for this workflow to work properly the plug-in has to be 

installed in the compatible Taverna versions. The workflow can run automatically, as 

soon as the necessary input values are provided. Examples of implemented pipelines 

are presented below. 
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1.   Enrichment analysis of in silico predicted miRNA-gene interactions followed by a 

targeted pathway analysis. 

 

 

Figure 16: The implemented workflow initially performs enrichment analysis of in-silico predicted 

targets derived from DIANA-microT-CDS and identifies miRNAs significantly controlling the set(s) 

of differentially expressed genes. Subsequently, a miRNA-targeted pathway analysis is implemented 

with DIANA-miRPath v2.  
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2. Optimized enrichment analysis of predicted miRNA-gene interactions followed by 

targeted Pathway analysis. 

The pipeline is automatically repeated for different prediction thresholds (from 

sensitive to more stringent), in order to minimize the effect of the selected settings to the 

derived result.  

 

 

Figure 17: Flowchart depicting an analysis pipeline directly available from the web server interface. 

Interactions between user-defined miRNA and gene sets are in silico identified in 3’UTR and CDS 

regions using DIANA-microT-CDS. A subsequent miRNA target enrichment analysis identifies 

miRNAs controlling significantly the sets of differentially expressed genes. The pipeline is 

automatically repeated for different prediction thresholds (from more sensitive, to more stringent). By 

utilizing meta-analysis statistics, the server combines the p-values from each repetition into a total p-

value for each miRNA, signifying its effect on the selected genes for all utilized thresholds. In the last 

step of the pipeline, miRNA-targeted pathway analysis is implemented with DIANA-miRPath v2. 

Paraskevopoulou MD et al, 2013) (54) 
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3.  “Personalizing” the selection of miRNA-specific validated/predicted interactions, 

followed by miRNA Pathway analysis.  

 

 

 

Figure 18: In this workflow, the algorithm “personalizes” the target identification module for each 

miRNA. It initially identifies the number of available interactions in DIANA-TarBase and DIANA-

microT-CDS (validated vs predicted) and automatically selects to use validated targets only in the 

cases of well-annotated miRNAs. Otherwise, computationally identified interactions are used for the 

analysis. In the final step of the pipeline the selected miRNAs are subjected to a functional analysis 

with DIANA-miRPath v2, where pathways controlled by the combined action of these miRNAs are 

detected. The pipeline selects to use targets predicted with DIANA-microT-CDS or experimentally 

verified targets from TarBase v6 based on the analysis performed in the previous step.  
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3.2 DIANA-Taverna plugin 

DIANA-Taverna-Plugin enables the user to directly access our target prediction server 

(microT-CDS) from the graphic interface of Taverna and incorporate advanced miRNA 

analysis functionalities into custom pipelines. Furthermore, the plug-in enables the 

extension of such pipelines through the use of other DIANA tools and databases, 

providing access to an extensive collection of validated miRNA targets and to DIANA-

miRPath v2.1, a tool designed for the identification of miRNA targeted pathways. 

The DIANA-Taverna Plugin provides optimized use of the DIANA-web server and 

databases. It can be installed in compatible Taverna versions (v2.3 and v2.5) through the 

“add plugin site” functionality of the Taverna Workbench. 

Following the plugin installation, DIANA services are added under the local Taverna 

“Available Services” panel section (Figure 19) along with the other provided tools. The 

DIANA services can be incorporated to develop multistep analysis workflows by ‘drag 

and drop’ of each service to the workflow design window. 

 

 

Figure 19: DIANA-Taverna plugin is installed in Taverna WMS.  The DIANA services are added 

under the local Taverna “Available Services” panel section along with the other provided tools. 
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3.3 DIANA-TarBase repository 

DIANA-TarBase currently indexes more than half a million entries, 9-250 times more 

than any other relevant database. All entries are accompanied by rich detailed meta-

data that can also be used as search and filtering terms from the new application-like 

user interface. For instance, DIANA-TarBase v7.0 collects data regarding the 

experimental conditions, such as the exposition of cells to stressors, drugs or other 

agents, since these can alter miRNA regulatory networks. Another novel aspect of the 

database is its ability to include detailed information regarding the experimental 

methodologies utilized for the identification of each interaction, since experimental 

techniques cannot be considered as having equal information content. 

 

The number of targets derived from major method classes is depicted in Figure 20. 

 

 

Figure 20: Entries per methodology for TarBase v7.0 and TarBase v6.0. The y-axis (number of entries) 

is in log2 scale and each mark signifies doubling of available entries. (Vlachos IS and 

Paraskevopoulou MD et al, 2014) (64) 
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3.3.1 Database Statistics 

The database comprises more than half a million interactions spanning 24 species; a 9 to 

250-fold increase compared to TarBase 6.0 and other manually curated databases, 

including miRTarBase and miRecords.  The database encompasses interactions derived 

from the widest variety of experiments to date, which are performed utilizing 28 

different experimental techniques, 356 cell types and 59 different tissues. 

Importantly, we have paid significant attention to curate articles utilizing highly 

specific low yield techniques such as reporter genes, as well as state-of-the-art 

methodologies, such as CLIP-Seq and CLASH experiments. The updated database 

contains more than 7,500 interactions derived from specific techniques (4-fold increase 

vs TarBase v6.0) and more than 500,000 interactions derived from high throughput 

experiments (8-fold increase vs TarBase v6.0). Specifically, DIANA-TarBase v7.0 

incorporates data derived from 154 CLIP-Seq/CLASH datasets, as well as more than a 

hundred other high throughput datasets including Degradome-Seq (60), AGO-IP (32), 

biotin pull-down (32), miTRAP (63), 3’Life (62) and IMPACT-Seq (61), which is the 

highest number to be included in a manually curated database. The number of 

incorporated miRNA-related NGS datasets (e.g. CLIP-Seq, CLASH, Degradome-Seq) is 

also the highest ever reported.  

3.3.2 DIANA-Tarbase Interface 

DIANA-TarBase v7.0 is the first of DIANA databases and applications to utilize the 

new user interface, which is implemented using PHP (under Yii Framework), MySQL 

and JavaScript (JQuery).  

The new DIANA-TarBase interface offers a friendlier, application-like user experience, 

minimizing the necessity to load/refresh web pages following user selections. The new 

interface brings the most common as well as advanced functions into the main pane, 

enabling users to perform simple or complex tasks, without leaving their results page. 

Advanced Searching and Filtering 

TarBase v7.0 supports advanced real-time search and filtering. All relevant options 

have been incorporated in the main result screen, in order to enable users to easily filter 

and query the database. The provided search and filtering options include: 

miRNA/gene combinations, species, experimental methodology class and subtype, 

type of regulation and validation, selection of positive or negative experimental results, 

year of publication and DIANA-microT-CDS threshold for interactions which are also 

predicted in silico. As in the previous version, DIANA-TarBase also integrates 

interactions from the latest available versions of external databases, including 

miRTarBase and miRecords. Users can easily filter results and include/exclude external 

sources or data derived from previous TarBase versions.  
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Figure 21: Advanced filtering options in Tarbase v7. 

 

Querying the Database 

The database query can be performed by entering any combination of miRNAs and/or 

gene names or supported identifiers (ENSEMBL (180) gene ids for genes and miRBase 

(181) MIMAT accessions for miRNAs). If genes and miRNAs are concurrently provided, 

TarBase will return all indexed interactions of the selected miRNAs with any of the 

provided genes. 

The new interface (Figure 22) is designed around the new database schema, in order to 

cater to users extended meta-data regarding each interaction. Users can easily identify 

positive or negative experimental results, the utilized experimental methodology, 

experimental conditions including cell/tissue type and treatment. The new interface 

provides also advanced information ranging from the binding site location, as identified 

experimentally as well as in silico, to the primer sequences used for cloning 

experiments.  

This version is also seamlessly incorporated to other DIANA-Tools. The DIANA-

TarBase v7.0 user can easily perform a pathway analysis for the miRNA(s) under 

investigation, identify their predicted targets or examine if they have been identified 

experimentally or in silico to target long non-coding RNAs, using DIANA-miRPath 

v2.0(182), microT-CDS(183) and LncBase(184), respectively.  
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Figure 22: Screen-shot depicting the DIANA-TarBase v7.0 interface. Users can enter the query terms in 

the simple search box (1). Interaction information is presented below (2), while further details are 

accessible by expanding the result panel or by selecting the information links (4). All results are color 

coded, with green and red showing positive and negative experimental outcomes, respectively (5). 

Mixed results are presented using both colors. Users can filter the query results using any 

combination of the filtering options (3). (Vlachos IS and Paraskevopoulou MD et al, 2014) (64) 

 

Since January 2014, DIANA-TarBase has been integrated in the official ENSEMBL (180) 

distribution. All TarBase entries having binding site coordinates can be explored 

directly from the ENSEMBL genome browser. Each DIANA-TarBase entry has a link 

pointing to the relevant browser view and coordinates, facilitating user interaction with 

both databases.  

 

Figure 23: TarBase has been integrated in ENSEMBL since 2014, substituting the in silico miRNA 

predicted targets track. 
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3.4 DIANA-LncBase repository 

LncBase v2 has been significantly extended, compared to the previous release (Table 

14). LncBase v2 currently hosts ~70,000 experimentally supported interactions for an 

integrative meticulously curated collection of lncRNA transcripts. The new database 

enables the identification of miRNA-lncRNA regulatory interactions in numerous 

tissues, cell types and conditions, validated with low yield or high-throughput 

experimental methodologies (more than 150 raw NGS datasets). This compilation of 

high-throughput datasets corresponds to a 16-fold increase compared to the processed 

CLIP-Seq libraries available in LncBase v1.  

LncBase v2 facilitates the charting of tissue and cell-type-specific miRNA-lncRNA 

interactions with state-of-the-art experimental techniques. Database entries are enriched 

with detailed metadata, including information on experimental methodologies, 

evolutionary conservation of miRNA-targeted regions and lncRNA transcript 

expression profiles, assessed by analyzing in-house 58 raw RNA-Seq libraries 

comprising ~6.1 billion reads.  

The analysis of CLIP-Seq libraries resulted in a set of approximately 12,900 lncRNA 

transcripts harboring at least one MRE. More than half of the MREs identified on 

lncRNAs resided on intronic regions, which may be explained by the underestimation 

of their spliced length and number of exons. MREs detected on lncRNA introns are 

appropriately tagged and provided in the current release.  LncBase v2 also hosts 14 

PAR-CLIP libraries derived from virus infected cells. For these datasets, host lncRNA 

transcripts were additionally searched for interactions with viral miRNAs. Expressed 

viral miRNAs were found to participate in more than 400 miRNA-lncRNA unique 

interacting pairs. 

Computationally predicted interactions, on the other hand, exceed 10 million between 

41,229 lncRNAs and 4,503 miRNAs, for human and mouse. A subset of these 

interactions, approximately 5 million, represent a set of highly scored predictions 

composed of 22,073 lincRNAs, 12,485 antisense, 14,681 sense, 3,664 processed 

transcripts with at least one MRE. 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs 

Maria D Paraskevopoulou  
 103 

 

A concise description of the updated database can be found in the following table. 

 

  LncBase v1 LncBase v2 

Database Entries 

miRNA species 2 4 

miRNAs in interactions 127 ~1,400 

unique interacting 
miRNA:lncRNA pairs 

4,982 ~51,000 

Cell lines 5 53 

Tissues 5 20 

Total interactions 4,994 >70,000 

Analyzed  
High-Throughput 
Datasets 

Studies 2 22 

Conditions 6 67 

Libraries 9 153 

Experimental 
Methodologies 

Number of Methods 4 12 

Description 

CLIP-Seq, 
qPCR, 
Reporter 
Assay,  
Northern blot 

CLIP-Seq, AGO-IP, 
Biotin miRNA 
tagging , RNA-Seq, 
Microarrays, 
Northern blot, 
qPCR,  
Reporter Assay 

Table 14: Comparison between LncBase v2 and LncBase v1. The table summarizes the experimental 
module entries of the two databases, including the number of miRNAs targeting lncRNA transcripts, 
the unique miRNA:lncRNA interacting pairs, different cell lines and tissues supporting miRNA-
related experimental methodologies, analyzed CLIP-Seq libraries and associated studies, experimental 
conditions, as well as the included low/high throughput experimental methodologies. 
(Paraskevopoulou MD et al, 2015)(117) 
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The unique features of DIANA-LncBase are highlighted in Table 15, along with a 

comprehensive summary of other leading repositories indexing experimentally 

supported miRNA-lncRNA interactions.  

 

 
LncBase v2.0 lncRNome lncReg NPInter v2.0 Starbase v2.0 

miRNA species 
Human, Mouse, 

Epstein-Barr virus, 
KSHV 

Human 
Human, Mouse,  

Arabidopsis 
Thaliana 

Human, Mouse, 
Danio rerio 

Human, Mouse, 
C.elegans 

lncRNAs in 
interactions 

>3,500  66 14 ~1,400 1,149 

miRNAs in 
interactions 

~1,400 1,205 24 ~25 383 

viral miRNA-
lncRNA 

interactions 
✓     

Total 
interactions 

>70,000 >3,700 34 >1,500 >10,000 

Experimental 
Methodologies 

CLIP-Seq, AGO-IP, 
Biotin miRNA 

tagging, RNA-Seq, 
Microarrays, 

Northern blot, 
qPCR,  

Reporter Assay 

CLIP-Seq 

(AGO) RNA pull-
down, Northern 

Blot, qPCR,  
Reporter Assay, 

FISH 

miR-CLIP(185),  
Microarrays, qPCR, 

Reporter Assay 
CLIP-Seq 

Analyzed Raw 
High-

Throughput 
Libraries 

153 AGO CLIP-Seq 
libraries 

   

108 RNA-
binding Protein 

CLIP-Seq 
datasets 

Cell 
Types/Tissues 

✓ ✓  ✓ ✓ 

LncRNA 
expression 

information 

RNA-Seq Microarrays   RNA-Seq 

miRNA 
Binding Site 
conservation 

✓     

Pathways-
Disease 

association 

✓ 
(miRPath v3.0) ✓ ✓  ✓ 

Competing 
endogenous 

RNA 
interactions 

✓ 
(TarBase v7.0)  ✓ ✓ ✓ 

lncRNA 
Resources 

GENCODE v21, 
Refseq, Cabili et al. 

GENCODE v12, 
HGNC(186), 

literature 
literature 

NONCODE(187), 
LncRNADisease(18

8) 
GENCODE v17 

Version v2.0 
Accessed  

(April 2013) 
Accessed  

(August 2015) 
v2.0 v2.0 

Table 15: Comparison of included data, as well as basic features and functionalities of online leading 

repositories indexing experimentally supported miRNA-lncRNA interactions. (Paraskevopoulou MD 

et al, 2015)(117) 
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3.4.1 DIANA-LncBase Interface 

The database interface has been completely redesigned to provide an intuitive and easy 

to use application as well as high flexibility to different user queries (Figure 24). 

DIANA-LncBase v2 interface comprises two distinct modules for in silico predicted and 

experimentally supported miRNA-lncRNA interactions.  

 

Module for Experimentally supported interactions.  

Indexed interactions were enhanced with extensive metadata regarding the supporting 

publication, type of regulation, experimental methodologies used for miRNA-lncRNA 

interaction validation, experimental design (including treatment and conditions), as 

well as cell types and tissue information. Most of the experimentally supported 

interactions are now coupled with information regarding their genomic location. An 

advanced filtering/query panel for experimental methodologies, relevant cell types and 

species is also provided, in order to enable users to identify cell type and tissue-specific 

miRNA-lncRNA interactions. 

 

Module for in silico predicted interactions.  

Predictions are enriched with information concerning MRE binding sites, structures and 

conservation. miRNA-lncRNA interactions can be visualized upon selection in an 

interactive UCSC genome browser (152) graphic (Figure 25), where the user is 

facilitated with all browser options and additional informative tracks. Prediction 

interaction score and lncRNA tissue/cell type expression can be utilized for filtering the 

displayed results. 
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Figure 24: Snapshot depicting the DIANA-LncBase v2 interface. Queries using one or more miRNAs 

and/or lncRNAs (1) or even the coordinates of a genomic location (2) are supported. Users can add and 

remove search terms or filter (3) their results based on cell/tissue type and experimental methodology, 

as well as the experimental outcome (positive/negative) or type of validation (direct/indirect). LncBase 

offers extensive information for each identified interaction, such as gene/miRNA details (4,5), as well 

as active links to UCSC graphical representation (6), Ensembl, miRBase and DIANA disease tag cloud 

(8). LncBase also provides useful information for each performed experiment (9), including the 

methodology, cell or tissue that was utilized, as well as a link to the original publication. There are 

direct links to external applications, such as microT, TarBase, miRPath, where the studied miRNAs 

can be further examined.  Interactions are also coupled with miRNA binding site details (10). Users 

can navigate between the Experimental and Predicted LncBase v2 modules (11). The Help button (12) 

leads to the LncBase Help section. (Paraskevopoulou MD et al, 2015) (117) 
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Figure 25: Visualization of a miRNA-lncRNA interaction in UCSC genome browser graphic upon user 

selection in the LncBase interface. MREs are shown along with the annotated (un)spliced lncRNA 

transcript. Extra information tracks regarding ChIP/DNase-Seq signal, sequence conservation, SNPs 

and repeat regions are also provided. The graphical representation is an active link to the UCSC 

genome browser where the user is facilitated with all the available browser options. (Paraskevopoulou 

MD et al., 2016) (118) 

 

LncBase v2 indexed interactions are seamlessly interconnected with other available 

tools in DIANA suite, including TarBase (64) and/or microT-CDS (54) for the 

identification of competing coding counterparts for miRNA binding and DIANA-

miRPath (189) for functional characterization of miRNAs in molecular pathways 

(Figure 26).  
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Figure 26: miRNA hsa-miR-126-5p which targets MALAT1 based on LncBase experimentally 

supported interactions and in silico predictions is subjected to a pathway analysis using DIANA-

miRPath. Optionally, the user can upload more miRNAs and select to either include their validated or 

predicted mRNA targets in the functional analysis. Several user-defined options are provided, 

including, merging method selection, enrichment calculation methodologies as well as 

parameterization of microT score and p-values of targeted pathways. Sophisticated heatmap/cluster 

visualizations are available along with pathways merging methods selection. Underlined pathway 

descriptions are active links to enriched KEGG representations. (Paraskevopoulou MD et al., 2016) 

(118) 

 

3.5 CLIP-Seq-guided miRNA binding site analysis    

The analysis of numerous CLIP-Seq libraries across different cell types and 

experimental conditions enabled the charting of miRNA-mRNA-lncRNA competing 

endogenous interactions. This wealth of information has assisted the study of miRNA 

target repertoire on different gene biotypes as well as of the conservation of MREs in 

(non)coding regions. The analysis of MREs residing on lncRNA exons additionally 

unveiled tissue specific miRNA-lncRNA interactions.  
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3.5.1 Distribution of MREs in (non)coding regions  

miRNA binding sites overlapping transcript exons were predominantly encountered in 

CDS and 3’UTR regions of mRNAs, which was consistent in all cell types and tissues. 

The analyses of >100 CLIP-Seq libraries in human revealed that 91 ± 5% of the identified 

MREs were found on CDS and 3’UTR regions, and 5% ± 2% on intergenic, sense, 

antisense and processed lncRNA transcripts (Figure 27). A similar distribution of 

miRNA targeted regions was observed in the HITS-CLIP datasets in mouse (Figure 28).   

 

Figure 27:  Spatial classification of miRNA-targeted regions as identified in human CLIP-Seq libraries. 

MREs are being distributed in 3’UTR, 5’UTR, CDS, lincRNA, (anti)sense and processed lncRNA 

transcript regions across different cell types, with 5 ± 2% of the exonic MREs were annotated on 

lncRNAs. (Paraskevopoulou MD et al, 2015) (117) 
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Figure 28: Spatial classification of miRNA-targeted regions as identified in mouse CLIP-Seq libraries. 

MREs are distributed in 3’UTR, 5’UTR, CDS and lncRNA transcript regions across different cell types. 

2 ± 0.3% of the exonic MREs were annotated on lncRNAs. LincRNA, sense, antisense and processed 

transcripts are grouped together under the umbrella term lncRNA. (Paraskevopoulou MD et al, 2015) 

(117) 
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3.5.2 Clustering of cell types on targeted lncRNAs 

CLIP-Seq libraries from different cell types were hierarchically clustered based on the 

identified miRNA-lncRNA interactions. Specific cell type groups such as 

lymphoblastoid, HeLa and bone marrow-derived cell lines in human were found 

clustered together in the resulting dendrogram; depicting a high similarity in the 

identified interactions (Figure 29). Similar clusters were also observed in targeted 

mouse lncRNAs of muscle cognate cell lines and thymocytes which are also densely 

grouped in the dendrogram (Figure 30). 

 

 

Figure 29: Cell types hierarchically clustered based on targeted human sense, antisense, intergenic and 

processed lncRNA transcripts. All data included in the dendrogram have been retrieved from 

analyzed CLIP-Seq libraries spanning different cell types. (Paraskevopoulou MD et al, 2015) (117)   
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Figure 30: Cell types hierarchically clustered based on targeted mouse lncRNAs. All interactions 

included in the dendrogram have been derived from analyzed CLIP-Seq libraries across different cell 

types and tissues.  (Paraskevopoulou MD et al, 2015)(117) 

 

3.5.3 Conservation of MRE regions 

PhyloP (190) pre-computed scores from genome-wide multiple alignments of 46 and 60 

vertebrate species for human and mouse, respectively, were utilized to assess 

evolutionary rates of miRNA targeted regions. PhyloP precompiled values were 

downloaded from the UCSC repository (152).  Conservation signals of MRE regions 

were estimated as mean intensities of the overlapping PhyloP base-wise scores. 

A non-redundant set of collapsed MREs collected from all analyzed CLIP-Seq datasets 

was defined and annotated accordingly to (non)coding exons. MREs with dual 

annotation due to overlapping transcript regions were excluded from the analysis. In all 

pairwise comparisons of conservation, binding sites positioned on lincRNA introns 

were considered as a separate category. Stronger evolutionary pressure was observed in 

miRNA binding sites identified on coding and untranslated mRNA regions. MREs on 

lncRNA exons were significantly more conserved than those residing in introns, while 

no differences were observed in substitution rates of MREs on intergenic, sense, 

antisense and processed lncRNA transcripts (Figure 31, Table 16). Statistical analysis of 

MRE conservation has also been performed for experimentally supported binding sites 

on mouse lncRNAs (Figure 32, Table 17). 
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Figure 31: Evaluation of human MRE substitution rates. CLIP-Seq-supported miRNA binding sites on 

human were spatially classified on CDS, 3’UTR, 5’UTR, lincRNA exons, lincRNA introns, processed  

transcripts and (anti)sense lncRNA regions. MRE conservation was estimated using PhyloP pre-

computed base-wise values from genome-wide multiple alignments of 46 vertebrate species.  Binding 

sites on mRNA regions (CDS, 3’UTR, 5’UTR) were significantly more conserved than the MREs found 

on lncRNA exons. LincRNA, sense, antisense and processed transcripts presented similar substitution 

rates. Weaker evolutionary pressure (p<0.05) was observed in MREs on lincRNA introns compared to 

those located on lincRNA exons. (Paraskevopoulou MD et al, 2015) (117) 
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Human Antisense CDS 
LincRNA_ 

exon 

LincRNA_ 

intron 

Processed_tr

anscript 
Sense UTR3 

CDS 2.0e-16 - - - - - - 

lincRNA_ 

exon 
0.24796 2.0e-16 - - - - - 

lincRNA_ 

intron 
1.80e-08 2.0e-16 4.20e-05 - - - - 

processed_tr

anscript 
0.56288 2.0e-16 0.1919 0.00032 - - - 

Sense 0.56288 2.0e-16 0.56288 0.00805 0.56288 - - 

UTR3 2.0e-16 2.0e-16 2.0e-16 2.0e-16 0.00052 1.60e-11 - 

UTR5 0.00107 2.0e-16 5.80e-10 2.0e-16 0.56288 0.00805 3.20e-09 

Table 16: FDR-adjusted p-values derived from the statistical analysis of CLIP-Seq-supported human 
MRE evolutionary rates, spatially classified on CDS, 3’UTR, 5’UTR, lincRNA exons, lincRNA introns, 
processed transcripts and (anti)sense lncRNA regions. (Paraskevopoulou MD et al, 2015) (117) 

Mouse Antisense CDS 
LincRNA_ 

exon 

LincRNA_ 

intron 

Processed_t

ranscript 
Sense UTR3 

CDS 2.0e-16 - - - - - - 

lincRNA_ 

exon 
0.20229 2.0e-16 - - - - - 

lincRNA_ 

intron 
0.00411 2.0e-16 2.80e-14 - - - - 

processed_t

ranscript 
1.30e-05 2.0e-16 0.00019 2.0e-16 - - - 

Sense 0.4401 2.0e-16 0.8879 0.00011 0.00739 - - 

UTR3 2.0e-16 2.0e-16 2.0e-16 2.0e-16 7.30e-12 2.0e-16 - 

UTR5 2.0e-16 2.0e-16 2.0e-16 2.0e-16 3.60e-07 6.90e-14 2.10e-05 

Table 17: FDR-adjusted p-values derived from the statistical analysis of CLIP-Seq-supported mouse 

MRE conservation, spatially classified on CDS, 3’UTR, 5’UTR, lincRNA exons, lincRNA introns, 

processed transcripts and (anti)sense lncRNA regions. (Paraskevopoulou MD et al, 2015) (117) 
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Figure 32: Evaluation of mouse MRE substitution rates. MRE conservation was estimated using 

PhyloP pre-computed base-wise values from genome-wide multiple alignments of 60 vertebrate 

species. CLIP-Seq-supported miRNA binding sites were spatially classified on CDS, 3’UTR, 5’UTR, 

lincRNA exons, lincRNA introns, processed transcripts and (anti)sense lncRNA regions. Binding sites 

on mRNA regions (CDS, 3’UTR, 5’UTR) were significantly more conserved than the MREs found on 

lncRNA exons. LincRNA, sense and antisense transcripts presented similar substitution rates. Weaker 

evolutionary pressure (p<0.05) was observed in MREs on lincRNA introns compared to those located 

on lincRNA exons. (Paraskevopoulou MD et al, 2015) (117) 

Random background regions retrieved from each spatially classified genomic group 

were additionally utilized as controls for the assessment of MRE evolutionary pressure. 

Pairwise comparisons revealed that CLIP-Seq-supported miRNA binding sites in 

human, even in lncRNA regions, are significantly more conserved than their 

background sequences (Figure 33), which is a phenomenon previously known to occur 

in MREs located in mRNA 3’UTRs (25). The evaluation of MRE evolutionary rates 

among different genomic classes compared to their background in mouse species 

produced similar results and is presented in Figure 34. 

Non-parametric comparisons were performed with Kruskal-Wallis test in order to 

detect significant differences on substitution rates between multiple groups. Pairwise 

Mann-Whitney’s U tests were adopted as a post-hoc non-parametric test. All p-values 

were FDR-adjusted to control family-wise error rates due to multiple comparisons 

(191). All tests were two-sided and p-values < 0.05 were considered as statistically 

significant. 
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Figure 33: Evaluation of CLIP-Seq-supported human MRE substitution rates. miRNA binding sites 

were spatially classified on CDS, 3’UTR, 5’UTR, lincRNA exons, processed transcripts and (anti)sense 

lncRNA regions. Random background regions retrieved from each spatially classified genomic group 

were additionally utilized as controls for the assessment of MRE evolutionary pressure. MRE and 

background region conservation were estimated using PhyloP pre-computed base-wise values from 

genome-wide multiple alignments of 46 vertebrate species.  Pairwise comparisons revealed that MREs, 

even in lncRNA regions, are significantly more conserved than their background sequences, which is 
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a phenomenon previously known to occur in MREs located in mRNA 3’UTRs. P-values derived from 

statistical analyses are marked in the relevant panels. (Paraskevopoulou MD et al, 2015) (117)  

 

Figure 34: Evaluation of CLIP-Seq-supported mouse MRE substitution rates. Random background 

regions were utilized as control evolutionary pressure measurements in each group of spatially 

classified miRNA binding sites on CDS, 3’UTR, 5’UTR, lincRNA exons, processed transcripts and 

(anti)sense lncRNA regions. MRE and background region conservation was estimated using PhyloP 

pre-computed base-wise values from genome-wide multiple alignments of 60 vertebrate species. 

Pairwise comparisons revealed that MREs (even in most lncRNA subgroups) are significantly more 

conserved than their background sequences. P-values derived from statistical analyses are marked in 

the relevant panels. (Paraskevopoulou MD et al, 2015)(117). 
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3.5.4 Identification of competing endogenous interactions 

By analyzing the experimentally supported interactions available in TarBase and 

LncBase repositories, we identified thousands of cell type specific miRNA-lncRNA-

mRNA trios that can be considered as candidate ceRNAs.  The following table 

summarizes the competing interactions identified per cell type. LncRNAs and mRNAs 

participating in the interactions are reported only if they have more than 2 miRNA 

binding sites. 

 

Cell line Number of lncRNAs 

in competing 

interactions 

Mean miRNA 

binding sites per 

lncRNA 

Number of mRNAs in 

competing 

interactions 

Mean miRNA 

binding sites per 

mRNA 

293S 38 7.5 826 3.6 

BC1 2 3 16 3.2 

BC3 1 3 1 3 

BCBL1 2 4.3 45 3.7 

Beta cells 18 4.8 448 3.6 

Brain 69 4 2,683 3.6 

BT474 8 9 420 3.6 

HEK293 3 3.2 17 3.1 

HELA 7 3.6 100 3.5 

hMSC 2 3.5 18 3.4 

HS27a 2 3.3 17 3.6 

HS5 9 5 360 3.5 

HUVEC 2 3.5 21 3.6 

MCF7 7 5.4 205 3.5 

MDAMB231 1 3 1 3 

TZMBL 2 3 2 3.2 

Table 18: Competing interactions identified per cell type. Interactions are derived from the analysis of 

more than 150 raw AGO-CLIP-Seq libraries. LncRNAs and mRNAs participating in the interactions 

are reported only if they have more than 2 miRNA binding sites.  
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3.6 Evaluation of Tarbase/LncBase AGO-CLIP-Seq data Analysis performance 

against other CLIP-Seq Target Identification Algorithms  

The in-house implemented algorithm for the analysis of AGO-CLIP-Seq data is central 

to DIANA-tools. Therefore, it has been extensively tested against collections of 

experimental targets. The evaluation of AGO-CLIP implementations is a complex and 

laborious procedure. Even if thousands of experimentally verified miRNA-gene 

interactions have been already indexed, only a small portion corresponds to validated 

specific negative interactions. Therefore, in the following comparisons (Figure 35, 

Figure 36) correctly predicted experimentally supported interactions are included. 

From the performed tests, the algorithm outperforms state-of-the-art approaches for 

MRE identification in CLIP-Seq data, such as MIRZA, microMUMMIE and PARMA 

(Figure 35). CLIP target identification implementations currently manage to identify 

~25% of the experimentally validated binding sites and to provide one valid miRNA 

binding site in approximately every 4 predicted targets. This result shows that state of 

the art implementations need further optimization and improvement. 

 

 

Figure 35: CLIP-Seq algorithm comparison against a unified positive set of Reporter Luciferase Gene 

Assays and Chimeric interactions. The number of correctly predicted miRNA binding sites vs mean 

predicted interactions per miRNA is shown for different interaction score thresholds.  

In another evaluation, CLIP-Seq adopted pipeline performance has been tested against 

the biophysical model MIRZA. In this comparison, two distinct high quality sets of 

experimentally verified interactions with positive regulation, derived from DIANA-

TarBase v7, were utilized.  The first comprised 1,655 TarBase v7.0 indexed interactions 

from ~300 Luciferase Reporter Gene Assays and ~1,300 chimeric interactions 

(CLASH)(173) in HEK293T cells. The second incorporated an extended set of ~850 
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interactions validated with Luciferase Reporter Gene Assays. For all selected 

interactions, the exact binding site coordinates had to be known.  

The number of correctly predicted miRNA binding sites versus total predictions for 

different prediction score thresholds is depicted in the following figure (Figure 36a,b).  

The results demonstrate that CLIP-Seq analysis algorithms are more efficient in stricter 

prediction scores. It should be noted that the MIRZA implementation provides true 

positive predictions approximately for 30% of the included miRNAs, while our 

approach identifies correctly more than half of the miRNAs (50+%). 

Since MIRZA requires miRNA expression values, it cannot be used also in the second 

dataset (1b). The DIANA CLIP algorithm manages to identify more than half of the 

experimentally supported interactions and to provide approximately one externally 

validated (with another technique) miRNA binding site in every 4 predicted MREs. 

 

Figure 36: Evaluation of CLIP-Seq algorithm performance. The selected points indicate the 

performance of the implementations from loose to strict prediction scores.  a) The number of correctly 

predicted miRNA binding sites by our in-house-developed CLIP algorithm and MIRZA versus total 

predictions for different interaction score thresholds. The utilized validation set comprised 1,655 

experimentally validated interactions from ~300 Luciferase Reporter Gene Assays and ~1300 chimeric 

CLASH interactions.  b) LncBase CLIP-Seq algorithm performance evaluation in a set of ~850 

Luciferase Reporter Gene Assays spanning different cell types. Approximately 1 externally validated 

miRNA binding site is provided in every 2 predicted MREs by using score thresholds of moderate 

stringency. 
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3.7 Evaluation of a novel algorithm for CLIP-Seq-guided miRNA-target 

identification. 

The subsequent sections describe retrieved outcomes from the descriptor preprocessing 

and assessment prior to feature selection. Each descriptor is independently evaluated 

for its predictive accuracy using ROC curves. ROC plots are selectively presented below 

for a handful of prominent and top performing descriptors (1 dimension). Broad sub-

groups of the initial feature set are also explored for in-between associations (data are 

shown on the following correlation heat maps). The accuracy of base Random Forest 

classifiers coupled with each model internal feature ranking is additionally presented. 

The final GBM meta-classifier is evaluated for its performance to accurately predict 

positive and negative instances derived from an independent test set. Consclusively, the 

performance of the introduced algorithm is evaluated against other state-of-the art 

implementations, including the computational approach adapted by TarBase/LncBase 

for the AGO-CLIP-Seq data analysis. 

3.7.1 Feature ROC curves  

Several features derived from CLIP-Seq experiments, such as the cluster length, RPKM 

expression values for MRE regions (Figure 37), descriptors of substitution frequencies 

(especially T-to-C conversion-related features - Figure 38) as well as substitution 

distances from relative MRE start sites have presented high predictive performance. 

 

Figure 37: ROC curve of ‘MRE RPKM’ parameter for the classification of positive/negative miRNA 

binding sites. 
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Figure 38: ROC curve of ‘T-to-C transitions’ parameter for the classification of positive/negative 

miRNA binding sites. 

Certain single or di-nucleotide composition descriptors for 

overlapping/upstream/downstream MRE regions presented high performance in the 

one dimensional feature evaluation. Below, ROC curves of upflank-MRE “A or T” 

(Figure 39) and upflank-MRE “G” (Figure 40) are indicatively provided. Notably, A/U 

flanking content is deemed important by many miRNA target prediction approaches 

and it has been associated with accessible miRNA sites. Moreover, “G” enrichment in 

upflank-MRE region has been associated with RNase cleavage sites. 

Thermodynamic MRE properties and MRE content asymmetry including, entropy (dS), 

enthalpy (dH), free energy (dG), and melting temperature (Tm) and purine skew, 

exhibited significant difference between CLIP-derived positive/negative miRNA 

binding sites. Relevant ROC curves of Tm, dS and purine skews are shown in Figures 

41-43. These three features are for the first time incorporated in a relevant learning 

framework. 

Finally, ROC AUC curves of prominent features, describing the miRNA binding site are 

selectively displayed in the Figures 44-48. More precisely, the interaction binding type, 

consecutive miRNA-target matches in the seed, binding of the first seed nucleotide 

(MRE position 2), “miRNA C-matches” and AU base pairing in the seed region 

appeared to significantly differ between CLIP-Seq positive and negative MREs. 

Notably, most of the presented descriptors in the ROC curves were also highly ranked 

in the implemented base classifiers.  
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Figure 39: ROC curve of “upflank-MRE A or T content” parameter for the classification of 

positive/negative miRNA binding sites. 

 

Figure 40: ROC curve of “upflank-MRE G content” parameter for the classification of 

positive/negative miRNA binding sites. 
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Figure 41: ROC curve of “MRE dS” parameter for the classification of positive/negative miRNA 

binding sites. 

 

Figure 42: ROC curve of “MRE Tm” parameter for the classification of positive/negative miRNA 

binding sites. 
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Figure 43: ROC curve of “MRE Purine-skew” parameter for the classification of positive/negative 

miRNA binding sites. 

 

Figure 44: ROC curve of “MRE binding position 2” parameter for the classification of 
positive/negative miRNA binding sites. 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs 

Maria D Paraskevopoulou  
 126 

 

Figure 45: ROC curve of “Binding type” parameter for the classification of positive/negative miRNA 

binding sites. 

 

Figure 46: ROC curve of “miRNA C-matches” parameter for the classification of positive/negative 

miRNA binding sites. 
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Figure 47: ROC curve of “consecutive seed-matches” parameter for the classification of positive/negative 

miRNA binding sites. 

 

Figure 48: ROC curve of “seed AU base pairs” parameter for the classification of positive/negative 

miRNA binding sites. 
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3.7.2 Feature Correlation plots 

A common problem of large datasets is the existence of highly correlated parameters. 

Thus, the primary descriptors collection was appropriately filtered in order to include 

only unrelated features and to avoid correlation-induced biases in the implemented 

learning models. Feature correlation estimations revealed several parameters 

presenting increased (anti)correlation. Figures 49-55 correspond to correlation plots 

comprising sub-groups of the initial feature set. 

 

 

Figure 49: Correlation plot of expression and substitution parameters derived by the processed CLIP-

Seq experiments. Cluster overlapping reads and cluster RPKM expression were removed due to high 

correlation with relative descriptors of the MRE region. Features designed to portray characteristics of 
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transition events, especially T-to-C related features, were appropriately filtered to retain only 

unrelated and top performing descriptors. Possible correlations were estimated by calculating the non-

parametric Spearman's rho coefficient using two-sided tests with a significance level p< 0.05. 

 

 

Figure 50: Correlation plot of parameters that reflect the base-wise binding affinity of the MRE and 
miRNA respectively. miRNA and MRE first binding positions (2-4 seed positions) on the 
corresponding binary vectors were highly correlated. These features were retained only for the MRE 
binding vector. Possible correlations were estimated by calculating the non-parametric Spearman's rho 
coefficient using two-sided tests with a significance level p< 0.05. 
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Figure 51: Correlation plot of parameters referring to thermodynamic properties, energy, sequence 

complexity and content asymmetry of miRNA targeted regions. MRE free energy (dG) and enthalpy 

(dH) were excluded from the descriptors due to increased (anti-)correlation with MRE melting 

temperature (Tm) and entropy (dS), respectively. Similarly, only MRE DUST score was retained as a 

metric of MRE sequence complexity. Possible correlations were estimated by calculating the non-

parametric Spearman's rho coefficient using two-sided tests with a significance level p<0.05. 
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Figure 52: Correlation plot of parameters that characterize the miRNA-target entire duplex structure 

and relative sub-domains. Highly correlated features describing miRNA or MRE bulges, GU wobbles 

and AU base pairs were appropriately filtered. miRNA binding length appeared to be highly anti-

correlated with ‘miRNA dangling end‘ and therefore only the first parameter was included in the 

developed learning model. Possible correlations were estimated by calculating the non-parametric 

Spearman's rho coefficient using two-sided tests with a significance level p< 0.05. 
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Figure 53: Correlation matrix of content descriptors assigned to the overlapping, upstream and 

downstream regions of the miRNA binding site. This group of features embodies many highly 

(anti)correlated single/di-nucleotide composition descriptors, which were appropriately filtered. 

Possible correlations were estimated by calculating the non-parametric Spearman's rho coefficient 

using two-sided tests with a significance level p< 0.05.  
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Figure 54: Correlation matrix of conservation features calculated for the respective MRE, upflank-

MRE, downflank-MRE regions. Conservation parameters corresponding to max or sum of phastCons 

pre-computed values presented increased correlation coefficients (>0.9) with relative average scores in 

MRE regions. The highly correlated features were eliminated. Possible correlations were estimated by 

calculating the non-parametric Spearman's rho coefficient using two-sided tests with a significance 

level p< 0.05. 
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Figure 55: Correlation matrix comprising features for the miRNA-target duplex and miRNA/MRE sub-

domains. Base composition descriptors (A, T, G, C) of the (un)paired nucleotides are also included in 

the plot. Highly correlated parameters including “miRNA mismatches”, “miRNA seed” and “miRNA 

tail” were removed.  Possible correlations were estimated by calculating the non-parametric 

Spearman's rho coefficient using two-sided tests with a significance level p< 0.05. 

 

3.7.3 Base Classifier Models 

This section describes the performance of base classifier models in the proposed 

learning framework for CLIP-Seq-guided miRNA-target identification. The 

implemented 6 base models (“Region features”, “MRE general”, “Binding Vector”, 

“miRNA-target duplex”, “Base pairing”, “Matches per miRNA/MRE domain”), 
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comprise different sets from uncorrelated parameters. The composition of the feature 

vector incorporated in each base classifier was optimized against a considerable 

number of candidate vectors. These models adopt a Random Forest learning approach 

and are included in the first layer of positive/negative instance classification. Every 

base classifier assigns a probability score in candidate MREs reflecting its potency of 

being a true binding site.  

3.7.3.1 “Region features” Classifier 

The “Region features” base classifier incorporates 55 distinct features, including CLIP-

Seq-derived features such as expression, substitution frequencies and distances from 

the MRE start; content descriptors assigned to the overlapping, upstream and 

downstream MRE region; conservation, sequence energy, complexity, content 

asymmetry, and biases of codon usage. These parameters are utilized to characterize the 

MRE and proximal regions profile. The first top ranked descriptors as specified by the 

Random forest model are presented in Table 19. The highest importance is assigned to 

‘MRE RPKM’, ‘T-to-C substitutions’ and ‘min MRE distance - sum Substitution Ratio’ 

(i.e. aggregate ratio of substitutions located in minimum distance from the MRE start). 

This model achieves the best performance among the 6 classifiers in the first layer of 

positive/negative instances classification. The predictive model exhibited 87.3% 

sensitivity and 72.2% specificity (AUC 0.862) in the control set (test set) of 

approximately 3000 instances (1:1 positive-negative ratio) (Figure 56). 

 Importance 

MRE Rpkm 2271.286 

T-to-C substitutions 1986.001 

min MRE distance - sum Substitution Ratio 1127.73 

sum of Substitutions Ratio - min MRE distance 613.1598 

MRE G content 484.2459 

MRE dS 334.596 

MRE Overlapping Reads 282.5212 

MRE conservation Average 198.6979 

Cluster length 198.4758 

upflank-MRE conservation Average 179.4623 

MRE Rpkm per Cluster Rpkm 161.306 

downflank-MRE conservation Average 144.5406 

Codon Adaptation Index 140.1478 

MRE Tm 122.0494 

MRE GC-skew 91.25585 

MRE DUST Score 84.03686 

MRE A or G  content 74.82929 

MRE AT-skew 72.38096 

MRE G or T  content 71.97509 

 upflank-MRE G content  68.69797 
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Table 19: The first top 20 ranked descriptors as specified by the “Region features” classifier that 

adopts an RF learning model. Importance values are provided in decreasing order and signify each 

parameter’s contribution to the classification process. 

 

 

Figure 56: ROC curve of the “Region features” Random Forest model for the classification of 

positive/negative MREs. The predictive model comprised 55 distinct parameters and exhibited 87.3% 

sensitivity and 72.2% specificity (AUC 0.862) in the control set (test set) of approximately 3000 

instances (1:1 positive-negative ratio). 

 

3.7.3.2 “Base pairing” Classifier 

The “Base pairing” classifier encompasses base composition descriptors (A, T, G, C) of 

the (un)paired miRNA nucleotides. This predictive model comprised 8 distinct 

parameters and exhibited 72.1% sensitivity and 56.3% specificity (AUC 0.691) (Figure 

57). The importance of the incorporated variables, as estimated by the RF classifier, is 

shown in Table 20. The highest importance is assigned to the parameters describing 

matched nucleotides for the miRNA. 
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Importance 

miRNA C-matches 1527.883 

miRNA A-matches 1394.119 

miRNA G-matches 1114.7722 

miRNA T-matches 1052.1875 

miRNA unpaired-T 952.5725 

miRNA unpaired-A 944.2197 

miRNA unpaired-C 881.6211 

miRNA unpaired-G 836.6257 

Table 20: “Base pairing” classifier variable importance, as estimated by the RF model. Importance 

scores are provided in decreasing order and signify each parameter’s contribution to the classification 

process. 

 

Figure 57: ROC curve of the “Base pairing” Random Forest model for the classification of 

positive/negative miRNA binding sites. The predictive model comprising 8 distinct parameters 

exhibited 72.1% sensitivity and 56.3% specificity (AUC 0.691) in the control set (test set) of 

approximately 3000 instances (1:1 positive-negative ratio). 

 

3.7.3.3 “MRE general” Classifier 

The “MRE general” classifier includes miRNA binding site-related descriptors such as, 

MRE-cluster overlap, conservation of the most 5' MRE binding nucleotides and all MRE 

binding nucleotides, MRE location within the cluster, MRE binding type, and variables 

describing the asymmetry of  the duplex matched nucleotides. This predictive model 
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comprises 8 parameters and presents 74.5% sensitivity and 77.1% specificity (AUC 

0.832) (Figure 58).The importance of the included variables, as estimated by the RF 

classifier is shown in Table 21. The highest importance is assigned to the parameter 

describing the conservation level of the paired MRE bases. 

 

 
Importance 

MRE binding conservation Average  2129.3759 

MRE matches Ks-skew 1732.8131 

Binding type 1515.0408 

MRE-binding length per Cluster length 1357.1499 

MRE matches Purine-skew 1273.4089 

MRE distance from Cluster start 1043.9392 

MRE-Cluster Overlap 908.894 

MRE-Cluster Overlap (percentage) 748.9639 

Table 21: Variable importance scores as estimated by the ‘MRE general’ classifier that adopts an RF 

learning model. Importance values are provided in decreasing order and signify each parameter’s 

contribution to the classification process. 

 

Figure 58: ROC curve of the ‘MRE general’ Random Forest model for the classification of 

positive/negative miRNA binding sites. The predictive model comprising 8 distinct parameters 

presented 74.5% sensitivity and 77.1% specificity (AUC 0.832) in the control set (test set) of 

approximately 3000 instances (1:1 positive-negative ratio). 
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3.7.3.4 “Binding Vector” Classifier 

“Binding Vector” classifier comprises 14 distinct descriptors associated with the base 

pairing per miRNA/MRE position. This predictive model presented 66.4% sensitivity 

and 80.7% specificity (AUC 0.788) when tested against the independent test set (Figure 

59). 

 
Importance 

MRE binding position 2 970.5826 

MRE binding position 3 297.8217 

MRE binding position 6 219.5371 

MRE binding position 7 199.0366 

miRNA unpaired position 7 196.3089 

miRNA unpaired position 6 187.8222 

miRNA unpaired position 5  187.3171 

MRE binding position 4 184.3857 

MRE binding position 5 168.9264 

miRNA unpaired position 8 143.2214 

MRE binding position 18 137.2115 

MRE binding position 17 136.9804 

MRE binding position 11 130.47 

MRE binding position 10 127.7633 

Table 22: “Binding Vector” classifier variable importance, as estimated by the RF model. Importance 

scores signify each parameter’s contribution to the classification process. 

 

Figure 59: ROC curve of the “Binding Vector” Random Forest model for the classification of 

positive/negative miRNA binding sites. The predictive model comprising 14 distinct parameters 
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exhibited 66.4% sensitivity and 80.7% specificity (AUC 0.788) in the control set (test set) of 

approximately 3000 instances (1:1 positive-negative ratio). 

3.7.3.5 “Matches per miRNA/target domain” Classifier  

The “Matches per miRNA/MRE domain” classifier contains 11 parameters that 

describe the matches in the miRNA-target structure and in MRE/miRNA relevant sub-

domains. The importance of the included variables, as estimated by the RF classifier is 

shown in Table 23. This model exhibited 70.8% sensitivity and 75.5% specificity (AUC 

0.793) Figure 60). 

  Importance 

Binding type 990.8313 

consecutive matches per total matches 918.3636 

MRE central region matches 767.9645 

consecutive seed-matches 763.5292 

non-seed consecutive unpaired bases 719.4423 

3'MRE matches 708.5513 

seed matches per total matches 674.143 

max consecutive matches 667.3362 

MRE seed matches 657.0682 

non-seed consecutive matches per total matches 572.1283 

miRNA matches 540.3774 

Table 23: “Matches per miRNA/MRE domain” classifier variable importance, as estimated by the RF 

model. Importance scores are provided in decreasing order. 

 

Figure 60: ROC curve of the “Matches per miRNA or MRE domain” Random Forest model for the 

classification of positive/negative miRNA binding sites. The predictive model comprising 11 distinct 
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parameters exhibited 70.8% sensitivity and 75.5% specificity (AUC 0.793) in the control set (test set) of 

approximately 3000 instances (1:1 positive-negative ratio). 

 

3.7.3.6 “miRNA-target duplex” Classifier 

The “miRNA-target duplex” classifier comprises 13 parameters that describe the duplex 

structure energy, miRNA or MRE bulges, GU wobbles and GC/AU base pairing 

features for the specified miRNA and/or target and relevant sub-domains. This model 

presented 70.8% sensitivity and 75.5% specificity (AUC 0.793) (Figure 60). The ranking 

of included parameters based on the implemented RF classifier is provided in Table 24.  

 

 Importance 

duplex structure energy 1491.9206 

AU base pairs 1013.4779 

GC base pairs 873.9221 

non-seed GC base pairs 857.5021 

seed AU base pairs 794.0966 

MRE-binding length 727.615 

GU wobbles 698.3376 

non-seed AU base pairs 675.0161 

miRNA-binding length 674.5717 

MRE bulges 668.571 

internal loop max length 545.639 

central region GC base pairs 473.0839 

tail GU wobbles 329.2324 

Table 24: Variable importance scores as estimated by the “miRNA-target duplex” classifier that adopts 

an RF learning model. Importance values are provided in decreasing order and signify each 

parameter’s contribution to the classification process. 
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Figure 61: ROC curve of “miRNA-target duplex” Random Forest model for the classification of 

positive/negative miRNA binding sites. The predictive model comprising 13 distinct parameters 

exhibited 69% sensitivity and 75.6% specificity (AUC 0.802) in the control set (test set) of 

approximately 3000 instances (1:1 positive-negative ratio). 

3.7.4 Meta-classifier 

Each base classifier presented in the previous section generates a probability score that 
is subsequently forwarded to the second layer of classification. The 6 distinct 
probability scores are aggregated in a meta-classifier scoring model that derives the   
miRNA binding affinity within the cluster regions. The use of a GBM model as the 
meta-classifier outperforms every other tested algorithm including RFs and SVMs.  The 
GBM classifier achieved 81.6% sensitivity and 80.6% specificity (AUC 0.908) (Figure 62); 
RF presented 83.8% sensitivity and 76.5% specificity (AUC 0.897) (Figure 63), while the 
SVM exhibited 86.5% sensitivity and 72.7% specificity (AUC 0.859).  

All candidate meta-classifiers were evaluated in a control set (test set) of approximately 
3000 instances (1:1 positive-negative ratio). 
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Base classifiers GBM variable importance RF variable importance 

region features 3312.5 1987.5 

Base pairing 163.03 820.5 

miRNA-target duplex 33.63 383.7 

binding vector_features 22.2 229 

matches per miRNA or MRE domain 21.98 301.8 

MRE general 16 453.1 

Table 25: Variable importance scores as estimated by the meta-classifier that adopts a GBM or an RF 

learning model respectively. The included parameters in these classifiers correspond to the output of 

the base classifiers (first layer of classification). Importance values are provided in decreasing order 

and signify each parameter’s contribution to the classification process. The highest importance is 

assigned by both models to the “region features” classifier probability scores. 

 

 

 

Figure 62: ROC curve of “GBM meta-classifier” model for the classification of positive/negative 

miRNA binding sites. This learning approach achieved the highest performance, presenting 81.6% 

sensitivity and 80.6% specificity (AUC 0.908). GBM was evaluated against a control set (test set) of 

approximately 3000 instances (1:1 positive-negative ratio). 
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Figure 63: ROC curve of “RF meta-classifier” model for the classification of positive/negative miRNA 

binding sites. This model exhibited 83.8% sensitivity and 76.5% specificity (AUC 0.897) when tested 

against a control set (test set) of approximately 3000 instances (1:1 positive-negative ratio). 
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3.7.5 Evaluation of the Novel Learning framework against other state-of-the-art 

implementations. 

In order to evaluate the novel learning framework for CLIP-Seq guided miRNA-target 

identification, it was compared against different implementations such as, 

microMUMMIE (75), MIRZA (72), PARMA (74) and the TarBase/LncBase analysis 

algorithm. The assessment of their performance was performed against a control set of 

(in)direct miRNA-target interactions in an embryonic kidney cell line (HEK293) 

supported by low and high-throughput methodologies. More precisely, the validation 

set comprises 1,365 positive interactions including 138 highly expressed miRNAs in 

HEK293 cells. In order to obtain a complete list of interactions for all the tested 

implementations, each algorithm has been executed on a comprehensive set of PAR-

CLIP HEK-293 libraries. The proposed settings for each algorithm were retrieved from 

the relevant publications, in order to attain high quality results for the conducted 

comparisons.  

A major concern with CLIP-Seq algorithms, excepting their ability to correctly identify 

experimentally verified miRNA binding sites, is the number of provided predictions 

per AGO-peak region. Therefore, in the presented evaluation (Figure 64, Figure 65) the 

number of correctly predicted MRE regions is plotted versus total predictions for 

different prediction score thresholds. 

Moreover, microMUMMIE and especially PARma implementations do not cover the 

whole spectrum of miRNA binding types. Therefore, an extra evaluation test was 

realized that included only positive miRNA interactions with canonical seed matches, 

in order to render the obtained results as comparable as possible, (Figure 64b, Figure 

65b). 

A primary evaluation was implemented to demonstrate the performance of the novel 

algorithm compared to the CLIP-Seq guided analysis adopted by TarBase/LncBase. The 

results depict that the new approach not only significantly outperforms the former 

implementation in terms of accuracy but also manages an impressive increase in 

sensitivity, predicting almost twice as many validated sites. Most of these sites were not 

detected by any other algorithm (Figure 64). 

The novel algorithm also achieved the best performance in any metric when juxtaposed 

against other state-of-the-art implementations (Figure 65). This evaluation was 

generated separately for canonical and non-canonical miRNA positive interactions.  

All the leading algorithms proved to be far from perfect and suffered from a low ability 

to identify a high percentage of true miRNA-target interactions with a high cost in the 

total predictions. The novel implementation that has been trained on an unprecedented 

collection of high quality low/high-throughput experiments, breaks this barrier by 

providing true positive predictions for more than 80% of the included miRNAs. 
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Figure 64: Evaluation of the novel AGO-CLIP learning framework (microCLIP) against the 

TarBase/LncBase adopted algorithm. The number of correctly predicted miRNA binding sites for each 

implementation is plotted versus the total retrieved predictions for different interaction score 

thresholds. The performance of the novel algorithm is additionally provided for the top 5 and top 3 

predictions per cluster region. The utilized validation set comprised 1,072 positive miRNA 

interactions derived from direct and indirect experimental methodologies (a).  The new algorithmic 

approach significantly outperforms the former implementation and manages a 2-fold increase in the 
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correct identification of experimentally verified miRNA binding sites. An extra evaluation was 

realized including only positive miRNA interactions (~500) with canonical seed match (b). The novel 

algorithm managed to identify ~90% of the positive canonical miRNA interactions, a ~30% increase 

compared to TarBase/LncBase CLIP-Seq implementation and provides one valid miRNA canonical 

binding site in approximately every 2 predicted targets. 

 

Figure 65: Evaluation of the novel AGO-CLIP learning framework (microCLIP) against the leading 

implementations of PARma, MIRZA and microMUMMIE. The number of correctly predicted miRNA 

binding sites for each implementation is plotted versus the total retrieved predictions for different 
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interaction score thresholds. The performance of the novel algorithm is additionally provided for the 

top 5 and top 3 predictions per cluster region. The utilized validation set comprised 1,365 positive 

miRNA interactions derived from direct and indirect experimental methodologies (a). The results 

demonstrate that the novel AGO-CLIP implementation has a significant greater ability to discriminate 

correct interactions compared to other approaches. An extra evaluation was realized including only 

positive miRNA interactions (~500) with canonical seed matches (b). The novel algorithm managed to 

identify ~90% of the positive canonical miRNA interactions. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs 

Maria D Paraskevopoulou  
 149 

4. Conclusion 

One of the most important processes in miRNA research is their target detection. 

Identification of miRNA-gene interactions can be performed with either computational 

approaches or experimental methodologies.  

During the thesis course, DIANA-microT v5.0 (54), the new version of the microT 

server, has been significantly enhanced with an improved target prediction algorithm, 

DIANA-microT-CDS (38). microT-CDS is the only algorithm available online, 

specifically designed to identify miRNA targets both in 3’ untranslated region (3’UTR) 

and in coding sequences (CDS). The web server was also completely redesigned, in 

order to host a series of sophisticated workflows, enabling users to perform advanced 

multi-step functional miRNA analyses. DIANA-microT web server v5.0 additionally 

supports a complete integration with the Taverna Workflow Management System 

(WMS) (143), using an in-house developed DIANA-Taverna Plug-in. This plugin 

provides ready-made modules for miRNA target prediction and functional analysis, 

which can be used to form advanced high throughput analysis pipelines.  

Computational methodologies unambiguously provide a valuable resource for miRNA 

oriented studies. However, even the most advanced implementations include an 

increased number of false positive interactions and do not allow the derivation of 

functional downstream analyses. In silico implementations can be further improved if 

coupled with technological breakthroughs of sequencing experiments. 

Numerous wet lab methodologies have been developed, enabling the validation of 

predicted miRNA interactions or the high-throughput screening and identification of 

novel miRNA targets (32). Moreover, during the past few years, NGS methodologies 

have revolutionized almost every aspect of biological research. Novel NGS-based high-

throughput miRNA target identification techniques have enabled the identification of 

thousands of interactions present in specific cell types or experimental conditions.  

Despite the contribution of both experimental methodologies and computational 

approaches, a large part of the miRNA targets, even for the well-studied organisms 

such as mouse and human, remains unexplored. The wealth of information provided by 

experimental methodologies remains fragmented and hidden in thousands of 

manuscripts, supplemental materials and raw sequencing datasets.  

Accurate cataloguing of miRNA targets is crucial to the understanding of their function. 

However, the complex network of miRNA-lncRNA-mRNA regulatory machinery is 

difficult to be determined by exploring individual pairs of interactions and relies on the 

analysis of extensive NGS datasets. By analyzing more than 250 miRNA-related NGS 

datasets (e.g. 150 CLIP-Seq, CLASH, microarrays, Degradome-Seq) and extracting 

interactions from hundreds of meticulously curated articles, DIANA-TarBase v7.0 is the 

first database to provide an unprecedented amount of experimentally supported 

miRNA-mRNA interactions in many different cell types and tissues. DIANA-TarBase 

v7.0 breaks the barrier of 300,000 entries indexed by relevant repositories, providing 
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more than half a million interactions in 24 species, 9-250 times more than any other 

manually curated database. These interactions can enforce or even at cases substitute in 

silico predicted interactions.  

LncRNA functions still remain widely uncovered, while others are currently under 

debate. The recently introduced sponge/decoy role of lncRNAs has been characterized 

for a few transcripts in specific tissue and/or disease conditions. LncBase v2 provides 

an extensive compendium of miRNA-lncRNA in silico inferred and experimentally 

supported interactions covering a wide range of cell types and tissues for human and 

mouse. The analysis of extensive sequencing data unveiled thousands of miRNA-

lncRNA interactions, including lncRNAs harboring multiple miRNA binding sites and 

a set of approximately 400 unique viral-miRNA-lncRNA interacting pairs in virus 

infected cells. Spatial classification of miRNA-targeted regions in CLIP-Seq experiments 

revealed similar percentages of targeted lncRNA transcripts across different cell types. 

A considerable amount of MREs residing on lncRNA transcript regions were highly 

conserved presenting stronger evolutionary pressure than their background regions, 

while miRNA sites located in lncRNA intronic regions presented accelerated 

evolutionary rates compared to those in lncRNA exons. AGO-CLIP-Seq cognate cell 

lines were densely grouped by targeted lncRNAs, possibly indicating a tissue specific 

miRNA-lncRNA regulation mechanism.  

During the thesis course, an in house algorithm was implemented in order to analyze 

CLIP-Seq data on different cell types and tissues for mouse and human species. It was 

thoroughly tested against state-of-the-art implementations and was utilized for TarBase 

and LncBase updates. 

The continuous archiving of experimental data from low and high-throughput 

methodologies, along with the extensive evaluation of the available AGO-CLIP-Seq 

analysis programs, revealed that there was room for further improvement and 

optimization of the relevant algorithms in order to attain increased accuracy. State-of-

the-art CLIP-Seq target identification implementations currently manage to identify 

approximately half of the experimentally validated binding sites. To this end, a novel 

algorithm was developed for CLIP-Seq data analysis. The algorithm was trained and 

extensively tested on a comprehensive collection of accurate positive and negative 

miRNA-target interactions from low-yield and high-throughput experimental data 

sources. The novel algorithm was evaluated against all leading implementations, 

including CLIP-Seq guided analysis adopted by TarBase/LncBase. Former algorithms 

proved to be far from perfect and suffered from a low ability to identify a high 

percentage of positive miRNA-target sites. The results depict that the new approach not 

only significantly outperforms other implementations in terms of accuracy but also 

manages to increase sensitivity, predicting sites that were not detected by any other 

algorithm. 

The novel algorithm will enable the accurate identification of miRNA coding and non-

coding target repertoire, which is crucial to the detection of competing endogenous 
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interactions. This information can be utilized for multiple exploratory studies and in-

depth analyses for the creation of tissue specific lncRNA-miRNA-mRNA/TF regulatory 

networks. Moreover, functional interpretation of the interaction networks can boost the 

understanding of unexplored regulatory mechanisms and the elucidation of key players 

in different biological processes. 
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5. Thesis Publications 

During the course of the thesis, the candidate participated in 8 scientific studies, involving 

computational approaches for determining the activity of the non-coding transcripts 

and in four of them the candidate is first author. The studies are published in 

international journals of high impact factor and total citations received so far are 310. 

The publications achieved are presented in chronological order.  

 

1. Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G, 

Georgiou P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T, 

Hatzigeorgiou A.G. (2016) DIANA-mirExTra v2.0: Uncovering microRNAs and 

transcription factors with crucial roles in NGS expression data. Nucleic Acids Res. (9.112 

Impact Factor) 

2. Paraskevopoulou MD and Hatzigeorgiou AG. Analyzing MiRNA-LncRNA 

Interactions. Methods Mol Biol. 2016 (2 citations) 

3. Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis 

T, Zagganas K, Tsanakas P, Floros F, Dalamagas T, Hatzigeorgiou AG. (2015) DIANA- 

DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic 

Acids Research (9.112 Impact Factor) (2 citations) 

4. Georgakilas G and Vlachos IS, Zagganas K, Vergoulis T, Paraskevopoulou MD, 

Kanellos I, Tsanakas P, Dellis D, Feygas A, Dalamagas T, Hatzigeorgiou AG. (2016) 

DIANA-miRGen v3.0: extensive characterization of microRNA promoters and their 

regulation. Nucleic Acids Research (9.112 Impact Factor) (3 citations) 

5. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, 

Vergoulis T, Dalamagas T, Hatzigeorgiou AG. (2015) DIANA-miRPath v3.0: 

Deciphering microRNA function with experimental support. Nucleic Acids Research 

(9.112 Impact Factor) (28 citations) 

6. Georgakilas G, Vlachos IS, Paraskevopoulou MD, Yang P, Zhang Y, Economides ΑΝ, 

Hatzigeorgiou AG. (2014) microTSS: accurate microRNA transcription start site 

identification reveals a significant number of divergent pri-miRNAs. Nature 

Communications (10.7 Impact Factor) (16 citations) 

7. Vlachos IS and Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, 

Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Dalamagas T, 

Hatzigeorgiou AG. (2014) DIANA-TarBase v7.0: Indexing more than half a million 

experimentally supported miRNA:mRNA interactions. Nucleic Acids Research (9.112 

Impact Factor) (joint first authorship) (90 citations) 

8. Paraskevopoulou MD and Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko 

M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. (2013) DIANA-microT web server 

v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids 

Research (9.112 Impact Factor) (joint first authorship) (169 citations) 
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6.  ABBREVIATIONS - ACRONYMS 

3’-UTR 3’-UnTranslated Region 

3Life Luminescent Identification of Functional Elements in 
3'UTRs 

5’-UTR 5’-UnTranslated Region 

5′ RLM-RACE Rapid amplification of cDNA ends 

AGO Argonaute 

AGO-IP AGO Immunoprecipitation 

ANN Artificial Neural Networks 

AUC Area Under Curve 

BLAST Basic Local Alignment Search Tool 

BLS Branch-length conservation scores 

C. elegans Caenorhabditis elegans 

CDS Coding Sequence 

ceRNA Competing endogenous RNA 

Chip-Seq Chromatin Immunoprecipitation Sequencing 

CLASH Crosslinking, ligation, and sequencing of hybrids 

CLEAR-CLIP  Covalent ligation of endogenous Argonaute-bound RNAs 

CLIP-Seq Cross-linking immunoprecipitation sequencing 

D. melanogaster Drosophila melanogaster 

dG Free energy 

DGCR8 DiGeorge syndrome Critical Region 8 

dH Enthalpy 

DNA Deoxyribonucleic Acid 

DNase Deoxyribonuclease 

DNase-Seq DNase I hypersensitive sites sequencing 

dS Entropy 

EBV Epstein-Barr virus 

ELISA Enzyme-linked immunosorbent assay 

EM Expectation Maximization 

ENCODE Encyclopedia of DNA Elements Consortium 

FDR False Discovery Rate 

GAs Genetic algorithms 
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GBMs Gradient Boosting Machines 

GEO Gene Expression Omnibus 

GFP Green Fluorescent Protein 

GLM Generalized Linear Models 

H. sapiens Homo sapiens 

H3K4me3 Histone 3 lysine 4 trimethylation 

HEK-293 Human Embryonic Kidney Cells 

HELA Human Cervical Cancer Cells 

hESC Human Embryonic stem Cells 

HITS-CLIP High-throughput sequencing of RNA isolated by 
crosslinking immunoprecipitation 

HMM hidden Markov model 

Huh7.5 Hepatocarcinoma cells 

ICA Independent component analysis 

iCLIP Individual-nucleotide resolution UV crosslinking and 
immunoprecipitation 

ID3 Iterative Dichotomiser 3 

IMPACT-Seq Pull-down sequencing of biotin-tagged miRNAs 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KSHV Kaposi's sarcoma-associated herpesvirus 

Ks-skew Keto skew 

LDA Linear Discriminant Αnalysis 

lncRNAs long non-coding RNAs 

M. musculus Mus musculus 

MCF7 Human Mammary Gland Cancer Cells / Michigan Cancer 
Foundation-7 

MDAMB231 Human Mammary Gland Cancer Cells 

MeSH Medical Subject Headings 

miRISC miRNA-induced silencing complex  

miRNA microRNA 

miTRAP miRNA trapping by RNA in vitro affinity purification 

ML models Machine Learning model 

MNase Micrococcal Nuclease 

MREs miRNA Recognition Elements 

mRMR Minimum-redundancy-maximum-relevance 
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mRNA messenger RNA 

NB Naïve Bayes 

ncRNAs non-coding RNAs 

NGS Next Generation Sequencing 

nt nucleotide 

ORF Open Reading Frame 

PAR-CLIP Photoactivatable-ribonucleoside-enhanced crosslinking 
and immunoprecipitation 

PARE/  
Degradome-Seq 

Parallel analysis of RNA ends/ Degradome sequencing 

P-bodies Processing bodies 

PCA Principal component analysis 

Pol II/III RNA polymerase II/III 

poly-A Polyadenylation 

pre-miRNA precursor miRNA 

pri-miRNA  primary miRNA 

qPCR Quantitative real-time polymerase chain reaction 

RBF Radial basis function 

RBPs RNA-binding proteins 

RF Random Forest 

RISC RNA-induced silencing complex 

RMA Robust Multi-Array Average 

RNA Ribonucleic Acid 

RNase Ribonuclease 

RNA-Seq RNA sequencing 

ROC Receiver operating characteristic 

RPF-Seq Ribosome profiling sequencing 

RPKM Reads Per Kilobase of transcript per Million mapped 
reads 

rRNA   Ribosomal RNA 

RVM  Relevance Vector Machine 

SDS–PAGE Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis 

SILAC Stable isotope labeling by amino acids in cell culture 

SNPs Single Nucleotide Polymorphism 
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SNR Signal-to-noise ratios 

sRNA Small RNA 

sRNA-Seq Small RNA sequencing 

SVM Support Vector Machine 

T/Thy  Thymine  

Tm Melting temperature 

tRNA transfer RNA 

url Uniform Resource Identifier 

WMS Workflow Management System 

XML Extensible Markup Language 
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