
3D Standard-Cell Placement Based
on Circuit Partitioning

Delakoura Angeliki

A Thesis presented for the degree of

Master of Science in
Electrical and Computer Engineering

Supervisor: Christos Sotiriou, Associate Professor
Committee: Nikolaos Bellas, Associate Professor

Nestoras Eumorfopoulos, Assistant Professor

University of Thessaly
Volos, Greece

June 2016

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Dedicated to
My parents.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3D Standard-Cell Placement Based on
Circuit Partitioning

Τρισδιάστατη Τοποθέτηση Πρότυπων

Στοιχείων Βασισμένη σε Διαμερισμό

Κυκλωμάτων

by
Delakoura Angeliki

Submitted to

the Department of Electrical and Computer Engineering

University of Thessaly, Volos, Greece

for the degree of Master of Science in

Electrical and Computer Engineering

June 2016

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Acknowledgements

I would like to thank my advisors Dr. Nikolaos Bellas, Dr. Nestoras Eumorfopou-

los and especially Dr. Christos Sotiriou for the great collaboration, the ideas, the

inspiring discussions and for their guidance.

I would also like to thank specifically my good friends and colleagues Nikolaos Ske-

topoulos and Michalis Spyrou for all their help, insight and support during the

development of my thesis.

In conclusion, I would like to thank my parents for the support they provided me

through my entire life, for all the sacrifices they made on my behalf and for believing

in me.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Abstract

For many years Moore’s law have been accurate to its predictions and has made the

work of many integrated circuit designers full of obstacles they needed to overcome.

The excessive wire-length on chip, which created a great routing congestion, many

delays for the designs, extreme on-chip temperatures and as a result great amounts

of energy consumption, are the main reasons why the Semiconductor Industry has

turned its interest towards 3D integrated circuits.

The purpose of this thesis is the study and implementation of a 3D placer that

combines different methodologies and algorithms, and takes advantage of their tech-

niques in order to achieve an overall optimal work for 3D standard cell placement

that could be applied to industrial benchmarks and work as part of an actual indus-

trial physical design tool.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Περίληψη

Για πολλά χρόνια ο νόμος του Moore ήταν ακριβής με την προβλέψη του και έχει κάνει

τη δουλειά πολλών σχεδιαστών ολοκληρωμένων κυκλωμάτων γεμάτη εμπόδια, τα ο-

ποία ήταν αναγκαίο να ξεπεραστούν. Το υπερβολική wire-length στο chip, η οποία

δημιούργησε μια μεγάλη δρομολόγησης συμφόρηση, πολλές καθυστερήσεις, ακραίες

θερμοκρασίες ον-ςηιπ και ως αποτέλεσμα μεγάλη κατανάλωση ενέργειας, αποτελούν

τους κύριους λόγους για τους οποίους η Βιομηχανίας Ημιαγωγών έχει στρέψει το εν-

διαφέρον της προς τα τρισδιάστατα ολοκληρωμένα κυκλώματα.

Ο σκοπός αυτής της μεταπτυχιακής εργασίας είναι η μελέτη και υλοποίηση ενός 3D

placer που συνδυάζει διαφορετικές μεθοδολογίες και αλγορίθμους, και εκμεταλλεύε-

ται τις τεχνικές τους, προκειμένου να επιτευχθεί ένα συνολικά βέλτιστο έργο για την

τρισδιάστατη τοποθέτηση πρότυπων στοιχείων που θα μπορούσε να εφαρμοστεί σε

βιομηχανικά designs και να λειτουργήσει ως μέρος ενός πραγματικού βιομηχανικού

εργαλείου φυσικής σχεδίασης.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Declaration

The work in this thesis is based on research carried out at the University of

Thessaly, Electrical and Computer Engineering Department, Greece. No part of

this thesis has been submitted elsewhere for any other degree or qualification and it

is all my own work unless referenced to the contrary in the text.

Copyright c© 2016 by Delakoura Angeliki.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

viii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Contents

Abstract vi

Declaration viii

1 Introduction 1

1.1 Purpose of This Thesis . 1

1.2 Thesis Structure . 1

2 Background 3

2.1 Partitioning Algorithms . 3

2.1.1 Fiduccia-Mattheyses Algorithm 4

2.2 Global Placement . 12

2.2.1 Analytical Placement . 13

2.3 Monolithic 3D Placement . 16

2.3.1 Advantages . 17

2.3.2 Placement Approach . 18

3 Contribution and Implementation 20

3.1 QP Placement Algorithm . 22

3.2 FM Partitioning Algorithm . 24

3.3 3D Placement Algorithm . 28

4 Experimental Results 30

5 Conclusions and Future Work 34

ix

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Contents x

Bibliography 36

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

List of Figures

2.1 Gate-Level Circuit and Hypergraph 6

2.2 Initial Partition and Nets . 7

2.3 Bucket Structure . 8

2.4 First FM Move . 8

2.5 Second FM Move . 9

2.6 Third FM Move . 9

2.7 Fourth FM Move . 10

2.8 Fifth FM Move . 10

2.9 Sixth FM Move . 11

2.10 Seventh FM Move . 11

2.11 Final FM Move . 11

2.12 QP Example Data . 14

2.13 QP Example Solution . 16

2.14 Monolithic 3D structure . 17

2.15 3D Placement . 18

3.1 Base Infrastructure and Contribution Functionalities 20

3.2 Cell Position Quantisation . 24

3.3 Nets . 25

3.4 Partitioning Binary Tree . 25

3.5 Gain Sorting Binary Heap . 25

3.6 Partitioning Algorithm Flow . 26

3.7 Wire-length Calculation . 29

4.1 Experimental Results Diagrams . 31

xi

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

List of Figures xii

4.2 3D Experimental Results Diagrams 33

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

List of Tables

2.1 FM Partitioning History Log. 12

4.1 Partitioning Results . 30

4.2 3D Placement Results . 32

xiii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 1

Introduction

1.1 Purpose of This Thesis

Three dimensional integrated circuits (3D-ICs) have emerged as a promising solu-

tion to extend the 2D scaling trajectory predicted by Moore’s Law. Current 3D-ICs

are through-silicon-via (TSV) based, but the integration density is limited by the

pitch of TSVs. Monolithic 3D IC is an emerging technology that enables orders

of magnitude higher integration density than TSV based 3D, due to the extremely

small size of the monolithic inter-tier vias (MIVs) (typically 50nm in diameter).

This thesis presents our work and our purpose, which is a 3D standard-cell

placement with the minimal wire-length for the design and the minimal connections

between the different chip levels. In order to achieve our purpose, we apply a

2D Quadratic Programming Placement, with respect to pin and cell connectivity,

partition cells with the minimum cutsize and finally have a 3D Placement with the

minimum wire-length and minimum tier-to-tier connections.

1.2 Thesis Structure

This thesis is divided in four main parts. The first part discusses background

issues regarding every aspect of our work. More specifically, section 2.1 presents

information about partitioning algorithms and focuses on the Fiduccia-Mettheyses

1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

1.2. Thesis Structure 2

algorithm, which is the algorithm that we based our partitioning implementation

on, and present an detailed example of the algorithm flow. In section 2.2 we dis-

cuss about Global Placement and different techniques and emphasise on Analytical

Placement and specifically analyse Quadratic Programming Placement through an

example. Finally, in section 2.3 we discuss about different 3D placement methods,

present the new emerging technology that was the motivation for our work and ex-

plain how 3D placement is applied nowadays.

In the second part we present our contribution and implementation of the three

different main aspects of our work, 2D Placement, FM Partitioning algorithm and

3D Placement, along with pseudocodes for the QP problem formulation and the par-

titioning logic, in order to understand in depth our implementation of the algorithms.

In the third part we present the experimental results that came from testing our

work with industrial benchmarks. First, the experimental results regarding parti-

tioning are shown and then results for the final 3D placement wire-length compared

to 2D placement wire-length.

Finally, chapter 5 we describe the conclusions that we came to and discuss pos-

sible future work.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 2

Background

In this chapter we describe basic information regarding Global Analytical Place-

ment, Partitioning Algorithms and 3D Placement for a better understanding of our

work.

2.1 Partitioning Algorithms

Modern standard cell placement techniques must handle more and more increas-

ing design sizes, which eventually turn out to be huge. It is practically infeasible to

place flattened representations of designs of such scale, due to the difficulty and the

enormous number of the computations needed. A significant move in cell placement

of such large designs, is first to obtain a smaller representation of the design that

depicts the global connectivity of the original design. This is what is known as par-

titioning and clustering. Partitioning is the method that we applied in our work and

is typically used to divide a netlist into two or four sections, then recursively applied

to the subsections in order for the wiring cost between them to be minimized.

Just like many other combinatorial optimization problems, circuit partitioning

is NP-hard; as the problem size grows linearly, the effort needed to find an optimal

solution grows faster than any polynomial function. To date, there is no known

polynomial-time, globally optimal algorithm for balance-constrained partitioning.

However, several efficient heuristics were developed in the 1970s and 1980s. These

algorithms find high-quality circuit partitioning solutions and are virtually imple-

3

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.1. Partitioning Algorithms 4

mented to run in low-order polynomial time – the Kernighan-Lin (KL) algorithm [1],

its extensions and the Fiduccia-Mattheyses (FM) algorithm [2]. Additionally, diffi-

cult partitioning formulations can be solved by using simulated annealing for opti-

mization.

In our work, we focus on the Fiduccia-Mattheyses partitioning algorithm, which

is fully described in the following subsection along with a practical example in order

to be easily understood.

2.1.1 Fiduccia-Mattheyses Algorithm

The Fiduccia-Mattheyses algorithm was our algorithm of choice for the partition-

ing process in our work and it is a widely-used heuristic algorithm for the Balanced

Circuit Bipartitioning Problem [3].

FM has inherited many concepts from the KL algorithm, such as the way the

algorithm’s cost function is computed, that is each cell transfer from one partition

to another occurs based on a certain move gain for each cell. One more concept

inherited from KL is the hill-climbing logic of the algorithm, where each cell is

moved only once during a single pass of the algorithm, but all cells are moved even

though their movement may not result to a better cutsize. Thus, bad moves are

accepted in order to achieve the optimal minimum solution at each pass.

Additionally, FM improves some very significant concepts of KL. First of all,

FM is applied directly on hypergraphs, which is a natural way to represent circuits,

instead KL is applied on an edge-weighted undirected graph. It has been shown

that it is not possible to assign weights to the edges of an undirected graph G so

that any cut in G correctly may represent the cutsize in the original circuit [4]. On

the other hand, the cutsize computed in a hypergraph represents exactly the cutsize

in the actual circuit.

Another improved concept is that FM performs cell moves where KL performs

cell swaps. At each move, the cell with the maximum gain is chosen to move to the

other partition. Each cell move is constrained by the area balance requirement so

that the move is legal only when the area constraint is not violated after the move

have been applied. This cell move improves time complexity significantly, because

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.1. Partitioning Algorithms 5

we do not need an O(n2) for all-pair swap gain computation as in KL, instead we

just need an O(n) gain computation.

Finally, FM makes use of a special data structure called bucket that allows O(1)

search of the maximum gain and O(1) update of the gain values at each move.

In the beginning and before a pass of the FM is applied, the gain values of all

cells are computed. Once the pass begins, the gain values of affected cells, that

is the cells connected to the one that has been moved, are the only gain values

updated/recalculated instead of computing once more the gain values of all cells

from scratch. As a result, the complexity of each cell move is O(1) instead of O(n2)

as in KL. Thus, the overall time complexity of FM is O(n) compared to O(n3) in

KL.

Algorithm Overview

The algorithm begins with an initial balanced bipartitioning solution (P1, P2) of

the given hypergraph and is usually obtained randomly. For a cell c ∈ P1, we define

FS(c) as the number of nets that have c as the only cell in P1 and TE(c) as the

number of nets that contain c and are entirely located in P1. Finally, the gain of

moving c from P1 to P2 is defined as:

gain(c) = FS(c)− TE(c)

Before the first pass of the algorithm is applied, three actions need to be per-

formed:

• unlock all cells

• compute the gain of all cells based on the initial random partitioning

• add cells in the bucket structure

Once the pass of the algorithm begins, the following steps are repeated at each

move until all cell are defined as locked:

• the cell with the maximum gain is selected under the condition that moving

the cell to the other partition does not violate the balance constraint

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.1. Partitioning Algorithms 6

• the chosen cell is moved and locked in the destination partition

• the gain values of the cells connected to the moved cell are updated and so are

their positions in the bucket structure

• the gain and cutsize are recorded

At the end of the pass, the first K moves that lead to the minimum cutsize

discovered during the entire pass are identified and accepted. If the initial cutsize has

reduced during the current pass, another pass is attempted using the best solution

discovered from the current pass as the initial solution, otherwise the algorithm

terminates.

Algorithm Example

Figure 2.1 shows a gate-level circuit and the same circuit modeled as an non-

weighted hypergraph.

Figure 2.1: (a) Gate-level circuit, (b) Hypergraph representation.

Suppose an initial partition {acdg, befh}, which can be seen in Figure 2.2. The

gain of the cells in the left partition is computed as follows:

1. Cell a: a is contained in net n1 = {a, c, e}. But a is not the only cell in

n1 that is located in the left partition, so FS(a) = 0. In addition, n1 is

not entirely located in the left partition. So, TE(a) = 0. Thus, gain(a) =

FS(a)− TE(a) = 0.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.1. Partitioning Algorithms 7

2. Cell c: c is contained in net n1 = {a, c, e}, n2 = {b, c, d}, and n3 = {c, f, e}.

n3 contains c as its only cell located in the left partition, so FS(c) = 1. In

addition, none of these three nets are located entirely in the left partition. So,

TE(c) = 0. Thus, gain(c) = 1.

3. Cell d: d is contained in net n2 = {b, c, d} and n5 = {d, f}. n5 contains d as

its only cell located in the left partition, so FS(d) = 1. In addition, none of

these two nets are located entirely in the left partition. So, TE(d) = 0. Thus,

gain(d) = 1.

4. Cell g: g is contained in net n6 = g, e and n4 = g, f, h. Both n6 and n4

contain g as their only cell located in the left partition, so FS(g) = 2. In

addition, none of these two nets are located entirely in the left partition. So,

TE(g) = 0. Thus, gain(g) = 2.

Figure 2.2: The initial partition of the circuit in Figure 2.1, cutsize = 6, and the nets of

the circuit.

The gain of the cells in the right partition is computed as follows:

1. Cell b: b is contained in net n2 = {b, c, d}. n2 contains b as its only cell located

in the right partition, so FS(b) = 1. In addition, n2 is not entirely located in

the right partition, so, TE(b) = 0. Thus, gain(b) = 1.

2. Cell e: e is contained in net n3 = {c, f, e}, n6 = {g, e}, and n1 = {a, c, e}.

Both n6 and n1 contain e as their only cell located in the right partition, so

FS(e) = 2. In addition, none of these three nets are entirely located in the

right partition, so, TE(e) = 0. Thus, gain(e) = 2.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.1. Partitioning Algorithms 8

3. Cell f : f is contained in net n3 = {c, f, e}, n5 = {d, f}, and n4 = {g, f, h}.

n5 contains f as its only cell located in the right partition, so FS(f) = 1. In

addition, none of these three nets are entirely located in the right partition,

so, TE(f) = 0. Thus, gain(f) = 1.

4. Cell h: h is contained in net n4 = {g, f, h}. But, h is not the only cell in n4

that is located in the right partition, so FS(h) = 0. In addition, n4 is not

entirely located in the right partition. So, TE(h) = 0. Thus, gain(h) = 0.

Figure 2.3: Bucket structure based on Figure 2.2

In Figure 2.3 we see the bucket structure for this design and how the cells are

sorted based on their gain. In the example that follows, the moves of a single pass

of the FM algorithm are described based on the area constraint [3,5], which means

a cell’s move should not result in source partition’s total being smaller than 3 and

destination partition’s total larger than 5. Gain ties should be broken in alphabetical

order.

Figure 2.4: After moving e. Cutsize = 4

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.1. Partitioning Algorithms 9

a) Move 1: From Figure 2.2, can be seen that cells g and e have the maximum

gain and can be moved without violating the area constraint. e is moved based

on alphabetical order. Figure 2.4 shows the resulting hypergraph. Then,

the gains of the unlocked neighbors of e are updated as follows: gain(a) =

FS(a) − TE(a) = 0 − 1 = −1, gain(c) = 0 − 1 = −1, gain(g) = 1 − 1 = 0,

gain(f) = 2− 0 = 2. Figure 2.4 shows the updated bucket structure.

b) Move 2: f is the cell with the maximum gain, but moving f will violate

the area constraint. So d is moved based on its gain and alphabetical order.

Figure 2.5 shows the resulting hypergraph. Then, the gains of the unlocked

neighbors of d are updated as follows: gain(b) = 0−0 = 0, gain(c) = 1−1 = 0,

gain(f) = 1− 1 = 0. Figure 2.5 shows the updated bucket structure.

Figure 2.5: After moving d. Cutsize = 3

Figure 2.6: After moving b. Cutsize = 3

c) Move 3: Since cells {g, c, h, f, b} all have the maximum gain, cell b is selected

based on alphabetical order. Figure 2.6 shows the resulting hypergraph. Then,

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.1. Partitioning Algorithms 10

the gains of the unlocked neighbors of b are updated as follows: gain(c) =

0− 1 = −1. Figure 2.6 shows the updated bucket structure.

d) Move 4: Among ells {g, h, f} with maximum gain, g based on the area con-

straint. Figure 2.7 shows the resulting hypergraph. Then, the gains of the

unlocked neighbors of g are updated as follows: gain(f) = 1 − 2 = −1,

gain(h) = 0− 1 = −1. Figure 2.7 shows the updated bucket structure.

e) Move 5: a is selected based on alphabetical order. Figure 2.8 shows the result-

ing hypergraph. Then, the gain of the unlocked neighbor of a is updated as

follows: gain(c) = 0− 0 = 0. Figure 2.8 shows the updated bucket structure.

Figure 2.7: After moving g. Cutsize = 3

Figure 2.8: After moving a. Cutsize = 4

f) Move 6: f is selected based on the area constraint and alphabetical order.

Figure 2.9 shows the resulting hypergraph. Then, the gains of the unlocked

neighbors of f are updated as follows: gain(h) = 0− 0 = 0, gain(c) = 0− 1 =

−1. Figure 2.9 shows the updated bucket structure.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.1. Partitioning Algorithms 11

Figure 2.9: After moving f . Cutsize = 5

g) Move 7: h is moved. Figure 2.10 shows the resulting hypergraph and bucket

structure. h has no unlocked neighbors.

h) Move 8: c is moved. Figure 2.11 shows the resulting hypergraph.

Figure 2.10: After moving h. Cutsize = 5

Figure 2.11: After moving c. Cutsize = 6

The cutsize after each move is recorded in a history log from which the k first

moves that result in the minimum cutsize can be found. Table 2.1 shows the initial

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.2. Global Placement 12

cutsize, the cutsize after each move and the move at which the minimum cutsize

was reached. Also, the maximum and minimum cutsize can be seen.

i Cell Gain(i) Cutsize

0 - - 6

1 e 2 4

2 d 1 3

3 b 0 3

4 g 0 3

5 a -1 4

6 f -1 5

7 h 0 5

8 c -1 6

Table 2.1: History log of all the moves for one pass of FM partitioning algorithm.

2.2 Global Placement

After floorplanning determines block outlines and pin locations, placement seeks

to assign to standard cells or logic elements within each block their locations while

satisfying certain optimization objectives. The techniques of global cell placement

are divided into three different categories.

In partitioning-based algorithms, the circuit and the layout are divided into

smaller sub-circuits and sub-regions, respectively, according to cost functions based

on cutsize. This process is repeated until each sub-circuit and sub-region is small

enough to be tackled in an optimal way. An example of this approach is min-cut

placement.

In analytical algorithms the placement problem is modeled using an objective-

cost function, which can be maximized or minimized through mathematical analysis.

The cost function can be quadratic or in other cases non-convex. Examples of such

techniques are quadratic placement and force-directed placement.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.2. Global Placement 13

In stochastic algorithms, randomized moves are used to optimize the cost func-

tion. This means that in search of a globally optimal solution and in order to reach

it, locally worse moves are accepted. An example of this approach is simulated

annealing.

In this work we focus on analytical placement and specifically on quadratic place-

ment. In the following subsection, we explain analytical and quadratic placement in

more depth.

2.2.1 Analytical Placement

Analytical placement minimises or maximises a given objective depending on

the goal, for example in some cases tries to minimise wire-length or circuit delay,

using mathematical techniques such as numerical analysis, quadratic programming

or linear programming. The use of such methods often requires certain assumptions,

such as treating placeable objects as dimensionless points. After such algorithms

have been applied and cells have been placed too close, that is creating overlaps, the

cell locations need to be spread further apart by post-processing methods, so as to

remove overlaps.

Quadratic Placement [5]

In quadratic placement the aim is to minimise the total length of connections

between elements, that is minimise the total wire-length of the given design. The

elements need to be treated as dimensionless points and later after the elements

have been placed, the dimensions are being considered too.

The function that best models the total length of connections is the squared

Euclidean distance,

L(P) =
n∑

i=1,j=1

c(i, j)
(
(xi − xj)

2 + (yi − yj)
2
)

which gives the total distances between the cells. n is the total number of cells and

c(i, j) is the connection cost between cells i and j, which is equal to zero, c(i, j) = 0,

when cells i and j are not connected. Terms (xi−xj)
2 and (yi−yj)2 respectively give

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.2. Global Placement 14

the squared horizontal and vertical distances between the centers of i and j. The

quadratic formulation emphasises on the minimisation of long connections, which

tend to have negative impacts on timing.

In quadratic placement, each dimension can be considered independently. There-

fore, the cost function L(P) can be separated into x- and y-components

Lx(P) =
n∑

i=1,j=1

c(i, j)(xi − xj)
2 and Ly(P) =

n∑
i=1,j=1

c(i, j)(yi − yj)
2

With these cost functions, the placement problem turns into a convex quadratic

optimization problem, which implies that any local minimum solution is also a global

minimum and therefore, the optimal x- and y-coordinates can be found by setting

the partial derivatives of Lx(P) and Ly(P) to zero

∂Lx(P)

∂X
= AX − bx = 0 and

∂Ly(P)

∂Y
= AY − by = 0

Two systems of linear equations are formulated, where A is a matrix with A[i][j] =

−c(i, j) when i 6= j, and A[i][i] = the sum of all the connection weights of cell i.

X is the solution vector of all the x-coordinates of the non-fixed cells, and bx is a

vector where bx[i] = the sum of x-coordinates of all fixed elements connected to i.

The same applies for Y and by, but for the y-coordinates. The solution of these two

linear systems give the final positions of all the cells in the design, without using an

initial position.

Example

Figure 2.12 shows a placement P with two fixed points p1(100, 175) and p2(200, 225)

and three blocks a, b, c that need to be placed with a minimum total wire-length.

Figure 2.12: Placement P and blocks a, b, c.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.2. Global Placement 15

Suppose the connections N1(p1, a), N2(a, b), N3(b, c)N4(c, p2) the linear systems

that will result in the coordinates of blocks (xa, ya), (xb, yb) and (xc, yc) are formu-

lated with the following procedure.

First, the x-coordinates system is formulated and solved. Based on the given

nets and the coordinates of the fixed points, the cost function for x-coordinates is

Lx(P) = (100− xa)
2 + (xa − xb)

2 + (xb − xc)
2 + (xc − 200)2

After applying the partial derivative for each unknown x-coordinate, the functions

that are generated are

∂Lx(P)

∂xa

= −2(100− xa) + 2(xa − xb) = 4xa − 2xb − 200 = 0

∂Lx(P)

∂xb

= −2(xa − xb) + 2(xb − xc) = −2xa + 4xb − 2xc = 0

∂Lx(P)

∂xc

= −2(xb − xc) + 2(xc − 200) = −2xb + 4xc − 400 = 0

Finally, the linear system AX = bx that arises from the above equations is formu-

lated as
4 −2 0

−2 4 −2

0 −2 4



xa

xb

xc

 =


200

0

400

→


2 −1 0

−1 2 −1

0 −1 2



xa

xb

xc

 =


100

0

200


After solving the resulting system for X, the solution for x-coordinate is xa = 125,

xb = 150 and xc = 175.

Next, the y-coordinates system is formulated and solved. Based on the given

nets and the coordinates of the fixed points, the cost function for y-coordinates is

Ly(P) = (175− ya)
2 + (ya − yb)

2 + (yb − yc)
2 + (yc − 225)2

After applying the partial derivative for each unknown y-coordinate, the functions

that are generated are

∂Ly(P)

∂ya
= −2(175− ya) + 2(ya − yb) = 4ya − 2yb − 350 = 0

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.3. Monolithic 3D Placement 16

∂Ly(P)

∂yb
= −2(ya − yb) + 2(yb − yc) = −2ya + 4yb − 2yc = 0

∂Ly(P)

∂yc
= −2(yb − yc) + 2(yc − 225) = −2yb + 4yc − 450 = 0

Finally, the linear system AY = by that arises from the above equations is formulated

as 
4 −2 0

−2 4 −2

0 −2 4



ya

yb

yc

 =


350

0

450

→


2 −1 0

−1 2 −1

0 −1 2



ya

yb

yc

 =


175

0

225


After solving the resulting system for Y , the solution for y-coordinate is ya = 187.5,

xb = 200 and xc = 212.5.

The final solution that gives the final positions of cells a, b and c is a(125, 187.5),

b(150, 200) and c(175, 212.5) and the result can be seen in Figure 2.13.

Figure 2.13: Placement P of blocks a, b, c.

2.3 Monolithic 3D Placement

Three dimensional integrated circuits (3D-ICs) have been introduced as a promis-

ing solution that makes it possible to extend the limiting 2D scaling prediction that

was made by Moore’s Law. Current 3D-ICs are through-silicon-via (TSV) based,

but the pitch of TSVs is limiting to the integration density. Monolithic 3D IC is

a new emerging technology that allows higher orders of magnitude in integration

density than TSV based 3DICs, since the monolithic inter-tier vias (MIVs) have an

extremely small size. Instead of bonding two pre-fabricated dies, in monolithic 3D

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.3. Monolithic 3D Placement 17

integration technology two or more tiers of devices are fabricated sequentially. This

way the need for die alignment is eliminated, enabling smaller via sizes, where each

MIV has practically the same size as an intra-tier via (<100nm diameter) [6].

Figure 2.14: Monolithic 3D structure.

2.3.1 Advantages

Monolithic 3D integration allows ultra fine-grained vertical integration of devices

and interconnects, because of the extremely small size of inter-tier vias, which are

typically 50nm in diameter, and provides more design freedom.

The 3D vertical integration can be categorized into several levels in terms of par-

titioning granularity. The first one is core level integration, where a typical example

is core with memory stack, which provides very high memory access bandwidth.

The second one is block-level integration, where functional blocks are partitioned

into different tiers based on their logical connections. The third one is gate-level

integration, where tiers are partitioned based on each single gate. Since the num-

ber of gate is huge in a digital system, the demand for vertical interconnection is

very aggressive. The last one is transistor-level integration, which partitions the

transistors into different tiers.

Inter-tier vias have a much better electrical performance than TSVs, regarding

parasitic capacitance, mechanical stress and electrical coupling, due to its small size.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.3. Monolithic 3D Placement 18

Since TSVs accommodate much larger parasitic capacitance, which means that for

the same timing performance TSV-based designs need more effort on buffering and

gate sizing, which will eventually increase the power consumption [7].

2.3.2 Placement Approach

The “Flattened Half-Perimeter wire-length” (HPWL) is defined as the HPWL of

a monolithic 3D-IC as if all the gates have been projected onto a single placement

layer. Also, the total routing overflow is defined as the sum of routing demand minus

routing supply on all global routing bins that are congested [6].

Given an initial monolithic 3D placement, the gates are repartitioned in such

way that the total routing overflow is minimized, without changing the flattened

HPWL.

It is possible to have a HPWL constraint, since changing only the z location of a

cell does not change its flattened HPWL. The extremely small z height in monolithic

3D-ICs guarantees that the impact on the total 3D half-perimeter bounding-box will

be minimal.

Figure 2.15: The initial monolithic 3D placement is flattened into 2D, and then reparti-

tioned with area balance in each partitioning bin [6].

An overview of this methodology is shown in Figure 2.15. The methodology first

starts with a monolithic 3D global placement, which is then projected to 2D, so that

a Flattened 3D Placement can be obtained. The partitioning bins are defined, and

this flattened placement is repartitioned to 3D, while respect to local area balance

within each partitioning bin. The flattening step is used in order to take advantage

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

2.3. Monolithic 3D Placement 19

of existing 2D placers to generate a flattened monolithic 3D placement, without

actually running any 3D placement.

2D placement engines have the concept of chip capacity or utilisation, which is

the maximum number of standard cells that can be placed in a certain area. A

two-tier monolithic 3D chip has half the footprint area of a 2D chip, and since all

the gates need to be fitted into half the area, the area of the chip is halved and the

capacity of the chip is doubled.

Once the 3D flattened placement is generated, it is splitted into two tiers, min-

imising the change to the placement solution. First a min-cut partitioning heuristic

is used as an initial solution (FM), a routing demand model for monolithic 3D-ICs,

and finally a min-overflow partitioning heuristic that uses the routing demand model

to minimize the routing overflow.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 3

Contribution and Implementation

In this chapter, first we describe the existing infrastructure on which our work

was based and then we introduce the contribution and implementation of our work,

that is the implementation of the QP Placement, the implementation of the FM

partitioning algorithm and finally the implementation of the 3D Placer. We describe

how our work is applied on and cooperates with all the existing structures and

functionalities.

Figure 3.1: a) Existing Infrastructure and b) Our Work.

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 3. Contribution and Implementation 21

Infrastructure

Figure 3.1 shows the existing infrastructure which is an actual industrial physical

design tool and consists of a GUI, a Floorplanning functionality and a Verilog and

LEF parser.

The GUI is used to visualise the results from all the functions embedded in the

tool and see the actual placement of the cells. The whole core area is displayed along

with the floorplanning layout and possible blockages, the cells in their positions and

the connections with the Top-level IO pins and between the cells.

The Verilog and LEF parser loads industrial benchmarks from Verilog and LEF

files that have all the information we need for each design. We load information

regarding cell connectivity and connectivity with Top-level IO pins, and library cell,

for example cell dimensions and specifications needed.

The Floorplanning algorithm is responsible for the core layout, that is how the

core is divided into bounding boxes based on the modules from each design. This

function also provides us with the core dimensions based on the core utilisation that

we want for the design and vice versa and core’s aspect ratio.

All the information loaded from the design files and the information that comes

from the other functionalities is stored in data structures created for the purposes of

the physical design tool. There are structures regarding the modules of each design

and their hierarchy, the cells, their dimensions, connections, possible positions on

the core, and finally structures regarding gatepins, their type - input, output or both

- and possible connections.

Combination

Figure 3.1 also shows the different parts and algorithms that were implemented

in our work and needed to be applied on the already existing infrastructure and that

each function takes advantage of different aspects of the existing information.

The Quadratic Programming (QP) Placer in order to calculate cells’ positions in

the core area, takes into consideration cell connectivity, possible connections with

Top-level IO pins and the core’s dimensions that result from the Floorplanning

algorithm.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3.1. QP Placement Algorithm 22

The partitioning algorithm divides cells according to the nets to which each cell

is connected. The data structures for the nets are based on cell connections and

information from each design’s Verilog files.

Finally, 3D placer uses the core dimensions and utilisation that come as a result

from the floorplanning algorithm in order to create to different placement levels,

each one with half the initial core area.

3.1 QP Placement Algorithm

Contribution

Our contribution regarding QP Placement was to the extent of testing the many

different tools and libraries that could solve the QP problem. In order to avoid the

cost of creating our own solver just to solve the QP problem, the wise move was to

find the most suitable existing solver for the purposes of our work.

The tools that we tested were MATLAB, a well known mathematical tool and

CVX, which is an expansion tool to the functions of MATLAB. The libraries tested

were Intel Math Kernel Library (IMKL), GNU Scientific Library (GSL) and SuiteS-

parse.

All the forementioned tools and libraries were able to solve QP successfully.

Having in mind additional work that could be done in the future, some of the choices

proved not to be suitable. Mathematical functions that could be used for the cell

overlap minimisation could not be solved and were not supported by MATLAB and

CVX.

From the three libraries left, we chose to work with SuiteSparse due to the many

different solver packages available, the ease of use and the very quick execution times

when solving the QP problem.

Implementation

In order to solve the QP problem, first we need to create and formulate the

system that will give us the final positions of the cells. The system is of the form of

Ax = b.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3.1. QP Placement Algorithm 23

In algorithm 1 we present the pseudocode for the formulation of the system,

which actually is a double system, one for the x-coordinates and one for the y-

coordinates.

In order to formulate the system, we use as input the number of cells, their

connectivity to other cells and IO pins and the positions of IO pins. The result is a

vector with the positions of all cells.

The diagonal of matrix A, that is element A[i][i] has the number of cells and the

number of IO pins connected to cell i. Elements A[i][j] where cell i is connected to

cell j have the value -1 in order to show the adjacency between the cells. Elements

bx[i] and by[i] have the x- and y-coordinates of IO pins respectively.

Algorithm 1 Matrix and Vector Formulation for QP
Input: The components of our design, the number and position of pins and the

number of nets to which each of them is connected

Output: Matrix A and vector b for the system regarding our QP

1: i = 0

2: for each component c in design D do

3: A[i][i] = Number of connected components

4: matrixAposition[c] = i

5: for each IO pin p connected to c do

6: A[i][i] + +

7: bx[i] = pinXposition[p]

8: by[i] = pinY position[p]

9: i++

10: for each component c in design D do

11: for each net n connected to c do (Could be avoided)

12: for each component cc connected to component c (through n) do

13: ni = matrixAposition[c]

14: nj = matrixAposition[cc]

15: A[ni][nj] = −1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3.2. FM Partitioning Algorithm 24

Since cells are treated as dimensionless points while solving the QP problem, the

results may lead some cells to be placed outside the core area. To fix the positions

so that the cells are placed inside the core area, we take into consideration the di-

mensions of each cell, check whether they are located outside the core bounds and

quantise their positions so that they are located in the core area without altering

much the initial position calculated by the algorithm.

Figure 3.2: a) Cells out of core bounds b) Cells in core bounds after quantisation.

3.2 FM Partitioning Algorithm

Contribution

Our contribution for the FM Partitioning algorithm lies to three different aspects.

First, the organisation of cells in nets. The logic behind the nets idea was introduced

in the FM algorithm. We take the general idea and apply it in the scope of gatepins.

This means that from each components output gatepin, we find all the connected

input gatepins of other cells and organise the connected cells into a net.

Second, the organisation of the partitions as a binary tree. In the beginning, the

design is initially cut randomly into two different partitions and with the help of

the binary tree structure, each of these partitions can be furthermore cut into two

other partitions.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3.2. FM Partitioning Algorithm 25

Figure 3.3: Nets from a gate-level circuit.

Figure 3.4: Partitions organised as a binary tree.

Finally, the implementation of gain sorting with binary heap structures. As the

FM algorithm makes use of the bucket structures mentioned in section 2.1, we use

binary heap structures to sort each partition’s cell gains and easily find the cell to be

moved. Compared to linear sorting, which has time complexity O(n2), the binary

heap sorting has average time complexity O(log n) and pick or extract maximum

time complexity O(1).

Figure 3.5: Gain sorting binary heap.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3.2. FM Partitioning Algorithm 26

Implementation

Given a gate-level design, the cells are divided into two partitions by approxi-

mately half. Thus, as the cells are parsed in a certain order, based on this order

the first half go to the left partition and the rest to the right partition. Then we

calculate the cell gain for these two initial partitions and start moving the cells.

At first, we apply a tentative movement to all cells in order to check whether

or not the cutsize will be smaller compared to the starting cutsize. The process of

moving each cell is a) find the cell with the maximum gain and whose movement

does not violate the balance constraint, b) move cell to the other partition and

declare it locked, c) update the gain of connected cells to the one moved, d) keep

the new cutsize and the move in the history log, e) check if there are any cells left

unlocked.

After all cells have been moved, we find the minimum cutsize from this pass of

the algoithm. If this cutsize is smaller than the initial cutsize, we apply the first

k moves that result in this cutsize, else the algorithm terminates. When the final

moves have been applied, we attempt another tentative pass of the algorithm.

Figure 3.6: Partitioning algorithm flow.

In algorithm 2, we present the pseudocode for the FM Partitioning algorithm

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3.2. FM Partitioning Algorithm 27

that we implemented as it was described above.

Algorithm 2 Our Implementation of Fiduccia-Mattheyses
Input: The components of our design divided typically in half as two initial

random partitions (A,B)

Output: The initial partitions (A,B) with the minimum nets’ cut-size between

them

1: i = 0

2: for each component c in design D do

3: Gain(c) = FS(c)− TE(c)

4: cutSize(i) = CalculateCutSize(FS(c))

5: while sizeOf(Heap(A)) > 0 && sizeOf(Heap(B)) > 0 do

6: cell = MaxGain(Heap(A), Heap(B))

7: if cell in Heap(A) then

8: TentativeMove(cell,A,B)

9: Remove cell from Heap(A)

10: else

11: TentativeMove(cell,B,A)

12: Remove cell from Heap(B)

13: i = i+ 1

14: for each component c connected to cell do

15: Re-calculate Gain(c) = FS(c)− TE(c)

16: cutSize(i) = CalculateCutSize(FS(c))

17: minCutSize = cutSize(0)

18: for i = 1; i <= ComponentsNumber; i = i+ 1 do

19: if cutSize(i) < minCutSize then

20: minCutSize = cutSize(i)

21: moveNum = i

22: ApplyMoves(moveNum)

23: return minCutSize

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3.3. 3D Placement Algorithm 28

3.3 3D Placement Algorithm

Contribution

Our contribution regarding 3D placement is the partitioning of cells to different

chip levels, but having achieved the minimum partitioning cutsize and the minimum

wire-length. The FM partitioning algorithm gives the minimum possible cutsize

for the initial partitioning of the design and the QP placement results in the best

positions for the cells based on their connectivity, which is also taken into account

during the 3D placement and therefore achieving a minimal wire-length.

Also, with the organisation of partitions in a binary tree there is no limit to the

number of possible partitions. To this date, 3D chips had only up to 3 different

levels. We take 3D placement to another level by making it possible to have more

than just two or three different levels and minimising chip area even more this way.

Implementation

For the 3D placement we want to fit a 2D placement in its half area. This way

many cell overlaps occur, which is not an issue since we aim to a 3D chip. Also, the

fact that connected cells may be found on different levels may raise concerns about

the wire-length. With respect to cells connectivity and placement and with a tiny

vertical distance, wire-length will actually be reduced.

We assume a 70% utilisation 2D placement, which we want to fit in the half initial

area. This means that with half the initial area, the initial utilisation is doubled and

we get a 140% utilisation. Now almost all cell overlap with each other, but this is

not an issue since we will split them into different levels based on the partitioning.

As the vertical distance is tiny, approximately 50nm, the wire-length is minimised

compared to the 2D wire-length, where the on-tier distances are much larger. Since

we take into consideration cell connectivity, even in different levels they are placed

closely and we only consider an average 2D wire-length based on the Half Perimeter

Bounding Box (HPBB) that encloses each net and the negligible vertical distance.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

3.3. 3D Placement Algorithm 29

Figure 3.7: a) 2D wire-length and b) 3D wire-length calculation.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 4

Experimental Results

Partitioning Experimental Results

Table 4.1 shows the experimental results regarding 13 different industrial bench-

marks, each one of which has a different number of cells. For each benchmark we

present the initial cutsize for the initial partitioning, the resulting minimum cutsize

after applying the FM partitioning algorithm, the number of algorithm passes that

lead to the minimum solution and the execution time of the algorithm.

Table 4.1: Experimental results for the partitioning algorithm.

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 4. Experimental Results 31

As it can be seen in Table 4.1, applying the algorithm makes a great difference

on each benchmark’s cutsize and in many cases in very little execution time.

In Figure 4.1 we see the graphical representation of the results in Table 4.1,

which gives us a better idea of how much the cutsize has been optimised for each

benchmark after applying the FM partitioning algorithm.

Figure 4.1: This figure shows how the cutsize is reduced as the partitioning algorithm is

applied for more passes.

3D Placement Experimental Results

Table 4.2 shows the experimental results regarding 12 different industrial bench-

marks, each one of which has a different number of cells, covering a wide range from

a few hundred cells to hundreds of thousand cells. In Table 4.2, we present the wire-

length and area for 2D placement for each benchmark, the wire-length and area for

3D placement and percentage decrease of wire-length after applying 3D placement.

The average wire-length decrease is of the order of 25%, while for some benchmarks

a decrease of approximately 30% can be observed.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 4. Experimental Results 32

Table 4.2: Experimental results for the partitioning algorithm.

In Figure 4.2 we see the graphical representation of the results in Table 4.2,

which gives us a better idea of how much the wire-length has been optimised for

each benchmark after applying 3D placement and dividing the cells into to levels.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 4. Experimental Results 33

Figure 4.2: This figure shows the decrease in wire-length after we have applied 3D

placement as opposed to the 2D placement.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 5

Conclusions and Future Work

3D standard-cell placement is a new emerging and promising technology in Semi-

conductor Industry and is presented as a solution and an extension to Moore’s pre-

diction. The huge number of transistors that are able to fit in a chip area nowadays,

makes it more and more difficult for IC designers to create effective and low power

consuming chips. Monolithic 3D IC is an emerging technology that enables high

integration density on multiple tiers.

Three dimensional placement delivers more design prospects to the Semiconduc-

tor Industry as chips may be expanded to more than three levels and 3D placement

may be applied in many different ways and methods.

Finally, it has been proven that it is possible to achieve a 25% decrease in wire-

length through 3D placement. This leads to less power consumption for chips, less

circuit delay and finally lower temperatures, as there is no excessive congestion on

the chip with the cells distributed in different levels.

However, there are some additions to our work that we would like to address in

the future.

First, we would like to apply 3D placement for more levels. The results presented

in our work refer to two-level 3D placement and we would like to take experimental

34

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Chapter 5. Conclusions and Future Work 35

results for four or more levels. This expansion to our work is quite easy thanks to

our binary tree structure for the different partitions.

We would also like to apply the partitioning algorithm with a different cost

function. Most partitioning algorithms aim to minimise the cutsize between the

partitions. We would like to run the same benchmarks and compare the results for

a different cost function, i.e. try to minimise routing congestion.

Finally, another addition to our work would be the elimination of cell overlaps.

Even though we have different chip levels, it is still possible that overlaps may occur

for large designs. The goal would be to minimise cell overlap without affecting

wire-length and to spread cells based on chip’s regional density.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

Bibliography

[1] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Par-

titioning Graphs”, Bell Sys. Tech. J. 49(2) (1970), pp. 291-307.

[2] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for

Improving Network Partitions”, Proc. Design Autom. Conf., 1982, pp. 175-

181

[3] Sung Kyu Lim, “Practical Problems in VLSI Physical Design Automa-

tion”, Springer Science + Business Media B.V., 2008

[4] E. Ihler, D. Wagner and F. Wager, “Modeling hypergraph by graphs with

the same min-cut properties”, Info. Proc. Letter, 1993, 45:171–175

[5] A. B. Kahng, J. Lienig, I. L. Markov and J. Hu, “VLSI Physical Design:

From Graph Partitioning to Timing Closure”, Springer Science + Busi-

ness Media B.V. , 2011

[6] S. Panth, K. Samadi, Y. Du and S. K. Lim, “Placement-Driven Parti-

tioning for Congestion Mitigation in Monolithic 3D IC Designs”,

ISPD’14, 2014, pp. 47-54

[7] C. Liu and S. K. Lim, “A Design Tradeoff Study with Monolithic 3D

Integration”, ISQED , 2012

36

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:09:25 EET - 137.108.70.7

	Abstract
	Declaration
	Introduction
	Purpose of This Thesis
	Thesis Structure

	Background
	Partitioning Algorithms
	Fiduccia-Mattheyses Algorithm

	Global Placement
	Analytical Placement

	Monolithic 3D Placement
	Advantages
	Placement Approach

	Contribution and Implementation
	QP Placement Algorithm
	FM Partitioning Algorithm
	3D Placement Algorithm

	Experimental Results
	Conclusions and Future Work
	Bibliography

