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ABSTRACT

The RNA revolution has turned non-coding RNA (ncRNA) from dark-matter into a
biological research hotspot. Accumulating evidence from multiple Next Generation
Sequencing (NGS) experiments has recently introduced the regulatory roles of ncRNAs
in a wide range of biological processes. This thesis focuses on the development of
computational algorithms for the functional characterization of non-coding transcripts,
while investigating in-depth their in-between interactions. The methodologies
developed during this thesis combine advanced next-generation sequencing (NGS) data
analyses and state-of-the-art Machine Learning algorithms in order to perform
automated analyses and to monitor the corresponding results.

This doctoral thesis studies specific categories of RNA transcripts: microRNAs
(miRNAs) and long non-coding RNAs (IncRNAs). miRNAs are single stranded RNA
molecules approximately 22 nucleotides long. They have been deemed central post-
transcriptional gene regulators and play a key role in numerous biological processes.
Therefore, miRNAs are intensively studied for their potential as biomarkers and/or
therapeutic targets. Apart from their involvement in physiological processes,
microRNAs appear to be associated with a plethora of pathological conditions.

Although microRNAs are mainly considered mRNA repressors, there are studies
supporting miRNA-IncRNA interactions. IncRNAs are long non-coding transcripts that
can also regulate gene expression. To this end, DIANA-LncBase database was designed
in order to characterize the entire spectrum of miRNA interactions with IncRNAs.
LncBase supports a compendium of experimentally supported miRNA-IncRNA
interactions. It contains more than 70,000 interactions derived from the analysis of
numerous NGS experiments and specific low-throughput techniques, across 66
different types spanning 36 tissues in human and mouse species. DIANA-TarBase
update was also part of the thesis. TarBase v7 is considered the largest available
repository of miRNA-mRNA interactions as compared to any of the relevant databases.
It hosts more than half a million interactions from published experiments on 356
different cell types (59 tissues), belonging to 24 species. The detailed cataloguing of
RNA interactions unveiled a set of approximately 400 unique viral-miRNA:IncRNA
interacting pairs in human virus-infected cells. This type of regulation adds an extra
layer of complexity in the miRNA interactome, and perplexes the network with the
inclusion of virus-encoded and human transcript interactions.

By analyzing more than 150 raw CLIP-Seq datasets, DIANA-TarBase v7.0 and DIANA-
LncBase are the first relevant databases to provide an unprecedented amount of
experimentally supported interactions in many different cell types and tissues.
Furthermore, RNA sequencing data were analyzed to accurately assess miRNA and
transcript expression in the investigated cell types. Optimized pipelines were
developed for the analysis of sequencing data, while a machine learning approach has
been applied for the identification of miRNA binding sites.
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The adopted methodology for AGO-CLIP-Seq data analysis was compared against
other available state-of-the-art implementations and has been proven robust and
advantageous.

During the course of the Doctoral thesis, the continuous archiving of experimental data
from low and high-throughput methodologies, along with extensive evaluation of the
available AGO-CLIP-Seq analysis programs, revealed that there was room for
algorithms’ further improvement and optimization. State-of-the-art CLIP-guided target
identification implementations currently manage to identify approximately half of the
experimentally validated binding sites. To this end, a novel algorithm was developed
for CLIP-Seq data analysis. The algorithm was trained and extensively tested on a
comprehensive collection of accurate positive and negative miRNA-target interactions
from numerous experimental data sources. It was additionally evaluated against all
leading implementations, including CLIP-Seq analysis adopted by TarBase/LncBase.
The results depict that the new approach not only significantly outperforms other
implementations in terms of accuracy but also manages to increase sensitivity,
predicting sites that were not detected by any other algorithm.

The functional significance of miRNA interactions with coding and non-coding
transcripts was further assessed with the evolutionary conservation of the miRNA
binding sites. The thesis additionally associates the catalogued interactions to diseases
and molecular pathways, providing new insights in ncRNA function.

DIANA-microT web server was upgraded and enhanced with automated analyses
pipelines (workflows) that can be applied to NGS-derived data. The ready-to-use
modules seamlessly integrate DIANA supported algorithms for the identification of
miRNA-gene interactions and miRNA-targeted pathway analyses.

During the course of the Doctoral thesis, the candidate took part in 8 scientific studies
involving computational approaches for determining the activity of the non-coding
transcripts and in four of them the candidate is first author. The studies are published
in international peer-reviewed scientific journals, while the total citations received to
date are 310.

SUBJECT AREA: Computational Biology

KEYWORDS: microRNA, IncRNA, HITS-CLIP, PAR-CLIP, target prediction,
experimentally verified targets
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ITEPIAHWH

H enavdotaon too RNA petépepe ta pn k@0wda petdaypaga (non-coding RNAs) oto
ermikevtpo ¢ Proloywkng épeovag. Ta teevtata xpovia, otoixeia amod moAvapiipa
MEPAPATA  AIIOKAADIITOLV  MOAAAIIAODG  pLOPIOTIKODG POAOLG TOV I KOOK®V
PETAypPAPmV 010 yovidiopa oe eva eopy gaopa Prodoywev diepyaowwv. H epyaoia
aoty eotwdlel oty avantodn alyopifpwmv yla v Katavonon tng Aettovpyiag pn
KOOIK®V popilov Kat Olepevvd eKTevwg Tig aAANAemoOpaoelg HeTald opadmV KOOKmV
Kat pn kodwev petaypd@av. Ot pebodoloyieg mov avamtoyOnkav katd ) didapkela
mg Owaktopikrig OSwatpiPrig  ovvdvacav mponypeveg avalvoelg  dedopevev
aMnAodynong emopevng yevedg kat oopnepteAapav alyopifpoog atypng Mnyavikng
Mdabnong, yia v npaypdatonoinon avtopatov avalvoemv Kabog kat emnomnteiag tov
AaVTIOTOLY®V AIIOTEAEOPATDV.

H epyaoia eotidlet ot pelétn eldikmv Katnyoplov popiov: Ta microRNAs (miRNAs)
kat ta long non-coding RNAs (IncRNAs). Ta miRNAs eivat povoxheva popia RNA
prxovg nepimov 22 vooxAeotidimv. Osmpodvtal Pactkol peta-peraypapikot poOploteg
mg ékppaong twv yovwdilov kat dwadpapartifoov kaboptotkod polo oe mAnbwpa
Prodoyikev dadikaotwv. AoTteAoOV aVTIKEIPEVO EVTOVIG PEAETNG TA TEAEDTALA XPOVIA
ya ) dvvapikn) toug wg mbavot Bepamevtikol oToy01 KAOWG IIEPa Ao To POAO TOVG OF
@uooNoykeg Odepyaoieg, epavifoviar va epmAékovial Oe €va  evpyd  QAOpdA
naboloywev Kataotdoemv. Baoet tedevtaiov epeovov, ta miRNAs otoyxeboov xat
aMa pn kodwka RNAs, ta IncRNAs. Ta IncRNAs etvat pakpd pn k@OwKda petaypapa
KAl PEPOG avtev oxetifetat pe v pvOpLon g YOVIOIaKI)G €KPPAON.

ITpokewpévoo va xapaxktnplotelt OAOKANPO TO @AOpd TV AAMNAemOPAcE®V TOV
miRNAs pe IncRNAs, oyedwdomnke 1n Pdon Oedopevov DIANA-LncBase mov
vriootpifet Tov peyalvtepo kataloyo nelpapatikd emPePatopéveov miRNA-IncRNA
aMnlemdpdoewyv. Ilepieyet mave amo 70.000 alnAemdpdoelg amd mAnbopa
HEPAPAT®OV  aANAoOYNONG  E€MOPEVIG  YEVEAG KAl €0KEG TEXVIKEG — HUKPING
OlEKIIEPAIDTIKIG IKAVOTITAG 08 66 OLAPOPETIKODG TOIOVG KDTTAP®V, IOV KTELVOVTAL OF
36 10T00Gg TOL avhpP®IIOL Kat TOL PLOG. ZTr ITapovoa datpifPr) avavembnke Kat 1 Pdon
dedopévaov DIANA-TarBase, 1 Pdon pe tov eKTeveéOTEPO KATAAOYO IELPAPATIKA
emPefatopévov alnAemdpdoemv petalp pukpov RNA kat kodikev yovidi®v otoxe®v
naykooping. ITepiéxer meproootepeg amo 500.000 alAnAemdpdoelg amod 28 diagopeg
nepapatikég pebodoloyieg, kakvrrovrag 356 KOTTAPIKODG TOIIOVG Kat 59 StagopeTikovg
totovg. Kata ) Aerrtopepr) kataypagr) oo xdpt) ToV aAANAemoOpdoem®v ToV poplov
oto eninedo tov RNA onpewwbnkav yia npotn gopd xat aAANAemOpdoelg OV HIKP®V
RNAs nov mapdyovtat amo 1o0g pe Ta Hakpd pn Kodwd petaypaga tov aviporov. H
avayveplon TETolwV aAnAemdpdoemv éytve ot avipmIveg KOTTAPLKEG OelPEg MOD
é¢xoov mpooPAnbfetl amo kdmoto otéexog ov. Avta ta Oedopeva Palovv éva akopn
erinedo moAvDAOKOTNTAG 0Tl AAANAemdpaoelg TOV I KOOK®V popiov, Kabmg
xpewadetat va pedetnfodv Kat avTég HETASD TOV PETAYPAPDV TOD 10V KAl TOL avOp®IIov.
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Ta dedopéva NGS mov avalvbnkav, yla v avedpeorn otoxov Tov microRNAs pe ta
(pn)x@dKa petaypaga yiwa To oxnuatoopd tov Paceov LncBase xat TarBase,
nep\apPavoov nave amno 150 PiAodrkeg CLIP-Seq. TTapdahAnia, cvoAAéxOnkav kat
avalvOnkav dedopeva alnlovynong ywa v ékgpaon tov microRNA xat tev
pETaypa@®eVv ota kottapa omov npaypatonoudnkav ta CLIP-Seq mnepdpata.
AvarmrtdxOnkav alyopibpotr yua v avalvon tov dedopévev aAlAnlovynong, eve o
EVTOMIONOG TOV aAVAYVOPOTIKOV Béoewv mpoodeong towv microRNAs ota petdaypaga
éywve pe pnyavikyy padnon. H pebodoloyla mov viobetr|fnke ovyxkpibnke pe
avtiototyovg alyopibpovg awyprg, eve ep@davioe mAnbopa mleovekTnpdtov oe Kdbe
oLYKpPLOL).

Kata ) Sudpxela g 010aktopikr)g dtatpiPrig, 11 ovvexrg apxelodetnon kat avdaivon
HEPAPATIK®OV Oedopévav amd YapnAng Kat LYNARG OlEKIEPAI®TIKIG KAVOTTAG
pebodoloyieg, pallt pe v extevr) adoAoynon tev  dabiopwv  CLIP-Seq
HPOYPAPPATOV, damokalvye oOtt vmrpxe mepldopo yia mepattépe  Pedtioorn. Ot
dabeopot alyopibpot atyprg mov evromifoov otoxovg twv miRNAs peoa amo v
avdaAvor) CLIP-Seq 6edopévmv emrtoyydavoov v opbr] avayvmplon oe mepimov pioeg
MEPAPATIKA emKLOpwpéveg alnAemdpdoetg. [a to okond avto, avamtdxOnke évag
Kavotopog alyopidpog ywa v avaivory AGO-CLIP-Seq dedopévav. O alyopiBpog
eKTIAOEVTNKE KAl OOKIPAOTNKE EKTEV®MG O HIA ODWNANG IIOLOTNTAG, OAOKANPOHEVN
ovMoyr] Oetikov kat apvnTkov aAAnAemdpacenv tov miRNAs pe yovidwa Pdoet
nolvdpipev nepapatikov Oedopévav. Emmleov altoloynfnke évavit mapopolmv
ePAPPOYMV dalypng, ovprepappavopévoo kat tov alyopibpov avdivong CLIP-Seq
dedopevov twv TarBase / LncBase. Ta amotedéopata mapovoiacav OTL 11 ved
alyoplOpikn) Ipooyy1or SemepvA ONUAVTIKA TIG AAAEG EQAPHOYEG OX1 LOVO OO0V APOopa
myv akpifeia, aA\d mapaMnha xkata@épvel va avdroel myv evaobnoia péowm g
npoPAeyng meploxmv mpoodeong twv pikpav RNA moo Oev eiyav evromotel armo
onotodrjmote AAAo alyopiopo.

[TapaMnAa, 1n Aettovpykr] onpaocia Tov alnAemdpdoeov tov miRNAs pe T1g
dagopeg xatnyopieg petaypdpmv pelet)Onke péom g Olepedvnong TG ECENKTIKIG
OLVTINPNONG TOV MEPLOX®V IIPOOOEONg Ot KMOKEG Kal M Kaddkeég axoAlovbieq. H
Odaxtopikr] dratpiPry mephapPdvel kat T peAétn) tov XAPT TV AAANAemOPACEDV
Tov popilov oto eminedo tov RNA oe oxeon pe aobeéveleg kat HOPLAKA POVOIIATL,
yeyovog oo 0a Pondroet va mpoodloptotody AyveoTeg PEXPL T®PA IITLYXESG TG OPdong
tov pkpov RNAs. Ilapd\nla, avapabpiotxav kat oxnpatiomkav — véeg
Aettovpykotnteg yia tov eornpettr] too DIANA-microT xat npaypartomnow)Onke 1)
dnpovpyla avtopatav powv avalvorng (workflows), dedopevmv oL IPOKLIITOLY ATIO
netpapata NGS. Ot éropeg avalvoeilg dracovdeovy epyaleia tov DIANA nov agopovv
alnAemdpaoelg 1@V pikpov RNAs pe yovidia xat v epmAoKl] TODG Of POPLAKA
povordatid.

Kata 1t dwapketa tng Owdaktopikrg OwatpiPrig, 1 vmoyngra &hafe pépog oe 8
EIMOTNPOVIKEG HeAéTEG TIOL IEPIAAPPAVOLY  DIIONOYIOTIKEG IIPOOEYYIOElS Yla TOV
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IIPOOOIOPIOPO NG OPAONG TOV HI] KOOIKOV PETAYPAP®V, KAl O TEOOEPLS AIIO ADTEG
etvat mpatn ovyypageas. Ot peAéteg OnpootedTKav oe d1edvr) Eykpita MePLodKA Kat ot
OLVOAIKEG AVAPOPEG TTOL £xouv AdPet ¢mg topa etvat 310.

OEMATIKH ITEPIOXH: Ynioloytotikr) Biohoyila

AEZEIX KAEIAIA: microRNA, IncRNA, HITS-CLIP, PAR-CLIP, nipofAeyn otoxov,
MEPAPATIKA eMPefAi®pevot oToyot
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EYXAPIXTIEX

210 onpeto avto Oa rfeda va ekPpdom Tig evYaploTieg pov mpog Tda péAn g Tpipehovg
ZopPoovlevtikr)g Emtpomnmng yia t dvvatomta mov poov édwoav va acxoAnbo pe éva
dtemotnpoviko Bépa peydAng onpaotag xat epPeletag oto topéa tmg Brooyiag xat g
[TAnpogpopikr|g.

Oa nbeha va evxaplotoe TV emPAenovoa  pov  Kabnynipua k. Aptepig
Xat{nyewpyiov, yta v ayoyn kabodrjynon xat vrootr)pin Iov pov Mapeiye Katd n
diapkela exmovnong g epyaotag. Tnv evyaplote Oeppd yia v texvoyveoida moo pov
PooEPepe G HaAbNTeLOPEVT] TG OTIG HETANTOXIAKEG KAl OOAKTOPIKEG HOL OTOLOEC,
Kabwg Kat yia 1o 0Tt pe ovprepElape otV epevvn Ky opada tov epyaotnpioo DIANA
Tov omotov Kat eivat vrevOovn. Oa 1nbeda va ekPEAo® TV EDYVOPOOLVI] POV Yid TN
dvvatomta mov pov £dwoe va aoxoAnbm pe peléteg atypng KAt va OLVEPYAOT® HE
eCAPETIKOLG OLVADEAPOLG KAl emOTpoveg. AKOpN, TNV euxaplot® yiati ommpde
Paowog moAdwvag yia v e§€A1SH) HOL ®G EMOTHROVA Kat ®g avipwrio.

Emiong, ogeiz® va evyxapotmoe v Kabnynrpua x. Adloo Avrtiyovn kat tov
Avarm\npwt) Kabnynt) Toapapdivo Ioavvn yia v tur) mov ekavav va eivat pein
g Tpipehoovg ZopPovAevtikng Emitpomrg xabmg xat ywa tm oopPoAr Tovg otV
eKIIOVN 01 TG ddaxtopikrg dratpifPrs.

H napovoa epyaocia 6e Oa propovoe va €xet bAonow el xopig v ayaotr) ovvepyaoia
Pe ta péAn tov epyaotrnpioo DIANA.

Oa nBeAa va evyapilot)om Beppd tov oovaded@o pov Ap. Ioavvrn BAayo yia v aypoyn
ano xowvobL gpyaocia ywa 1) dnpiovpyia g Paong tov TarBase, xabwg xat yia v
kaboptotikr) oopPoAr) tov ot Snprovpyia twv Pacewv microT-CDS kat LncBase. Tov
ELXAPLOT® Y1d TG MOADTLEG COPPOVLAEG TOL Yla TNV IPAYHATONO o1 g dratpiPr)g Kat
) oLbvoAKr) otr)pdn kab’ OAn tn drapketa g ovvepyaotiag pag.

Evoyapiote Oeppa v Kapaykovvn Anpntpa yia v eSaipetikr) ovvepyaotia Moo etyape
KAl TV apéPloT) COPIIAPAOTaon mov pov mapeiye. H oopPolr g ntav xkaboplotikn
ot ovAoyr kat avdlvorn Oedopévav ya Ttig Pdoelg TarBase xat LncBase. Axopn
aroteAel eva Paociko ovvepyatn, padi pe tov Ap. Ioavvn BAayxo otov oxedlaopo evog
KAvoTopov alyopibpov yia v avayvopion otoxev 1oV pikpov RNAs péoa amo my
avaloor) 0edopevmV VYPNALG OlEKIIEPAIMTIKIG IKAVOTITAG.

Eoyapioto tov oovadedgo pov Ap. I'empylo Tewpyakila yia myv apotn oovepyaoia
pag xat T moAvTun) Porfetd Tov otV OAOKANP®OL APKET®V PEAET®OV, T1] OOPPOAL TOL
oto Koppdtt g npoPAeyng t@v otoxev tov miRNAs yua tig faoelg microT-CDS kat
LncBase, xat tr) ooA\oyr) dedopévav yia T Baon too TarBase.

Eoyapiote bwaitepa tov Znopo Taotooyhov yia 1t ovvelopopda tov oty datpifi),
kabwg mpayparomnoinoe v avalvorn HoAwv Helpapatikov dedopevav. Evyxapiotw
ermmong  toog  oovadedpovg  Kavotavtivo  Awdxko  kat  Negeédny  Zotroo.
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Axopn evxapiot® tov Ap. Martin Reczko yia v oopPoAr) tov oto xoppdtt g
npofAeyng tov otoxwv twv miRNAs, anapaitnm ywa tm Onpovpyia tng Pdong
microT-CDS.

[a mv npaypatwon tg napovoag datpifPrg xat 10 oxedlaopod g OlEenagng v
Baoewv TarBase, LncBase xat microT-CDS xaBopiotikd polo enaile 1) ovvepyaoia pag
pe to Ivotttovto «Abnva». Evyapiot® 0Aovg Tovg ovvepydteg pag yid TNy Texvoyvaoia
Kat T oopPoAr} Tovg oty avdamtodn Kat oto oxedlaopo v Pacewv. Ewdwkotepa
euYaplote® toug Ap. @e0dwpo Aalapayka xat Ap. Oavdaon BepyovAn yia ) onpavtikn
OLPPOAT| TOVG O OAEG TIG ITAPATIAVED PENETES.

H ovvexr)g xp1on eKTeVmV DIIOAOYIOTIKOV IOP@V KAl DIIEPLIIOAOYIOTIKOV COOTHAT®V
NTav amnapaitt) yuwa TNV eKnovnon Tng mnapovoag OwatpiPric. Oa nbeda va
eoxaploto® tov Ap. Pedya xat to Ynoloylotko Kevipo tov Turjpatrog Mnyavikeov
H/Y, TnAenmowwviov kat Aiktoov tov Ilavemotnpioo Osooaliag yia v mapoyn
TOV eSLINPETTOV IOV XPHOoponouw)dnkayv yla v avaloor] ONpaviikod HEPOLG TV
dedopevov g pelétng. Oa 1bela emiong va evxaplotom tovg vrevbvvovg Kat To
npooemxo tov Efvikov Awtvov Epevvag xat Texvoloyiag (EAET) ywa v mapoxr)
npooPaong oto viepvroloylotko ovotnpa "ARIS", n xprion tov omoiov 1nTAV
kaboploTiki) ywa v emroyia g IapodOong EPELVTIKIG Ipootddetag,.

KAetvovtag, Ba noeda va eoyaplot)om® amod Kapdlag TV OKOYEVEWI HOL KAl TOLG
@ilovg, oL pe otpifovv KAl pov CLPIAPAOTEKovVTal o Kdabe pov mpoorddela. OeA®
va Toviom Nmg Timote amo ooa ex® xatagépel de Oa nrav epkto xopilg ) Ok Tovg
oLpBoAr.
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Computational Algorithms for Functional characterization of non-coding RNAs
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on IncRNA exons. LincRNA, sense, antisense and processed transcripts presented
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MREs on lincRNA introns compared to those located on lincRNA exons.
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than their background sequences. P-values derived from statistical analyses are marked
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parametric Spearman's rho coefficient using two-sided tests with a significance level
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Figure 52: Correlation plot of parameters that characterize the miRNA-target entire
duplex structure and relative sub-domains. Highly correlated features describing
miRNA or MRE bulges, GU wobbles and AU base pairs were appropriately filtered.
miRNA binding length appeared to be highly anti-correlated with ‘miRNA dangling
end’ and therefore only the first parameter was included in the developed learning
model. Possible correlations were estimated by calculating the non-parametric

Spearman's rho coefficient using two-sided tests with a significance level p< 0.05. .....131

Figure 53: Correlation matrix of content descriptors assigned to the overlapping,
upstream and downstream regions of the miRNA binding site. This group of features
embodies many highly (anti)correlated Single/di-nucleotide composition descriptors,
which were appropriately filtered. Possible correlations were estimated by calculating
the non-parametric Spearman's rho coefficient using two-sided tests with a significance

1EVEL P 0.05. ..ttt 132

Figure 54: Correlation matrix of conservation features calculated for the respective
MRE, upflank-MRE, downflank-MRE regions. Conservation parameters corresponding
to max or sum of phastCons pre-computed values presented increased correlation
coefficients (>0.9) with relative average scores in MRE regions. The highly correlated
features were eliminated. Possible correlations were estimated by calculating the non-
parametric Spearman's rho coefficient using two-sided tests with a significance level p<
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Figure 55: Correlation matrix comprising features for the miRNA-target duplex and
miRNA/MRE sub-domains. Base composition descriptors (A, T, G, C) of the (un)paired
nucleotides are also included in the plot. Highly correlated parameters including
“miRNA mismatches”, “miRNA seed” and “miRNA tail” were removed. Possible
correlations were estimated by calculating the non-parametric Spearman's rho

coefficient using two-sided tests with a significance level p< 0.05...........ccccccovviinninns 134

Figure 56: ROC curve of the “Region features” Random Forest model for the

classification of positive/negative MREs. The predictive model comprised 55 distinct
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parameters and exhibited 87.3% sensitivity and 72.2% specificity (AUC 0.862) in the

control set (test set) of approximately 3000 instances (1:1 positive-negative ratio)........ 136

Figure 57: ROC curve of the “Base pairing” Random Forest model for the classification
of positive/negative miRNA binding sites. The predictive model comprising 8 distinct
parameters exhibited 72.1% sensitivity and 56.3% specificity (AUC 0.691) in the control

set (test set) of approximately 3000 instances (1:1 positive-negative ratio). .................... 137

Figure 58: ROC curve of the ‘"MRE general’ Random Forest model for the classification
of positive/negative miRNA binding sites. The predictive model comprising 8 distinct
parameters presented 74.5% sensitivity and 77.1% specificity (AUC 0.832) in the control

set (test set) of approximately 3000 instances (1:1 positive-negative ratio). ................... 138

Figure 59: ROC curve of the “Binding Vector” Random Forest model for the
classification of positive/negative miRNA binding sites. The predictive model
comprising 14 distinct parameters exhibited 66.4% sensitivity and 80.7% specificity
(AUC 0.788) in the control set (test set) of approximately 3000 instances (1:1 positive-

NEZAIVE TALI0). ..veuiiiiiiiiiiicic ettt 139

Figure 60: ROC curve of the “Matches per miRNA or MRE domain” Random Forest
model for the classification of positive/negative miRNA binding sites. The predictive
model comprising 11 distinct parameters exhibited 70.8% sensitivity and 75.5%
specificity (AUC 0.793) in the control set (test set) of approximately 3000 instances (1:1
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Figure 61: ROC curve of “miRNA-target duplex” Random Forest model for the
classification of positive/negative miRNA binding sites. The predictive model
comprising 13 distinct parameters exhibited 69% sensitivity and 75.6% specificity (AUC

0.802) in the control set (test set) of approximately 3000 instances (1:1 positive-negative

Figure 62: ROC curve of “GBM meta-classifier” model for the classification of
positive/negative miRNA binding sites. This learning approach achieved the highest
performance, presenting 81.6% sensitivity and 80.6% specificity (AUC 0.908). GBM was
evaluated against a control set (test set) of approximately 3000 instances (1:1 positive-
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Figure 63: ROC curve of “RF meta-classifier” model for the classification of
positive/negative miRNA binding sites. This model exhibited 83.8% sensitivity and
76.5% specificity (AUC 0.897) when tested against a control set (test set) of

approximately 3000 instances (1:1 positive-negative ratio). ..........cccececevueiviricinccineennnes 144

Figure 64: Evaluation of the novel AGO-CLIP learning framework (microCLIP) against
the TarBase/LncBase adopted algorithm. The number of correctly predicted miRNA
binding sites for each implementation is plotted versus the total retrieved predictions
for different interaction score thresholds. The performance of the novel algorithm is
additionally provided for the top 5 and top 3 predictions per cluster region. The utilized
validation set comprised 1,072 positive miRNA interactions derived from direct and
indirect experimental methodologies (a). The new algorithmic approach significantly
outperforms the former implementation and manages a 2-fold increase in the correct
identification of experimentally verified miRNA binding sites. An extra evaluation was
realized including only positive miRNA interactions (~500) with canonical seed match
(b). The novel algorithm managed to identify ~90% of the positive canonical miRNA
interactions, a ~30% increase compared to TarBase/LncBase CLIP-Seq implementation
and provides one valid miRNA canonical binding site in approximately every 2

predicted tArGets. ........c.cciiiiiiic e 146

Figure 65: Evaluation of the novel AGO-CLIP learning framework (microCLIP) against
the leading implementations of PARma, MIRZA and microMUMMIE. The number of
correctly predicted miRNA binding sites for each implementation is plotted versus the
total retrieved predictions for different interaction score thresholds. The performance of
the novel algorithm is additionally provided for the top 5 and top 3 predictions per
cluster region. The utilized validation set comprised 1,365 positive miRNA interactions
derived from direct and indirect experimental methodologies (a). The results
demonstrate that the novel AGO-CLIP implementation has a significant greater ability
to discriminate correct interactions compared to other approaches. An extra evaluation
was realized including only positive miRNA interactions (~500) with canonical seed
matches (b). The novel algorithm managed to identify ~90% of the positive canonical
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1. INTRODUCTION

1.1 ncRNAs

The traditional view of molecular biology argued that the primary and almost exclusive
role of RNA is to carry genetic information in order to be subsequently translated into
protein. However, the discovery of functional non-coding transcripts other than those
participating in the translational machinery (ribosomal RNAs and tRNAs) broadened
the long-established RNA role and revised the “central dogma”. Non-coding RNAs
(ncRNAs), although initially considered as “junk”, have been deemed as important key
regulators in various biological processes. A large percentage of the mammalian
genomes and other complex organisms are transcribed into ncRNAs comprising a
hidden layer of regulation in a plethora of physiological and pathological processes.
ncRNAs originate from different regulatory regions within the genomes and are
characterized by high versatility. It has been observed that ncRNAs may derive from
intragenic, intergenic, intronic regions of protein coding genes or even from
transposons and pseudogenes (1). ncRNAs can be divided into many subcategories,
such as, ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small interfering RNAs
(siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar
RNAs (snoRNAs), long noncoding RNAs (IncRNAs), etc.

Currently, we can observe an unprecedented expansion of the so-called “regulatory
RNA” field thanks to emerging new technological developments. Extensive sequencing
experiments during the past decade and deep sequencing data produced by large
consortia, including the Encyclopedia of DNA Elements Consortium (ENCODE) (2,3)
revealed that the majority of the transcribed eukaryotic genomes corresponds to
functional non-coding RNA elements, while only 3% of these regions produce protein
coding transcripts. Numerous high-throughput experiments suggest that ncRNAs
define the complexity of an organism and regulate numerous biological processes
including splicing, editing, transcription, translation, various levels of gene expression,
development and epigenetic mechanisms (4).

1.2 microRNAs

miRNAs are small noncoding RNAs (~22 nts) and are considered central post-
transcriptional gene regulators, acting through transcript degradation, cleavage and/or
translation suppression in the case of mRNAs (5). Since their first identification in 1993
(6), the number of annotated miRNAs and miRNA-related publications increased in a
super linear rate, clearly depicting their central position in the RNA revolution (7).
More than 21,000 miRNAs have been identified in various organisms, while their
number in the human genome surpasses 2,500 (8).

The first microRNAs were discovered in 1993 in Caenorhabditis elegans (9) by Ambros,
Lee and Feinbaum. The researchers observed that the lin-4 gene produced a non-coding
RNA segment of about 22 bases long, that bound to the 3’ untranslated end (3'-
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UnTranslated Region, 3'-UTR) of lin-14 mRNA. The interaction between the lin-4 non-
coding RNA and lin-14 led to translational repression of the latter. The above
phenomenon was reinforced by another research study in C. elegans, where the miRNA
let-7 was identified to target the 3'UTR region and induce suppression of lin-41 gene
expression (10). Let-7 appeared to be conserved in other organisms, supporting the
putative existence and regulatory role of other small non-coding RNA molecules (11).
These early discoveries inaugurated the detection of large numbers of novel miRNA
sequences in various organisms and also established their function as regulators of gene
expression (12). Current studies indicate that more than half of human genes are
regulated by miRNAs.

1.2.1 miRNA Biogenesis

Most miRNAs in mammals are transcribed by RNA polymerase II (RNA polymerase II,
Pol II) (13), while few appear to be transcribed by RNA polymerase III (RNA
polymerase III, Pol III) (14). At the same time a large number of transcription factors
(TFs) associated with Pol II activity are taking part in the transcription process of
miRNA genes (15). More than half of the miRNAs are derived from intragenic loci,
embedded in protein coding introns, while ~45% originate from intergenic transcripts.
The initially generated long primary miRNA transcripts are of thousand kilobases long
(pri-miRNAs) and are 5" capped, spliced and polyadenylated at the 3’ end.

The first stages of pri-miRNA transcript preprocessing are carried out in the cell
nucleus. The pri-miRNAs form local stem-loop structures and usually contain at least
one hairpin structure, termed as miRNA precursor sequence (precursor miRNA, pre-
miRNA). In the primary maturation step, miRNA transcripts are cleaved by RNase III
enzyme Drosha which processes pri-miRNAs into the ~60-100nt hairpin structure of the
miRNA precursor (pre-miRNA) (16). The precursor sequences comprise several bulges
and regions of imperfect complementarity. The rapid cleavage of pri-miRNAs by
Drosha in the nucleus hinders their identification with conventional sequencing
techniques.

During the pri-miRNA cleavage process, Drosha cooperates with DiGeorge syndrome
Critical Region 8 (DGCRS8) in humans and Pasha in Drosophila melanogaster and C.
elegans (17-19). Protein DGCRS8 and Drosha form the Microprocessor complex. Precursor
sequences are subsequently exported from the nucleus to the cytoplasm, where their
nuclear transport is accomplished by exportin-5 (20) and Ran-GTP. miRNA precursors
are cleaved by Dicer enzyme in the cytoplasm, a highly conserved protein found in
most eukaryotes. The produced double stranded mature transcripts are approximately
19-22nt long (21).

miRNA interacts with the RNA-induced silencing complex (RISC) to form the miRNA-
induced silencing complex (miRISC). Both strands of the miRNA duplex-intermediate
can be potentially functional. However, usually one strand (guide strand) accumulates
as the mature miRNA and is loaded into the RISC complex along with a highly
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conserved protein of the Argonaute (AGO) family. The other strand, termed as the
“passenger” strand, is released and degraded. Perfect base pairing between the guide
strand and the mRNA-target can lead to degradation (22), whereas in cases of imperfect
complementarity miRNAs can direct gene silencing by translational repression, which
is accompanied by degradation of mRNA in P-bodies (Processing bodies). Figure 1
summarizes the steps of microRNA biogenesis starting from the miRNA gene
transcription to the mature miRNA function in the cytoplasm.

pri-miRNA
DROSHA/
DGCR8
pre-miRNA
Nucleus
pre-miRNA

% \ Cytosol

=== miRNA duplex
MIRNA [
Y

1

RISC complex

\ mRNA cleavage
Ribosome l

|||||||||||||||||||

Translational repression

Figure 1: Summary of miRNA biogenesis. (1) miRNA gene transcription and formation of the pri-
miRNA, (2) creation of pre-miRNA structures from cooperative Drosha-DGCRS8 activity, (3) pre-
miRNA nuclear export assisted by exportin 5 and Ran-GTP, (4) pre-miRNA is cleaved by Dicer
enzyme to form the mature transcripts. (5) miRNAs loaded in the RISC complex post-transcriptionally
regulate protein coding genes through mRNA cleavage, direct translational repression and/or mRNA
destabilization in the cytoplasm.
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1.2.2 miRNA Function

miRNAs are considered central post-transcriptional regulators of gene expression. As
described in the previous section, mature miRNNA sequences are incorporated in the
RISC complex and induce gene silencing. They target genes usually by partial or
complete base pairing with specific miRNA recognition elements (MREs) on the mRNA
sequences (23). More precisely, miRNA and target gene interactions usually require 6-8
base-paired nucleotides, the so-called seed (24) at the 5' miRNA end. It should be noted
that the degree of base pairing of the miRNA seed region with the mRNA plays a very
important role in the efficiency of the interaction. miRNAs were primarily detected to
effectively target specific mRNA 3' untranslated regions (3’-UTRs), where highly
conserved MREs exist (25). Recent findings showed bona fide miRNA interactions with
MREs located also in 5’-UTR regions as well as within the coding sequence (CDS) (26).

miRNAs play a key role in numerous biological processes such as stem cell
proliferation, division and differentiation, immunity, cell signaling, apoptosis and
metabolism. Apart from their normal role, a large number of studies describe their
implication in a vast array of diseases, such as cancer, viral infections, cardiovascular
diseases, metabolic disorders, autoimmune pathologies, as well as neuropsychiatric
pathological conditions. miRNAs can affect gene expression in various tissues.
Therefore, possible changes in the concentration of miRNAs caused by epigenetic
silencing or deregulated transcription factors, genetic disorders/abnormalities, deletion
and amplification events can lead to the deregulation of their respective target genes
(27-31). miRNAs are therefore intensively studied for their potential as therapeutic
targets.

1.3 Identification of miRNA targets

One of the most important processes in miRNA research is the detection of their targets.
Identification of miRNA-gene interactions can be performed with either computational
approaches or experimental methodologies.

Accurate cataloguing of miRNA targets is crucial to the understanding of their function.
To this end, numerous wet lab methodologies have been developed, enabling the
validation of predicted miRNA interactions or the high-throughput screening and
identification of novel miRNA targets (32). Currently available methodologies can
elucidate different parts of the equation and are often used complementarily in
investigative studies. On the other hand there are multiple programs based on simple to
more sophisticated algorithms that perform target prediction.

Despite the contribution of both experimental methodologies and computational
approaches, a large part of the miRNA targets, even for the well-studied organisms
such as mouse and human, remains unexplored.
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1.3.1 In silico approaches for the identification of de novo miRNA:mRNA
interactions

In silico miRNA target identification is a crucial step in most miRNA-based
experiments, since the miRNA interactome has not yet been adequately mapped, even
for the most well-studied model organisms. Although the available experimental
techniques are utilized to verify genuine targets, the first step in the analysis is the
computational determination of miRNA-gene interactions. Early miRNA-related
research efforts have highlighted the necessity of computational analyses in order to
assist the experimental identification of miRNA targets. This has resulted to the
development of numerous miRNA target prediction algorithms (33), which are now
considered indispensable for the design of relevant experiments. These algorithms
identify in silico miRNA targets as candidates for further experimentation or for
computational processing, such as target enrichment analyses. Predictions of the
available computational algorithms can be acquired from relevant miRNA:gene
interaction databases or web servers (33,34).

The first target prediction program was developed in 2003, following the observation
that miRNAs present high abundance in the cell, and since then more sophisticated
implementations have been developed.

Significant nucleotides for the identification of binding sites are located at the 5' end of
the mature miRNA sequence. Statistical analysis conducted by the group of Lewis and
collaborators revealed certain highly conserved motifs across species in the 3'UTR
region of mRNAs that match 2-7 positions of the miRNA 5 end (35). These 6
nucleotides constitute the so-called seed region of the miRNA, which until now remains
one of the most important features in target prediction (36). Other important features
are considered the evolutionary conservation, dinucleotide base content and structural
accessibility of the miRNA binding site as well as the base pairing stability (37).

Available algorithms can utilize diverse techniques and features, including machine
learning, physics models, target site context and accessibility, pairing stability and
conservation. These implementations often produce diverse outcomes as a result of
their distinct analysis pipelines. Each algorithm is also trained on different experimental
data and utilizes unique sets of features. The best of these algorithms in terms of
performance achieve sensitivity and specificity of approximately 60% and 30%
respectively. Moreover, most of them are trained to provide in silico predictions in the
3’UTR regions of the mRNAs, while very few have been tested for identifying targets in
their 5UTR and coding regions (38,39).
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1.3.1.1 Overview of de novo Target Prediction Algorithms

In the following section, a brief overview of the most widely utilized target prediction
algorithms is provided.

TargetScan (40) is considered one of the first available programs with high sensitivity
and precision. Its algorithm is mainly focused on the identification of miRNA binding
sites with perfect complementarity in the seed region (7 or 8 consecutive nucleotides of
perfect complementarity). Based on experimental evidence, these sites exhibit the
highest repressing activity. Even though TargetScan algorithm follows a seed-
dependent scoring system, it additionally identifies centered and offset 6mer miRNA
sites. TargetScan algorithm provides a context score for each binding site which derives
from a quantitative model that incorporates 14 distinct features, such as the first
binding position on the 5" end of the miRNA, binding type of the target site, local AU
content and 3' supplementary pairing.

It supports an extra mode specifically designed to rank sites from higher to less
conserved target sites based on an aggregate conservation score. These two basic modes
of the TargetScan algorithm can be jointly used for the assessment of the efficacy of each
target site. TargetScan predictions are miRNA-family based, where miRNAs are
clustered according to their seed similarity. The latest version can provide predictions
for miRNAs of miRBase Release 21.

The algorithm has been trained on microarray data with clear siRNA/miRNA induced
repression using a multiple/stepwise linear regression and has been tested in its
efficiency to detect targets in the 3'-UTR region of protein coding transcripts.

miRanda (41) implementation scores the candidate target sites with a support vector
regression algorithm, mirSVR. miRanda/mirSVR is specifically trained to identify
potent repressing miRNA interactions. The model takes into account binding site
complementarity, conservation, binding energy, site position in 3'UTRs and A/U
flanking content. It was trained on a set of nine miRNA transfection experiments
performed on HelLa cells. miRanda utilizes a pre miRBase 18 miRNA nomenclature.

MIRZA-G (42) is a recently developed target prediction algorithm able to detect both
canonical and non-canonical miRNA binding sites and siRNA off-targets. Features such
as, the flanking nucleotide composition, site structural accessibility, location within the
3'UTR and evolutionary conservation are deemed important for this algorithm. miRZA-
G algorithm is based on a generalized linear model that additionally incorporates
duplex base binding energy measurements derived from the MIRZA biophysical model
(43). The training and the testing of miRZA-G model performance was evaluated
against a set of 26 miRNA transfection microarray datasets. MIRZA-G utilizes miRNA
sequences downloaded from miRBase version 20.

mirMark (44) is a computational framework that incorporates multiple characteristics
of miRNA binding sites in order to assess putative miRNA-mRNA 3"UTR interactions.
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Subsequently, the model utilizes distinct levels of classification for the evaluation of the
binding sites and miRNA-mRNA interactions, respectively. The authors selected a
random forest learning scheme for having the best performance for these two separate
classification levels. The initial detection of miRNA-targeted regions is accomplished
with the miRanda algorithm. Decisive features for mirMark performance are considered
the base pairing, the nucleotide composition, the site structural accessibility and
evolutionary conservation. The model has been trained on negative instances of mock
miRNA-gene interactions as well as on positive experimentally supported miRNA-
mRNA interactions retrieved from miRecords (45) and miRTarBase (46). Finally, the
algorithm’s performance has been tested on PAR-CLIP data. miRNA sequences utilized
by miRmark are obtained from miRBase release 19.

mBSTAR (47) is a multiple instance learning framework developed for the
identification of miRNA-gene interacting pairs. The mBSTAR model incorporates a
random forest classifier utilizing 40 distinct features, such as nucleotide frequencies,
duplex structure internal loops, bulges, and minimum free energy. The training and the
testing of the algorithm was assessed on experimentally derived miRNA-mRNA
interactions from miRecords (45), Tarbase v6.0 (7) and starBase (48). mBSTAR supports
miRNAs obtained from miRBase release 20.

MirTarget (49) is a computational model that identifies canonical miRNA seed binding
events in mRNA targets. The algorithm has been applied in 5 different organisms
(human, mouse, rat, dog or chicken). MirTarget predictions are being deposited in
miRDB web server (http://mirdb.org). It adopts an SVM-recursive feature elimination
approach (RFE) in order to detect the most prominent independent features. The model
incorporates several features, such as the target site conservation, accessibility
(calculated with RNAfold), nucleotide usage per duplex position, location on the 3'UTR
as well as other 3’'UTR related characteristics. Although it has been developed based on
3'UTR characteristics, it also provides predictions for CDS and 5 UTR regions.
MirTarget has been trained on canonical chimeric miRNA-target pairs derived from
CLIP-Seq experiments (50,51). The testing of this implementation was performed on
miRNA inhibition microarray datasets.

Initial research efforts have unveiled that miRNAs regulated gene expression through
their binding on the 3'UTR of protein coding genes (6). However, accumulated
experimental evidence has revealed that miRNA binding sites within coding sequences
are also functional in controlling gene expression (52).

PACCMIT/PACCMIT-CDS (53) (Prediction of ACcessible and/or Conserved
MlcroRNA Targets) is a recently developed algorithm that comprises two modules for
the prediction of miRNA binding sites (with seed complementarity) on the 3'UTR and
CDS regions of the mRNAs. Candidate miRNA binding regions are pre-filtered based
on their structural accessibility and/or evolutionary conservation. Subsequently, the
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predictions are scored following a Markov model that includes the information of the
overrepresented targets versus a random background. PACCMIT includes the
information of weakly and highly conserved miRNAs as introduced from TargetScan
algorithm. The model has been trained and evaluated on proteomics and PAR-CLIP
data.

DIANA-microT-CDS (54) is specifically trained on both 3'-UTR and CDS regions. The
experimental positive and negative sets of MREs are derived from PAR-CLIP data
performed in HEK293 cells (26). Candidate miRNA binding sites are subsequently
combined in a general linear model trained on a set of 13 distinct microarray datasets
that measure mRNA expression changes following transfection or knockout of a
specific miRNA. The algorithm identifies (non)canonical 6mer to 9mer binding sites in
3’UTR and CDS regions. Target sites with buldges, G:U wobble, seed mismatches that
correspond to non-canonical bindings are supported by additional 3’ pairing. Features
of great importance for the microT-CDS algorithm are the target conservation, site
accessibility that is estimated with Sfold program, binding free energy as calculated
with RNA-Hybrid, AU flanking dinucleotides and the binding type. The algorithm
adopts distinct conservation score models for the CDS and 3'UTR regions in 30 and 16
species, respectively. microT-CDS provides a final score for each miRNA-gene
interaction combining the synergistic efficiency of MREs detected in CDS and 3'UTR
results with a general linear model.

Further details on the microT-CDS algorithm and the utilized training sets, can be
found in the relevant publication by Reczko et al. (38). DIANA-microT-CDS provides
increased accuracy and the highest sensitivity at any level of specificity over other
available state-of-the-art implementations, when tested against pulsed stable isotope
labeling by amino acids in cell culture (pSILAC) proteomics datasets (55) and HITS-
CLIP data . microT-CDS adopts a miRBase v18 nomenclature.

1.3.2 Experimental Methods for the identification of miRNA:mRNA interactions

Experimental techniques are usually divided into low yield and high-throughput
methods, depending on their application scope and the number of obtained results per
experiment. The most commonly used low yield techniques are reporter genes, qPCR
and western blotting. Reporter genes are used for binding site validation, while qPCR
and western blot or ELISA assays are usually combined to identify interactions that
induce mRNA decay and/ or translation suppression.

The first high-throughput techniques that became available could be considered as an
increased throughput/lower accuracy version of specific techniques (56). Microarrays
can be utilized to identify possible miRNA-gene interactions, as a high-throughput
version of qPCR and northern blotting, while quantitative proteomic techniques can be
seen as a high yield generalization of ELISA assays and western blots. Novel NGS
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experiments have offered a high-throughput/increased accuracy combination that has
revolutionized the way we identify miRNA-gene interactions. These techniques are
based on NGS sequencing of mRNA sites bound by the Argonaute (AGO) protein and
are often accompanied by sequencing of small-RNAs, as well as complementary
experiments such as RNA-Seq and ribosome profiling (26,57).

HITS-CLIP  (High-throughput sequencing of RNA isolated by crosslinking
immunoprecipitation) was the first technique that offered for the first time a
transcriptome-wide map of miRNA binding sites (57). The identified regions are
usually wide and perplex the identification of the exact miRNA binding location, which
is performed algorithmically. PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced
Crosslinking and Immunoprecipitation) is a modified CLIP-Seq methodology,
incorporating 4-thiouridine in the nascent RNAs, which are subsequently detected as T-
to-C transition sites in the AGO-miRNA-RNA cross-linked regions (26). Compared to
the results obtained by HITS-CLIP, the boundaries of the identified binding locations
are sharper and significantly narrower, while T-to-C mutations close to the region
occupied by the RISC complex contribute to the identification of the exact MRE (58).
Despite the accurate detection of the crosslinked region, these methods cannot directly
reveal the specific miRNA participating in the interaction, which has to be
bioinformatically identified. A more recent variant of the PAR-CLIP methodology (51)
as well as the CLASH (crosslinking, ligation, and sequencing of hybrids) and CLEAR
(covalent ligation of endogenous Argonaute-bound RNAs)-CLIP protocols (50,59)
incorporate an extra ligation step, concatenating the miRNA to the mRNA binding
region. The derived chimeric miRNA-mRNA fragments are subsequently sequenced
and bioinformatically separated for the concurrent identification of the targeted
mRNAs, binding sites and interacting miRNAs. Another important distinction between
CLIP-Seq approaches is the reliance on either endogenous or exogenous AGO
expression for the identification of AGO-miRNA-mRNA complexes. Nevertheless, the
class of CLIP-Seq/CLASH experiments can reveal thousands of miRNA-gene
interactions in each analysis and has significantly altered the scope and scale of relevant
research projects.

Each technique has its own merits and disadvantages. An overview of available
experimental techniques is presented in Table 1, along with short comments on their
intended use, obtained results and expected throughput.
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Method Throughput Intended Use

Reporter Genes(32) Low Validation of miRNA:UTR (or binding region)
interaction

Northern Low Relative effect of miRNA on mRNA levels

Blotting(32)

qPCR(32) Low Quantification of miRNA effect on mRNA levels

Western Blot(32) Low Relative assessment of miRNA effect on protein
concentration

ELISA(32) Low Quantification of miRNA effect on protein concentration

5' RLM-RACE(32) Low Identification of cleaved mRNA targets

Microarrays(32) High High throughput assessment of miRNA effect on mRNA
expression

RNA-Seq(32) High High throughput assessment of miRNA effect on mRNA
expression

Quantitative . .

) . High throughput assessment of miRNA effects on

Proteomics (e.g. High . .

pSILAC(55)) protein concentration

RPF-Seq High High throughput assessment of ribosome protected
fragments

PARE / Degradome- i High Throughput identification of cleaved mRNA

Seq(60) targets
Pull-down of biotin-tagged miRNAs and estimation of

Biotin miRNA High,/Low bound transcript content using qPCR (Low yield),

tagging(32) microarrays (High throughput) and RNA-Seq (High
Throughput)

IMPACT-Seq(61) High ?ull-dow./vn of. biotin—t?gg.ed mil.QNAs, identification of
interacting pairs and binding regions.

PARE / Degradome- High High Throughput identification of cleaved mRNA

Seq(60) targets

3Life(62) High High Throughput Reporter Gene Assay

miTRAP(63) High miRNA trapping by RNA baiting

High Identification of enriched transcripts (miRNAs and

AGO-IP . . .
mRNAs) in AGO immunoprecipitates

HITS-CLIP(57) High Sequencing of AGO binding regions on targeted
transcripts

PAR-CLIP(26) High Sequencing of AGO binding regions on targeted
transcripts

CLASH(50) / PAR- High Sequencing of AGO binding regions on targeted

CLIP + Ligation(51), transcripts. Production of chimeric miRNA-mRNA reads

CLEAR CLIP (59) for the identification of interacting pairs.

Table 1: Index of experimental techniques utilized for the identification of miRNA-gene interactions.
(Vlachos IS and Paraskevopoulou MD et al, 2014) (64)
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1.3.2.1 Description of a CLIP-Seq protocol

CLIP-Seq techniques, which constitute a combination of AGO immunoprecipitation and
NGS, have revolutionized miRNA-gene interactions research and enabled the detection
of transcriptome-wide miRNA target sites. Typical PAR/HITS-CLIP protocols include
the following steps (Figure 2) (65):

1. Modified nucleoside 4-SU is
incorporated in transcripts

CZ. 365 nm UV crosslinking
& A\ &\ < '\
Y

g VU U
ﬁ‘/h\ ‘:\/'1 ; 'ﬁ\_»z_-\ =~ i - o . —>
&?i'i‘ﬁ el .‘>f!_?;j -
— = == — 3. Cell lysis
RNase treatment
Immunoprecipitation ‘
“\,_,/l
6. RNA extraction, Anti-AgolgG: -+ + magnetic bead
. ¢ ati - ++ +
linker ligation \ 4.3 adaptor ligation
Forward / KDa:

—_— 3’ linker 200 | ==

U 150 Ago Complex
IxT - [ | >1§0kDa P
5’ linker — ,
Reverse 100 | = | ~110kDa OH5

7. Reve-rs? 5. SDS-PAGE
transcription nitrocellulose transfer Y .
75 | =— C ) magnetic bead
8. PCR autoradiography
5 9. High-throughput Sequencing

¢

Figure 2: Steps followed in a typical PAR-CLIP-Seq experiment. (Copyright Paraskevopoulou MD)

PAR-CLIP requires the incorporation of photoactivatable thioribonucleosides (4SU)
into nascent transcripts.

e Crosslinking by using long-wavelength 365 and 254 nm UV in PAR-CLIP and HITS-
CLIP respectively.

o Celllysis.

e Isolation of crosslinked RNA-AGO complexes is achieved by immunoprecipitation.
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e Sample processing by a ribonuclease (RNase) in order to partially digest the
covalently bound RNAs.

e Radiolabeling of RNA segments crosslinked to immunoprecipitated AGO proteins.
e 3’ adapter ligation.

e Crosslinked AGO proteins are further purified by SDS-PAGE. After recovery of the
RNA from the purified radioactive band the RNA is carried through a small RNA
cDNA library preparation protocol for sequencing.

e The co-purified RNA molecules are reverse-transcribed and amplified with the aid
of 5" and 3" adaptors.

e In PAR-CLIP experiments, the reverse transcription of the crosslinked-modified
RNAs followed by PCR amplification, leads to a characteristic mutation that is used
to identify the AGO binding sites (T-to-C when using 45U and G-to-A when using
6SG).

14 State-of-the-art implementations for AGO-CLIP-Seq analysis.

PARalyzer (66) is considered the first model dedicated to the analysis of PAR-CLIP
data. It was not developed though to identify miRNA binding sites from AGO PAR-
CLIP. It is a generic model that identifies enriched regions for RNA-binding proteins
from the analysis of PAR-CLIP deep sequencing data. PARalyzer adopts a kernel
density estimator to quantify thymine-to-cytosine transitions. The kernel density
approach is applied to crosslinked regions with normalized read counts and values of
T-to-C conversions along with relative background signal estimations. Notably, for the
detection of binding events this implementation has to be complemented with other
algorithms such as cERMIT (67), mEAT (26) and MEME (68) depending on the intended
use.

There are other algorithms similar to PARalyzer such as CLIPZ (69), miCLIP (70) and
Wavcluster (71) that can be utilized to identify candidate RBP binding regions from the
analysis of PAR/HITS-CLIP sequencing data.

MIRZA (72) is a biophysical model that has been designed to identify miRNA binding
sites in Ago2-bound enriched regions. Model parameters have been deduced from
PAR-CLIP AGO CLIP-Seq datasets. MIRZA implementation adopts 27 distinct energy
parameters for the assessment of putative miRNA-transcript duplexes and assigns
position-dependent binding energies. It predicts the frequencies with which RISC
complexes are associated to different mRNA fragments and calculates a ‘binding site
quality’ quantifying miRNA total affinity for each targeted fragment. Decisive features
for MIRZA-adopted scoring scheme include, base pairing, base energies in the miRNA
seed region (position 2-7) as well as energies at the 3° compensatory base-pairing
(positions 13-16) and 18-19 positions. It takes into consideration several other
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parameters such as, the (a)symmetric loops and bulges formed in miRNA-target
hybrids, mRNA fragment abundance as estimated from the CLIP-Seq experiment and
miRNA expression values. The MIRZA model additionally identifies non-canonical
miRNA sites.

The algorithm utilizes a simulated annealing approach for the optimization of 100
parameters, starting from random initializations. It has been trained on 2,988
crosslinked regions derived from four Ago2-PAR-CLIP datasets (73) and evaluated
against 38 transfection microarray datasets comprising 26 distinct miRNAs. It has been
compared against several other implementations that perform de novo miRNA target
prediction and do not depend on CLIP-Seq experiments. The model presents some
limitations, such as it discards miRNA sequences shorter than 21 nucleotides and
requires AGO bound fragments to have 30-51 nts length and to be centered at the most
abundant T-to-C crosslinked position/nucleotide. Moreover, it does not immediately
process CLIP-Seq data but requires the input files in the specified format to be prepared
by the user.

PARma (74) is a more recent implementation specifically designed to analyze PAR-
CLIP datasets for the identification of AGO-miRNA binding events. The algorithm
focuses on enriched regions that include T-to-C conversion sites.

PARma initially recognizes clusters of overlapping sequencing reads and subsequently
uses these regions to infer statistically significant overrepresented kmers. Retrieved k-
mers constitute the initial predictions for miRNA-family binding sites, following a seed-
based miRNA clustering, and are subsequently forwarded for further evaluation to the
core algorithm. PARma learning framework adopts 3 distinct/independent
probabilistic models that consider positions of T-to-C conversions, RNase T1 cleavage
sites (guanosines) upstream and downstream of the seed region. A likelihood is
assigned to every putative miRNA binding region within the peak, taking into account
the observed positions of transitions and guanosine cleavage sites. The adopted
learning framework is fitted iteratively with an EM approach to infer required
parameters.

The most probable miRNA seed family is associated with each cluster. Each prediction
is accompanied by Cscore and MAscore scores for the cluster and miRNA activity,
respectively. The first score describes the probability that a cluster is a correct miRNA-
AGO bound region, while the latter reflects the efficacy of the miRNA regulator. The
algorithm may produce at some cases more than one prediction for wider peaks that
may have been produced from distinct clusters in close vicinity with overlapping
spurious reads. PARma implementation has been trained on different PAR-CLIP
experiments on B-cells. It was evaluated against PAR-CLIP datasets of EBV infected
cells, as well as by comparing DG75 and BCBL1 B-cell lines expressing different sets of
miRNAs. BCBL1 is a Kaposi's sarcoma-associated herpesvirus (KSHV) infected cell line
presenting 25 distinct virus encoded miRNAs. Notably, PARma can perform parallel
analysis of multiple PAR-CLIP datasets.
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microMUMMIE (75). The group that initially developed PARalyzer, subsequently
designed microMUMMIE algorithm to specifically address miRNA activity through the
analysis of PAR-CLIP data. The model depends on PARalyzer predicted clusters which
are provided as input to the microMUMMIE algorithm. The latter framework is
preferentially applied to transcript 3" untranslated regions.

microMUMMIIE utilizes a six-state hidden Markov model (HMM). More precisely, state
1 corresponds to the background modeling, states 2, 4, 5, 6 model the cluster flanking
regions and state 3 models the AGO enriched region. The fifth state comprises a 41-
metastate submodel that identifies different types of miRNA seed pairing (6mer3-8,
6mer2-7, 7mer-m8, 7mer-ml, 7mer-Al, 8mer-Al and 8mer-ml). The model is
accordingly parameterized in order to prioritize predicted seed bindings near the 3’
cluster ends. miRNA seed complementarity, T-to-C conversions relative to binding
sites, evolutionary conservation and sequence characteristics are deemed decisive
features for this implementation. Shuffled miRNA sequences are included in the model
in order to simulate decoy bindings and evaluate miRNA predicted sites via signal-to-
noise ratios (SNR). Estimates of conservation can be optionally derived from TargetScan
branch-length conservation scores (BLS).

It was trained and evaluated for its predictive accuracy against other algorithms on EBV
infected lymphoblastoid cell lines. In the performed comparisons the authors included
the 100 top expressed miRNAs.

1.5 Databases of miRNA-mRNA interactions

Low vyield and especially high-throughput experimental techniques have already
identified hundreds of thousands of miRNA-gene interactions in different taxa, species,
tissues, cell lines and experimental conditions. This wealth of information is fragmented
and hidden in thousands of manuscripts, supplemental materials, figures and raw NGS
datasets.

DIANA-TarBase (76) was initially released in 2006 and was the first database aiming to
catalogue published experimentally validated miRNA-gene interactions. Since then, a
handful of similar projects (45,77) index and map experimentally identified miRNA
interactions utilizing manual article curation, in order to maintain a high quality level of
database entries. The sixth version of DIANA-TarBase (rel. Dec 2011) (56) inaugurated a
new generation of such projects, incorporating for the first time novel methodologies,
including CLIP-Seq experiments. The release of DIANA-TarBase v6.0 increased the
available target space by 16.5 - 175-fold, to 65,000 manually curated experimentally
validated interactions. This radical increase in collected interactions was a prelude of
the upcoming paradigm shift introduced by the new high-throughput methods.
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The current release, DIANA-TarBase v7.0 has pushed the envelope further and
provides more than half a million entries derived from 28 different low/high
experimental methodologies, 356 cell types and 59 tissues. More than 250 miRNA-
related NGS datasets have been analyzed and approximately 7,500 validated specific
miRNA-gene interactions have been indexed in 24 species.

miRTarBase (46) is the only similar database that has allocated resources to the curation
of targets from high-throughput experiments. The last available version (release 6, Sep
2015) hosts 366,181 entries derived from low yield as well as high-throughput
experiments. miRTarbase interactions include ~22,500 genes and >3,500 mature
miRNAs from 18 different species. Other databases are updated less frequently or
catalogue significantly smaller sets of interactions. miRecords (45) was first deployed in
2009 and focuses mostly on curating interactions from low yield experiments. The last
update of the database (Apr 2013) comprises 2,705 interactions with 2,028 derived from
low yield methodologies. There are also databases hosting CLIP-Seq sequencing results
and/or that enable the online analysis of such datasets, such as starBase(48) and
CLIPZ(78). These databases differ significantly from the aforementioned repositories,
since their aim is to catalogue CLIP datasets and binding regions from any RNA
binding protein (RBP).

1.6 LncRNAs

Recent transcriptome-wide NGS studies unveiled a large number of IncRNA transcripts
and introduced their regulatory roles in the cell (79). LncRNAs are typically longer than
200nts, and are characterized by compartmental, tissue, disease and developmental
stage-specific expression. Even though they generally exhibit poor sequence
conservation, and were initially considered "transcriptional noise”, recent studies have
described IncRNA conserved function (80-85). There are several examples of well-
characterized IncRNAs such as Xist and Air that present intrinsic functions, despite
their low primary conservation (85).

LncRNAs are spatially classified into four main categories (sense, antisense, intergenic,
bidirectional) according to their loci of origin and transcription orientation as compared
to protein coding genes (86,87):

eSense or antisense: IncRNAs overlapping non-intronic parts of protein-coding
genes, located in the same or the opposite strand.

eSense or antisense intronic: IncRNAs overlapping intronic parts of protein-coding
genes, located in the same or the opposite strand.

e Bidirectional: transcribed in a “head to head” orientation and located in close
proximity to a protein-coding gene.

e Intergenic: IncRNAs located exclusively within intergenic regions.

Maria D Paraskevopoulou 44

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs

@ Protein-coding
B IncRNA

sense intronic

Bidirectional

Intergenic -

antisense

Figure 3: Spatial classification of IncRNAs into four main categories (sense, antisense, intergenic,
bidirectional) according to their loci of origin and transcription orientation as compared to protein
coding genes. (Copyright Paraskevopoulou MD)

LncRNAs have common characteristics with the protein coding transcripts. Many
IncRNAs are polyadenylated, 5 capped and spliced. Most IncRNAs transcribed by
RNA polymerase II, and few of the RNA polymerase III (82). Their low abundance is
probably connected with the underestimation of IncRNA transcript length and number
of exons (88). Even though they generally do not have a clearly defined open reading
frame (ORF) (87) and any coding ability, recent studies used ribosome profiling and
revealed that some of them may encode short peptides (89). Table 2 summarizes the
main similarities / differences of mRNA with IncRNA.

Characteristics mRNA IncRNA
Function protein coding regulatory, structural roles
ORF Yes few or no ORF
Cap structure Yes yes /no
Polyadenylation Yes Yes
Translation Yes No
Splicing Yes Yes /No
Subcellular localization cytoplasm predominantly nucleus,
cytoplasm
Conservation highly conserved less conserved than protein

coding genes

Table 2: Comparison of IncRNA-mRNA characteristics.
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1.6.1 IncRNA Functions

LncRNAs exhibit numerous functions, many of which are under debate or remain to be
uncovered (90). They perform different roles in all cell compartments, controlling gene
expression in cis and/or trans by participating in almost every known level of
regulation. IncRNAs promote chromatin modifications, mediating gene silencing; can
act as guide molecules and scaffolds for proteins, contributing to the formation of
cellular substructures; they are also shown to control protein synthesis, RNA
maturation and transport (91,92); some of them encode small non coding RNAs.

a. Identification of IncRNAs that regulate miRNA transcription

LncRNAs (such as Meg3, Dleu2, H19, Ftx, etc) can function as pri-miRNA host genes
(93). Genomic regions where miRNA transcripts and IncRNAs overlap can have
dual/multiple functionality. Different biological processes can either trigger IncRNA
function or promote the activation of the miRNA biogenesis pathway. Several well-
known polycistronic miRNA gene clusters, including members of let-7 family, derive
form intergenic regions that also encode IncRNAs.

The characterization of pri-miRNA transcripts remains widely unknown and is
hindered by practical obstacles (94). The rapid cleavage of primary miRNA transcripts
by Drosha enzyme in the nucleus does not allow complete transcript annotation with
conventional approaches. microTSS (94) is a versatile computational framework that
enables tissue specific identification of miRNA transcription start sites. Its current
version requires RNA-Seq datasets in order to detect expressed regions upstream of
miRNA precursors. The area around the 5 of the RNA-Seq signal is scanned for
H3K4me3, Pol2 and DNase enrichment, corresponding to putative regions for pri-
miRNA transcription initiation. The candidate miRNA promoters are scored based on 3
distinct SVM models, trained on deep sequencing data.

The annotation of intergenic pri-miRNA transcripts with microTSS can enable the
identification of overlapping IncRNAs, the revision of IncRNA and pri-miRNA
annotation that in many cases is considered incomplete, the detection of common
IncRNA - miRNA promoter regions as well as further support IncRNA-centered
functional analyses. This machine learning approach outperforms any other similar
existing methodologies and can be easily applied on any cell line/tissue of human or
mouse species utilizing RNA-Seq, Chip-Seq and DNase-Seq data. microTSS is available
for free download at www.microrna.gr/microTSS.

b. Experimentally verified miRNA-IncRNA interactions

LncRNAs have also been shown to function as “sponges” coordinating miRNA
function. Most of these interactions take place in the cytoplasm, while there are also
examples of miRNAs targeting IncRNAs in the nucleus. PTEN pseudogene competes its
coding counterpart for miRNA binding; CDR1las/ciRS-7 circular antisense transcript
acts as a sponge by harboring multiple miRNA binding sites, while it is also cleaved in
the nucleus through a miRNA-AGO mediated mechanism; linc-MD1, a muscle-specific
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IncRNA, functions in the nucleus as a pri-miRNA host gene, while it also exports in the
cytoplasm acting in a “target mimetic” fashion for two miRNAs. An extended collection
of functional direct miRNA-IncRNA interactions is described in Table 3.

Several other IncRNA-miRNA indirect interactions have been identified by low
throughput expression experiments that quantify miRNA effect on mRNA levels and
vice versa (95,96). There are also IncRNAs that originate from highly conserved genomic
regions (ultra-conserved regions - UCRs) and are considered candidate miRNA targets
(97). In a recent study, authors utilized lentiviral small hairpin RNAs to suppress 147
IncRNAs. The results of their approach demonstrated that IncRNAs, although mainly
detected in the cell nucleus, appear to be sensitive in AGO-sRNA-mediated regulatory
mechanisms (98).

A significant portion of miRNA-IncRNA interactions remains obscure and unexplored.
To this end, new technological advances and NGS experiments can assist the process of
miRNA (non)coding target characterization.
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Cell Low-
IncRNA . . Species Compartment  throughput
Type/Tissue :
experiment
CDRlas/ miR-671, miR-7 embryonic H. sapiens, nucleus, Reporter, qPCR,
ciRS-7(99-101) kidney, brain M. musculus,  cytoplasm Northern blot
C. elegans,
Zebrafish
HULC(102) miR-372, miR-433-  Liver H. sapiens cytoplasm, Reporter, qgPCR
3p, miR-557, miR- nucleus

622, miR-134-5p,
miR-613, miR-1236-

3p
BACE1- miR-485-5p Brain H. sapiens, cytoplasm Reporter, qgPCR
AS(103) M. musculus
PTENP1(104) sequesters miRNAs Prostate H. sapiens cytoplasm Reporter
that target PTEN
linc- miR-133a, miR- Muscle H. sapiens, cytoplasm Reporter, qgPCR
MD1(105) 135b, miR-206 M. musculus
H19(106-108)  miR-106a, miR-17-  myoblast, H.sapiens, cytoplasm Reporter, qPCR
5p, miR-20b, let-7, muscle, liver, M. musculus

miR-141, miR-200, brain
miR-429, miR-675

MALATI1(109 miR-101, miR-217, ESCC, brain, H. sapiens nucleus Reporter, qPCR

,110) miR-9, miR-125b bladder

GAS5(111) miR-21 Breast H. sapiens, cytoplasm Reporter, qPCR

M. musculus
PCAT-1(112) miR-3667-3p Prostate H. sapiens cytoplasm, Reporter, qgPCR
nucleus

MDRL(113) miR-361 Cardiomyocyte M. musculus ~ nucleus, Reporter, qPCR,
s cytoplasm Northern blot

HOTAIR(114) miR-34a, miR-130a  prostate, H. sapiens, = Reporter, qPCR,
gallbladder M. musculus Northern blot

UFC1(115) miR-34a liver H. sapiens, cytoplasm Reporter, qPCR

M. musculus

HOST2(116) miR-1266,let-7b Ovary H. sapiens - Reporter, qgPCR

Table 3: miRNA-IncRNA experimentally verified interactions from different low yield experimental
techniques. IncRNA target mimetic function has been recorded in the cytoplasm as well as the cell
nucleus. Certain interactions are conserved in more than one species. (Paraskevopoulou MD et al,
2015)(117)
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1.7 ceRNA Activity

It is hypothesized that “competing endogenous RNA” (ceRNA) interactions exist in the
transcriptome (Figure 4). In this level, mRNAs, pseudogenes, and ncRNAs
communicate through a competing language, forming a large-scale regulatory network.
miRNAs have been considered as the controllers of the ceRNA activity. In this large
network of in-between transcript interactions; miRNAs target other RNAs (mRNAs,
pseudogenes, IncRNAs), while the latter may act as sponges for miRNAs, mediating
their regulatory role. To this end, the formation of a complete map of their endogenous
interactions is considered essential. This activity has been reported both in the nucleus
and in the cytoplasm.
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Figure 4: Overview of the ceRNA activity in nucleus and cytoplasm. miRNAs loaded in the RISC
complex post-transcriptionally regulate protein coding genes through mRNA cleavage, direct
translational repression and/or mRNA destabilization in the cytoplasm. IncRNAs compete with
mRNAs for miRNA binding by acting as ’‘sponge’ molecules in both cell compartments.
(Paraskevopoulou MD et al., 2016) (118).

1.8 Databases of miRNA-IncRNA interactions

DIANA-LncBase v1 (119) is considered as the first extensive database dedicated to the
cataloguing of miRNA-IncRNA interactions and provided the largest collection of
experimentally supported entries. LncBase v2 (117) currently hosts more than 10 million
in silico predicted and ~70,000 experimentally supported interactions for an integrative
meticulously curated collection of IncRNA transcripts. The new database enables the
identification of miRNA-IncRNA regulatory interactions in numerous tissues, cell types
and conditions, validated with low vyield or high-throughput experimental
methodologies.
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miRcode (39) hosts predicted miRNA binding sites on human IncRNA transcripts
retrieved from GENCODE v11 (120), while LNCipedia (121) accompanies IncRNA
entries with miRNA canonical predictions by using the MirTarget2 algorithm (122).
starBase (48) provides a collection of binding events for different RNA binding
proteins. For AGO-binding sites, it can intersect miRanda/mirSVR-predicted (41)
miRNA binding sites with the identified CLIP-Seq enriched regions spanning IncRNA
transcripts. NPInter (123) integrates information from other repositories and literature
regarding non coding regulation and interactions, including ncRNA-protein and
ncRNA:miRNA binding events. It supports IncRNA annotation from different
resources, while IncRNA-miRNA interactions are obtained from external databases
such as Starbase. LncReg and IncRNome (124,125) aim to catalogue IncRNA-associated
regulatory events. These databases also host a restricted number of miRNA binding
sites on IncRNAs. These sites are either derived by text mining or are in silico inferred
from high-throughput datasets.

1.9 Pattern Recognition

Pattern Recognition is considered an extremely broad scientific area that aims to detect
and classify entities/objects in noisy and complicated environments. It is an intelligent
machines system utilized for making data-driven predictions or decisions expressed as
outputs. Depending on the type of application these objects can be found in any kind of
format such as image, sound and simple measurements. In this field, different Machine
learning and Statistical Decision Theory methods are utilized (126). The machine
learning field deals with the development of techniques and methodologies, commonly
referred as algorithms that allow computers to adopt learning behaviors. It aims to
change and adapt the software behavior, based on the experience provided by the
analysis of previous cases. Some of the most promising methodologies include,
Artificial Neural Networks (126), Support Vector Machines (126,127) and Random
Forests (128).

Machine learning has a broad spectrum of applications including text classification,
economics, medical diagnosis and bioinformatics.

1.9.1 Machine Learning

Machine learning frameworks are initially developed based on the comprehension of a
features dataset, commonly referred to as the “training set”. The evaluation of a model
on its ability to make the correct decision in an unknown set different from training (test
set), is considered crucial. This ability is known as generalization and is a central goal in
machine learning models (129). The selection of the right training and test sets is pivotal
to a model’s predictive performance. There are different ways to assess and optimize a
model learning process (bootstrapping, cross validation, Jackknife resampling).

Machine learning applications, where the training data are provided along with their
outcomes are referred as supervised. Such cases are further divided in classification and
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regression problems if the training samples are categorized on discrete output classes or
assigned on one or more continuous values, respectively. On the other hand, on
unsupervised learning frameworks (e.g. clustering techniques), the output of the
training instances is not known a priori. In such models, the goal is to perform
exploratory data analysis for the identification of data distributions, rules and patterns
that may enable their clustering into groups. Finally, there are machine learning
approaches termed as “Reinforcement learning”, where the models are interactively
developed from the environment and make decisions based on new data observations
to maximize the reward/gain.

Notably, the process of designing a learning framework can be assisted by prior
knowledge of a theoretic model based on previous observations and experiments.
However, many of the machine learning problems are not coupled with such
information and therefore require exploratory, data-driven analyses. The lack of this
prior model knowledge can be bypassed with the use of advanced non-parametric
methodologies (e.g. Support Vector Machines, Neural Networks etc.).

1.9.2 Machine Learning models

This section aims to indicatively present a series of machine learning models adopted to
support ncRNA related studies and discuss the intrinsic details of how these algorithms
function. In addition, state-of-the-art learning frameworks that were applied during this
thesis are described in the following sections.

1.9.2.1 Generalized Linear Models

Generalized Linear Models (GLM) were introduced by Nelder and Wedderburn (1972)
(130), and are a broad class of models, which is considered as an extension of the
general linear models. This category comprises linear regression, logistic regression and
Poisson regression. A simple GLM model utilizes a linear combination of observed
variables (linear predictor), in order to infer/predict the expected outcome of unseen
inputs (response variable). The response variables can follow an exponential
distribution such as Gaussian, binomial, gamma, Poisson or non-exponential
distributions. The parameters of the models for maximum likelihood derivation are
being calculated iteratively with least squares techniques or Bayesian approaches.
GLMs additionally adopt an invertible linearizing link function to capture the
association between the linear predictors and the response variable.

GLMs can be highly adapted and expanded to more complex and sophisticated
learning models, exhibiting a high plasticity in their analytical properties. However,
they face important restrictions when processing high dimensional datasets.

1.9.2.2 Naive Bayes Classifier (131)

Naive Bayes (NB) Classifier belongs to a family of ML models that have evolved from
the strength and elegance of the Bayes Theorem. This methodology is one of the most
popular among researchers and has frequently demonstrated its usefulness in solving
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difficult bioinformatics problems, many times more accurately than other more
sophisticated techniques. NB adopts a simplistic approach, based exclusively on the
Bayesian theorem and assuming that each parameter is independent and unrelated with
the others. NB seeks to assign in each instance a class that maximizes a product of
posterior probabilities (probability of a class occurrence for a set of features). A general
technique that can be utilized towards this direction is the expectation-maximization
(EM) algorithm. In an NB approach, the prior class probabilities can be assumed equal
or be estimated from the training data. The distribution of features can be either
considered continuous (e.g. Gaussian) or discrete (e.g. multinomial and Bernoulli)

The “naive” independence hypothesis implies that the (non)existence of a variable does
not correlate with the behavior of the others. Even though its foundation is over-
simplistic, in practice it demonstrates robustness and excellent generalization
capabilities. A series of works have been elaborated in order to locate the intrinsic
details of how this simple classifier performs so well in real world situations, including
medical and bioinformatics applications. It has been applied to different miRNA-related
research projects, including miRNA-target prediction (132).

1.9.2.3 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is considered a regression or classification tool for
two or more groups. It is used in ML to identify a linear association between the
features of a model. Using a fairly large number of predictors, the LDA creates optimal
dividing lines between instances that define the identity of each group. This method can
be additionally applied for dimensionality reduction.

1.9.24 Artificial Neural Networks (ANN) (133)

Artificial neural networks are considered as reference supervised/unsupervised
machine learning algorithms for regression and classification. ANNs are mathematical
models capable of nonlinear statistical data processing. Inspired by the structure and
function of mammalian biological neural networks, they comprise interconnecting
artificial neurons of adaptive importance for information exchange. In a supervised
learning context, the weights of these connections are being tailored on the training
data. Weight selection is performed most of the times by the minimization of an error
function relevant to the network architecture. This function is usually a metric,
describing the deviation of real values that serve as targets and the predicted outcome.
ANNSs are characterized by their network architecture, topology, number of hidden
layers and included neurons. The final decision is characterized by the appropriate
weight selection. As soon as the neural network is trained, it exhibits good
generalization ability and robust predictive accuracy. They have been successfully
applied to many different problems in Bioinformatics (134,135).

Notably, ANNs can be efficiently combined to form Ensemble Classifiers and avoid
entrapment in local minima during the training process.
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1.9.2.5 Support Vector Machines (SVMs) (127)

Support Vector Machines are a powerful family of supervised learning methods, used
for classification and regression purposes. They were initially proposed by Vladimir
Vapnik and belong today to the frontline of methodologies in the field of machine
learning. They have been successfully applied in numerous problems and are
considered as some of the most robust methodologies with excellent generalization
capabilities. They belong to the group of kernel based methods that can provide sparse
solutions. In brief, a support vector machine constructs a set of hyperplanes to address
regression or classification problems in a very high or even infinite dimensional space.

Given a classification problem, an SVM aims to define a hyperplane WX+ D that best
separates the classes. In order to find the maximum-margin hyperplane (equivalent to
maximizing 2 /]| w || following specific constraints) that divides the points belonging to
the different classes w, b should appropriately be chosen. It achieves high accuracy by
optimizing the decision hyperplane to be the one that provides maximum margin
between the classes (in case of classification). This classification framework is adopted
for linearly separable hyperplanes. It is possible to use a nonlinear hyperplane by first
mapping the sample points in a higher dimensional space via nonlinear mapping. This
procedure, called a ‘kernel trick/, introduces additional dimensions to enable linear
classification in the transformed space.

Many extensions of the original methodology have been proposed that allow
mislabeled examples (soft margin classifiers), nonlinear support vector classifiers,
multiclass support vector classifiers etc. Common kernels adopted for non-linear SVM
are sigmoid, polynomial and Gaussian radial basis functions (RBF).

They have been applied successfully in a very large variety of problems and are
rigorously researched, since this category of models provides very high performance, in
terms of sensitivity and specificity, and robust generalization.

1.9.2.6 Relevance Vector Machines (RVMs) (136)

Relevance Vector Machines (RVMs) are a classifying method introduced by Tipping,
which is in terms of sparsity equivalent to Support Vector Machines. The main
difference between SVMs and RVMs, is that the second machine learning algorithm is
probabilistic in nature, which is regarded as one of the most important issues in terms
of decision making. It is obvious that when probabilistic classifiers capture the
uncertainty in the prediction they are preferred from the hard point classifiers like SVM.
RVM algorithm proposed by Tipping can achieve significant accuracy, generalize well
and are considered as computationally efficient. The main concept in RVM algorithms
is that they identify the patterns in the training set that seem to be more representative,
which are considered as the Relevance Vectors. These patterns correspond to nonzero
weights and are used in the predicting phase. It has been observed that RVMs exhibit a
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good performance in the classification procedure with similar generalization abilities as
SVMs.

1.9.2.7 Decision trees (137)

Decision Trees are a machine learning framework that assigns observations of variables
to target values (predictions). They can be utilized to address classification or regression
problems. In decision trees, the leaves correspond to the target values that can be
discrete or continuous. In classification trees, the leaves are represented by the
predicted classes or probabilities for the classes. The interior nodes are linked to input
features, while the interconnecting branches describe the possible outcomes of a specific
feature. The learning process in decision trees is accomplished by partitioning and
evaluating the training. This step can be performed either recursively or following other
splitting criteria of the initial dataset into subsets, such as normalized information gain
or entropy. The C5.0 model belongs to the family of decision trees and is an updated
version of previous algorithms (C4.5, ID3). It is faster, more efficient in memory usage
and additional. Moreover, it provides boosted learning to improve the performance of
weak decision trees as well as weighting of variables and misclassified cases. Even
though they do not exhibit exceptionally high accuracy (maybe because of the high
variance of the data), they can often provide robust predictions for different feature
distributions and for datasets comprising missing values and/or correlated features.

1.9.2.8 Random Forests (128)

Random Forests (RFs) are ensemble classifiers that were developed by Leo Breiman and
Adele Cutler. They incorporate multiple models to achieve better predictive
performance. RFs preserve most of the appealing features of the decision trees with the
ability to deal with both classification and regression problems. RFs are considered as a
streamlined version of bagging. The basic concept of the algorithm is that it combines
Breiman’s “bagging” idea and the random selection of features, in order to construct a
set of decision trees with controlled variation. Some of the basic RF characteristics
render the algorithm preferable against other machine learning methods. RF models
can be efficiently applied, since they can process thousands of input variables without
prior feature selection and data preprocessing; define the most appropriate/prominent
set of descriptors (utilized as an alternative feature selection approach); handle datasets
with missing values without downgrading the achieved accuracy. A predicted class in
random forest approach is the one that occurs most frequently as an output by
individual trees. The construction of each tree during the learning procedure is
achieved through a number of specific steps. For instance, if a model has N training
instances and M number of variables in the classifier: m input variables (with m<=M)
are utilized to determine the decision at a node tree. A set of n training instances is
chosen from the pool of N training rows, whereas the rest of the samples are used as the
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test set for error rate estimation. For each node, a set of m random variables is chosen in
order to make the prediction in the specific node. This procedure is carried out for the
definition of the best combination of m variables in the training set. Moreover, each tree
is fully grown and not pruned. While the forest building progresses, the algorithm
estimates the generalization error. Random forests utilize proximities between pairs of
cases in order to detect outliers and provide useful views of the data. In the prediction
phase, each test sample traverses the tree till it reaches a leaf node. The result comes
from the average vote of all trees, since the procedure is iterated over all trees in the
ensemble classifier.

Compared to other machine learning techniques such as SVMs and neural networks,
this classifier has relatively fewer applications in bioinformatics, but is rapidly gaining
popularity.

1.9.2.9 Gradient Boosting Machines (GBMs) (138)

Gradient boosting is a category of highly adaptive ensemble machine learning models
that can be utilized in different regression and classification applications. They are
composed by large /small trees that are sequentially fitted to reweighted versions of the
training data. This breakthrough invention of Freud and Schapire has a different
learning strategy than classic ensemble algorithms such as random forests. GBMs
gradually increase the number of included models, adding a new weak learner on each
iteration, and finally decide based on weighted average voting. More precisely, they
perform sequentially training where initial simple learners fit models to the data, while
subsequent ones analyze the data for error cases of prior learners (error residuals), and
finally try to provide the correct predictions in the following steps. This procedure is
commonly referred as stage-wise additive modeling where the main goal is to minimize
a loss function. Boosting models can vary depending on the different optimization
approaches and loss function distributions (Bernoulli, Poisson, Adaboost, Gaussian, and
Laplace).

GBMs can convert combinations of weighted weak learners into complex predictors,
where the results of new trees represent partial solutions to the entire problem. They
are sensitive to noise and extreme values. There are different ways to leverage trees for
achieving better performance and to avoid overfitting, such as monitoring the number
the included trees. Boosting learners are robust algorithms that often achieve better
accuracy than random forests and bagging algorithms.

1.9.3 Feature Preprocessing

The preprocessing of a dataset’s features is often necessary for many predictive models
and is commonly used in cases requiring dimensionality reduction and elimination of
outliers. In many machine learning frameworks, the initial variables set is often
transformed in a new feature space to achieve their easier interpretation as well as
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increased model performance. Features may also be preprocessed, not only for
dimensionality reduction but in order to facilitate faster computations.

Spatial sign transformation is a relatively new method, which was proposed in 2006 by
Serneels and partners (139). This process projects the predictors into a multidimensional
sphere. The transformed features present a more robust behavior to outlying
observations. This technique locates all sampled variables in equal distance from the
center of a sphere. An interesting characteristic of this process (in contrast to
conventional methods, such as centering / scaling) is that the predictive parameters are
independently transformed simultaneously and not sequentially. This technique is able
to increase the performance of a learning method without the removal of predictors.

1.9.3.1 Methodologies for parameter Selection

In machine learning applications a common issue is that when increasing the number of
measured parameters, it forces the necessity to further increase the number of studied
instances, in order to provide accurate predictions. This is often described as “the curse
of dimensionality”. To circumvent this problem, since it is often technically unfeasible
in terms of resources and time to increase the instances accordingly, a variety of
methods has been devised for selecting the most prominent descriptors. These methods
are considered indispensable components in demanding machine learning problems.

Exhaustive search of predictors is considered as a computationally challenging
approach for parameter selection. In exhaustive search, all possible subsets of features
are evaluated for their performance. Other methods adopt search algorithms and/or
utilize score functions to assess the predictive accuracy of subset of features. In many
applications, stepwise regression is used to identify promising variables. Moreover, one
popular machine learning approach is to combine a Recursive Feature Elimination
algorithm to identify the most informative features and iteratively evaluate the
performance of Support Vector Machines following lowly weighted predictor removal.
For the development of machine learning models it is also highly recommended to
reduce features presenting high correlation and to remove non-informative predictors
that exhibit near to zero variance. Other techniques that are utilized towards this
direction are presented below.

Filtering / selection methodologies (e.g. distance Kullback-Leibler, Wilcoxon's exact
test, ROC AUC, etc) evaluate and rank every parameter individually based their
predictive accuracy. Disadvantage of these methodologies is that they reflect the
behaviors of parameters in one dimension, ignoring the other measured data and their
in-between associations.

Information gain methods for feature selection. For a particular set of descriptors,
feature selection can be accomplished using the information gain measure of Quinlan
(137). This measure considers that higher information is associated with higher
separation ability (e.g. active/inactive compounds). Higher information gain is related
to lower information entropy of the subsets defined by the presence and absence of
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particular features. Another commonly used approach for feature selection is the
minimum-redundancy-maximum-relevance (mRMR) (140). It enables the identification
of sets of non-redundant features through association, distance and mutual information
measures.

Methodologies for extracting novel parameters. These methodologies usually combine
the measured characteristics/features in order to extract new variables presenting
higher predictive accuracy. Often, the results of these methodologies can be used for
selecting the most informative variables and transform the data into a smaller subspace
comprising uncorrelated or independent descriptors. Typical algorithms that can be
utilized for this purpose are principal component analysis (PCA), discriminant analysis
and independent component analysis (ICA).

Optimization Algorithms. They are considered methodologies that can identify the
most prominent parameters by optimizing the performance of an algorithm. Genetic
algorithms (GAs), swarm optimization algorithms, search algorithms (e.g Best-first
search) etc. belong to this class of techniques.
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2. Methods

This section provides a complete overview of the implemented computational
approaches for the identification of miRNA-mRNA-IncRNA endogenous interactions
and their functional interpretation. The algorithmic steps described in the following
sub-sections can be summarized accordingly:

1.Identification of in silico predicted miRNA targets. Development of a microT web
server for the indexing of miRNA-mRNA interactions.

2.Formation of automated analysis pipelines for functional analysis of miRNA
targets and the seamless interconnection of workflows with the DIANA microT
web server.

3.Development of a DIANA-Taverna Plug-in and deployment of DIANA-related

services.

4. In silico analysis of raw (small)RNA-Seq datasets and AGO-CLIP-Seq libraries for
the identification of miRNA-gene interactions.

5.Applied methods for the development of DIANA-TarBase v7, a database
dedicated to the cataloguing of experimentally derived miRNA-mRNA pairs.

6. Applied methods for the release of DIANA-LncBase v2, a repository devoted to
the indexing of experimentally supported miRNA-IncRNA interactions.

7.Evaluation of the LncBase/Tarbase AGO-CLIP-Seq algorithm for miRNA target

identification.
8.Implementation of a Novel Algorithm for AGO-CLIP-Seq data analysis.

a.  Collection of numerous low/high throughput experiments to reveal the
impact of miRNA targeting on gene expression and to deduce putative
positive/negative miRNA-target interactions.

b.  Compilation of a training set comprising positive and negative CLIP-Seq-
guided miRNA binding sites.

C. Feature extraction and assessment.

d. Proposed learning framework for the identification of miRNA targeted
regions through the analysis of AGO-CLIP-Seq data.

e.  Evaluation of the proposed algorithm.
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21 Computational identification of miRNA-target interactions

Collected Transcripts.

Ensembl v75 has been utilized for protein coding transcript annotation, while miRNA
identifiers and sequences were obtained from miRBase v18 nomenclature (141).

Annotation for IncRNA transcripts was derived from GENCODE v21 (120). GENCODE
provides the largest available collection of high quality IncRNA transcripts, spatially
classified into four main categories (sense intronic, sense overlapping, antisense and
intergenic) according to their transcription orientation and locus of origin relative to
protein coding genes. Transcripts annotated as ‘processed transcripts” also clustered in
the larger IncRNA family were included in the performed analyses. The finalized
IncRNA collection includes all GENCODE indexed transcripts as its main annotation,
and also integrates IncRNAs contained in RefSeq (142) and the publication of Cabili et
al. (88) presenting less than 90% sequence similarity with GENCODE entries. This
integration was essential due to the highly dissimilar spliced transcripts that exist
between different IncRNA resources. The final set of IncRNA transcripts comprised
1,830 sense, 10,201 antisense, 18,029 long non-coding intergenic RNAs (lincRNAs) and
2,163 processed transcripts for Homo sapiens. The respective set for Mus musculus
consisted of 399 sense, 2,642 antisense, 4,542 lincRNA and 1,689 processed transcripts.

2.1.1 In silico predicted interactions.

miRNA-mRNA in silico predicted interactions. In silico target prediction for human and
mouse spliced mRNA sequences was performed using DIANA-microT-CDS algorithm
(54).

miRNA-IncRNA in silico predicted interactions. In silico target prediction for human and

mouse spliced IncRNA sequences was performed with an appropriately adjusted
DIANA-microT algorithm (54). MREs were scored separately and each miRNA:IncRNA
interacting pair was characterized by a cumulative score which signifies the interaction
strength.

2.2 Methods for the development of DIANA-microT web server

One of the major aims of this thesis goals was to specify a comprehensive catalogue of
miRNA-mRNA in silico interactions. To this end, DIANA-microT web server v5 was
implemented to provide a reference archive of computationally predicted miRNA-
mRNA interactions.

DIANA-microT web server (http://www.microrna.gr/webServer) is dedicated to

miRNA target prediction/functional analysis and it is being widely used from the
scientific community, since its initial launch in 2009. During the thesis course, DIANA-
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microT v5.0 (54), the new version of the microT server, has been significantly enhanced
with an improved target prediction algorithm, DIANA-microT-CDS (38). The new
algorithm microT-CDS can identify miRNA targets in 3'UTR, as well as in CDS regions.
microT-CDS is the only algorithm available online, specifically designed to identify
miRNA targets both in 3" untranslated region (3'UTR) and in coding sequences (CDS).

2.2.1 Release of DIANA-microT web server v5

The web server was completely redesigned, in order to host a series of sophisticated
workflows, which can be used directly from the on-line web interface, enabling users
without the necessary bioinformatics infrastructure to perform advanced multi-step
functional miRNA analyses. DIANA-microT web server v5.0 also supports a complete
integration with the Taverna Workflow Management System (WMS) (143), using an in-
house developed DIANA-Taverna Plug-in. This plugin provides ready-made modules
for miRNA target prediction and functional analysis, which can be used to form
advanced high throughput analysis pipelines.

2.2.2 Formation of Automated Analysis pipelines

As high-throughput data have become the new backbone of biological research, there is
an increasing need to support advanced high throughput analysis pipelines. DIANA-
microT web server v5.0 was completely redesigned in order to provide the necessary
building blocks to easily incorporate miRNA functional analyses in complex pipelines.
The new DIANA-microT web server facilitates users not having access to extensive
computational infrastructures and support, in order to perform ready-to-deploy
sophisticated analyses.

A series of workflows have been prepared, which can be used as standalone modules,
as a foundation for custom pipelines or to be incorporated into pre-existing algorithms.
These pipelines can be utilized to analyze user data derived from small scale and high
throughput experiments directly from the DIANA-microT web server interface, without
the necessity to install or implement any kind of software. For the identification of
miRNAs having functional impact in differentially expressed genes, the user can
specify the species and two lists of differentially expressed mRNAs (microarray/RNA-
Seq) and miRNAs (microarray/sRNA-Seq), respectively. The gene list has to contain
ENSEMBL gene identifiers, while the miRNA list should be composed of miRNA
names/identifiers according to miRBase nomenclature. miRNA and gene identifiers can
optionally be followed by fold change values. In this case, the workflows automatically
match suppressed genes with overexpressed miRNAs (and vice versa).

Detailed descriptions of the automated analysis pipelines are provided in the relevant
results section.
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2.2.3 DIANA-microT web server integration with Taverna WMS

DIANA-microT web server enables advanced users to create novel or to enhance
existing pipelines with miRNA target identification and functional analysis tools. To
this end, DIANA-microT web server v5.0 provides a complete integration with the
Taverna Workflow Management System, using our in-house developed DIANA-
Taverna Plug-in.

2.2.3.1 Description of the DIANA-Taverna Plugin Services
DIANA-microT-ANN (v4) service. The user can directly access the web server and

identify miRNAs predicted to target selected genes AND/OR to find gene targets of
selected miRNAs. The input/output ports of the DIANA-microT-ANN (v4) service are
described below.

Gene_List miRMA_List Species threshold
DIAMA-microT w4 (microT-ANN)

Interactions | Participating Genes | Participating miBNAs | report

Figure 5: DIANA-microT-ANN (v4) service

The user has to specify the input ports of the DIANA-microT_v4 (microT-ANN) service
in the Taverna plugin:

e Gene_List: DIANA-microT_v4 can be queried using a gene name/identifier or with
a list of gene names/identifiers (gene names OR Ensembl v69 gene ids separated
by a carriage return / newline character). Example value: FBgn0086758.

e miRNA_List: DIANA-microT_v4 can be queried with a miRNA name/identifier,
or with a list of miRNA names/identifiers (miRNA names OR MIMAT ids are
separated by a carriage return / newline character). Example value: dme-let-7-
5p.

e threshold: A prediction score cut off value for presented predictions, ranging
from 0.3 to 1. If no threshold is defined by the user, prediction results are
provided for a default value of 0.7.

The output ports (provided results) of the DIANA-microT_v4 (microT-ANN) service in
the Taverna plugin are presented below:

e Interactions: Predicted microRNA-gene interactions.

e Participating Genes: Ensembl v69 gene ids of the targets present in the predicted
interactions.

e Participating miRNAs: mature miRNA names (miRBase v18) of the miRNAs taking
part in the predicted interactions.

e report: General information about the provided results.
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DIANA-microT-CDS (v5) Service. DIANA-microT-CDS service follows the exact same
syntax as DIANA-microT v4, presenting the same input/output ports as shown below.

Gene_List miRMA_List Species threshold
DIAMA-microT w5 (microT-CDS)

Interactions | Participating Genes | Participating miBNAs | report

Figure 6: DIANA-microT-CDS (v5) Service

DIANA-TarBase v6.0 Service. This is a service to query directly DIANA-TarBase v6.0, the
database indexing manually curated experimentally validated miRNA-gene

interactions. The user can perform a query by using a gene name or Ensembl gene
identifier (preferred) AND/OR miRNA name (miRBase 18+ nomenclature) / MIMAT
ID. The input ports of the DIANA-TarBase v6.0 service are described below.

Gene_List miRMA_List Species
DIANA-TarBase v6.0

Experimental Interactions | Participating Genes | Participating miRNAs | report

Figure 7: DIANA-TarBase v6.0 Service

The user has to specify at least one of the input ports of the DIANA-TarBase v6.0
service in the Taverna plugin:

o Gene_List: DIANA-TarBase v6.0 can be queried with a gene name/identifier or
with a list of gene names/identifiers (gene names OR Ensembl 69 gene ids
separated by a newline character). Example value: TUSC2.

e miRNA_List: DIANA-TarBase v6.0 can be queried with a miRNA name/identifier
or with a list of miRNA names/identifiers (miRNA names OR MIMAT ids are
separated by a newline character). Example value: hsa-let-7a-5p.

DIANA-miRPath v2.1 service. This service queries DIANA-miRPath server and identifies
significantly targeted pathways by the selected miRNA(s). The miRNA-gene

interactions can be derived directly from TarBase or can be computationally predicted
using DIANA-microT-CDS. In case where more than one miRNAs are queried, DIANA
miRPath identifies significantly targeted pathways by assessing the combinatorial effect
of the selected miRNAs. The input/output ports of the DIANA-miRPath service are
described below.

Gene Filtering [ List miRNA - Validation l Merging Genes | Merging Pathways [ Species | Statistics Conservative [ Statistics FDR | threshold_microT
DIANA-miRPath_v2.1

miRNAs-Pathways | Pathways | report

Figure 8: DIANA-miRPath v2.1 service
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The user has to specify at least one of the input ports of the DIANA-miRPath service in
the Taverna plugin:

o Gene filtering: A url to a file containing a list of gene name/identifiers separated by
a newline character. The user can upload to a public url a predefined list of genes
that are expressed in investigated tissues. MiRNA targets will be automatically
tiltered based on this list and will use only the expressed subset of genes for the
pathway enrichment analysis.

e List miRNA - Validation: DIANA-miRPath can be queried with a miRNA
name/identifier followed by the source of interactions (Tarbase or microT-CDS)
or with a list of miRNA names/identifiers, each accompanied by the relevant
interaction source (miRNA names OR MIMAT ids - interaction source pairs are
separated by a newline character). miRNA name - interaction source terms can
be separated by commas, spaces or tab characters. If no interaction source is
provided for a miRNA then the service enables the microT-CDS as a default.
Example value: hsa-mir-125b-5p Tarbase.

e Merging Genes: union/intersection

o Merging Pathways: union/intersection
e Species: E.g. human, mouse

e Statistics Conservative: true/false

e Statistics FDR: true/false

e threshold_microT: A cut off value for presented predictions (when microT-CDS is
utilized as an interaction source), ranging from 0.3 to 1.

The output ports (provided results) of the DIANA-miRPath service in the Taverna
plugin are the following:

e miRNAs-Pathways: DIANA-miRPath results, containing information such as
Pathway KEGGid, Pathway description, Number of Associated genes, Gene
Names, pValue Participating miRNAs.

e Pathways: A list with the pathways KEGGids significantly targeted by the selected
miRNA(s).

report: General information about the provided results.

Maria D Paraskevopoulou 63

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs

2.3 AGO-CLIP-Seq guided analysis for miRNA-target identification

The complex network of miRNA-IncRNA-mRNA regulatory machinery is difficult to be
determined by exploring individual pairs of interactions. To this end, an in house
algorithm was implemented in order to analyze CLIP-Seq data on different cell types
and tissues for mouse and human species.

The analysis of CLIP-seq data is summarized in the following steps (Figure 9):

Preprocessing of deep sequencing data. Raw CLIP-Seq data were initially quality checked
with FastQC (144) and further processed for contaminant removal with a combined use
of Minion (145), Trimgalore (146) and Trimmomatic (147).

Alignment of reads. Alignment of CLIP-Seq reads against the reference genome was
performed with GMAP/GSNAP (148), accordingly parameterized in order to identify
reads in splice junctions.

Identification of CLIP-Seq enriched regions. Regions enriched in CLIP-Seq reads were
formed by overlapping reads. In PAR-CLIP data, peaks were filtered to retain only
regions with adequate T-to-C (sense strand) or A-to-G (antisense strand) incorporation
in the same position (>5% of the reads).

Annotation of peaks. A comprehensive reference set of transcripts including mRNAs,
IncRNAs and pseudogenes was utilized for the annotation of enriched CLIP-Seq
regions.

- — Raw CLIP reads

Map reads on the
__ reference genomes

(Reference genome ]

J Identify regions where
peaks are formed

Reference genome

Isolate peaks that
overlap with transcripts

Reference genome |

Guided MRE identification
in the peak region

e
[p———
AT E—
[ f—
I IncRNA, mRNA,
pseudogenes

Figure 9: Raw CLIP-seq data were initially processed for contaminant removal and reads were aligned
against the reference genome. Enriched regions in CLIP-Seq signal are formed from overlapping
reads. Peaks were annotated in transcript loci. A CLIP-peak-guided MRE search algorithm was
utilized to compute interactions of expressed miRNAs. (Paraskevopoulou MD et al., 2016). (118)
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Guided MRE identification. An in-house developed CLIP-peak-guided MRE search
algorithm was subsequently utilized to identify interactions of expressed miRNAs. The
algorithm utilizes the search space that is defined by the AGO binding peaks for MRE
identification. It takes into account CLIP-Seg-induced mutations and the number of
reads in peaks. The AGO enriched regions are subjected to an MRE detection algorithm.
The implemented dynamic algorithm slides a 9 nucleotide-long window along each
transcript and identifies the best possible alignment with the miRNA “extended” seed
(nucleotides 1-9 on the miRNA 5’end). This procedure can detect different binding
types, ranging from 6mer to 9mer (Table 4). The adopted pipeline includes features of
miRNA binding type, miRNA-IncRNA/miRNA-mRNA duplex free energy, site
accessibility, AU flanking content, and conservation. The CLIP-Seq-based characteristics
are used to pinpoint the MRE location, while the miRNA-target binding features are
combined and scored by a general linear model (GLM) classifier, as initially described
by Rezcko et al. in microT-CDS algorithm (38), in order to identify the microRNA
responsible for the binding (Figure 9).

Binding types

binding type 1 : 9mer Canonical (perfect seed match)

binding type 2 : 9mer

binding type 3 : 8mer Canonical (perfect seed match)

binding type 4 : 8mer

binding type 5 : 7mer Canonical (perfect seed match)

binding type 6 : 7mer

binding type 7 : 9mer with G:U wobble (8 matches + wobble + 3" binding)

binding type 8 : 8mer with G:U wobble (7 matches + wobble + 3" binding)

binding type 9 : 8mer with target bulge (8 matches + bulge + 3’ binding)

binding type 10 : 8mer with miRNA bulge (8 matches + bulge + 3’ binding)

binding type 11 : 8mer with mismatch

binding type 12 : 7mer with G:U wobble (6 matches + wobble + 3" binding)

binding type 13 : 6mer Canonical

binding type 14 : 6mer (6 matches + 3’ binding)

Table 4: Different binding types from 6mer to 9mer identified by the adopted algorithm.
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Use of biological replicates in CLIP-Seq data. In CLIP-Seq experiments that comprised
biological replicates, an interaction had to be present in at least 2 samples (Figure 10).
This filtering step increases the robustness of the identified results, minimizing
technical and biological variability. The variance among different libraries was
estimated as well as the percentage of target sites that were rejected after applying this
tiltering step. For variance estimation, the identified MREs were compared between
CLIP-Seq replicates and the most deeply sequenced replicate (i.e. having the highest
number of detected interactions). The use of the aforementioned filtering step removed
a median of 63% (IQR = 3) of the total identified MREs in human CLIP-Seq libraries,
and 40% (IQR = 14) in mouse. Certainly, a percentage of these MREs can be bona fide
binding sites and not technical noise but it has been decided to prioritize robust and
high quality experimentally supported results.

In PAR-CLIP, only peaks with adequate T-to-C or A-
to-G (antisense strand) incorporation are retained.
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Figure 10: Example of identified MREs in PAR-CLIP AGO enriched regions. The peaks have adequate
T-to-C incorporation and do not overlap with CLIP background signal.
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24 Methods for the development of the DIANA-TarBase repository

Despite the evident advancements in the process of cataloguing miRNA targets, the
majority of studies examining miRNA regulatory networks and their effect on
molecular pathways usually rely on in silico predictions, since they require increased
numbers of interactions. Aim of TarBase v7.0 (149) was to push the envelope further
and to provide for the first time hundreds of thousands of high quality manually
curated experimentally validated miRNA-gene interactions, enhanced with the most
detailed meta-data available to date.

2.4.1 Text-mining pipeline selection of miRNA related articles

The number of publications that describe miRNA-mRNA regulation is increasing. The
collection of the related literature is already considered as a demanding and time
consuming practice. The manual curation can be assisted by text-mining pipelines
successfully applied for the inquiry of miRNA-gene interactions.

The selection of the most information-rich articles for manual curation is a complex
process, since thousands of manuscripts published per year have “microRNA” or
“miRNA” keywords in their abstract or title. DIANA-TarBase 6.0 introduced a text-
mining assisted pipeline for identification of articles which would be subsequently
subjected to manual curation. This pipeline has been significantly extended and
enhanced, in order to be able to capture all the advancements in the experimental
methodologies. The text mining algorithm has been iteratively fine-tuned based on the
feedback of curators following the analysis of hundreds of manuscripts.

In brief, the subset of MedLine articles having the terms “microRNA” or “miRNA” (and
variations) in their title, abstract, keywords or MeSH terms are selected for analysis by
the text mining algorithm. Abstracts and publication meta-data are downloaded in
XML format from MedLine and subjected to Named Entity Recognition. Gene mentions
were initially identified using AITAGMT (150). The pipeline was subsequently updated
to utilize GNAT libraries and online services (151) for gene name tagging and
normalization. An extensive in-house-developed dictionary comprising all established,
as well as novel experimental methodologies is utilized to recognize miRNAs, methods,
important verbs and interaction terms. Sentences with a high probability for interaction
(e.g. hosting gene, miRNA, and interaction terms) are scored based on the methods
found within the text. Highest scored articles will be forwarded for manual curation, as
well as articles containing high throughput methods relevant to miRNA function (e.g.
AGO PAR-CLIP). The developed methodology has now been enhanced in order to be
able to analyze freely-available complete articles and meta-data from PubMed Central.
This pipeline has diminished the probability of curators analyzing low or no interaction
articles, which pose a significant overhead in manual curation processes.
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2.4.2 Collected Data

The types of collected data and meta-data have significantly increased, in order to
facilitate the extensive testing and validation of prediction algorithms, as well as to
empower regulatory investigations with experimentally derived miRNA-gene
interactions. Each interaction is now accompanied with detailed information regarding
the performed experimental procedure, including tissue, cell type and condition.
Furthermore, a more relaxed database schema permits the description of more complex
experiments and interactions involving multiple cell types or even species (e.g. miRNA-
gene interactions between the host and a viral miRNA or vice versa, experiments where
a 3’UTR from one species is being tested using a cell type of a different species).

Until now, databases usually distinguished experimental protocols into basic categories
(e.g. specific and high-throughput) or into a handful of major methodology classes (e.g.
Sequencing, Proteomics, Blotting, etc.). The new database schema enables the
characterization of each methodology with two identifiers: a) a methodology class (12
classes) and b) a specific subtype (20 method subtypes). By utilizing twin-identifiers, it
is now possible to distinguish two closely related methods that have different
information content (e.g. biotin pull-down of miRNA targets + microarray transcript
quantification vs biotin pull-down + qPCR transcript quantification).

A new field has been introduced to the database schema for marking interactions
derived from chimeric reads from CLASH or modified CLIP-Seq experiments. These
interactions have higher information content, since miRNA and mRNA sequences
reside on the same read, enabling the accurate identification of both actors, as well as
the exact site of the interaction. Even though these high quality interactions are
currently limited, the new database schema enables their detailed cataloguing.

Specific attention was paid on archiving the exact binding site of each interaction, since
such information is crucial for testing target prediction algorithms or for identifying
regulatory regions on a transcript (e.g. deciphering the effect of a variant on a 3'UTR
region). The curation pipeline was extended with tools and techniques that enabled the
curators to identify targeted regions using any relevant information available within the
manuscript or supplemental material (genomic/transcript coordinates, cloning primers,
mutation sites, etc). Any experimental information used by the curators for the
identification of the targeted regions is kept within the database. Binding sites were also
identified by analyzing an extensive array of CLIP-Seq methods. By including binding-
site level data into the database, TarBase v7.0 can present positive/negative results
from experimental validations of distinct binding sites on the same transcript.

Details concerning the database of experimentally supported miRNA-mRNA
interactions and the updated interface of TarBase v7.0 are provided in the relevant
result sections.
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2.5 Methods for the development of the DIANA-LncBase repository

DIANA-LncBase v1 (119) is considered as the first extensive compendium dedicated to
cataloguing miRNA-IncRNA interactions and providing the largest collection of
experimentally supported entries. One of the major aims of this thesis was to
extensively study miRNA-(non)coding targets and to provide further insights for this
still obscure mechanism. To this end, the largest collection of (in)direct low and high-
throughput methodologies and relevant publications was compiled. The analyzed
experiments span numerous cell types across different experimental conditions for
human and mouse species. Since IncRNA function is characterized by tissue specificity,
a large number of RNA sequencing data was processed to complement miRNA-
IncRNA putative interactions with transcript expression. This wealth of information
and results inferred from the analysis were included in the updated version of LncBase.

2.5.1 Collected Data

An extensive collection of manuscripts has been manually curated, while more than 150
raw NGS datasets harboring miRNA interactions with (non)coding transcripts were
analyzed, in order to unveil and explore the IncRNA target-mimetic function.

Experimental methodologies. miRNA-IncRNA experimentally supported interactions from
low yield and high-throughput methodologies were extracted from manually curated
publications and raw sequencing data. LncBase v2 supports miRNA-IncRNA
interactions derived from more than 150 CLIP-Seq (24 PAR-CLIP, 129 HITS-CLIP)
libraries across a wide range of cell types, corresponding to the largest collection of
AGO-CLIP data compared to any other relevant resource.

2.5.2 Tissue/cell type expression

Collected expression data. Raw RNA-Seq datasets were retrieved from ENCODE (2,3),
UCSC (152) and Gene Expression Omnibus (GEO) (153) repositories in order to assess
IncRNA transcript expression in a wide range of cell types for both human and mouse
species. RNA-Seq data corresponding to similar cell types with those in CLIP-Seq
samples were preferentially selected. All RNA-Seq libraries were depleted of ribosomal
RNAs. Whole transcriptome and poly-A selected libraries were analysed. The analysis
of deeply sequenced RNA samples enabled the extensive identification of expression
patterns for targeted IncRNAs. Details concerning the accession codes of the processed
RNA-Seq samples and library specifications are provided in Table 5. Raw datasets were
quality checked and pre-processed to minimize contaminant sequences. Expression at
transcript level was estimated using RSEM (154). Raw reads were aligned against
human transcriptomes compiled from Ensembl 75 (GRCh37), RefSeq Release 106
(GRCh38) (142) and Cabili et al. (88) as well as mouse transcriptomes derived from
Ensembl 81 (GRCm81) (155) and RefSeq Release 104 (GRCm38.p2). Transcript
expression information, extracted from analysed RNA-Seq data across 24 tissues and
cell types in Cabili et al., was also incorporated in LncBase v2.
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Accession

Total

ENCFF001REK
ENCFF001RE]
ENCFFO00FOM
ENCFFO00FOV
ENCFFO00GET
ENCFF000GEQ
ENCFF002DKX
ENCFF002DKY
ENCFF1091UU
ENCFF322VH]
ENCFFO00GHA
ENCFF000GGZ
wgEncodeCshlLongRnaSeqA
549CellPapFastq - Repl
wgEncodeCshlLongRnaSeqH
epg2CellPapFastq - Repl
wgEncodeCshlLongRnaSeqH
uvecCellPapFastq - Repl
wgEncodeCshlLongRnaSeqK
562CellPapFastq - Repl
wgEncodeCshlLongRnaSeqS
knshraCellPapFastq - Rep2
wgEncodeCshlLongRnaSeqH
ThescCellPapFastq - Repl
wgEncodeCshlLongRnaSeql
mr90CellPapFastq - Repl
wgEncodeCshlLongRnaSeq
WhbrainE14halfFastq - Repl
wgEncodeCshlLongRnaSeqH
eartAdult8wksFastq -Repl
wgEncodeCshlLongRnaSeqK
idneyAdult8wksFastq - Repl
wgEncodeCshlLongRnaSeqL
iverAdult8wksFastq - Repl
wgEncodeCshlLongRnaSeqL
ungAdult8wksFastq - Repl
wgEncodeCshlLongRnaSeqT
hymusAdult8wks - Repl
ENCFF001IDD
ENCFF001ICW
ENCFF001IUF
ENCFF001IUD
ENCFFO00INEG
NCFF001NEC

GSM973235

GSM1370364
GSM1133247
GSM1133250
GSM1133251
GSM1133248
GSM1133249

Repository

encodeproject.org
encodeproject.org
encodeproject.org
encodeproject.org
encodeproject.org
encodeproject.org
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
hgdownload.cse.ucsc.edu
encodeproject.org
encodeproject.org
encodeproject.org
ncbi.nlm.nih.gov/geo

ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo
ncbi.nlm.nih.gov/geo

ncbi.nlm.nih.gov/geo

GM12878
HelLa-S3
HMepC
MCE-7
HREpiC
hMSC-BM
A549
HepG2
HUVEC
K562
SK-N-SH
H1 hESC
IMR90
Brain
Heart
Kidney
Liver
Lung
Thymus
C2C12 (60h)
Frontal
Cortex
MEL
ES-E14

HEK-293
LCLBAC
LCLBACD?2
LCLBACD3
LCLBACD1
LCLBACD1

Reads
195M

242M

293M

121M

212M

379M

190M

248M

174M

227M

234M

250M

217M

341M

149M

186M

160M

141M

160M

280M

371M

281M

341M

395M
68M
45M
74M
77M
74M

Species

Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens

Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Mus
musculus
Homo sapiens

Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens

Sequencing

PE, 101bp
PE,76bp
PE, 101bp
PE,100bp
PE,101bp
PE, 101bp
PE,76bp
PE,76bp
PE,76bp
PE,76bp
PE,76bp
PE,76bp
PE,101bp
PE,101bp
PE,76bp
PE,76bp
PE,76bp
PE,76bp
PE,76bp
PE,75bp
PE, 101bp
PE, 101bp
PE, 101bp

PE, 50bp
PE, 50bp
PE, 50bp
PE, 50bp
PE, 50bp
PE, 50bp

Table 5: Details concerning the analysed RNA-Seq samples. The table presents accession codes and
sequencing specifications for each library. RNA-Seq datasets were retrieved from ENCODE(Z2,3),
UCSC(152) and Gene Expression Omnibus (GEO)(153) repositories in order to assess IncRNA
transcript expression in various cell types and tissues. (Paraskevopoulou MD et al, 2015)(117)
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Further information concerning the database of experimentally supported miRNA-
IncRNA interactions and the updated LncBase v2 interface are provided in the relevant
result sections.

2.6 Comparison of TarBase/LncBase AGO-CLIP-Seq data analysis algorithm with
other CLIP-Seq Target Identification applications

For the evaluation of the in-house developed CLIP-Seq data analysis algorithm,
different implementations identifying miRNA targets with CLIP-Seq have been utilized.
The list of tested algorithms included microMUMMIE (75), MIRZA (72), and PARMA
(74) The evaluation of programs’ performance was based on their accuracy in predicting
both miRNA-mRNA interactions, as well as their ability to correctly identify
experimentally verified miRNA binding sites.

The computational algorithms were assessed for their performance in distinct high
quality validation sets comprising ~300 Luciferase Reporter Gene Assays and ~1,700
chimeric interactions in HEK293T cells, respectively. The chimeric interactions were
retrieved from 1 CLASH library (156). An additional evaluation of TarBase/LncBase
AGO-CLIP-Seq algorithm incorporated an extended set of ~850 interactions validated
with Luciferase Reporter Gene Assays.

1 Aligned CLIP-5eq Libraries |

2. - PARalyzer —TarBase CLIP-Seq alg?ilhm ] PARma—

3. - IdE;ation of AGO Enriczi regions -

4. icroMUMMIE ][ T?IZA ][ TarBaEE—Seq algorithm ] PARmMa

H [

5. MRE Identification ‘

Algorithm evaluation on direct interactions

Figure 11: Summary of the performance evaluation pipeline for CLIP-Seq analysis algorithms. SAM
files produced by different aligners were utilized for CLIP target identification. Total predicted MREs
(miRNA Recognition elements) in CLIP-Seq enriched regions were filtered in order to retain only
miRNAs and transcripts contained in the validation set composed of 2,000 Reporter gene and chimeric
miRNA interactions. (Copyright Paraskevopoulou Maria)
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2.7 Implementation of a novel Algorithm for the AGO CLIP-Seq data analysis

Most of the current in silico implementations devoted to the analysis of AGO-CLIP
sequencing data still lack a robust A-to-Z pipeline in order to sufficiently catalogue
miRNA-target interactions.

MIRZA algorithm does not support the direct processing of the raw or aligned CLIP-
Seq data, and requires to be supplied with a specific format for the clusters and the
miRNAs. In addition, it has several limitations such as the length of the provided
clusters (30-51 nts) and miRNAs (21 nts), the required supplementary information of
miRNA expression values and the formation of clusters centered on the position with
maximum T-to-C conversion sites.

microMUMMIE has to be complemented with other implementations, which are
considered essential for its core algorithm. However, these extra steps of calculations
are not seamlessly incorporated in the microMUMMIE pipeline but have to be
generated independently by the user. Moreover, microMUMMIE mainly focuses on the
analysis of miRNA binding sites in the 3'UTR regions, even though CLIP-Seq
experiments can be efficiently applied to discover transcriptome-wide miRNA
interactions.

The main restriction of PARma is that it adopts a family miRNA-seed clustering
approach and relies on the identification of miRNA-seed binding sites in AGO-peaks
comprising statistically significant overrepresented kmers. It also requires a specific
input format of AGO enriched regions with relevant conversion sites that has to be
prepared by the user. Notably, the latter two implementations do not cover the whole
spectrum of miRNA binding types.

All the aforementioned algorithms are preferably applied for the analysis of PAR-CLIP
data. They are not appropriate for the processing of other CLIP-Seq experiments
including, HITS-CLIP, CLASH or iCLIP. This is due to the fact that they strongly
depend on the induced T-to-C conversions in the AGO crosslinked regions to pinpoint
miRNA binding sites. Moreover, they do not process AGO enriched regions that do not
have T-to-C substitutions, omitting a large amount of highly covered PAR-CLIP
clusters. Importantly, the evaluation of the described implementations against the
adopted AGO-CLIP-Seq analysis pipeline of TarBase and LncBase repositories revealed
that there is room for further improvement for all algorithms and optimization in order
to attain increased accuracy.

It should also be noted that there are no available implementations incorporating the
wealth of high/low throughput released experiments specific for miRNA-gene
interactions. To this end, a novel Algorithm was developed primarily for PAR-CLIP
data analysis, with the potential to be generalized for other CLIP-Seq variants. The
collected low-yield and high-throughput experimental data sources for the derivation
of positive and negative miRNA-target interactions as well as the algorithm’s
deployment and testing are described in the following sections.
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2.7.1 Collection of experimental datasets

A comprehensive collection of low/high-throughput experimental datasets was created
in order to extract putative miRNA-target interactions. More precisely, Reporter gene
Assays, CLASH, CLEAR-CLIP, PAR-CLIP, RNA-Seq, microarrays, quantitative
proteomics (pSILAC), Ribosome profiling sequencing (Ribo-Seq) were utilized to
generate positive and negative instances. Direct interactions retrieved from Reporter
Gene Assay techniques and high quality miRNA-target chimeras derived from CLASH
and CLEAR-CLIP constitute a source of specific MRE regions and were included as
positive cases. On the other hand, indirect high-throughput methodologies such as
RNA-Seq and microarrays are experiments that measure mRNA expression changes
after transfection, silencing or knockout of a specific miRNA and therefore were
processed for the derivation of both positive and negative instances. Ribosome profiling
sequencing after miRNA overexpression can reveal differences in ribosome-bound
transcripts and for that reason it is a valuable component for detecting functional
(positive) miRNA effects or negative instances. pSILAC experiments were also
included in the training set since they can reveal the strong or weak impact of a miRNA
deregulation on protein concentration.

Friedersdorf M and Keene ] (157) generated background PAR-CLIP libraries aiming to
study non-specific RBP binding events and reveal patterns of true protein-RNA
interactions. These datasets were additionally incorporated to deduce negative miRNA
binding sites in the respective CLIP-Seq clusters.

Finally, random CLIP data, at the level of raw reads, were generated in order to provide
an extra source for the creation of decoy clusters and MRE regions.

2.71.1 Direct miRNA-target interactions derived from high/low throughput
techniques

The positive collection incorporates interactions retrieved from 377 publications and
comprises more than 30,000 direct miRNA-target interactions, spanning approximately
200 cell types. Positive cases validated with Luciferase Reporter assays are obtained
from DIANA-TarBase v7.0 (64). Luciferase expression vectors are usually tested with
whole 3'UTR mRNA sequences that may harbor more than one candidate miRNA
binding sites. However, TarBase repository also indexes a considerable amount of
luciferase data, where specific candidate binding regions are cloned in the relevant
vectors. To this end, only short RNA fragments (<200 nts) tested with reporter assays
were included in the positive set. These instances correspond to miRNA-target
interactions spanning more than 40 tissues, while the majority of them are tested on
Human Embryonic Kidney (HEK-293), Mammary Gland (MCF7 or MDAMB231) and
Cervix tissue (HeLa).

Chimeric miRNA-target fragments are derived from two CLASH (50) and CLEAR-CLIP
(59) experiments. CLEAR-CLIP has been performed on a neoplastic cell line (Huh7.5) in
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liver tissue, while CLASH-supported interactions correspond to T-REx 293 cells. These
two datasets comprise 28,000 miRNA direct interactions.

Moreover, Grosswendt S et al. (51) observed the existence of miRNA-target ligated pairs
in already published PAR-CLIP experiments. The authors introduced an in silico
pipeline for the identification of chimeric miRNA-gene fragments, and they applied
their method on already released experiments to form a collection of such events. A
selected set of these precompiled chimeric miRNA interactions were included in the
algorithm. These interactions cover 5 different cell lines: Human Embryonic Kidney
cells (HEK293, Kishore et al. (73)), BC-1 and BC-3 primary effusion lymphoma-derived
cell lines infected with Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated
herpesvirus (KSHV) (Gottwein et al. (158)), EBV-infected lymphoblastoid cell lines
(Skalsky et al. (159)) and Human Embryonic stem Cells (hESC, Lipchina et al. (160)). A
concise description of the positive miRNA interactions from the different experiments is

provided in Table 6.
. . . Number of . .
Experiment Species Cell Line miRNAs Interactions Studies
Luciferase Reporter human 197 165 714 371
CLASH human 1 176 1,573 1
CLEAR-CLIP human 1 482 27,335 1
Chimeric miRNA-targets human 4 262 12511 4

(Grosswendt S et al.)

Table 6: Summary of the positive miRNA interactions and associated cell types, derived from the
different direct experiments.

2.7.1.2 RNA-Seq datasets

A set of 9 different experimental conditions (shown in Table 7), corresponding to RNA
sequencing datasets, were analyzed in order to infer positive and negative gene changes
after miRNA overexpression. In total, the transcriptome-wide differential expression in
three human cell lines (HEK-293T, HeLa and U20S) was calculated for two miRNAs
(miR-1 and miR-155). These datasets were released from a recent publication by
Eichhorn et al. (161).
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RNA Sequencing Datasets

# | Cell Line miRNA miRNA treatment Post-Transfection Cell Harvest
Time/Experimental Condition
1 | HEK-293T hsa-miR-1-3p Overexpression 24h
2 | HELA hsa-miR-1-3p Overexpression 24h
3 | HELA hsa-miR-155-5p Overexpression 24h
4 | U20S (total)  hsa-miR-1-3p Overexpression 32h/poly(A)-selected total RNA
5 | U20S (total)  hsa-miR-155-5p Overexpression 32h/poly(A)-selected total RNA
6 | U20S (cyto)  hsa-miR-1-3p Overexpression 32h/poly(A)-selected cytoplasmic RNA
7 | U20S (cyto)  hsa-miR-155-5p Overexpression 32h/poly(A)-selected cytoplasmic RNA
8 | U20S (ribo)  hsa-miR-1-3p Overexpression tRNA and rRNA depleted RNA
9 | U20S (ribo)  hsa-miR-155-5p Overexpression tRNA and rRNA depleted RNA

Table 7: Description of RNA Sequencing datasets after miRNA overexpression utilized to extract
positive and negative instances for the training of a novel AGO-CLIP-Seq-guided Algorithm for
miRNA-target identification.

2.7.1.3 Microarray datasets

Different experimental conditions (shown in Table 8) were analyzed from 52 microarray
studies. In total, the transcriptome-wide differential expression in 53 human cell lines
was calculated for 65 miRNAs that were either overexpressed or knocked-down/out.
Human cell lines from Affymetrix chips were analyzed. Affymetrix microarray raw files
(.CEL) from experiments listed in Supplementary Table 8 were analyzed in-house.
miRNA-treated and control samples were appropriately combined in order to perform
background correction, quantile normalization and log2 expression calculation. These
processing steps were implemented using Robust Multi-Array Average (RMA) with affy
(162) or oligo (163) R-packages. Annotation enrichment of each probe set was
hgu133a2.db,
hqu133plus2.db or hugenelOsttranscriptcluster.db. Each experiment was examined

accomplished using the chip-specific annotation R-packages
independently of other cell lines or miRNA treatments. log2(FC) and p-values were
calculated with limma package (164), following the guidelines for Single-Channel

Designs.

Importantly, since microarray analyses were performed at a probe set level, there was a
considerable portion of gene instances comprising one-to-many associations (gene
referring to multiple probe sets). In these cases, a majority rule was applied to same-
gene probe sets in order to determine up/down-regulation of transcript expression.
Subsequently, a median log2(FC) was calculated including only the gene-associated
probe sets that exceeded either a positive or negative threshold (>0.5 or <-0.5,
respectively), depending on the type of the regulation decided by the majority rule in
the previous step. This probe-to-gene level transition allowed the incorporation of
deregulated genes derived from microarray analyses, into the positive and negative
training sets.
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Summary of Microarray Datasets

#

1-2

3

4

5-7

8

9

10

11

12

13

14

15

16
17
18

19

20
21-22
23-24
25-26
27-28
29-30
31
32-38

39
40
41
42
43
44

45-46

47
48

49
50
51
52
53
54

55
56
57-60

61-64

Cell Line

113/6-4L, 131/4-5B1
AGS
CALU3
CCL86, CRL1432, CRL1596
DLD1
DLD1
DU145
DU145
H4

H4

H4

H4

H4

H4
HEK-293
HEK-293
HEK-293
HELA
HELA
HELA
HELA
HELA
HEPG2
HEPG2

HEY
HEY
HEY
HUH7
HUH7.5
HUH7.5

HUVEC

HUVEC
IMR90

K562

LNCAP
LNCAP
LNCAP
LNCAP
LNCAP

LNCAP
LNCAP
MCF10A

MCF10A
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miRNA

hsa-miR-30d-5p
hsa-miR-210-3p
hsa-miR-138-5p
hsa-miR-26a-5p
hsa-miR-143-3p
hsa-miR-145-5p
hsa-miR-224-5p
hsa-miR-452-5p
hsa-miR-103a-3p
hsa-miR-107
hsa-miR-15b-3p
hsa-miR-16-5p
hsa-miR-195-5p
hsa-miR-320b
hsa-miR-212-3p
hsa-miR-124-3p
hsa-miR-7-5p
hsa-let-7b-5p
hsa-miR-1-3p
hsa-miR-155-5p
hsa-miR-16-5p
hsa-miR-30a-5p
hsa-miR-191-5p
hsa-miR-124-3p

hsa-miR-429
hsa-miR-128-3p
hsa-miR-7-5p
hsa-miR-517a-3p
hsa-miR-27a-3p
hsa-miR-27a-3p
hsa-miR-210-3p

hsa-miR-126-3p
hsa-miR-29a-3p
hsa-miR-34a-5p
hsa-miR-106b-5p
hsa-miR-130a-3p
hsa-miR-203a-3p
hsa-miR-205-5p
hsa-miR-1-3p
hsa-miR-206
hsa-miR-27b-3p
hsa-miR-20a-5p

hsa-miR-671-5p
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miRNA
treatment
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Anti-miR
Overexpression

Overexpression
Overexpression
Overexpression
Overexpression
Anti-miR
Overexpression
Anti-miR,
Overexpression
Anti-miR
Knock-down
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Overexpression
Silencing

Silencing

Post-Transfection

Cell Harvest Time

60h
36h
48h
72h
24h

24h
48h
48h
48h
48h
48h
48h
48h
48h
15h
15h
8h, 32h
8h, 32h
8h, 32h
8h, 32h
8h, 32h

4h, 8h, 16h, 24h, 32h,

72h , 120h
48h
48h
48h

24h

72h
48h

24h
24h
24h
24h
24h
24h

24h
24h

Oh, 0.5h, 1h, 2h post

EGF stimulation

Oh, 0.5h, 1h, 2h post

EGF stimulation
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65 MCF7 hsa-miR-95a-3p Overexpression  24h

66 MCEF7 hsa-miR-101-3p Overexpression 24h

67 MCF7FR hsa-miR-221-3p Silencing 72h

68 MCF7FR hsa-miR-222-3p Silencing 72h

69 MHH-ES-1 hsa-miR-483-5p Overexpression 48h

70 MHH-ES-1 hsa-miR-483-3p Overexpression 48h

71 MKN45 hsa-miR-210-3p Overexpression 36h

72 MSK543 hsa-miR-124-3p Overexpression  24h

73 MSK543 hsa-miR-380-3p Overexpression 24h

74 MSK543 hsa-miR-433-3p Overexpression  24h

75 MSK543 hsa-miR-448 Overexpression 24h

76 MSK543 hsa-miR-132-3p Overexpression  24h

77 PAG C81-61 hsa-miR-20a-5p Overexpression  3d

78 PAG C81-61 hsa-miR-17-5p Overexpression 3d

79 PC3 hsa-miR-224-5p Overexpression 48h

80 PC3 hsa-miR-452-5p Overexpression 48h

81 SKHEP1 hsa-miR-21-5p Anti-miR 16h

82 SW1783 hsa-miR-376a-5p Overexpression  24h

83-84 us7 hsa-miR-376a-5p Overexpression  24h, 72h

85-86 U87, HS683 hsa-miR-20a-5p Overexpression -

87 HTERT-RPE1 hsa-miR-129-2-3p  Overexpression 72h

88 [EILE hsa-miR-23b-3p Overexpression -

89 HAEC hsa-miR-34a-5p Overexpression  48h

90 HAEC hsa-miR-34b-5p Overexpression 48h

91 HAEC hsa-miR-34c-5p Overexpression  48h

92 HAEC hsa-miR-449b-5p = Overexpression 48h

93 HAEC hsa-miR-449a Overexpression 48h

94 HDF hsa-miR-29a-3p Inhibition 48h

95-97 GBM4, GBM6, GBMS8 hsa-miR-10b-5p Inhibition 24h

98-100 HEK-293, HEK-293T, HSF2  hsa-miR-941 Overexpression 24h

101 HT29 hsa-miR-146a-5p Overexpression 2w after lentiviral
infection

102 H929 hsa-miR-214-3p Overexpression -

103 MDAMB231 hsa-miR-200c-3p Overexpression -

104 MDAMB231 hsa-miR-205-5p Overexpression -

105 MDAMB231 hsa-mir-375 Overexpression -

106 U1810 hsa-miR-214-3p Antagomir 24h

107 HCT116 hsa-miR-34a-5p Overexpression 2w after retroviral
infection

108 HCT116 hsa-miR-147a Overexpression  3d

109 SUM159 hsa-miR-203a-3p Overexpression -

110 U87-2M1 hsa-miR-10b-5p Inhibition -

111 A549 hsa-miR-7-5p Overexpression  24h

112-113 | Jurkat hsa-miR-146a-5p Overexpression, 48h

Knock-down
114 Melanoma-metastatic Liver — hsa-miR-182-5p Anti-miR administered twice
Cells per week over 4

weeks

115-116 | P3HR1 hsa-miR-28-5p Overexpression  12h, 24h

Table 8: Description of miRNA inhibition/overexpression/KO microarray datasets utilized to extract
positive and negative instances for the training of a novel AGO-CLIP-Seq-guided algorithm for
miRNA-target identification.
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2.71.4 Ribosome Profiling Datasets

Ribosome Profiling Datasets. Ribo-Seq datasets that correspond to 5 experimental
conditions were retrieved from a recent publication by Eichhorn et al. (161). As
described in Table 9, the data refer to three human cell lines (HEK-293T, HelLa and
U20S) and two human miRNAs (miR-1 and miR-155) that were overexpressed in the
relevant experiments. Fold change values as calculated from differential expression
analyses of control vs post-transfection states enabled the formation of positive and
negative miRNA-mRNA interactions.

Ribosome Profiling Datasets

# Cell Line miRNA miRNA treatment  Post-Transfection Cell
Harvest Time
1-2 | HEK-293T, HELA hsa-miR-1-3p Overexpression 24h
3 | HELA hsa-miR-155-5p  Overexpression 24h
4 | U20S hsa-miR-1-3p Overexpression 32h
5 | U20S hsa-miR-155-5p  Overexpression 32h

Table 9: Description of ribosome profiling datasets after overexpression of a specific miRNA. These
sets were utilized to extract positive and negative instances for the training of a novel Algorithm for
the analysis of AGO CLIP-Seq data.

2.7.1.5 Quantitative Proteomics Datasets

A collection of 6 distinct pSILAC (provided in Table 10) experimental datasets were
derived from the Selbach et al. publication (55). In this study, quantitative proteome-
wide profiles were assessed in HeLa cells following the individual overexpression of 5
human miRNAs (let-7b, miR-1, miR-16, miR-30a and miR-155) or knock-down of let-7b.
The precompiled median log2(Fold-change) values from relevant publication were
accordingly processed to deduce miRNA-gene associations reflecting the
positive/negative impact of miRNA overexpression to protein concentration.

pSILAC Datasets
# | Cell Line miRNA miRNA Post-Transfection Cell Harvest Time
treatment
1 | HELA hsa-let-7b-5p Overexpression 8h post-transfection and 24h pSILAC labelling
2 | HELA hsa-miR-1-3p Overexpression 8h post-transfection and 24h pSILAC labelling
3 | HELA hsa-miR-16-5p Overexpression 8h post-transfection and 24h pSILAC labelling
4 | HELA hsa-miR-30a-5p  Overexpression 8h post-transfection and 24h pSILAC labelling
5 | HELA hsa-miR-155-5p  Overexpression 8h post-transfection and 24h pSILAC labelling
6 | HELA hsa-let-7b-5p Knock-down 8h post-transfection and 24h pSILAC labelling

Table 10: Description of miRNA overexpression/KO pSILAC datasets utilized to extract positive and
negative instances for training a novel Algorithm for the analysis of AGO CLIP-Seq data.
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Differential expression analyses of miRNA-(un)treated cell lines were performed for the
aforementioned high-throughput experimental datasets. More precisely, the entries
corresponding to positive and negative miRNA-mRNA interactions for microarrays
and quantitative proteomics (pSILAC) experiments were defined by applying a strict -1
or +1 log2(Fold Change) threshold.

For Ribosome profiling and RNA sequencing experiments, gene expression values were
initially filtered with a threshold of >10 RPKM. Subsequently, the remaining genes in
these experiments (Ribo/RNA-Seq) were selected with a -0.5 or 0.5 log2(Fold Change)
threshold for positive and negative interactions respectively.

The selection of fold change thresholds was performed after observation of their
distribution in each of the processed datasets. Notably, since multiple datasets were
integrated for the algorithm development, it has been observed that specific miRNA-
gene interactions appeared to be both positive and negative in different experimental
settings. Such conflicting outcomes were removed.

2.71.6 CLIP deep sequencing datasets

A collection of 24 PAR-CLIP datasets derived from 8 studies were incorporated to the
pipeline (Table 11). Each independent experiment provided AGO cluster information
comprising the signal of raw aligned reads and transition sites.

These AGO-bound clusters were combined with the positive and negative miRNA-
target interactions, as identified by different low and high-throughput experiments, in
order to infer multiple descriptors for each targeted region. MRE regions located within
PAR-CLIP peaks were subsequently utilized for feature extraction.

It should be noted that indirect experiments cannot provide the exact MRE region. In
order to address this issue, an extra step was included to scan transcripts participating
is indirect interactions for miRNA-specific binding sites. This analysis, in many cases,
revealed more than one candidate MRE per miRNA-target pair. In such instances,
identifying overlapping MREs with AGO clusters introduced one or more positive or
negative instances in the training set.

The following sections describe the derivation of extra negative miRNA-target instances
from background PAR-CLIP and randomly simulated PAR-CLIP experiments
respectively.
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Experiment Species Cell line Cell condition Samples
1-2 PAR-CLIP  human HEK293 enzymatic dlgestlon:. complete T1 digestion, 5
protein: Ago2
34 PAR-CLIP human  HEK293 enzymatic digestion: mild MNase 2
digestion, protein: Ago2

5 PAR-CLIP  human MCE7 monoclonal anti-AGO2 (C1.9E8.2)

6 PAR-CLIP  human hESC monoclonal anti-AGO2 (C1.9E8.2)

7 PAR-CLIP  human C8166 hiv-1 strain: NL4-3, length of infection 1

(days): 3
8 PAR-CLIP  human TZM-bl hiv-1 strain: WT/BaL, length of infection 1
(days): 3
hiv-1 strain: WT/BaL, length of infection
9 PAR-CLIP  human TZM-bl (days): 3, engineered cells to stably express 1
HIV-1-specific amiRNAs
i : primary effusion lymphoma (PEL) cell line,
10 PAR-CLIP human BC-1 latently infected with both KSHV and EBV !
i : primary effusion lymphoma (PEL) cell line,
u PAR-CLIP human BCS latently infected only with KSHV !
EBV B95-8-infected lymphoblastoid cells,

12 PAR-CLIP  human  EF3DAGO2 antibody: Anti-Ago?2 (clone 9E8) 1

13 PAR-CLIP human LCL35 EBV B95-8-infected lymphoblastoid cells, 1

antibody: Anti-Ago?2 (clone 9E8)
LCL-BAC lymphoblastoid cells infected by
14 PAR-CLIP  human LCLBAC EBV B95-8 BACmid, 1
antibody: Anti-Ago2 (clone 9ES)
LCL-BACD1 lymphoblastoid cells infected
by EBV B95-8 BACmid, mutationally

= [PARCILIP human L aen inactivated for miR-BHRF1-1 expression, L
antibody: Anti-Ago2 (clone 9ES)
LCL-BACD3 lymphoblastoid cells infected
16 PAR-CLIP  human  LCLBACD3 by EBV B95-8 BACmid, mutationally 1

inactivated for miR-BHRF1-3 expression,
antibody: Anti-Ago?2 (clone 9E8)
3 samples stable expressing
17-20 PAR-CLIP  human HEK-293 Flag/HA-AGO1- antibody: FLAG, 4
1 sample with antibody: AGO2 11A9
immunoprecipitated protein: AGO1,AGO2,

21-24 PAR-CLIP  human HEK-293 AGO3, AGO4 respectively

4

Table 11: Summary of the collected PAR-CLIP experiments in human species, obtained from 8 studies.
These datasets provided the source of PAR-CLIP signal (raw reads and transitions) which was
combined with experimentally validated positive/negative instances of miRNA-targeted regions.

2.7.1.7 Background CLIP deep sequencing datasets

PAR-CLIP sequencing experiments of HEK-293 cells, stable expressing a non-RBP
control (FLAG-GFP) and treated with FLAG-tagged antibody, enabled the detection of
non-specific protein-bindings. These recently published experiments can be exploited to
decipher background CLIP signal (157).
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Consequently, they were accordingly processed to produce negative PAR-CLIP regions
for miRNA binding. The identification of negative MREs within the background
clusters was performed for miRNAs expressed in the HEK-293 cell line.

2.71.8 Random CLIP-Seq

An in silico pipeline was implemented to simulate PAR-CLIP libraries. The randomly
produced CLIP-Seq data, at the level of raw reads, provided an extra source for
negative clusters and MRE regions. MRE control instances derived from the simulated
PAR-CLIP clusters were generated for all the miRNAs encountered on positive or
negative interactions and were supported by (in)direct, low/high-throughput
experiments.

2.7.2 Compilation of positive and negative training sets

The unified set of positive MRE-instances was compiled from chimeric miRNA-target
fragments, direct miRNA bindings supported by Reporter Gene Assays as well as
miRNA-target interactions derived from RNA sequencing experiments, quantitative
proteomics and ribosome profiling. Positive MREs exceeded 11 thousand and are
mainly placed in coding and 3" untranslated regions of the mRNAs. miRNA-targeted
regions presented an overlap with clusters from at least one AGO-PAR-CLIP
sequencing library. The respective negative set, defined by different indirect high-
throughput experiments, background PAR-CLIP libraries as well as by randomly
generated CLIP datasets, was appropriately filtered to avoid any conflict with positive
instances (both at interaction and at miRNA binding site level). Notably, specific
attention was paid to create positive and negative sets with similar ratios in terms of
MRE biotype annotation (Table 12).

This comprehensive collection of miRNA interactions enabled the development of a
novel AGO-CLIP-Seqg-guided Algorithm intended for miRNA-target identification.
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Positive Instances

miRNASs in interactions

targeted regions

miRNA-target pairs

Chimeric 238 5,201 5,885
Reporter 94 168 179
RNA-Seq 2 309 309
Microarrays 52 4,553 4,663
pSILAC 5 123 123
RPF 2 507 507
Negative Instances miRNAs in interactions targeted regions = miRNA-target pairs
RNA-Seq 2 274 274
Microarrays 51 3,106 3,118
pSILAC 5 36 36
RPF 2 497 497
Background CLIP-Seq | 360 9,946 10,031
Simulated CLIP-Seq 200 8407 8523

Table 12: Overview of miRNA-target positive/negative instances as identified by different
indirect/direct low and high-throughput experiments as well as by randomly simulated CLIP datasets.
miRNA-targeted regions presented an overlap with clusters from at least one PAR-CLIP sequencing
library. No overlap was allowed between positive and negative miRNA-gene interactions and their
related MRE-instances.

2.7.3 Feature set description

A set of approximately 300 descriptors was created for the comprehensive compendium
of positive and negative instances. The extracted features comprised coverage
measurements derived from the CLIP-Seq signal; substitution ratios and distance of
substitutions from the MRE start; base and dinucleotide contents for the miRNA site as
well as its respective flanking regions; location of the MRE within the cluster;
complexity features for the MRE and proximal upstream/downstream sequences;
energy-related variables for the duplex structure; paired positions and nucleotides of
the miRNA-target hybrid; (mis)matches, bulges, loops and wobble pairs for miRNA
and MRE sub-domains that participate in the duplex formation (seed, after-seed, 3’
compensatory and tail region); binding type; conservation scores for the MRE and
upflank/downflank-MRE regions. There are also features describing binding length
ratios of miRNA and/or target regions, as well as metrics for sequence content
skewness/asymmetry and biases of codon usage. Major categories are described in
more detail in the following paragraphs.
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Expression Features. The first category of features corresponds to coverage

measurements derived from the analyzed PAR-CLIP experimental datasets. The
descriptors were designed for AGO enriched regions (clusters) as well as the relevant
miRNA targeted regions (MREs). Cluster and MRE RPKM measurements correspond to
the normalized read coverage of the peak and the miRNA binding region, respectively.
Aligned reads residing within the cluster or the MRE are normalized for CLIP
sequencing depth and relevant region length. In addition to the RPKM values, the raw
number of overlapping reads is included as an extra feature. MRE coverage relative to
cluster coverage is another informative feature especially useful for binding sites
located on broader peaks or near the cluster’s 3" or 5" end.

Substitution Features. Another category of features was created to describe substitution

ratios based on CLIP-Seq aligned reads. In PAR-CLIP experiments it is expected to
observe T-to-C conversion sites in the AGO-miRNA crosslinked regions. Other
transitions may also be detected in the vicinity of a binding site (MRE). These non T-to-
C events may constitute false positive sources of conversions due to sequencing artifacts
or cell type-specific variations (165). However, it is possible that they correspond to
other crosslinking-induced mutation sites, generated during the reverse transcription.
Therefore, information of every putative substitution ratio upstream/downstream the
MRE start and different mutation positions was included in the developed model.
Additional features describing substitution distances from relative MRE start were also
added. Substitution ratios and distances for each or all transition types were combined
to extract other meta-descriptors.

Sequence Complexity and Energy Features. A set of thermodynamic properties including

entropy (dS), enthalpy (dH), free energy (dG) and melting temperature (Tm) were
estimated for the MRE sequences. Additional sequence measurements were
incorporated in the model such as BLAST’s DUST score for masking low complexity
sequences (166), MRE complexity calculated with the Shannon-Wiener Index (167), as
well as quantitative metrics of nucleotide/base composition asymmetry (GC-skew, AT-
skew, purine-skew, Ks-skew).

Conservation Features. Conservation is a feature that is deemed important in miRNA-

target interactions and therefore it has been adopted from many in-silico prediction
algorithms. In the specific model, phastCons pre-computed scores from genome-wide
multiple alignments were utilized to deduce evolutionary rates of miRNA targeted
regions as well as their flanking regions (Figure 12). Regions conservation signal were
estimated as mean intensities of the overlapping phastCons base-wise scores. Moreover,
separate descriptors were utilized to describe conservations of the most 5' MRE binding
nucleotides and all binding nucleotides of the MRE in each miRNA-target duplex.
PhastCons precompiled values were downloaded from the UCSC repository (152) in
bigwig format.
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Conservation scores distribution around MRE start
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Figure 12: Pre-calculated phastCons base-wise conservation scores (mean values) overlapping
positive/negative MRE start sites along with upstream/downstream flanking regions (* 50 nts).
Positive/negative MRE conservation scores are spatially classified to 3’'UTR, CDS, intergenic and
intronic transcript regions. Distribution of conservation base scores are centered in the MRE start sites
(position 0). Notably, positive MREs residing on CDS and 3'UTR regions present a significant increase
of conservation scores around the MRE-start. (Copyright Paraskevopoulou Maria)

Content Features of MRE and flanking regions. Single/di-nucleotide composition

descriptors were generated for the miRNA binding site and the upstream or
downstream MRE regions.

miRNA-target duplex Features. The duplex structure energy of putative miRNA-target
pairs was estimated using the RNAduplex algorithm of the Vienna package (168).
Different features have been established to describe loops, miRNA or MRE bulges and
mismatches, GU wobbles and AU base pairing features. Several publications discuss the
varying impact of mismatches, internal loop formations, miRNA or target bulges in
conjunction with their position within the duplex structure (169-171). Moreover,
miRNA sequence can be divided into distinct domains with different levels of
importance after the 5' anchor (nt 1): (i)seed region (2-8 positions), (ii) central region (9-
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12 positions), (iii) 3° supplementary/compensatory region (13-16 positions), (iv) tail
region (17-3'miRNA end) (Figure 13). Following a miRNA-target duplex construction,
relevant domains can be defined in the MRE region based on the binding anchors of
miRNA sub-regions. To this end, the aforementioned descriptors were designed for
each miRNA and/or target sub-domains as well as for the entire duplex structure.
Finally, miRNA binding and MRE binding length were incorporated in the feature set.

@ 5’ most [ seed [ |central region [[J3’ region [ tail microRNA binding sites

S 3 target
1. Canonical site

miRNA (8mer1A)
5!

) 3 target
2. Non Canonical site

MIRNA + mismatch

3!
5 . 3’ target

3. Non Canonical site +

miRNA
t t bul
3 5 arget bulge
! target
5 3 g

4. Non Canonical site +

__— Symmetric loop 5 t t
arge

3" 5.Non canonical + 3’
supplementary pairing

6. Imperfect centered
site + GU wobble

5 3 target
#4444
INFINHNHN] 5 miRNA

3!
Figure 13: Snapshot of the different binding types identified by the novel Algorithm for CLIP-guided
miRNA-target identification. (Copyright Paraskevopoulou Maria)

85

Maria D Paraskevopoulou

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs

Matches per miRNA/MRE region. Binary binding vectors of miRNA/MRE position base
pairing were added to the model, where each element in the vectors constitutes a

distinct descriptor. Moreover, extra features were created to describe the total and
consecutive matches in the miRNA-target structure as well as in MRE and miRNA
relevant domains (seed, central, 3° supplementary region, tail). Base composition
descriptors (A, T, G, C) of the (un)paired nucleotides were also included.

Binding Type descriptor. Accumulating evidence from low-yield and sequencing

experiments revealed the high abundance of non-canonical miRNA binding sites. For
instance, the analysis of CLASH-Seq experimental data has shown that a significant
portion of the identified miRNA-target chimeras correspond to non-canonical base
pairings. Moreover, another high-throughput experiment enabled the detection of
centered miRNA binding events (5-15 position) that may be potent sites for target
repression. Other non-canonical sites with nucleation target bulges in the seed region
are considered also effective to mediate mRNA repression (40,171-173). To this end, the
adopted binding categories in the TarBase/LncBase CLIP-Seq algorithm were revisited
in order to cover the whole spectrum of the putative miRNA-target base pairings. The
extended binding codes incorporated in the novel CLIP-Seq learning framework are

described in Table 13.

New Binding Codes Description

9mer.3prime 9mer canonical site (matches in 1-9 positions of the
miRNA) with additional compensatory 3' binding

9mer 9mer canonical site (matches in 1-9 positions of the
miRNA)

9mer.GU miRNA base pairing in 1-9 positions with a GU wobble
pair

9mer.nonCanonical miRNA non canonical base pairing in 1-9 positions, with
a target bulge and/or a GU wobble pair

8mer.3prime 8mer canonical site (matches in 1-8 or 2-9 positions of the
miRNA) or 8merlA with additional compensatory 3'
binding

8mer 8mer canonical site (matches in 1-8 or 2-9 positions of the
miRNA)

8merlA 7mer canonical site (matches in 2-8 positions of the
miRNA) with additional A in position 1 (match or
mismatch)

8mer.GU miRNA base pairing in 1-8 or 2-9 positions with a GU
wobble pair

8mer.nonCanonical miRNA non canonical base pairing in 1-9 positions with
mismatch or mirna bulge and/or a target bulge and/or a
GU wobble pair

7mer.3prime 7mer canonical site (matches in 2-8 positions of the
miRNA) or 7merlA, with additional compensatory 3'
binding
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7mer 7mer canonical site (matches in 2-8 positions of the
miRNA)

7merlA 6mer canonical site (matches in 2-7 positions of the
miRNA) with an additional A in position 1 (match or
mismatch)

7mer.GU miRNA base pairing in 2-8 positions with a GU wobble

pair

7mer.nonCanonical

miRNA non canonical base pairing in 1-8 positions with
a mismatch or miRNA bulge and/or a target bulge

7mer.nonCanonical. GU

miRNA non canonical base pairing in 1-8 positions with
a mismatch or miRNA bulge and/or a target bulge
and/or a GU wobble pair

6mer.3prime

6mer canonical site (matches in 2-7 positions of the
miRNA) with additional compensatory 3' binding

6mer 6mer canonical site (matches in 2-7 positions of the
miRNA)
offsetbmer 6mer canonical site (matches in 3-8 positions of the

miRNA)

6mer.nonCanonical.3prime

miRNA non canonical base pairing in 2-8 positions with
a mismatch or miRNA bulge and/or a target bulge,
with additional compensatory 3' binding

6mer.nonCanonical

miRNA non canonical base pairing in 2-8 positions with
a mismatch or miRNA bulge and/or a target bulge

5mer

5mer canonical site (matches in 2-6 or 3-7 positions of
the miRNA) with additional compensatory 3’ binding

5mer.nonCanonical

miRNA non canonical base pairing in 2-8 positions with
a mismatch and/or a target bulge and/or miRNA bulge,
with additional compensatory 3' binding

seedless

miRNA non canonical base pairing after position 4 with
at least 7 matches after the seed region

seedless.3prime

miRNA non canonical base pairing after position 4 with
at least 7 matches after the seed region and additional
compensatory 3’ binding

centered

miRNA base pairing with at least 8 consecutive matches
in 4-15 positions

imperfect.centered

miRNA base pairing with at least 8 matches in 4-15
positions and/ or less than 2 GU wobble pairs.

3prime

miRNA base pairing after the position 13 with at least 7
matches

Table 13: Detailed description of the updated miRNA binding type categories that can be recognized
by the novel Algorithm developed for the analysis of AGO CLIP-Seq data.
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2.7.4 Feature Preprocessing and Assessment

The identification of informative descriptors from a primary large feature set collection
constitutes a hard and demanding task. Since there is no silver bullet for the selection of
the most prominent feature subsets, a hybrid approach was adopted comprising
different techniques for dimensionality reduction. More precisely, automated
methodologies (such as information gain measures and minimum-redundancy-
maximume-relevance technique), hierarchical parameter selection and heuristics,
including distance Kullback-Leibler, Wilcoxon's exact test, ROC AUC were
implemented. Notably, the different sub-groups of negative and positive datasets were
compared and evaluated to identify (dis)similar patterns in their respective feature
distributions. For non-parametric multiple group comparisons, Kruskal-Wallis test
along with Mann-Whintey's U test (as a non-parametric post-hoc test) and the
Benjamini-Hochberg's False Discovery Rate (FDR) correction (in order to control family-
wise type I error rate and to identify significant differences between groups) were
utilized.

Moreover, specific attention was paid to eliminate highly correlated descriptors as well
as features presenting close to zero variance. Correlations were assessed using the non-
parametric Spearman's rho coefficient. All tests were two-sided. Differences were
considered as statistically significant if the null hypothesis could be rejected with >95%
confidence (p<0.05).

This combinatorial process of feature evaluation enabled the ranking of every
parameter individually based on its predictive accuracy and additionally facilitated the
identification of possible associations between the input variables.

2.7.5 Novel algorithm Learning Framework for CLIP-Seq analysis

The adopted pipeline revealed different candidate feature vectors that were assessed for
their predictive performance on independent test sets with several machine learning
models including SVM, Naive Bayes, Random forest, Adaboost and Gradient Boosting.

Several feature subsets attained higher predictive accuracy in distinguishing the true
AGO bound regions (cluster). On the other hand, others were proven of greater efficacy
for predicting the correct miRNA binding sites.

Moreover, many of the cluster/region related descriptors had a strong impact and were
favored by several learning frameworks compared to binding and MRE-derived
features, in case of co-occurrence. These models usually resulted in a high number of
predicted MREs per peak, presenting a weak ability to recognize the true miRNA
binding sites. Thus region-related features were included in a separate base classifier
and were subsequently combined with binding features in a meta-classifier. After the
evaluation of different feature sub-vectors with different classifiers we concluded in the
following learning model.
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The proposed implementation comprises 6 distinct base Random Forest classifiers
(Figure 14):

Reporter Gene Assays
miRNA-target chimeras
(PAR-CLIP, CLASH, CLEAR-CLIP)
RNA Sequencing Fem———————————
Microarrays i W
Ribo-Seq i
Quantitative Proteomics H

Region features ‘

Background PAR-CLIP ‘
Simulated PAR-CLIP
/ ‘ MRE general ‘
v ‘
DE analysis ‘ ‘ bindingvector
cmngng:ER . SCORING VALIDATION
A 4 ‘ miRNA-target ™
MRE Identification ‘ duplex
v Base pairing

CLIP signal ‘ matches per

miRNA/MRE
domain

v
‘ FEATURE extraction ‘

Figure 14: Overview of the adopted pipeline for the development of a novel learning framework for
CLIP-guided miRNA-target identification. (Copyright Paraskevopoulou MD)

1) Region features: CLIP-sequencing-derived features, such as RPKM coverage,
substitution frequencies and distances from the MRE start as well as
overlapping/upstream/downstream MRE region content, conservation,
sequence energy, complexity, content asymmetry, and biases of codon usage.

2) MRE general: MRE-related descriptors including the degree of overlap with the
respective cluster, conservation of the most 5' MRE binding nucleotides and all
MRE binding nucleotides, MRE location within the cluster, MRE binding type
well as metrics for duplex matched nucleotide content skewness.

3) Binding Vector: Binary binding vectors of miRNA/MRE position base pairing
were added to the model, where each element in the vectors constitutes a distinct
descriptor.
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4) miRNA-target duplex: miRNA-target duplex structure energy, miRNA or MRE
bulges and mismatches, GU wobbles and AU base pairing features for the
specified miRNA and/or target and relevant sub-domains.

5) Base pairing: base composition descriptors (A, T, G, C) of the (un)paired
nucleotides were also included.

6)Matches per miRNA/MRE domain: total and consecutive matches in the miRNA-
target structure as well as in MRE and miRNA relevant sub-domains.

A boosting meta-classifier was implemented to assemble the generated output of the
base classifiers. The predictive accuracy of the final model as well as its evaluation
against other state-of-the-art implementations is presented in the relevant result section.
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3. Results

3.1 DIANA-microT web server v5

The updated microT web server incorporates miRBase version 18 (174) and Ensembl
version 69 (175) nomenclature. The in silico-predicted miRNA-gene interactions in Homo
sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans exceed 11

million in total.

3.1.1 Web Server Update and Extension

The selection of DIANA-microT-CDS as its core algorithm renders the new web server
the only available online resource capable of incorporating miRNA targets in 3’"UTR as
well as in CDS regions. The new web server enables users to attain high quality
predicted miRNA-gene interactions in all relevant in silico pipelines.

The server is compatible with the new miRNA nomenclature (3p/5p) introduced in
miRBase v18, as well as with previous miRNA naming conventions. It currently
supports 7.310° H. sapiens, 3.510¢ M. musculus, 4.4105 D. melanogaster and 2.5-105 C.
elegans interactions between 3,876 miRNAs and 64,750 protein coding genes. Gene (175)
and miRNA (176) expression data have been incorporated into the web server, enabling
the user to perform advanced result filtering based on tissue expression. Furthermore,
users can also restrict predictions between uploaded lists of expressed genes and/or
miRNAs. For example, this feature can be used to identify interactions between a list of
repressed (or overexpressed) genes and overexpressed (or repressed) miRNAs, in the
case of a differential expression analysis pipeline.

Moreover, the web server hosts an updated version of the KEGG database providing a
relevant search module based on KEGG pathway descriptions (177). A redesigned
optional user space has also been implemented, which provides personalized features
and facilitates the interconnection between the web server and the available DIANA
software and databases (Figure 15).

3.1.2 DIANA-microT web server v5 Interface

The DIANA-microT web server provides in silico predictions of miRNA:mRNA
interactions in a user-friendly interface. Specific attention has been paid to the web
server interface, which follows the DIANA design framework, in order to be instantly
familiar to users of previous versions or other DIANA tools. On the other hand, online
help, informative tooltips and easy-to-use menus, minimize the learning curve of new
users. A snapshot of the DIANA-microT web server interface is provided in Figure 15.

The interface hosts extensive information for predicted miRNA:target gene interactions
such as, a global score for each interaction, as well as detailed information for all
predicted target sites. Each target site can be individually visualized and the user can
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examine its local prediction score, target site conservation and the miRNA-mRNA
binding structure. The server provides also connectivity to online biological databases
and offers links to nomenclature, sequence and protein databases.
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Figure 15: Example of a submitted query in the DIANA-microT web server v5.0. The interface presents
information regarding each predicted miRNA:mRNA interactions. miRNA and gene-related
information, as well as advanced search options have been expanded. Links to external databases,
graphical representation of the binding sites as well as miRNA recognition element (MRE)
conservation and prediction scores are displayed in the relevant sections. The left side of the page is
devoted to the personal user space, reporting latest searches and bookmarks (Paraskevopoulou MD et
al, 2013)(54).

3.1.3 Advanced pipelines supported by the microT-web server v5

DIANA-microT web server v5.0 hosts integrated analyses in the form of ready-made
advanced pipelines, covering a wide range of inquiries regarding predicted or validated
miRNA-gene interactions and their impact on metabolic and signaling pathways. These
pipelines can be utilized to analyze user data derived from small scale or high
throughput experiments directly from the DIANA-microT web server interface, without
the necessity to install or implement any kind of software.

The supported advanced workflows can perform extensive miRNA-related analyses on
results derived from high throughput techniques, such as microarrays or NGS. More
precisely, workflows can analyze mRNA and miRNA expression data (expression and
fold change) with suppressed genes automatically matched with overexpressed
miRNAs and vice versa.
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Supported workflows can perform enrichment analyses of experimentally validated
targets derived from DIANA-TarBase v6.0 (7) and/or predicted interactions from
microT-CDS. This enrichment analysis methodology is considered crucial in order to
identify miRNAs that regulate the differentially expressed genes.

The prediction score threshold can significantly affect the analysis steps that follow.
One available pipeline performs miRNA target prediction for the differentially
expressed genes using different microT score thresholds and meta-analysis statistics,
followed by pathway enrichment analysis. This pipeline is optimized by automatic
repetitions of different prediction thresholds (from sensitive to more stringent), in order
to minimize the effect of the selected settings to the derived results. By utilizing meta-
analysis statistics, the server combines the p-values from each repetition into a total p-
value for each miRNA, signifying its effect on the selected genes for all utilized
thresholds (178,179). In the last step of the pipeline, the identified miRNAs are subjected
to a functional analysis, where pathways controlled by the combined action of these
miRNAs are detected using DIANA-miRPath v2.1 (179).

Other supported pipelines can handle miRNA and gene lists, in order to perform the
enrichment analysis or even select the type of utilized interactions (predicted or
experimentally validated). In the latter, the algorithm “personalizes” the target
identification module for each miRNA. It initially identifies the number of available
interactions in DIANA-TarBase and DIANA-microT-CDS (validated vs predicted) and
automatically selects to use validated targets only for well-annotated miRNAs.
Computationally identified interactions are used otherwise.

The new DIANA-microT web server enables users to perform such analyses directly
from the on-line user interface, and/or create even more extensive pipelines
programmatically or by using visual tools (Taverna WMS).

Furthermore, the web server also supports direct programmatic access to all
aforementioned utilities in the form of services, in order to facilitate users having
already implemented pipelines with scripting or programming languages.

3.1.3.1 Example workflows

The implemented workflows make use of DIANA-Lab services through the DIANA-
web-server plug in. In order for this workflow to work properly the plug-in has to be
installed in the compatible Taverna versions. The workflow can run automatically, as
soon as the necessary input values are provided. Examples of implemented pipelines
are presented below.
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1. Enrichment analysis of in silico predicted miRNA-gene interactions followed by a

targeted pathway analysis.
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Figure 16: The implemented workflow initially performs enrichment analysis of in-silico predicted
targets derived from DIANA-microT-CDS and identifies miRNAs significantly controlling the set(s)
of differentially expressed genes. Subsequently, a miRNA-targeted pathway analysis is implemented
with DIANA-miRPath v2.
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2. Optimized enrichment analysis of predicted miRNA-gene interactions followed by
targeted Pathway analysis.

The pipeline is automatically repeated for different prediction thresholds (from
sensitive to more stringent), in order to minimize the effect of the selected settings to the
derived result.
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Figure 17: Flowchart depicting an analysis pipeline directly available from the web server interface.
Interactions between user-defined miRNA and gene sets are in silico identified in 3'UTR and CDS
regions using DIANA-microT-CDS. A subsequent miRNA target enrichment analysis identifies
miRNAs controlling significantly the sets of differentially expressed genes. The pipeline is
automatically repeated for different prediction thresholds (from more sensitive, to more stringent). By
utilizing meta-analysis statistics, the server combines the p-values from each repetition into a total p-
value for each miRNA, signifying its effect on the selected genes for all utilized thresholds. In the last
step of the pipeline, miRNA-targeted pathway analysis is implemented with DIANA-miRPath v2.
Paraskevopoulou MD et al, 2013) (54)
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3. “Personalizing” the selection of miRNA-specific validated/predicted interactions,
followed by miRNA Pathway analysis.
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Figure 18: In this workflow, the algorithm “personalizes” the target identification module for each
miRNA. It initially identifies the number of available interactions in DIANA-TarBase and DIANA-
microT-CDS (validated vs predicted) and automatically selects to use validated targets only in the
cases of well-annotated miRNAs. Otherwise, computationally identified interactions are used for the
analysis. In the final step of the pipeline the selected miRNAs are subjected to a functional analysis
with DIANA-miRPath v2, where pathways controlled by the combined action of these miRNAs are
detected. The pipeline selects to use targets predicted with DIANA-microT-CDS or experimentally
verified targets from TarBase v6 based on the analysis performed in the previous step.
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3.2 DIANA-Taverna plugin

DIANA-Taverna-Plugin enables the user to directly access our target prediction server
(microT-CDS) from the graphic interface of Taverna and incorporate advanced miRNA
analysis functionalities into custom pipelines. Furthermore, the plug-in enables the
extension of such pipelines through the use of other DIANA tools and databases,
providing access to an extensive collection of validated miRNA targets and to DIANA-
miRPath v2.1, a tool designed for the identification of miRNA targeted pathways.

The DIANA-Taverna Plugin provides optimized use of the DIANA-web server and
databases. It can be installed in compatible Taverna versions (v2.3 and v2.5) through the
“add plugin site” functionality of the Taverna Workbench.

Following the plugin installation, DIANA services are added under the local Taverna
“Available Services” panel section (Figure 19) along with the other provided tools. The
DIANA services can be incorporated to develop multistep analysis workflows by ‘drag
and drop’ of each service to the workflow design window.
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Figure 19: DIANA-Taverna plugin is installed in Taverna WMS. The DIANA services are added
under the local Taverna “Available Services” panel section along with the other provided tools.
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3.3 DIANA-TarBase repository

DIANA-TarBase currently indexes more than half a million entries, 9-250 times more
than any other relevant database. All entries are accompanied by rich detailed meta-
data that can also be used as search and filtering terms from the new application-like
user interface. For instance, DIANA-TarBase v7.0 collects data regarding the
experimental conditions, such as the exposition of cells to stressors, drugs or other
agents, since these can alter miRNA regulatory networks. Another novel aspect of the
database is its ability to include detailed information regarding the experimental
methodologies utilized for the identification of each interaction, since experimental
techniques cannot be considered as having equal information content.

The number of targets derived from major method classes is depicted in Figure 20.
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Figure 20: Entries per methodology for TarBase v7.0 and TarBase v6.0. The y-axis (number of entries)
is in log2 scale and each mark signifies doubling of available entries. (Vlachos IS and
Paraskevopoulou MD et al, 2014) (64)
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3.3.1 Database Statistics

The database comprises more than half a million interactions spanning 24 species; a 9 to
250-fold increase compared to TarBase 6.0 and other manually curated databases,
including miRTarBase and miRecords. The database encompasses interactions derived
from the widest variety of experiments to date, which are performed utilizing 28
different experimental techniques, 356 cell types and 59 different tissues.

Importantly, we have paid significant attention to curate articles utilizing highly
specific low yield techniques such as reporter genes, as well as state-of-the-art
methodologies, such as CLIP-Seq and CLASH experiments. The updated database
contains more than 7,500 interactions derived from specific techniques (4-fold increase
vs TarBase v6.0) and more than 500,000 interactions derived from high throughput
experiments (8-fold increase vs TarBase v6.0). Specifically, DIANA-TarBase v7.0
incorporates data derived from 154 CLIP-Seq/CLASH datasets, as well as more than a
hundred other high throughput datasets including Degradome-Seq (60), AGO-IP (32),
biotin pull-down (32), miTRAP (63), 3'Life (62) and IMPACT-Seq (61), which is the
highest number to be included in a manually curated database. The number of
incorporated miRNA-related NGS datasets (e.g. CLIP-Seq, CLASH, Degradome-Seq) is
also the highest ever reported.

3.3.2 DIANA-Tarbase Interface

DIANA-TarBase v7.0 is the first of DIANA databases and applications to utilize the
new user interface, which is implemented using PHP (under Yii Framework), MySQL
and JavaScript (JQuery).

The new DIANA-TarBase interface offers a friendlier, application-like user experience,
minimizing the necessity to load/refresh web pages following user selections. The new
interface brings the most common as well as advanced functions into the main pane,
enabling users to perform simple or complex tasks, without leaving their results page.

Advanced Searching and Filtering

TarBase v7.0 supports advanced real-time search and filtering. All relevant options
have been incorporated in the main result screen, in order to enable users to easily filter
and query the database. The provided search and filtering options include:
miRNA/gene combinations, species, experimental methodology class and subtype,
type of regulation and validation, selection of positive or negative experimental results,
year of publication and DIANA-microT-CDS threshold for interactions which are also
predicted in silico. As in the previous version, DIANA-TarBase also integrates
interactions from the latest available versions of external databases, including
miRTarBase and miRecords. Users can easily filter results and include/exclude external
sources or data derived from previous TarBase versions.

Maria D Paraskevopoulou 99

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs

Filters Species 1) ~ Regulation type (1) =
UpP
o ; 2
Species: Homo sapiens
T T Method Type (1) - UNKNOWN
Validation: -
Validated: - Normal
Sources: - LdHigh Througput Validation type (1) ~
Methods: -
DIRECT
Remove all X EMINDIRECT
: Method (15) =~ UNKNOWN
Species (1) -~
Validated as (1) -~

Arabidopsis thaliana 2 LIFE

Bombyx mori " g

Bos taurus GO-1P
LdBiotin-Microarrays

Caenorhabditis LPOSITIVE

elegans Biotin-gPCR NEGATIVE

Canis familiaris L dBiotin-Seq UNKNOWN

Danio rerio CACLASH

Dasypus v e

novemcinctus Electrophoretic Source (4) ~

Drosophila
melanogaster Mobility Shift Assay TarBase 6.0

Epstein Barr virus ELISA TarBase 5.0

Equus caballus Flow Cytometry CdMiRecords

Gallus gallus Genetic Testing LdmiR2Disease

Glycine max CAHITS-CLIP LdmiRTarBase
- HIV 1 rlicLip LdTarbase 7.0

{ 0408

Immunofluorescence
Immunohistochemistry
Medicago truncatula i i
Publication year
Mus musculus LdIMPACT-Seq 1‘9.00. y
Oryctolagus In Situ Hybridization
cuniculus LAMP Only publications published
selec yea vill
Oryza sativa Luciferase Reporter after the selected year w

be presented.
Japonica Asaay e
: = = ilter!
SVie anes LdMicroarrays Apply rn
Pan troglodytes h 1
Physcomitrella Northern Blot

patens Other
Prunus persica LAPAR-CLIP Prediction score
Rattus norvegicus PARE
\{x(-: vinifera L dpSILAC Only those having
Xenopus laevis qPCR prediction score greater
Xenopus tropicalis PARNA-Seq than th bove will be
Zea mays present

RdSILAC

LB Apply Filter!

Western Blot

Figure 21: Advanced filtering options in Tarbase v7.

Querying the Database

The database query can be performed by entering any combination of miRNAs and/or
gene names or supported identifiers (ENSEMBL (180) gene ids for genes and miRBase
(181) MIMAT accessions for miRNAs). If genes and miRNAs are concurrently provided,
TarBase will return all indexed interactions of the selected miRNAs with any of the
provided genes.

The new interface (Figure 22) is designed around the new database schema, in order to
cater to users extended meta-data regarding each interaction. Users can easily identify
positive or negative experimental results, the utilized experimental methodology,
experimental conditions including cell/tissue type and treatment. The new interface
provides also advanced information ranging from the binding site location, as identified
experimentally as well as in silico, to the primer sequences used for cloning
experiments.

This version is also seamlessly incorporated to other DIANA-Tools. The DIANA-
TarBase v7.0 user can easily perform a pathway analysis for the miRNA(s) under
investigation, identify their predicted targets or examine if they have been identified
experimentally or in silico to target long non-coding RNAs, using DIANA-miRPath
v2.0(182), microT-CDS(183) and LncBase(184), respectively.
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Figure 22: Screen-shot depicting the DIANA-TarBase v7.0 interface. Users can enter the query terms in
the simple search box (1). Interaction information is presented below (2), while further details are
accessible by expanding the result panel or by selecting the information links (4). All results are color

coded, with green and red showing positive and negative experimental outcomes, respectively (5).
Mixed results are presented using both colors. Users can filter the query results using any
combination of the filtering options (3). (Vlachos IS and Paraskevopoulou MD et al, 2014) (64)

Since January 2014, DIANA-TarBase has been integrated in the official ENSEMBL (180)
distribution. All TarBase entries having binding site coordinates can be explored
directly from the ENSEMBL genome browser. Each DIANA-TarBase entry has a link
pointing to the relevant browser view and coordinates, facilitating user interaction with

both databases.

<< B E &

Scroll: nn Track height:

Mb

B0 40 Mb

B9 60 Mb

Chromosome bands

Contigs

AL13IBTEF. 15 =

AL13Z327.10 =

B9 80 Mb Q000 M

< ACOE3015.3 AL3ISE073. 15 =

- FPseudogens

I I
Genes (GENCODE 19) | » I ' .
I
MIMPP1 > =Y¥_RMNA FAPSSZ = = ATAD1 <|RINTSLTEP < SNORD74
L7.3 < RP11-57C13.4 < KILLIN RPY1-380G5.3 = = MEDSFP1
Mb £89.40 Mb 89.60 Mb B89.80 Mb 20.00 M
Gene Legend I Merged Ensembl’Havana Il Frocessed transeript

- RMA gene

Location: 10:89725283-89726772

Gene:

= «J(«] [+

1.49 kb

89,725,400

89,725,600 89,725,800

iConstrained elaments for 37 eutherian manmals EPO_LOW_COVERAGE
e ________———

89,726,000 89,726,200 89,726,400

""" PTEN-001 =
protein coding

89,725,400
el Reverse strand

89.725.6

 merged Ensembl/Havana

...l Gene associated
B Pollll associated
Unclassified

There are currently 382 trackstumed o
Ensembl Homo sapienswversion 75.37 (GRChS?] Chromeosome 10: 89,725,283 - 89,726,772

Name hsa-miR-19a-3p

FeatureType Tarbase miRMNA target
bp 10:B9725619-B97 25647

View all locations

| Il |
Mame hsa-miR-214-3p
89, 72k55000 FeatureType Tarbase miRMA target (00
i bp 10:897 26222 897 26250
View all locations
W Mon-gene assocrared

EE Promoter associated
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3.4 DIANA-LncBase repository

LncBase v2 has been significantly extended, compared to the previous release (Table
14). LncBase v2 currently hosts ~70,000 experimentally supported interactions for an
integrative meticulously curated collection of IncRNA transcripts. The new database
enables the identification of miRNA-IncRNA regulatory interactions in numerous
tissues, cell types and conditions, validated with low yield or high-throughput
experimental methodologies (more than 150 raw NGS datasets). This compilation of
high-throughput datasets corresponds to a 16-fold increase compared to the processed
CLIP-Seq libraries available in LncBase v1.

LncBase v2 facilitates the charting of tissue and cell-type-specific miRNA-IncRNA
interactions with state-of-the-art experimental techniques. Database entries are enriched
with detailed metadata, including information on experimental methodologies,
evolutionary conservation of miRNA-targeted regions and IncRNA transcript
expression profiles, assessed by analyzing in-house 58 raw RNA-Seq libraries
comprising ~6.1 billion reads.

The analysis of CLIP-Seq libraries resulted in a set of approximately 12,900 IncRNA
transcripts harboring at least one MRE. More than half of the MREs identified on
IncRNAs resided on intronic regions, which may be explained by the underestimation
of their spliced length and number of exons. MREs detected on IncRNA introns are
appropriately tagged and provided in the current release. LncBase v2 also hosts 14
PAR-CLIP libraries derived from virus infected cells. For these datasets, host IncRNA
transcripts were additionally searched for interactions with viral miRNAs. Expressed
viral miRNAs were found to participate in more than 400 miRNA-IncRNA unique
interacting pairs.

Computationally predicted interactions, on the other hand, exceed 10 million between
41,229 IncRNAs and 4,503 miRNAs, for human and mouse. A subset of these
interactions, approximately 5 million, represent a set of highly scored predictions
composed of 22,073 lincRNAs, 12,485 antisense, 14,681 sense, 3,664 processed
transcripts with at least one MRE.
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A concise description of the updated database can be found in the following table.

LncBase vl LncBase v2
miRNA species 2 4
miRNAs in interactions 127 ~1,400
unique interacting _
Database Entries miRNA:IncRNA pairs 4,982 51,000
Cell lines 5 53
Tissues 5 20
Total interactions 4,994 >70,000
Studies 2 22
Analyzed
High-Throughput Conditions 6 67
Datasets
Libraries 9 153
Number of Methods 4 12
CLIP-Seq, AGO-IP,
E ) tal CLIP-Seq, Biotin miRNA
xperimenta -
. qPCR, tagging , RNA-Seq,
Methodologies Description Reporter Microarrays,
Assay, Northern blot,
Northern blot  qPCR,
Reporter Assay

Table 14: Comparison between LncBase v2 and LncBase vl. The table summarizes the experimental
module entries of the two databases, including the number of miRNAs targeting IncRNA transcripts,
the unique miRNA:IncRNA interacting pairs, different cell lines and tissues supporting miRNA-
related experimental methodologies, analyzed CLIP-Seq libraries and associated studies, experimental

conditions, as well

as the included

(Paraskevopoulou MD et al, 2015)(117)
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The unique features of DIANA-LncBase are highlighted in Table 15, along with a
comprehensive summary of other leading repositories indexing experimentally
supported miRNA-IncRNA interactions.

LncBase v2.0

IncRNome

IncReg

NPInter v2.0

Starbase v2.0

miRNA species

IncRNAs in
interactions

miRNAs in
interactions

viral miRNA-
IncRNA
interactions
Total
interactions

Experimental
Methodologies

Analyzed Raw
High-
Throughput
Libraries
Cell
Types/Tissues

LncRNA
expression
information

miRNA
Binding Site
conservation
Pathways-
Disease
association
Competing
endogenous
RNA
interactions

IncRNA
Resources

Version

Human, Mouse,
Epstein-Barr virus,
KSHV

>3,500

~1,400

>70,000

CLIP-Seq, AGO-IP,
Biotin miRNA
tagging, RNA-Seq,
Microarrays,
Northern blot,
qPCR,
Reporter Assay

153 AGO CLIP-Seq
libraries

RNA-Seq

v
(miRPath v3.0)

v
(TarBase v7.0)

GENCODE v21,
Refseq, Cabili ef al.

v2.0

Human

66

1,205

>3,700

CLIP-Seq

Microarrays

GENCODE v12,
HGNC(186),

literature

Accessed
(April 2013)

Human, Mouse,
Arabidopsis
Thaliana

14

24

34

(AGO) RNA pull-
down, Northern
Blot, qPCR,
Reporter Assay,
FISH

literature

Accessed
(August 2015)

Human, Mouse,
Danio rerio

~1,400

25

>1,500

miR-CLIP(185),
Microarrays, qPCR,
Reporter Assay

NONCODE(187),
LncRNADisease(18
8)

v2.0

Human, Mouse,
C.elegans

1,149

383

>10,000

CLIP-Seq

108 RNA-
binding Protein
CLIP-Seq
datasets

v

RNA-Seq

GENCODE v17

v2.0

Table 15: Comparison of included data, as well as basic features and functionalities of online leading
repositories indexing experimentally supported miRNA-IncRNA interactions. (Paraskevopoulou MD

et al, 2015)(117)
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3.4.1 DIANA-LncBase Interface

The database interface has been completely redesigned to provide an intuitive and easy
to use application as well as high flexibility to different user queries (Figure 24).
DIANA-LncBase v2 interface comprises two distinct modules for in silico predicted and
experimentally supported miRNA-IncRNA interactions.

Module for Experimentally supported interactions.

Indexed interactions were enhanced with extensive metadata regarding the supporting
publication, type of regulation, experimental methodologies used for miRNA-IncRNA
interaction validation, experimental design (including treatment and conditions), as
well as cell types and tissue information. Most of the experimentally supported
interactions are now coupled with information regarding their genomic location. An
advanced filtering/query panel for experimental methodologies, relevant cell types and
species is also provided, in order to enable users to identify cell type and tissue-specific
miRNA-IncRNA interactions.

Module for in silico predicted interactions.

Predictions are enriched with information concerning MRE binding sites, structures and
conservation. miRNA-IncRNA interactions can be visualized upon selection in an
interactive UCSC genome browser (152) graphic (Figure 25), where the user is
facilitated with all browser options and additional informative tracks. Prediction
interaction score and IncRNA tissue/cell type expression can be utilized for filtering the
displayed results.
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Figure 24: Snapshot depicting the DIANA-LncBase v2 interface. Queries using one or more miRNAs
and/or IncRNAs (1) or even the coordinates of a genomic location (2) are supported. Users can add and
remove search terms or filter (3) their results based on cell/tissue type and experimental methodology,
as well as the experimental outcome (positive/negative) or type of validation (direct/indirect). LncBase
offers extensive information for each identified interaction, such as gene/miRNA details (4,5), as well
as active links to UCSC graphical representation (6), Ensembl, miRBase and DIANA disease tag cloud
(8). LncBase also provides useful information for each performed experiment (9), including the
methodology, cell or tissue that was utilized, as well as a link to the original publication. There are
direct links to external applications, such as microT, TarBase, miRPath, where the studied miRNAs
can be further examined. Interactions are also coupled with miRNA binding site details (10). Users
can navigate between the Experimental and Predicted LncBase v2 modules (11). The Help button (12)
leads to the LncBase Help section. (Paraskevopoulou MD et al, 2015) (117)
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Figure 25: Visualization of a miRNA-IncRNA interaction in UCSC genome browser graphic upon user
selection in the LncBase interface. MREs are shown along with the annotated (un)spliced IncRNA
transcript. Extra information tracks regarding ChIP/DNase-Seq signal, sequence conservation, SNPs
and repeat regions are also provided. The graphical representation is an active link to the UCSC
genome browser where the user is facilitated with all the available browser options. (Paraskevopoulou
MD et al., 2016) (118)

LncBase v2 indexed interactions are seamlessly interconnected with other available
tools in DIANA suite, including TarBase (64) and/or microT-CDS (54) for the
identification of competing coding counterparts for miRNA binding and DIANA-
miRPath (189) for functional characterization of miRNAs in molecular pathways
(Figure 26).
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Figure 26: miRNA hsa-miR-126-5p which targets MALAT1 based on LncBase experimentally
supported interactions and in silico predictions is subjected to a pathway analysis using DIANA-
miRPath. Optionally, the user can upload more miRNAs and select to either include their validated or
predicted mRNA targets in the functional analysis. Several user-defined options are provided,
including, merging method selection, enrichment calculation methodologies as well as
parameterization of microT score and p-values of targeted pathways. Sophisticated heatmap/cluster
visualizations are available along with pathways merging methods selection. Underlined pathway
descriptions are active links to enriched KEGG representations. (Paraskevopoulou MD et al., 2016)
(118)

3.5 CLIP-Seq-guided miRNA binding site analysis

The analysis of numerous CLIP-Seq libraries across different cell types and
experimental conditions enabled the charting of miRNA-mRNA-IncRNA competing
endogenous interactions. This wealth of information has assisted the study of miRNA
target repertoire on different gene biotypes as well as of the conservation of MREs in
(non)coding regions. The analysis of MREs residing on IncRNA exons additionally
unveiled tissue specific miRNA-IncRNA interactions.
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3.5.1 Distribution of MREs in (non)coding regions

miRNA binding sites overlapping transcript exons were predominantly encountered in
CDS and 3'UTR regions of mRNAs, which was consistent in all cell types and tissues.
The analyses of >100 CLIP-Seq libraries in human revealed that 91 + 5% of the identified
MREs were found on CDS and 3'UTR regions, and 5% + 2% on intergenic, sense,
antisense and processed IncRNA transcripts (Figure 27). A similar distribution of
miRNA targeted regions was observed in the HITS-CLIP datasets in mouse (Figure 28).

Biotype Il UTR3 [ CDS I/ UTR5 M lincRNA M sense  antisense ll processed_transcript

N2

OAqua

Figure 27: Spatial classification of miRNA-targeted regions as identified in human CLIP-Seq libraries.
MREs are being distributed in 3'UTR, 5'UTR, CDS, lincRNA, (anti)sense and processed IncRNA
transcript regions across different cell types, with 5 + 2% of the exonic MREs were annotated on
IncRNAs. (Paraskevopoulou MD et al, 2015) (117)
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Figure 28: Spatial classification of miRNA-targeted regions as identified in mouse CLIP-Seq libraries

MREs are distributed in 3'UTR, 5’"UTR, CDS and IncRNA transcript regions across different cell types
2 + 0.3% of the exonic MREs were annotated on IncRNAs. LincRNA, sense, antisense and processed

transcripts are grouped together under the umbrella term IncRNA. (Paraskevopoulou MD et al, 2015)

(117)
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3.5.2 Clustering of cell types on targeted IncRNAs

CLIP-Seq libraries from different cell types were hierarchically clustered based on the
identified miRNA-IncRNA interactions. Specific cell type groups such as
lymphoblastoid, HeLa and bone marrow-derived cell lines in human were found
clustered together in the resulting dendrogram; depicting a high similarity in the
identified interactions (Figure 29). Similar clusters were also observed in targeted
mouse IncRNAs of muscle cognate cell lines and thymocytes which are also densely

grouped in the dendrogram (Figure 30).

M

Figure 29: Cell types hierarchically clustered based on targeted human sense, antisense, intergenic and
processed IncRNA transcripts. All data included in the dendrogram have been retrieved from
analyzed CLIP-Seq libraries spanning different cell types. (Paraskevopoulou MD et al, 2015) (117)

Beta cells
293S_Arsenite
BT474
BCH

BC3

LCL35
LCLBACD3
LCLBAC
HEK293
HS27a
ESC
C8166
HMSC
HUVEC
HELA
TZMBL
MCF7
BCBL1
HS5

EF3DAGO2

2935_Control
293S_Emetine
293S_Hippuristanol
LCLBACD1
MDAMB231

Maria D Paraskevopoulou
111

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs

Lo
Ty)

WT CD4+

P13 neocortex
36hrHepatectomy
48hrHepatectomy
1hrHepatectomy
quiescent Liver
Myoblasts
Myotubes

CD4+ KO miR-1

Figure 30: Cell types hierarchically clustered based on targeted mouse IncRNAs. All interactions
included in the dendrogram have been derived from analyzed CLIP-Seq libraries across different cell
types and tissues. (Paraskevopoulou MD et al, 2015)(117)

3.5.3 Conservation of MRE regions

PhyloP (190) pre-computed scores from genome-wide multiple alignments of 46 and 60
vertebrate species for human and mouse, respectively, were utilized to assess
evolutionary rates of miRNA targeted regions. PhyloP precompiled values were
downloaded from the UCSC repository (152). Conservation signals of MRE regions
were estimated as mean intensities of the overlapping PhyloP base-wise scores.

A non-redundant set of collapsed MREs collected from all analyzed CLIP-Seq datasets
was defined and annotated accordingly to (non)coding exons. MREs with dual
annotation due to overlapping transcript regions were excluded from the analysis. In all
pairwise comparisons of conservation, binding sites positioned on lincRNA introns
were considered as a separate category. Stronger evolutionary pressure was observed in
miRNA binding sites identified on coding and untranslated mRNA regions. MREs on
IncRNA exons were significantly more conserved than those residing in introns, while
no differences were observed in substitution rates of MREs on intergenic, sense,
antisense and processed IncRNA transcripts (Figure 31, Table 16). Statistical analysis of
MRE conservation has also been performed for experimentally supported binding sites
on mouse IncRNAs (Figure 32, Table 17).
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CLIP-Seq derived MREs in human
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Figure 31: Evaluation of human MRE substitution rates. CLIP-Seq-supported miRNA binding sites on
human were spatially classified on CDS, 3'UTR, 5'UTR, lincRNA exons, lincRNA introns, processed
transcripts and (anti)sense IncRNA regions. MRE conservation was estimated using PhyloP pre-
computed base-wise values from genome-wide multiple alignments of 46 vertebrate species. Binding
sites on mRNA regions (CDS, 3'UTR, 5"UTR) were significantly more conserved than the MREs found
on IncRNA exons. LincRNA, sense, antisense and processed transcripts presented similar substitution
rates. Weaker evolutionary pressure (p<0.05) was observed in MREs on lincRNA introns compared to
those located on lincRNA exons. (Paraskevopoulou MD et al, 2015) (117)
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LincRNA_ LincRNA_  Processed_tr

Human Antisense . ! Sense
exon intron anscript

CDS 2.0e-16 - - - - - -
lincRNA_

0.24796 2.0e-16 - = - - -
exon
lincRNA_
. 1.80e-08 2.0e-16 4.20e-05 - - - -
intron

d_tr

processec. 0.56288 2.0e-16 0.1919 0.00032 ; ; -
anscript
Sense 0.56288 2.0e-16 0.56288 0.00805 0.56288 - -
UTR3 2.0e-16 2.0e-16 2.0e-16 2.0e-16 0.00052 1.60e-11 -
UTR5 0.00107 2.0e-16 5.80e-10 2.0e-16 0.56288 0.00805 3.20e-09

Table 16: FDR-adjusted p-values derived from the statistical analysis of CLIP-Seq-supported human
MRE evolutionary rates, spatially classified on CDS, 3'UTR, 5'UTR, lincRNA exons, lincRNA introns,
processed transcripts and (anti)sense IncRNA regions. (Paraskevopoulou MD et al, 2015) (117)

LincRNA_ LincRNA_ Processed_t

Antisense . : Sense
exon intron ranscript
CDS 2.0e-16 - - - - - -
lincRNA_
0.20229 2.0e-16 - - - - -

exon
lincRNA_
. 0.00411 2.0e-16 2.80e-14 - - - -
intron
processed_t

) 1.30e-05 2.0e-16 0.00019 2.0e-16 - - -
ranscript
Sense 0.4401 2.0e-16 0.8879 0.00011 0.00739 - -
UTR3 2.0e-16 2.0e-16 2.0e-16 2.0e-16 7.30e-12 2.0e-16 -
UTR5 2.0e-16 2.0e-16 2.0e-16 2.0e-16 3.60e-07 6.90e-14 2.10e-05

Table 17: FDR-adjusted p-values derived from the statistical analysis of CLIP-Seq-supported mouse
MRE conservation, spatially classified on CDS, 3'UTR, 5'UTR, lincRNA exons, lincRNA introns,
processed transcripts and (anti)sense IncRNA regions. (Paraskevopoulou MD et al, 2015) (117)
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CLIP-Seq derived MREs in mouse
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Figure 32: Evaluation of mouse MRE substitution rates. MRE conservation was estimated using
PhyloP pre-computed base-wise values from genome-wide multiple alignments of 60 vertebrate
species. CLIP-Seq-supported miRNA binding sites were spatially classified on CDS, 3'UTR, 5'UTR,
lincRNA exons, lincRNA introns, processed transcripts and (anti)sense IncRNA regions. Binding sites
on mRNA regions (CDS, 3'UTR, 5’"UTR) were significantly more conserved than the MREs found on
IncRNA exons. LincRNA, sense and antisense transcripts presented similar substitution rates. Weaker
evolutionary pressure (p<0.05) was observed in MREs on lincRNA introns compared to those located
on lincRNA exons. (Paraskevopoulou MD et al, 2015) (117)

Random background regions retrieved from each spatially classified genomic group
were additionally utilized as controls for the assessment of MRE evolutionary pressure.
Pairwise comparisons revealed that CLIP-Seq-supported miRNA binding sites in
human, even in IncRNA regions, are significantly more conserved than their
background sequences (Figure 33), which is a phenomenon previously known to occur
in MREs located in mRNA 3'UTRs (25). The evaluation of MRE evolutionary rates
among different genomic classes compared to their background in mouse species
produced similar results and is presented in Figure 34.

Non-parametric comparisons were performed with Kruskal-Wallis test in order to
detect significant differences on substitution rates between multiple groups. Pairwise
Mann-Whitney’s U tests were adopted as a post-hoc non-parametric test. All p-values
were FDR-adjusted to control family-wise error rates due to multiple comparisons
(191). All tests were two-sided and p-values < 0.05 were considered as statistically
significant.
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CLIP-Seq derived MREs in human
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Figure 33: Evaluation of CLIP-Seq-supported human MRE substitution rates. miRNA binding sites
were spatially classified on CDS, 3'UTR, 5'UTR, lincRNA exons, processed transcripts and (anti)sense
IncRNA regions. Random background regions retrieved from each spatially classified genomic group
were additionally utilized as controls for the assessment of MRE evolutionary pressure. MRE and
background region conservation were estimated using PhyloP pre-computed base-wise values from
genome-wide multiple alignments of 46 vertebrate species. Pairwise comparisons revealed that MREs,
even in IncRNA regions, are significantly more conserved than their background sequences, which is
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a phenomenon previously known to occur in MREs located in mRNA 3’UTRs. P-values derived from
statistical analyses are marked in the relevant panels. (Paraskevopoulou MD et al, 2015) (117)

CLIP-Seq derived MREs in mouse
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Figure 34: Evaluation of CLIP-Seq-supported mouse MRE substitution rates. Random background
regions were utilized as control evolutionary pressure measurements in each group of spatially
classified miRNA binding sites on CDS, 3’'UTR, 5'UTR, lincRNA exons, processed transcripts and
(anti)sense IncRNA regions. MRE and background region conservation was estimated using PhyloP
pre-computed base-wise values from genome-wide multiple alignments of 60 vertebrate species.
Pairwise comparisons revealed that MREs (even in most IncRNA subgroups) are significantly more
conserved than their background sequences. P-values derived from statistical analyses are marked in
the relevant panels. (Paraskevopoulou MD et al, 2015)(117).
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3.5.4 Identification of competing endogenous interactions

By analyzing the experimentally supported interactions available in TarBase and
LncBase repositories, we identified thousands of cell type specific miRNA-IncRNA-
mRNA trios that can be considered as candidate ceRNAs. The following table
summarizes the competing interactions identified per cell type. LncRNAs and mRNAs
participating in the interactions are reported only if they have more than 2 miRNA
binding sites.

Cell line Number of IncRNAs Mean miRNA Number of mRNAs in Mean miRNA

in competing binding sites per competing binding sites per
interactions IncRNA interactions mRNA
293S 38 7.5 826 3.6
BC1 2 3 16 3.2
BC3 1 3 1 3
BCBL1 2 43 45 3.7
Beta cells 18 4.8 448 3.6
Brain 69 4 2,683 3.6
BT474 8 9 420 3.6
HEK293 3 3.2 17 3.1
HELA 7 3.6 100 3.5
hMSC 2 3.5 18 3.4
HS27a 2 3.3 17 3.6
HS5 9 5 360 3.5
HUVEC 2 3.5 21 3.6
MCEF7 7 54 205 3.5
MDAMB231 1 3 1 8
TZMBL 2 3 2 3.2

Table 18: Competing interactions identified per cell type. Interactions are derived from the analysis of
more than 150 raw AGO-CLIP-Seq libraries. LncRNAs and mRNAs participating in the interactions
are reported only if they have more than 2 miRNA binding sites.
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3.6 Evaluation of Tarbase/LncBase AGO-CLIP-Seq data Analysis performance
against other CLIP-Seq Target Identification Algorithms

The in-house implemented algorithm for the analysis of AGO-CLIP-Seq data is central
to DIANA-tools. Therefore, it has been extensively tested against collections of
experimental targets. The evaluation of AGO-CLIP implementations is a complex and
laborious procedure. Even if thousands of experimentally verified miRNA-gene
interactions have been already indexed, only a small portion corresponds to validated
specific negative interactions. Therefore, in the following comparisons (Figure 35,
Figure 36) correctly predicted experimentally supported interactions are included.

From the performed tests, the algorithm outperforms state-of-the-art approaches for
MRE identification in CLIP-Seq data, such as MIRZA, microMUMMIE and PARMA
(Figure 35). CLIP target identification implementations currently manage to identify
~25% of the experimentally validated binding sites and to provide one valid miRNA
binding site in approximately every 4 predicted targets. This result shows that state of
the art implementations need further optimization and improvement.

Comparison of CLIP-Seq Analysis Algorithms
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Figure 35: CLIP-Seq algorithm comparison against a unified positive set of Reporter Luciferase Gene
Assays and Chimeric interactions. The number of correctly predicted miRNA binding sites vs mean
predicted interactions per miRNA is shown for different interaction score thresholds.

In another evaluation, CLIP-Seq adopted pipeline performance has been tested against
the biophysical model MIRZA. In this comparison, two distinct high quality sets of
experimentally verified interactions with positive regulation, derived from DIANA-
TarBase v7, were utilized. The first comprised 1,655 TarBase v7.0 indexed interactions
from ~300 Luciferase Reporter Gene Assays and ~1,300 chimeric interactions
(CLASH)(173) in HEK293T cells. The second incorporated an extended set of ~850
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interactions validated with Luciferase Reporter Gene Assays. For all selected
interactions, the exact binding site coordinates had to be known.

The number of correctly predicted miRNA binding sites versus total predictions for
different prediction score thresholds is depicted in the following figure (Figure 36a,b).
The results demonstrate that CLIP-Seq analysis algorithms are more efficient in stricter
prediction scores. It should be noted that the MIRZA implementation provides true
positive predictions approximately for 30% of the included miRNAs, while our
approach identifies correctly more than half of the miRNAs (50+%).

Since MIRZA requires miRNA expression values, it cannot be used also in the second
dataset (1b). The DIANA CLIP algorithm manages to identify more than half of the
experimentally supported interactions and to provide approximately one externally
validated (with another technique) miRNA binding site in every 4 predicted MREs.
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Figure 36: Evaluation of CLIP-Seq algorithm performance. The selected points indicate the
performance of the implementations from loose to strict prediction scores. a) The number of correctly
predicted miRNA binding sites by our in-house-developed CLIP algorithm and MIRZA versus total
predictions for different interaction score thresholds. The utilized validation set comprised 1,655
experimentally validated interactions from ~300 Luciferase Reporter Gene Assays and ~1300 chimeric
CLASH interactions. b) LncBase CLIP-Seq algorithm performance evaluation in a set of ~850
Luciferase Reporter Gene Assays spanning different cell types. Approximately 1 externally validated
miRNA binding site is provided in every 2 predicted MREs by using score thresholds of moderate
stringency.
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3.7 Evaluation of a novel algorithm for CLIP-Seq-guided miRNA-target
identification.

The subsequent sections describe retrieved outcomes from the descriptor preprocessing
and assessment prior to feature selection. Each descriptor is independently evaluated
for its predictive accuracy using ROC curves. ROC plots are selectively presented below
for a handful of prominent and top performing descriptors (1 dimension). Broad sub-
groups of the initial feature set are also explored for in-between associations (data are
shown on the following correlation heat maps). The accuracy of base Random Forest
classifiers coupled with each model internal feature ranking is additionally presented.
The final GBM meta-classifier is evaluated for its performance to accurately predict
positive and negative instances derived from an independent test set. Consclusively, the
performance of the introduced algorithm is evaluated against other state-of-the art
implementations, including the computational approach adapted by TarBase/LncBase
for the AGO-CLIP-Seq data analysis.

3.7.1 Feature ROC curves

Several features derived from CLIP-Seq experiments, such as the cluster length, RPKM
expression values for MRE regions (Figure 37), descriptors of substitution frequencies
(especially T-to-C conversion-related features - Figure 38) as well as substitution
distances from relative MRE start sites have presented high predictive performance.

MRE Rpkm
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Figure 37: ROC curve of ‘MRE RPKM’ parameter for the classification of positive/negative miRNA
binding sites.
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Figure 38: ROC curve of ‘T-to-C transitions’ parameter for the classification of positive/negative
miRNA binding sites.

Certain single or di-nucleotide composition descriptors for
overlapping/upstream/downstream MRE regions presented high performance in the
one dimensional feature evaluation. Below, ROC curves of upflank-MRE “A or T”
(Figure 39) and upflank-MRE “G” (Figure 40) are indicatively provided. Notably, A/U
flanking content is deemed important by many miRNA target prediction approaches
and it has been associated with accessible miRNA sites. Moreover, “G” enrichment in
upflank-MRE region has been associated with RNase cleavage sites.

Thermodynamic MRE properties and MRE content asymmetry including, entropy (dS),
enthalpy (dH), free energy (dG), and melting temperature (Tm) and purine skew,
exhibited significant difference between CLIP-derived positive/negative miRNA
binding sites. Relevant ROC curves of Tm, dS and purine skews are shown in Figures
41-43. These three features are for the first time incorporated in a relevant learning
framework.

Finally, ROC AUC curves of prominent features, describing the miRNA binding site are
selectively displayed in the Figures 44-48. More precisely, the interaction binding type,
consecutive miRNA-target matches in the seed, binding of the first seed nucleotide
(MRE position 2), “miRNA C-matches” and AU base pairing in the seed region
appeared to significantly differ between CLIP-Seq positive and negative MREs.

Notably, most of the presented descriptors in the ROC curves were also highly ranked

in the implemented base classifiers.
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Figure 39: ROC curve of “upflank-MRE A or T content” parameter for the classification of
positive/negative miRNA binding sites.
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Figure 40: ROC curve of “upflank-MRE G content” parameter for the classification of
positive/negative miRNA binding sites.
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Figure 41: ROC curve of “MRE dS” parameter for the classification of positive/negative miRNA
binding sites.
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Figure 42: ROC curve of “MRE Tm” parameter for the classification of positive/negative miRNA
binding sites.
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Figure 43: ROC curve of “MRE Purine-skew” parameter for the classification of positive/negative

miRNA binding sites.
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Figure 44: ROC curve of “MRE binding position 2” parameter for the classification of
positive/negative miRNA binding sites.
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Figure 45: ROC curve of “Binding type” parameter for the classification of positive/negative miRNA

binding sites.
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Figure 46: ROC curve of “miRNA C-matches” parameter for the classification of positive/negative
miRNA binding sites.
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Figure 47: ROC curve of “consecutive seed-matches” parameter for the classification of positive/negative

miRNA binding sites.
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Figure 48: ROC curve of “seed AU base pairs” parameter for the classification of positive/negative

miRNA binding sites.
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3.7.2 Feature Correlation plots

A common problem of large datasets is the existence of highly correlated parameters.
Thus, the primary descriptors collection was appropriately filtered in order to include
only unrelated features and to avoid correlation-induced biases in the implemented
learning models. Feature correlation estimations revealed several parameters
presenting increased (anti)correlation. Figures 49-55 correspond to correlation plots
comprising sub-groups of the initial feature set.

T-to-C min MRE distance - max Ratio

max T-to-C Ratio - min MRE distance

T-to-C min MRE distance

MRE Rpkm per Cluster Rpkm

max of Substitutions Ratio - min MRE distance
min MRE distance - max Substitution Ratio

min MRE distance - sum Substitution Ratio
Relative MRE distance - max Substitution Ratio
sum of Substitutions Ratio - min MRE distance

2]
o
5]
o
o
=)
=
Q
Q
o
=
@
>
@]
L
iy
=

T-to-C positions
T-to-C substitutions
max T-to-C Ratio
Cluster length

T-to-G substitutions
All Substitutions
Substitution positions

MRE Overlapping Reads

w
©
It
<]
o
o
=
o
a
o
[}
>
(@]
&
w
=
O
Cluster Overlapping Reads ..

E

-

o

i

8

w

=

o
Cluster Rpkm ...
e v

T-to-C positions

E
<
o
i}
L
(1
=
= 0.8

0.6

T-to-C substitutions

max T-to-C Ratio

T-to-C min MRE distance - max Ratio

max T-to-C Ratio - min MRE distance

T-to-C min MRE distance

Cluster length

MRE Rpkm per Cluster Rpkm

T-to-G substitutions

max of Substitutions Ratio - min MRE distance

All Substitutions

Substitution positions
min MRE distance - max Substitution Ratio
min MRE distance - sum Substitution Ratio

Relative MRE distance - max Substitution Ratio

sum of Substitutions Ratio - min MRE distance

Figure 49: Correlation plot of expression and substitution parameters derived by the processed CLIP-
Seq experiments. Cluster overlapping reads and cluster RPKM expression were removed due to high
correlation with relative descriptors of the MRE region. Features designed to portray characteristics of
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transition events, especially T-to-C related features, were appropriately filtered to retain only
unrelated and top performing descriptors. Possible correlations were estimated by calculating the non-
parametric Spearman's rho coefficient using two-sided tests with a significance level p< 0.05.
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Figure 50: Correlation plot of parameters that reflect the base-wise binding affinity of the MRE and
miRNA respectively. miRNA and MRE first binding positions (2-4 seed positions) on the
corresponding binary vectors were highly correlated. These features were retained only for the MRE
binding vector. Possible correlations were estimated by calculating the non-parametric Spearman's rho
coefficient using two-sided tests with a significance level p< 0.05.
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Figure 51: Correlation plot of parameters referring to thermodynamic properties, energy, sequence
complexity and content asymmetry of miRNA targeted regions. MRE free energy (dG) and enthalpy
(dH) were excluded from the descriptors due to increased (anti-)correlation with MRE melting
temperature (Tm) and entropy (dS), respectively. Similarly, only MRE DUST score was retained as a
metric of MRE sequence complexity. Possible correlations were estimated by calculating the non-
parametric Spearman's rho coefficient using two-sided tests with a significance level p<0.05.
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Figure 53: Correlation matrix of content descriptors assigned to the overlapping, upstream and
downstream regions of the miRNA binding site. This group of features embodies many highly
(anti)correlated single/di-nucleotide composition descriptors, which were appropriately filtered.
Possible correlations were estimated by calculating the non-parametric Spearman's rho coefficient
using two-sided tests with a significance level p< 0.05.
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Figure 54: Correlation matrix of conservation features calculated for the respective MRE, upflank-
MRE, downflank-MRE regions. Conservation parameters corresponding to max or sum of phastCons
pre-computed values presented increased correlation coefficients (>0.9) with relative average scores in
MRE regions. The highly correlated features were eliminated. Possible correlations were estimated by
calculating the non-parametric Spearman's rho coefficient using two-sided tests with a significance
level p< 0.05.
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Figure 55: Correlation matrix comprising features for the miRNA-target duplex and miRNA/MRE sub-
domains. Base composition descriptors (A, T, G, C) of the (un)paired nucleotides are also included in
the plot. Highly correlated parameters including “miRNA mismatches”, “miRNA seed” and “miRNA
tail” were removed. DPossible correlations were estimated by calculating the non-parametric
Spearman's rho coefficient using two-sided tests with a significance level p< 0.05.

3.7.3 Base Classifier Models

This section describes the performance of base classifier models in the proposed
learning framework for CLIP-Seq-guided miRNA-target identification. The
implemented 6 base models (“Region features”, “MRE general”, “Binding Vector”,
“miRNA-target duplex”, “Base pairing”, “Matches per miRNA/MRE domain”),
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comprise different sets from uncorrelated parameters. The composition of the feature
vector incorporated in each base classifier was optimized against a considerable
number of candidate vectors. These models adopt a Random Forest learning approach
and are included in the first layer of positive/negative instance classification. Every
base classifier assigns a probability score in candidate MREs reflecting its potency of
being a true binding site.

3.7.3.1 “Region features” Classifier

The “Region features” base classifier incorporates 55 distinct features, including CLIP-
Seq-derived features such as expression, substitution frequencies and distances from
the MRE start; content descriptors assigned to the overlapping, upstream and
downstream MRE region; conservation, sequence energy, complexity, content
asymmetry, and biases of codon usage. These parameters are utilized to characterize the
MRE and proximal regions profile. The first top ranked descriptors as specified by the
Random forest model are presented in Table 19. The highest importance is assigned to
‘MRE RPKM’, ‘T-to-C substitutions” and ‘min MRE distance - sum Substitution Ratio’
(i.e. aggregate ratio of substitutions located in minimum distance from the MRE start).
This model achieves the best performance among the 6 classifiers in the first layer of
positive/negative instances classification. The predictive model exhibited 87.3%
sensitivity and 72.2% specificity (AUC 0.862) in the control set (test set) of
approximately 3000 instances (1:1 positive-negative ratio) (Figure 56).

Importance
MRE Rpkm 2271.286
T-to-C substitutions 1986.001
min MRE distance - sum Substitution Ratio 1127.73
sum of Substitutions Ratio - min MRE distance 613.1598
MRE G content 484.2459
MRE dS 334.596
MRE Overlapping Reads 282.5212
MRE conservation Average 198.6979
Cluster length 198.4758
upflank-MRE conservation Average 179.4623
MRE Rpkm per Cluster Rpkm 161.306
downflank-MRE conservation Average 144.5406
Codon Adaptation Index 140.1478
MRE Tm 122.0494
MRE GC-skew 91.25585
MRE DUST Score 84.03686
MRE A or G content 74.82929
MRE AT-skew 72.38096
MRE G or T content 71.97509
upflank-MRE G content 68.69797
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Table 19: The first top 20 ranked descriptors as specified by the “Region features” classifier that
adopts an RF learning model. Importance values are provided in decreasing order and signify each
parameter’s contribution to the classification process.
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Figure 56: ROC curve of the “Region features” Random Forest model for the classification of
positive/negative MREs. The predictive model comprised 55 distinct parameters and exhibited 87.3%
sensitivity and 72.2% specificity (AUC 0.862) in the control set (test set) of approximately 3000
instances (1:1 positive-negative ratio).

3.7.3.2 “Base pairing” Classifier

The “Base pairing” classifier encompasses base composition descriptors (A, T, G, C) of
the (un)paired miRNA nucleotides. This predictive model comprised 8 distinct
parameters and exhibited 72.1% sensitivity and 56.3% specificity (AUC 0.691) (Figure
57). The importance of the incorporated variables, as estimated by the RF classifier, is
shown in Table 20. The highest importance is assigned to the parameters describing
matched nucleotides for the miRNA.
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Importance
miRNA C-matches 1527.883
miRNA A-matches 1394.119
miRNA G-matches 1114.7722
miRNA T-matches 1052.1875
miRNA unpaired-T 952.5725
miRNA unpaired-A 944.2197
miRNA unpaired-C 881.6211

miRNA unpaired-G _

Table 20: “Base pairing” classifier variable importance, as estimated by the RF model. Importance
scores are provided in decreasing order and signify each parameter’s contribution to the classification
process.

Base pairing
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Figure 57: ROC curve of the “Base pairing” Random Forest model for the classification of
positive/negative miRNA binding sites. The predictive model comprising 8 distinct parameters
exhibited 72.1% sensitivity and 56.3% specificity (AUC 0.691) in the control set (test set) of
approximately 3000 instances (1:1 positive-negative ratio).

3.7.3.3 “MRE general” Classifier

The “MRE general” classifier includes miRNA binding site-related descriptors such as,
MRE-cluster overlap, conservation of the most 5' MRE binding nucleotides and all MRE
binding nucleotides, MRE location within the cluster, MRE binding type, and variables
describing the asymmetry of the duplex matched nucleotides. This predictive model
Maria D Paraskevopoulou
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comprises 8 parameters and presents 74.5% sensitivity and 77.1% specificity (AUC
0.832) (Figure 58).The importance of the included variables, as estimated by the RF
classifier is shown in Table 21. The highest importance is assigned to the parameter
describing the conservation level of the paired MRE bases.

Importance
MRE binding conservation Average 2129.3759
MRE matches Ks-skew 1732.8131
Binding type 1515.0408
MRE-binding length per Cluster length 1357.1499
MRE matches Purine-skew 1273.4089
MRE distance from Cluster start 1043.9392
MRE-Cluster Overlap 908.894
MRE-Cluster Overlap (percentage) 748.9639

Table 21: Variable importance scores as estimated by the ‘"MRE general’ classifier that adopts an RF
learning model. Importance values are provided in decreasing order and signify each parameter’s
contribution to the classification process.

MRE general
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Figure 58: ROC curve of the ‘MRE general’ Random Forest model for the classification of
positive/negative miRNA binding sites. The predictive model comprising 8 distinct parameters
presented 74.5% sensitivity and 77.1% specificity (AUC 0.832) in the control set (test set) of
approximately 3000 instances (1:1 positive-negative ratio).
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3.7.3.4 “Binding Vector” Classifier

“Binding Vector” classifier comprises 14 distinct descriptors associated with the base
pairing per miRNA/MRE position. This predictive model presented 66.4% sensitivity
and 80.7% specificity (AUC 0.788) when tested against the independent test set (Figure

59).

Importance
MRE binding position 2 970.5826
MRE binding position 3 297.8217
MRE binding position 6 219.5371
MRE binding position 7 199.0366
miRNA unpaired position 7 196.3089
miRNA unpaired position 6 187.8222
miRNA unpaired position 5 187.3171
MRE binding position 4 184.3857
MRE binding position 5 168.9264
miRNA unpaired position 8 143.2214
MRE binding position 18 137.2115
MRE binding position 17 136.9804
MRE binding position 11 130.47
MRE binding position 10 127.7633

Table 22: “Binding Vector” classifier variable importance, as estimated by the RF model. Importance
scores signify each parameter’s contribution to the classification process.
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Figure 59: ROC curve of the “Binding Vector” Random Forest model for the classification of
positive/negative miRNA binding sites. The predictive model comprising 14 distinct parameters
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exhibited 66.4% sensitivity and 80.7% specificity (AUC 0.788) in the control set (test set) of
approximately 3000 instances (1:1 positive-negative ratio).

3.7.3.5 “Matches per miRNA/target domain” Classifier

The “Matches per miRNA/MRE domain” classifier contains 11 parameters that
describe the matches in the miRNA-target structure and in MRE/miRNA relevant sub-
domains. The importance of the included variables, as estimated by the RF classifier is
shown in Table 23. This model exhibited 70.8% sensitivity and 75.5% specificity (AUC

0.793) Figure 60).

Importance
Binding type 990.8313
consecutive matches per total matches 918.3636
MRE central region matches 767.9645
consecutive seed-matches 763.5292
non-seed consecutive unpaired bases 719.4423
3'MRE matches 708.5513
seed matches per total matches 674.143
max consecutive matches 667.3362
MRE seed matches 657.0682
non-seed consecutive matches per total matches 572.1283
miRNA matches 540.3774

Table 23: “Matches per miRNA/MRE domain” classifier variable importance, as estimated by the RF
model. Importance scores are provided in decreasing order.
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Figure 60: ROC curve of the “Matches per miRNA or MRE domain” Random Forest model for the
classification of positive/negative miRNA binding sites. The predictive model comprising 11 distinct
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parameters exhibited 70.8% sensitivity and 75.5% specificity (AUC 0.793) in the control set (test set) of
approximately 3000 instances (1:1 positive-negative ratio).

3.7.3.6 “miRNA-target duplex” Classifier

The “miRNA-target duplex” classifier comprises 13 parameters that describe the duplex
structure energy, miRNA or MRE bulges, GU wobbles and GC/AU base pairing
features for the specified miRNA and/or target and relevant sub-domains. This model
presented 70.8% sensitivity and 75.5% specificity (AUC 0.793) (Figure 60). The ranking
of included parameters based on the implemented RF classifier is provided in Table 24.

Importance
duplex structure energy 1491.9206
AU base pairs 1013.4779
GC base pairs 873.9221
non-seed GC base pairs 857.5021
seed AU base pairs 794.0966
MRE-binding length 727.615
GU wobbles 698.3376
non-seed AU base pairs 675.0161
miRNA-binding length 674.5717
MRE bulges 668.571
internal loop max length 545.639
central region GC base pairs 473.0839
tail GU wobbles 329.2324

Table 24: Variable importance scores as estimated by the “miRNA-target duplex” classifier that adopts
an RF learning model. Importance values are provided in decreasing order and signify each
parameter’s contribution to the classification process.
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Figure 61: ROC curve of “miRNA-target duplex” Random Forest model for the classification of
positive/negative miRNA binding sites. The predictive model comprising 13 distinct parameters
exhibited 69% sensitivity and 75.6% specificity (AUC 0.802) in the control set (test set) of
approximately 3000 instances (1:1 positive-negative ratio).

3.7.4 Meta-classifier

Each base classifier presented in the previous section generates a probability score that
is subsequently forwarded to the second layer of classification. The 6 distinct
probability scores are aggregated in a meta-classifier scoring model that derives the
miRNA binding affinity within the cluster regions. The use of a GBM model as the
meta-classifier outperforms every other tested algorithm including RFs and SVMs. The
GBM classifier achieved 81.6% sensitivity and 80.6% specificity (AUC 0.908) (Figure 62);
RF presented 83.8% sensitivity and 76.5% specificity (AUC 0.897) (Figure 63), while the
SVM exhibited 86.5% sensitivity and 72.7% specificity (AUC 0.859).

All candidate meta-classifiers were evaluated in a control set (test set) of approximately
3000 instances (1:1 positive-negative ratio).
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Base classifiers GBM variable importance

region features
Base pairing 163.03
miRNA-target duplex

binding vector_features

matches per miRNA or MRE domain
MRE general

RF variable importance

Table 25: Variable importance scores as estimated by the meta-classifier that adopts a GBM or an RF
learning model respectively. The included parameters in these classifiers correspond to the output of
the base classifiers (first layer of classification). Importance values are provided in decreasing order
and signify each parameter’s contribution to the classification process. The highest importance is

assigned by both models to the “region features” classifier probability scores.
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Figure 62: ROC curve of “GBM meta-classifier” model for the classification of positive/negative
miRNA binding sites. This learning approach achieved the highest performance, presenting 81.6%
sensitivity and 80.6% specificity (AUC 0.908). GBM was evaluated against a control set (test set) of

approximately 3000 instances (1:1 positive-negative ratio).
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Figure 63: ROC curve of “RF meta-classifier” model for the classification of positive/negative miRNA

binding sites. This model exhibited 83.8% sensitivity and 76.5% specificity (AUC 0.897) when tested
against a control set (test set) of approximately 3000 instances (1:1 positive-negative ratio).
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3.7.5 Evaluation of the Novel Learning framework against other state-of-the-art
implementations.

In order to evaluate the novel learning framework for CLIP-Seq guided miRNA-target
identification, it was compared against different implementations such as,
microMUMMIE (75), MIRZA (72), PARMA (74) and the TarBase/LncBase analysis
algorithm. The assessment of their performance was performed against a control set of
(in)direct miRNA-target interactions in an embryonic kidney cell line (HEK293)
supported by low and high-throughput methodologies. More precisely, the validation
set comprises 1,365 positive interactions including 138 highly expressed miRNAs in
HEK293 cells. In order to obtain a complete list of interactions for all the tested
implementations, each algorithm has been executed on a comprehensive set of PAR-
CLIP HEK-293 libraries. The proposed settings for each algorithm were retrieved from
the relevant publications, in order to attain high quality results for the conducted
comparisons.

A major concern with CLIP-Seq algorithms, excepting their ability to correctly identify
experimentally verified miRNA binding sites, is the number of provided predictions
per AGO-peak region. Therefore, in the presented evaluation (Figure 64, Figure 65) the
number of correctly predicted MRE regions is plotted versus total predictions for
different prediction score thresholds.

Moreover, microMUMMIE and especially PARma implementations do not cover the
whole spectrum of miRNA binding types. Therefore, an extra evaluation test was
realized that included only positive miRNA interactions with canonical seed matches,
in order to render the obtained results as comparable as possible, (Figure 64b, Figure
65b).

A primary evaluation was implemented to demonstrate the performance of the novel
algorithm compared to the CLIP-Seq guided analysis adopted by TarBase/LncBase. The
results depict that the new approach not only significantly outperforms the former
implementation in terms of accuracy but also manages an impressive increase in
sensitivity, predicting almost twice as many validated sites. Most of these sites were not
detected by any other algorithm (Figure 64).

The novel algorithm also achieved the best performance in any metric when juxtaposed
against other state-of-the-art implementations (Figure 65). This evaluation was
generated separately for canonical and non-canonical miRNA positive interactions.

All the leading algorithms proved to be far from perfect and suffered from a low ability
to identify a high percentage of true miRNA-target interactions with a high cost in the
total predictions. The novel implementation that has been trained on an unprecedented
collection of high quality low/high-throughput experiments, breaks this barrier by
providing true positive predictions for more than 80% of the included miRNAs.
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Novel Learning framework vs TarBase CLIP-Seq Algorithm
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Figure 64: Evaluation of the novel AGO-CLIP learning framework (microCLIP) against the
TarBase/LncBase adopted algorithm. The number of correctly predicted miRNA binding sites for each
implementation is plotted versus the total retrieved predictions for different interaction score
thresholds. The performance of the novel algorithm is additionally provided for the top 5 and top 3
predictions per cluster region. The utilized validation set comprised 1,072 positive miRNA
interactions derived from direct and indirect experimental methodologies (a). The new algorithmic
approach significantly outperforms the former implementation and manages a 2-fold increase in the
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correct identification of experimentally verified miRNA binding sites. An extra evaluation was
realized including only positive miRNA interactions (~500) with canonical seed match (b). The novel
algorithm managed to identify ~90% of the positive canonical miRNA interactions, a ~30% increase
compared to TarBase/LncBase CLIP-Seq implementation and provides one valid miRNA canonical
binding site in approximately every 2 predicted targets.

Evaluation of Algorithms for CLIP-guided miRNA-target identification

a.
o
o _|
o
o
(7] o -
w o
o
=
3 g
o ©
©
g
e o
2 I
o B microCLIP
E o B microCLIP max 5 predictions
o 9 B microCLIP max 3 predictions
B PARma
O MIRZA
o - O microMUMMIE
I I I I I
0 2000 4000 6000 8000
b.
o
s
Tp]
()
w
o
= 32 _
© <
Q
5
c e |
S &
o
2
L o
2 &7
a B microCLIP
= o B microCLIP max 5 predictions
8 S EH microCLIP max 3 predictions
E B PARma
o O MIRZA
o - O microMUMMIE
| | | | |
0 500 1000 1500 2000

Total Predictions

Figure 65: Evaluation of the novel AGO-CLIP learning framework (microCLIP) against the leading
implementations of PARma, MIRZA and microMUMMIE. The number of correctly predicted miRNA
binding sites for each implementation is plotted versus the total retrieved predictions for different
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interaction score thresholds. The performance of the novel algorithm is additionally provided for the
top 5 and top 3 predictions per cluster region. The utilized validation set comprised 1,365 positive
miRNA interactions derived from direct and indirect experimental methodologies (a). The results
demonstrate that the novel AGO-CLIP implementation has a significant greater ability to discriminate
correct interactions compared to other approaches. An extra evaluation was realized including only
positive miRNA interactions (~500) with canonical seed matches (b). The novel algorithm managed to
identify ~90% of the positive canonical miRNA interactions.
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4. Conclusion

One of the most important processes in miRNA research is their target detection.
Identification of miRNA-gene interactions can be performed with either computational
approaches or experimental methodologies.

During the thesis course, DIANA-microT v5.0 (54), the new version of the microT
server, has been significantly enhanced with an improved target prediction algorithm,
DIANA-microT-CDS (38). microT-CDS is the only algorithm available online,
specifically designed to identify miRNA targets both in 3’ untranslated region (3’'UTR)
and in coding sequences (CDS). The web server was also completely redesigned, in
order to host a series of sophisticated workflows, enabling users to perform advanced
multi-step functional miRNA analyses. DIANA-microT web server v5.0 additionally
supports a complete integration with the Taverna Workflow Management System
(WMS) (143), using an in-house developed DIANA-Taverna Plug-in. This plugin
provides ready-made modules for miRNA target prediction and functional analysis,
which can be used to form advanced high throughput analysis pipelines.

Computational methodologies unambiguously provide a valuable resource for miRNA
oriented studies. However, even the most advanced implementations include an
increased number of false positive interactions and do not allow the derivation of
functional downstream analyses. In silico implementations can be further improved if
coupled with technological breakthroughs of sequencing experiments.

Numerous wet lab methodologies have been developed, enabling the validation of
predicted miRNA interactions or the high-throughput screening and identification of
novel miRNA targets (32). Moreover, during the past few years, NGS methodologies
have revolutionized almost every aspect of biological research. Novel NGS-based high-
throughput miRNA target identification techniques have enabled the identification of
thousands of interactions present in specific cell types or experimental conditions.

Despite the contribution of both experimental methodologies and computational
approaches, a large part of the miRNA targets, even for the well-studied organisms
such as mouse and human, remains unexplored. The wealth of information provided by
experimental methodologies remains fragmented and hidden in thousands of
manuscripts, supplemental materials and raw sequencing datasets.

Accurate cataloguing of miRNA targets is crucial to the understanding of their function.
However, the complex network of miRNA-IncRNA-mRNA regulatory machinery is
difficult to be determined by exploring individual pairs of interactions and relies on the
analysis of extensive NGS datasets. By analyzing more than 250 miRNA-related NGS
datasets (e.g. 150 CLIP-Seq, CLASH, microarrays, Degradome-Seq) and extracting
interactions from hundreds of meticulously curated articles, DIANA-TarBase v7.0 is the
tirst database to provide an unprecedented amount of experimentally supported
miRNA-mRNA interactions in many different cell types and tissues. DIANA-TarBase

v7.0 breaks the barrier of 300,000 entries indexed by relevant repositories, providing
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more than half a million interactions in 24 species, 9-250 times more than any other
manually curated database. These interactions can enforce or even at cases substitute in
silico predicted interactions.

LncRNA functions still remain widely uncovered, while others are currently under
debate. The recently introduced sponge/decoy role of IncRNAs has been characterized
for a few transcripts in specific tissue and/or disease conditions. LncBase v2 provides
an extensive compendium of miRNA-IncRNA in silico inferred and experimentally
supported interactions covering a wide range of cell types and tissues for human and
mouse. The analysis of extensive sequencing data unveiled thousands of miRNA-
IncRNA interactions, including IncRNAs harboring multiple miRNA binding sites and
a set of approximately 400 unique viral-miRNA-IncRNA interacting pairs in virus
infected cells. Spatial classification of miRNA-targeted regions in CLIP-Seq experiments
revealed similar percentages of targeted IncRNA transcripts across different cell types.
A considerable amount of MREs residing on IncRNA transcript regions were highly
conserved presenting stronger evolutionary pressure than their background regions,
while miRNA sites located in IncRNA intronic regions presented accelerated
evolutionary rates compared to those in IncRNA exons. AGO-CLIP-Seq cognate cell
lines were densely grouped by targeted IncRNAs, possibly indicating a tissue specific
miRNA-IncRNA regulation mechanism.

During the thesis course, an in house algorithm was implemented in order to analyze
CLIP-Seq data on different cell types and tissues for mouse and human species. It was
thoroughly tested against state-of-the-art implementations and was utilized for TarBase
and LncBase updates.

The continuous archiving of experimental data from low and high-throughput
methodologies, along with the extensive evaluation of the available AGO-CLIP-Seq
analysis programs, revealed that there was room for further improvement and
optimization of the relevant algorithms in order to attain increased accuracy. State-of-
the-art CLIP-Seq target identification implementations currently manage to identify
approximately half of the experimentally validated binding sites. To this end, a novel
algorithm was developed for CLIP-Seq data analysis. The algorithm was trained and
extensively tested on a comprehensive collection of accurate positive and negative
miRNA-target interactions from low-yield and high-throughput experimental data
sources. The novel algorithm was evaluated against all leading implementations,
including CLIP-Seq guided analysis adopted by TarBase/LncBase. Former algorithms
proved to be far from perfect and suffered from a low ability to identify a high
percentage of positive miRNA-target sites. The results depict that the new approach not
only significantly outperforms other implementations in terms of accuracy but also
manages to increase sensitivity, predicting sites that were not detected by any other
algorithm.

The novel algorithm will enable the accurate identification of miRNA coding and non-
coding target repertoire, which is crucial to the detection of competing endogenous
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interactions. This information can be utilized for multiple exploratory studies and in-
depth analyses for the creation of tissue specific INcRNA-miRNA-mRNA /TF regulatory
networks. Moreover, functional interpretation of the interaction networks can boost the
understanding of unexplored regulatory mechanisms and the elucidation of key players
in different biological processes.
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5. Thesis Publications

During the course of the thesis, the candidate participated in 8 scientific studies, involving
computational approaches for determining the activity of the non-coding transcripts
and in four of them the candidate is first author. The studies are published in
international journals of high impact factor and total citations received so far are 310.
The publications achieved are presented in chronological order.

1. Vlachos IS, Vergoulis T, Paraskevopoulou MD, Lykokanellos F, Georgakilas G,
Georgiou P, Chatzopoulos S, Karagkouni D, Christodoulou F, Dalamagas T,
Hatzigeorgiou A.G. (2016) DIANA-mirExTra v2.0: Uncovering microRNAs and
transcription factors with crucial roles in NGS expression data. Nucleic Acids Res. (9.112
Impact Factor)

2. Paraskevopoulou MD and Hatzigeorgiou AG. Analyzing MiRNA-LncRNA
Interactions. Methods Mol Biol. 2016 (2 citations)

3. Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis
T, Zagganas K, Tsanakas P, Floros F, Dalamagas T, Hatzigeorgiou AG. (2015) DIANA-
DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic
Acids Research (9.112 Impact Factor) (2 citations)

4. Georgakilas G and Vlachos IS, Zagganas K, Vergoulis T, Paraskevopoulou MD,
Kanellos I, Tsanakas P, Dellis D, Feygas A, Dalamagas T, Hatzigeorgiou AG. (2016)
DIANA-miRGen v3.0: extensive characterization of microRNA promoters and their
regulation. Nucleic Acids Research (9.112 Impact Factor) (3 citations)

5. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D,
Vergoulis T, Dalamagas T, Hatzigeorgiou AG. (2015) DIANA-miRPath v3.0:
Deciphering microRNA function with experimental support. Nucleic Acids Research
(9.112 Impact Factor) (28 citations)

6. Georgakilas G, Vlachos IS, Paraskevopoulou MD, Yang P, Zhang Y, Economides AN,
Hatzigeorgiou AG. (2014) microTSS: accurate microRNA transcription start site
identification reveals a significant number of divergent pri-miRNAs. Nature
Communications (10.7 Impact Factor) (16 citations)

7. Vlachos IS and Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T,
Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Dalamagas T,
Hatzigeorgiou AG. (2014) DIANA-TarBase v7.0: Indexing more than half a million
experimentally supported miRNA:mRNA interactions. Nucleic Acids Research (9.112
Impact Factor) (joint first authorship) (90 citations)

8. Paraskevopoulou MD and Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko
M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. (2013) DIANA-microT web server
v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids
Research (9.112 Impact Factor) (joint first authorship) (169 citations)

Maria D Paraskevopoulou
152

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:59:55 EET - 137.108.70.7



Computational Algorithms for Functional characterization of non-coding RNAs

6. ABBREVIATIONS - ACRONYMS

3’-UTR 3’-UnTranslated Region

3Life Luminescent Identification of Functional Elements in
3'UTRs

5-UTR 5’-UnTranslated Region

5" RLM-RACE Rapid amplification of cDNA ends

AGO Argonaute

AGO-IP AGO Immunoprecipitation

ANN Artificial Neural Networks

AUC Area Under Curve

BLAST Basic Local Alignment Search Tool

BLS Branch-length conservation scores

C. elegans Caenorhabditis elegans

CDS Coding Sequence

ceRNA Competing endogenous RNA

Chip-Seq Chromatin Immunoprecipitation Sequencing

CLASH Crosslinking, ligation, and sequencing of hybrids

CLEAR-CLIP Covalent ligation of endogenous Argonaute-bound RNAs

CLIP-Seq Cross-linking immunoprecipitation sequencing

D. melanogaster

Drosophila melanogaster

dG

Free energy

DGCRS DiGeorge syndrome Critical Region 8
dH Enthalpy

DNA Deoxyribonucleic Acid

DNase Deoxyribonuclease

DNase-Seq DNase I hypersensitive sites sequencing
ds Entropy

EBV Epstein-Barr virus

ELISA Enzyme-linked immunosorbent assay
EM Expectation Maximization

ENCODE Encyclopedia of DNA Elements Consortium
FDR False Discovery Rate

GAs Genetic algorithms
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GBMs Gradient Boosting Machines

GEO Gene Expression Omnibus

GFP Green Fluorescent Protein

GLM Generalized Linear Models

H. sapiens Homo sapiens

H3K4me3 Histone 3 lysine 4 trimethylation

HEK-293 Human Embryonic Kidney Cells

HELA Human Cervical Cancer Cells

hESC Human Embryonic stem Cells

HITS-CLIP High-throughput sequencing of RNA isolated by
crosslinking immunoprecipitation

HMM hidden Markov model

Huh7.5 Hepatocarcinoma cells

ICA Independent component analysis

iCLIP Individual-nucleotide resolution UV crosslinking and
immunoprecipitation

ID3 Iterative Dichotomiser 3

IMPACT-Seq Pull-down sequencing of biotin-tagged miRNAs

KEGG Kyoto Encyclopedia of Genes and Genomes

KSHV Kaposi's sarcoma-associated herpesvirus

Ks-skew Keto skew

LDA Linear Discriminant Analysis

IncRNAs long non-coding RNAs

M. musculus

Mus musculus

MCF7

Human Mammary Gland Cancer Cells / Michigan Cancer
Foundation-7

MDAMB231 Human Mammary Gland Cancer Cells

MeSH Medical Subject Headings

miRISC miRNA-induced silencing complex

miRNA microRNA

miTRAP miRNA trapping by RNA in vitro affinity purification
ML models Machine Learning model

MNase Micrococcal Nuclease

MREs miRNA Recognition Elements

mRMR Minimum-redundancy-maximum-relevance
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mRNA messenger RNA

NB Naive Bayes

ncRNAs non-coding RNAs

NGS Next Generation Sequencing

nt nucleotide

ORF Open Reading Frame

PAR-CLIP Photoactivatable-ribonucleoside-enhanced  crosslinking
and immunoprecipitation

PARE/ Parallel analysis of RNA ends/ Degradome sequencing

Degradome-Seq

P-bodies Processing bodies

PCA Principal component analysis

Pol IT/111 RNA polymerase I1/111

poly-A Polyadenylation

pre-miRNA precursor miRNA

pri-miRNA primary miRNA

qPCR Quantitative real-time polymerase chain reaction

RBF Radial basis function

RBPs RNA-binding proteins

RF Random Forest

RISC RNA-induced silencing complex

RMA Robust Multi-Array Average

RNA Ribonucleic Acid

RNase Ribonuclease

RNA-Seq RNA sequencing

ROC Receiver operating characteristic

RPF-Seq Ribosome profiling sequencing

RPKM Reads Per Kilobase of transcript per Million mapped
reads

rRNA Ribosomal RNA

RVM Relevance Vector Machine

SDS-PAGE Sodium  dodecyl  sulfate  polyacrylamide  gel
electrophoresis

SILAC Stable isotope labeling by amino acids in cell culture

SNPs Single Nucleotide Polymorphism
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SNR Signal-to-noise ratios

sRNA Small RNA

sRNA-Seq Small RNA sequencing

SVM Support Vector Machine
T/Thy Thymine

Tm Melting temperature

tRNA transfer RNA

url Uniform Resource Identifier
WMS Workflow Management System
XML Extensible Markup Language
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