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Abstract 

 

Low alloy TRIP steels belong to the 1
st
 generation of advanced high-strength steels 

(AHSS) produced mainly in sheets for automotive applications. They possess a 

multiphase microstructure consisting typically of ferrite, bainite and Retained 

Austenite (RA). The remarkable combination of strength and ductility/formability of 

these steels is due to the strain-induced transformation of retained austenite during the 

forming operations. 

The modeling of the strain-induced transformation leads to a better understanding of 

the parameters involved such as: the chemical composition, austenite particle size and 

stress triaxiality. A new model was developed in this work, which describes the strain-

induced transformation of retained austenite and which, for the first time, takes into 

account the austenite particle size. 

The model was fitted to available experimental data. The stabilizing effect of retained 

austenite particle size refinement as well as the destabilizing effect of stress triaxiality 

were revealed. The contribution of stress-assisted transformation and the effect of 

effect of temperature were also determined. 

In addition to modeling, a new technique, magnetic force microscopy (MFM), was 

applied to determine the evolution austenite grain size during the strain-induced 

transformation. Magnetic Force Microscopy (MFM) has been proved a reliable 

technique to identify austenite in the microstructure. The results indicated that larger 

retained austenite particles transform first at low strains, while smaller particles 

transform at higher strains. 

The results of this thesis can be used to identify possible compositions and process 

routes for improved performance of these steels. 
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1 Introduction 

1.1 Objective and scope 

Improved fuel consumption, weight reduction and high passenger safety are only 

some of the reasons, which make it essential for the automotive industries to develop 

steels with enhanced mechanical properties. The development of steels during the last 

twenty years has shown that TRIP steels constitute a new category of sheet steels, in 

terms of their high strength and enhanced formability. The Low-alloy Transformation-

Induced Plasticity (TRIP) steels, which present great industrial importance, possess a 

multiphase microstructure, which consists typically of ferrite, bainite and retained 

austenite. The retained austenite, with a typical volume fraction of 10-15%, is in the 

form of particle dispersion. The high uniform elongation, and hence high formability, 

of these steels results from the strain-induced martensitic transformation of retained 

austenite. This transformation increases significantly the hardening rate and therefore 

improves the ductility of the material in comparison to similar high strength steels, 

which do not present TRIP effect. 

The key constituent of the TRIP steel microstructure is retained austenite, which is 

metastable at room temperature. Basic interest of the present thesis is the investigation 

of the stability of the retained austenite in low-alloy TRIP steels and how this stability 

influences transformation plasticity. 

The present thesis develops a model, describing the kinetics of the evolution of 

martensite volume fraction during strain-induced transformation of dispersed 

austenite in low-alloy TRIP steels. The two distinct mechanisms responsible for the 

mechanically induced martensitic transformation are described in detail.  The model 

takes into account the effects of several parameters influencing the kinetics of 

martensitic transformation .An effort is made to distinguish the individual effect of 

each one of the parameters influencing austenite stability. By understanding clearly 

the impact of each parameter, we can then move backwards and design the optimal 

heat treatment which results to the desirable mechanical characteristics for the 

material. A thorough understanding of the relation between microstructure and 

mechanical properties is essential in order to proceed to improvements of TRIP steels. 

The present work, therefore, aims at addressing the following research objectives: 

 

 A mathematical model describing the kinetics of strain-induced transformation 

of retained austenite in low-alloy TRIP steels, which is in the form of particles 

into the microstructure. The model takes into account the influence of chemical 

composition, temperature, austenite particle size and stress triaxiality. The 

identification of the effect of each one of the microstructural parameters 

separately and their contribution on the martensitic transformation and the 

corresponding austenite stability is presented. 

 

 Non linear curve fitting of the model in available experimental data, in order to 

predict the transformation behavior of low-alloy TRIP steels presenting 

retained austenite of different chemical stability in the form of dispersion. 
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 A reliable and accurate experimental procedure to investigate the 

microstructural characteristics of low-alloy TRIP steels. A correlation of the 

microstructure description to the macroscopic mechanical properties and 

specifically to the martensitic transformation has been examined. 

 

 Experimental identification of the transformation kinetics of the retained 

austenite during deformation. In the experimental data exported non-linear 

curve fitting of the model described was applied. Evaluation of the results 

predicted by the model is presented.  

 

 The strong stabilizing effect of austenite particle size refinement. Pre-strain 

tests were carried out in order to observe the evolution of mean austenite 

particle size during deformation. The influence of the austenitic grain size on 

the overall stress-strain behavior of low-alloy TRIP 700 steel is analyzed. 

 

 The description of 
s

M
 temperature model and how this model can be used in 

order to predict the carbon partitioning of the retained austenite. 

 

 Simulation of the intercritical annealing with the use of computational 

softwares such as: Thermo-Calc and Dictra. The simulation can assist the 

design of the intercritical annealing in low-alloy TRIP steels. 

 

All of these objectives could provide a good insight for further improvement of the 

performance of low-alloy TRIP steels, as well as for the optimization of the 

processing parameters. 

 

1.2 Thesis outline 

This thesis continues with the following chapters: 

 

In Chapter 2 literature review of TRIP phenomenon is discussed. The reason why 

TRIP steels are so widely used in engineering applications is addressed. This chapter 

describes in detail the two distinct mechanisms, which can mechanically induce the 

martensitic transformation. General aspects of martensitic transformation as well as 

several parameters influencing austenite stability are discussed. 

Chapter 3 describes the model applied in the present work in order to describe the 

kinetics of the evolution of martensite volume fraction during strain-induced 

transformation in low-alloy TRIP steels. The model has been fitted to available 

experimental data regarding the evolution of martensite as a function of plastic strain 

for several steels containing austenitic dispersions. The results concerning the fitting 

are discussed. The parameters influencing austenite stability and as a result the 
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transformation kinetics of the model are presented. Additionally, this chapter presents 

a description of the 
s

M
 temperature model. 

Chapter 4 describes the evolution of the austenite grain size during the strain-induced 

transformation. Here, the deformation and transformation of austenite grains obtained 

from uniaxial tensile tests are investigated with the combination of different methods. 

The model described in Chapter 3 was applied in the experimental data. Results 

concerning the stabilizing impact of the size of the retained austenite in the strain-

induced transformation kinetics are presented. 

Chapter 5 focuses on the modeling of intercritical annealing for two different low-

alloy TRIP steels with the use of computational thermodynamic and kinetics software. 

The results obtained are discussed.  

Finally, in chapter 6, the conclusions from the current research are presented and 

further suggestions for future work and development are proposed. 
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2 Literature review 

2.1 Introduction 

The new challenge for optimizing vehicle structures for weight is to develop steels 

with enhanced strength without compromising formability. TRIP steels are widely 

used in engineering applications due to their excellent combination of formability, 

high tensile strengths, weldability and good corrosion resistance. 

Due to increasingly strict safety regulations and the need to reduce the fuel 

consumption, the car industry has become increasingly aware of the structural 

materials of better performance. The strength-elongation ratio of the austenitic 

stainless steels can be adjusted within a wide range by work hardening. Although, 

TRIP steels have a higher material cost than the plain carbon steel grades, their use 

can be cost effective if their good formability and high strength are reasonably well 

exploited in the part design and manufacturing process. 

As the TRIP steels show a better strength/elongation ratio compared to almost any 

other metallic structural materials used in car body structures (Figure 1), they have 

become an attractive group of materials to be used in crash relevant structures. 

Components, which could be produced from these steel types, include side impact 

bars, unexposed chassis and wheel rims. These steels offer scope for the production of 

more economical, safe and environmentally friendly lightweight vehicles with 

potential for savings in raw materials, energy and reduction of harmful emissions.  

For the last 20 years now, the steel industry corresponded to this demand by 

introducing new steel categories as the high strength low-alloy steels (HSLA), the 

interstitial free high strength steels (IF-HS) and the dual phase steels (DP-steels). 

However, the last years the investigation of TRIP steels has been started and as it can 

be seen from Figure 2, their mechanical properties are different from all the previous 

steel grades. TRIP steels offer very attractive combination of elongation and tensile 

strength. A comparison of different steel families can be made by the product Rm ×A80 

(Rm stands for tensile strength and A80 for total % elongation) which can be above 

20.000 MPa × % for TRIP steels. The absolute elongation values can be as high as the 

values of the high-strength IF steels, which present the best formable high-strength 

steels developed so far. The tensile strength range of TRIP steels is 650 to 950 MPa 

and is much higher than today’s tensile strength range of cold formable steels. 
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Figure 1: Car components manufactured from TRIP steels [1] 

 

 

 
Figure 2: Total elongation and tensile strength of TRIP steels in comparison with 

conventional high strength steels [2] 

 

 

The high formability in TRIP steels is attributed to the transformation-induced 

plasticity of retained austenite. The amount and stability of retained austenite are the 

key factors, which affect its transformation behavior during straining. The 

microstructure of low-alloy TRIP steels typically consists of ferrite, bainite and 

retained austenite. An electron microscopy picture of a typical TRIP microstructure is 

shown in Figure 3.  
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Figure 3: Microstructure of TRIP steel 

 

 

The microstructural evolution and the mechanical behavior of TRIP steels are 

sensitive to chemical composition, temperature, austenite grain size and stress and 

strain state.  

Ferrite has a body-centered cubic (BCC) lattice and it is the softest phase among the 

constituent phases. The size of ferrite grains in a typical TRIP steel are in the range of 

5 − 10 μm [3]. The microstructure of bainite consists of fine platelets of ferrite that 

form via a displacive (diffusionless) mechanism and cementite (Fe3C) that 

precipitates in-between and/or inside ferrite plates. In general, bainite is harder than 

intercritical ferrite due to its finer structure as well as the presence of carbide 

precipitations. The bainite in TRIP steels is generally referred to as “bainitic ferrite” 

and it is not exactly the same as the above explained typical bainite. The bainitic 

ferrite in TRIP steels is essentially carbide-free due to the presence of Al or Si, which 

restricts (or postpones) carbide precipitation. Austenite is normally stable at high 

temperatures and has a face-centered cubic (FCC) lattice. Carbon enrichment and the 

constraining effect from neighboring grains can stabilize austenite at room 

temperature. The strength of retained austenite in TRIP steels is generally higher than 

that of the ferritic constituents due to the strengthening effect of carbon. The unique 

mechanical properties of TRIP steels are mainly attributed to the presence of the 

metastable austenite phase in the room temperature microstructure. Upon application 
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of mechanical and thermal loads, the metastable retained austenite can transform into 

a harder martensitic phase, which would increase the effective strength of the 

material. 

 

2.2 Heat treatment of TRIP steels  

After cold rolling the steels undergo a two-step heat treatment shown in Figure 4, 

consisting of intercritical annealing followed by isothermal annealing at a lower 

temperature, to stabilize the retained austenite via the bainitic transformation.  

At the first step, the specimen of steel is heated until a temperature of 700-900 
o
C 

where intercritical annealing takes place. The temperature and time (almost 3 

minutes) of intercritical annealing are chosen in a way that a microstructure of 50% 

ferrite and 50% austenite to be formed.  After intercritical annealing quenching is 

performed to an intermediate temperature above the martensite start temperature, 

which allows the bainite transformation to occur during isothermal holding. Bainite 

isothermal transformation takes place at temperatures 350-450  oC and times 200-600 

seconds and leads to the transformation of a part of austenite to bainite. The amount 

of austenite transformed to bainite depends on the temperature and time of the bainite 

isothermal transformation. Therefore, after bainite isothermal transformation the steel 

obtains a microstructure of 50% ferrite, 35-45% bainite and 5-15% austenite. In this 

step, the remaining austenite is further enriched with carbon, which shifts the 

martensite start temperature below room temperature. Finally, the specimen of steel is 

quenched in room temperature without austenite transformed to martensite and the 

desirable microstructure of 50% ferrite, 35-45% bainite and 15-5% austenite remains.  

 

 
Figure 4: Schematic representation of the heat treatment performed for TRIP 

steels (A: austenite, B: bainite, F: ferrite) [4] 
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2.3 Mechanical performance 

The reason why TRIP steels are so widely used is that they present excellent 

mechanical behavior. They present superior uniform elongation in comparison to 

other similar steels such as dual phase steels. TRIP steels yield greater elongation 

compared to dual phase steels and this property derives mainly to the strain-induced 

martensitic transformation of the retained austenite as it can be seen in Figure 5 

bellow.  

 

 
Figure 5: Superior elongation observed in a TRIP steel compared to a dual phase 

steel with similar strength level [5] 

 

According to the work of Bhadeshia [6] the transformation strains themselves can 

contribute at most 2% to the observed elongation given the small fraction of austenite 

present in these materials. Moreover, the volume expansion accompanying the 

martensitic transformation leads to the generation of dislocations in the adjacent 

ferrite as seen in Figure 6, which freshly produced dislocations, can contribute in the 

deformation process [7]. The martensite formed during strain-induced transformation 

inherits the high carbon content of the austenite. The martensite produced during 

deformation does not impair the ductility. 
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Figure 6: Dislocations generated in ferrite due to transformation of austenite 

during deformation [7] 

 

TRIP steels exhibit excellent formability in comparison to several other steels with 

comparable strength. One of the main reasons, why these steels are so widely used in 

automotive products is their superior crash-worthiness. In a crash scenario, the strain 

rate may well exceed 250     and the prevailing state of stress and strain may be 

much more complex than iniaxial tension. 

In Figure 7 bellow it is presented the superior crash-worthiness of TRIP steels in 

comparison to other types of steels. 

 

 
Figure 7: Schematic representation of the superior crash-worthiness of TRIP-

assisted steels in comparison to other types of steels. The steels are tested with a 

prestrain of 0% and 5% in each case [8] 

 

In the next section a description of martensitic transformation is presented, followed 

by a more specific discussion of the transformation plasticity phenomenon. 
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2.4 General aspects of martensitic transformation 

One of the most important technological procedures is the hardening of the steel upon 

cooling. This strengthening is a result of structural change, which is called martensitic 

transformation. Rapid quenching of austenite to room temperature often results in the 

formation of martensite, in which the carbon, formerly in the solid solution in the 

austenite, remains in the exact same solution in the newly formed martenstitic phase. 

Martensite is of great importance in steels where it can confer an outstanding 

combination of strength and toughness.  The stable grains need really low 

temperatures in order to transform, but the less stable austenite grains are prone to 

both a spontaneous transformation upon cooling and deforming-induced martensitic 

transformation.   

Many materials other than steel are known to exhibit the same type of solid-state 

phase transformation, known as a martensitic transformation. Martensite occurs in, for 

example, nonferrous alloys, pure metals, ceramics, minerals, inorganic compounds, 

solidified gases and polymers. 

Martenisic transformation can be considered to be a first-order solid-state structural 

change, which is: 

a) displacive,  

b) diffusionless and 

c) dominated in kinetics and morphology by the strain energy arising from shear-

like displacements.  

This set of three characteristics is regarded as both necessary and sufficient to define a 

martensitic transformation. 

Martensitic transformation is heterogeneous in nature and proceeds by the 

propagation of relatively sharp interfaces. The lack of diffusion creates a very precise 

orientation relationship between the parent austenite and the martensite product. 

A martensitic phase transformation can be considered as the spontaneous plastic 

deformation of a crystalline solid in response to internal chemical forces. The 

phenomenogical theory was adopted in order to understand better and more precisely 

the martensitic transformation.  According to this theory the transformation is 

accomplished by the Bain distortion and a shear deformation at the interface between 

austenite and martensite. The shear at the interface occurs by either slip or twinning. 

Figure 8 bellow presents a schematic representation of the martensitic transformation. 

 

 
Figure 8: Schematic representation of the martensitic transformation. (a) the 

shape change predicted by Bain (b) shear at the interface between austenite and 

α’ martensite (c) twinning at the interface of austenite and α’ martensite [9] 
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The transformation produces a shear strain as well as a volume expansion, which can 

vary from 0 to 5 percent, depending upon the chemical composition of the alloy. The 

Bain distortion, which helps visualize the lattice correspondence between the parent 

and product phases is presented in Figure 9. As a consequence of Bain strain the 

correspondence related cell in the parent phase (indicated by bold lines) becomes a 

unit cell in martensite. 

 
Figure 9: Lattice distortion and correspondence proposed by BAIN for the 

FCC→BCC (BCT) martensitic transformation in iron alloys [11] 

 

The part of the lattice deformation which accomplishes the change in crystal structure, 

is a pure deformation, and is usually called the Bain distortion or Bain strain, the term 

originally adopted for the FCC BCC (BCT) martensitic transformation in ferrous 

alloys.On the other hand, a shuffle is a coordinated shift of atoms within a unit cell, 

which may change the structure but, in itself, does not produce a homogenous lattice-

distortive strain. Figure 10 illustrates, in simple form, the distinction between lattice-

distortive and shuffle displacements. Even though displacive phase transformations 

may generally comprise various combinations of lattice deformations and shuffles, 

martensitic transformation is typically dominated by lattice deformations rather than 

by shuffles, although shuffles are not excluded. 
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Figure 10: Schematic representation of homogeneous (a) lattice deformation and 

(b) shuffles [10] 

 

2.5 Driving force for martensitic transformation 

At any given temperature, there exists one preferential crystallographic structure 

corresponding to the lowest energy level. At relatively low temperatures the 

martensite phase has the thermodynamically preferred crystal structure, so that upon 

steel’s quenching, the original austenite structure, stable at high temperatures, tends to 

transform into the more stable martensite. Figure 11 shows schematically the change 

in chemical free energies of martensite and austenite (parent phase) with temperature. 

 

 
Figure 11: Schematic representation of free energy curves of the matrix and 

martensite phases as a function of temperature [11] 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:13:51 EET - 137.108.70.7



25 

 

In To temperature the free energy of the two phases takes the same value, but as the 

temperature decreases, the difference of the free energy between the two phases 

enhances. The chemical driving force 
ch

G  is the difference between the free energy 

of BCC and FCC structures. At high temperatures the austenite has lower free energy, 

whereas at lower temperatures body-centered cubic (BCC) ferrite has lower free 

energy and is, therefore, the stable phase. In To temperature 
ch

G   , while for 

temperatures lower than To ch
G   . As we can observe the chemical driving force 

increases (becomes more negative) with a reduction in temperature.    is defined as 

the temperature, at which the chemical driving force takes a critical value     
   

needed to overcome the martensitic transformation energy. Spontaneous martensitic 

transformation takes place only if the difference between the chemical free energies of 

austenite and martensite reaches the critical value     
  . The    temperature for the 

nominal composition of low-alloyed TRIP steel is about 350
 o 

C. The    temperature 

for the austenite in TRIP steels is well below room temperature since the retained 

austenite has been enriched in carbon during the bainitic holding process. However, 

martensitic transformation can take place at temperatures higher than the    

temperature, with the aid of mechanical driving force, as discussed in the following 

section. 

When    is surpassed, the martensitic transformation continues upon further cooling 

and stops in    temperature.  

 

2.6 Transformation plasticity  

As denoted by the stress-temperature diagram of Figure 13 there are two modes of 

interaction of deformation with transformation termed: (a) stress-assisted 

transformation in which applied stress assists the operation of the same nucleation 

sites controlling transformation on cooling, and (b) strain-induced transformation 

controlled by the production of new nucleation sites with plastic strain. The stability 

of dispersed austenite against mechanically induced transformation is characterized by 

the   
  temperature, while the stability of austenite against transformation on cooling 

is characterized by the    temperature. Due to the transformation dilation, this 

temperature is stress-state dependent. 

Strain-induced martensitic transformation is of great importance for the mechanical 

behavior of austenitic stainless steels. The martensitic shape change itself contributes 

a mode of deformation, called TRansformation Induced Plasticity (TRIP), which can 

influence stress-strain behavior in important ways. This unique process allows for the 

design of materials which take advantage of the transformation itself, not simply the 

properties of transformation product. The notion of exploiting the properties of such a 

structural change is quite novel with respect to the classical view of the relationships 

between a material’s structure and its properties. 

TRIP steels are generally stable at room temperature. Without mechanical 

contribution in these steels the spontaneous martensite transformation starts at the MS 
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temperature. As mentioned above the alloying elements could have a stabilizing or 

destabilizing impact on the austenite. 

It is useful to distinguish between the roles of elastic stress and plastic strain in 

influencing the martensitic nucleation process. Martensitic transformation can also be 

triggered with the aid of external mechanical loading at higher temperatures. The 

applied stress generates a positive contribution to the chemical driving force for 

austenite to martsensite to transformation and thus the elastic deformation generates 

stress-assisted martensitic transformation at temperatures above    but below   
  

temperature. . In other words, the critical driving force for nucleating the sites that 

normally operate without any external stress at     can be attained at temperatures 

above     since the mechanical driving force makes up for the reduced chemical 

driving force at such higher temperatures. Stress-assisted transformation occurs 

bellow the yield strength of the austenite phase with the aid of the applied stress. This 

transformation is called stress-assisted (S.A.T.) because the existing nucleation sites 

are simply aided mechanically by the thermodynamic contribution of the applied 

stress. 

Martensitic transformation can also occur above the   
  temperatre and the 

transformation is assisted by the applied strain.  Above   
  significant plastic flow 

precedes the transformation, and an additional contribution to transformation can arise 

from the production of new and more potent nucleation sites by plastic deformation. 

This transformation is defined as strain-induced (S.I.T.). These nucleation sites are 

often grouped under the name shear-bands and the nucleation according to Olson and 

Cohen [12] occurs at the intersection of these shear-bands. In Figure 12 bellow it is 

presented the martensite volume fraction formed as a function of strain for the two 

distinct mechanisms. 

 

 

 

Figure 12: Schematic representation of (a) stress assisted and (b) strain-induced 

martensite volume fraction formed as a function of strain [13] 
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The three different martensitic transformation events of the deformation-induced 

martensitic transformation are plotted in Figure 13. 

 

 
Figure 13: Schematic representation of stress assisted and strain-induced 

regimes of mechanically induced martensitic transformation [14] 

 

Below the              temperature martensite will form spontaneously without any 

aid of stress. Deformation can stimulate the kinetics of solid-state phase 

transformations through both the thermodynamic effect of the applied stress and the 

production of new catalyzing defects by plastic strain. Between the    and   
  

martensite forms with the aid of applied stress. As the temperature raises the stress 

needed to initiate the transformation increases. Above   
            the 

transformation is initiated after the applied stress reaches or even exceeds the yield 

strength of austenite and yielding occurs first by slip and then martensite can form at 

the new more potent nucleation sites newly generated by the slip. These new 

nucleation sites are created due to plastic deformation and this is the reason why this 

mechanism is defined as strain-induced transformation. The    
  temperature defines 

an approximate boundary between the temperature regimes where separate modes of 

transformation dominate. Near the    
  temperature both modes will operate. The 

plastic deformation of austenite could continue till fracture, which is point E in the 

figure presented above. This point also defines    temperature, which is the 

maximum temperature above which martensite transformation cannot be induced by 

deformation because the chemical driving force is so small that it is impossible to 
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nucleate martensite. With increasing temperature above   
  the yield stress decreases 

and the stress necessary to initiate strain-induced transformation is close  to the yield 

stress at temperatures just above   
  , but it is significantly higher than the yield stress 

at higher temperatures. Due to the interaction between stress triaxiality and 

transformation volume change, the   
  and    temperatures are stress-state 

dependent. For the case of austenite dispersions in Fe-C-Mn-Si alloys, the   
  

temperature depends on the following factors: 

 Chemical composition of the austenite particles. Chemical composition 

(mainly carbon content) affects the chemical driving force of the martensitic 

transformation. 

 Austenite particle size, which affects the probability of finding nucleation sites 

in the particle. 

 Stress state. Stress triaxiality influences the transformation volume change of 

the retained austenite either by enhancing or by retarding the transformation 

kinetics, depending on the stress state. 

 Strength of the matrix, which affects the mechanical driving force contribution 

to the total driving force for the martensitic transformation. 

 

  
                 /

h
    

The Md temperature was found to be an inconvenient measure of the austenite stability 

since it is hard to measure; hence Angel [15] introduced the Md30 temperature. This is 

the temperature where 50% martensite will form at 30% true strain. Angel formulated 

the following empirical relation for the Md30 temperature: 

 

Md30=413-462(C+N)-9.2(Si)-8.1(Mn)-13.7(Cr)-9.5(Ni)-18.5(Mo)  (2.1) 

 

According to Angel’s research of the effect of temperature on strain-induced 

martensitic transformation during tensile loading, the amount of martensite formed 

decreases with an increase of temperature. Chemical driving force and stacking fault 

energy are temperature dependent parameters. As a result the formation of strain-

induced α’ martensite is affected by both of these parameters. An example of the 

temperature dependence of the strain-induced martensite during uniaxial tensile is 

presented below in Figure 14. This behavior presented in the following figure is 

attributed to the decrease of chemical driving force with increasing temperature. 

Although, the stacking fault energy is known to increase with increasing temperature, 

its role in the suppression of the α’ martensite transformation has not been explicitly 

demonstrated in literature. 
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Figure 14: The transformation induced martensitic transformation in metastable 

austenitic stainless steels is enhaced by low temperatures [15] 

 

The dominant martensitic phase formed in metastable austenitic stainless steels is α’ 

martensite, which is body-centere tetragonal (bct). Due to the small amounts of 

interstitial carbon, a general approximation can be made that the α’ martensite 

structure could be assumed to be close to body-centered cubic (bcc) structure.  

 

2.7 Alloying elements in TRIP steels 

The key factor in the selection of alloying elements is the improvement of the stability 

of retained austenite by using low-alloy concept. Below, it is addressed a brief report 

on the effect of common alloying elements in low-alloyed TRIP steels: 

Carbon is the most effective austenite stabilizer and it improves the strength of 

austenite and martensite. Interstitial atoms, like carbon promote the FCC crystal 

structure and cause significant solid solution strengthening. 

Apart from carbon other alloying elements are added in TRIP steels. Those elements 

ensure: a) the optimization of the volume fraction of retained austenite, b) the increase 

of the hardness of ferrite, c) the control of cementite precipitation, d) the increase in 

the hardenability by avoiding pearlite formation before bainite reaction. 

The stacking fault energy of TRIP steels is low, typically about 0.20 J/m
2
.There is a 

compositional dependence of stacking fault energy. Several researches have shown 

that the stacking fault energy of austenitic stainless steels tends to increase with 

increasing alloying.
 

Manganese and silicon are both austenite stabilizers. Silicon as known is a ferrite 

stabilizer but at the same time assists to retain carbon enriched austenite by 

suppressing cementite precipitation from austenite. Silicon strengthens ferrite by solid 

solution strengthening and this leads to an overall strengthening of the steel. Too 
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much manganese additions should be avoided because it promotes carbide formation. 

It is important also to note that the strength of the austenite and the presence of other 

phases in the vicinity of retained austenite play a crucial role at the      

transformation. 

Aluminium inhibits cementite precipitation. This element is usually used to substitute 

silicon [16] but unlike silicon, aluminium does not strengthen ferrite and that’s the 

reason why steels, in which silicon is replaced by aluminium may present lower 

hardness.  

An alloying element which may be found in TRIP steels is phosphorous. Phosphorous 

is a ferrite stabilizer and has the same effects as silicon. Pickering [17] reported than 

an addition of only 0.1 wt% of phosphorous leads to an increase of about 75 Mpa in 

the ferrite strength. Table 1 shows the chemical composition of typical TRIP steels. 

 

Table 1: Chemical composition of typical TRIP steels  

C Mn Si Al P Cu Cr Ni Ti V B 

0.18 1.33 1.67 0.13 0.008 - 0.026 0.021 0.014 - - 

0.29 1.40 1.50 - - - - - - - - 

0.18 1.50 0.25 0.44 0.015 - - - - - - 

0.20 1.4 0.5 0.7 0.04 - - - - - - 

0.14 1.51 1.49 - - 0.51 - - - - - 

0.15 1.51 1.52 - - 0.51 0.39 - - - - 

0.15 1.50 1.53 - - 0.51 - 0.41 - - - 

0.15 1.52 1.55 - - 0.50 0.39 0.41 - - - 

0.20 1.80 1.00 - 0.03 - - - - 0.11 0.003 

0.18 1.4 0.8 - - - - - 0.1 - - 

 

Micro-alloying elements such as niobium, titanium and vanadium are occasionally 

used in small amounts in order to improve the mechanical properties by grain 

refinement and precipitation hardening. In general, micro-alloying elements impede 

the processes that need the movement of dislocations and/or grain boundaries. 

 

2.8 Factors affecting austenite stability 

In this section a brief discussion about the main parameters, which determine the 

austenite stability is held. 

2.8.1 Proportion of phases 

TRIP steels consist of ferrite, bainitic ferrite, and retained austenite with or without 

traces of martensite. As reported by Choi et al. [18], a high volume fraction of 

retained austenite improves elongation as well as the ultimate tensile strength of the 

steel. C content in retained austenite increases with bainite transformation time but 

converges to a certain point. This carbon enrichement leads to the reduction of  s in 
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values lower than the room temperature. The effect of bainite transformation on the C 

enrichment in the retained austenite is depicted in Figure 15. 

 

 

Figure 15: Effect of bainite transformation time on C content in retained 

austenite [19] 

 

It should be noted that high retained austenite volume fraction or high ferrite fraction 

during intercritical annealing implies less bainite, leading to a reduction in strength. 

 

2.8.2 Stability of retained austenite 

2.8.2.1  Chemical stability 

The stability of the retained austenite should be such that it transforms progressively 

during deformation. Austenite should transform progressively during deformation, so 

that damage can be accommodated to all stages of deformation. Carbon enrichment in 

retained austenite is of great importance. As known carbon content has a strong 

stabilizing effect by lowering the chemical driving force for martensitic 

transformation. The higher the C content, the higher the stability of the retained 

austenite. Whereas C, Mn, and Si depress the MS temperature of retained austenite, Al 

increases the MS temperature. It should be mentioned that the retained austenite after 

isothermal bainite transformation is not homogenously enriched with carbon. Two 

types of retained austenite can be considered. The retained austenite can be located 

within the ferrite matrix or in the vicinity of hard phases such as bainite or martensite. 

These two types of retained austenite present different morphologies and carbon 

concentrations, which influence the stability. Austenite particles in the vicinity of 

bainite are richer in carbon. Austenite particles with lower carbon content transform 
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first during martnesitic transformation. As the plastic strain increases the more stable 

austenitic particles transform (Figure 16). 

 

 
Figure 16: Effect of carbon content and plastic strain in the transformation 

of retained austenite [19] 

 

2.8.2.2 Grain size 

Apart from carbon content, another stabilizing factor of great importance is the 

austenite particle size. A reduction of the size of the retained austenite is a crucial 

stabilization factor. According to Wang et al.[20] the grain size of retained austenite 

should be in the range of 0.01 to 1 μm to ensure the TRIP effect. Larger retained 

austenite particles are unstable and transform quickly to martensite at small strains. 

On the other hand, 0.01 μm particles are too stable to undergo the strain-induced 

transformation. The smaller the austenite particle size is, the lower is the probability 

of presence of substructures such as stacking faults or other defects in the particle, 

which serve as nucleation sites for the martensitic transformation. In case of 

heterogeneous nucleation (i.e. at grain or phase boundaries) the probability of 

nucleation of martensite in an austenite grain is proportional to the surface area and 

hence the size of the grain. The droplet experiments of Turnbull [21] have shown that 

the nucleation frequency per droplet is proportional to the droplet surface area. Thus, 

subdividing the system into smaller droplets could cause a shortage of nuclei for the 

most of the droplets. It is a rational assumption to say that the smaller austenite grains 

are stabilized due to the lack of sufficient nuclei. An important reason why a decrease 

of the grain size will generate less strain-induced martensitic transformation is that the 

grain boundaries serve as effective obstacles for the growth of martensite laths. 

A second way through which grain size influences the transformation kinetics is the 

interfacial energy. The interfacial energy of martensite is directly related to the 

thickness and length of martensite plates, or indirectly to the initial austenite size 

since the growth of martensite plates stops at grain boundaries. 
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The strain-induced transformation kinetics depends also from the orientation of the 

austenite particles. Some particles present favorable orientation to the stress applied in 

the material. 

 

2.8.2.3 Mechanical stability 

The strength of the austenite and the presence of other phases in the vicinity of 

retained austenite play an important role in the γ       α’ transformation. Less 

transformation occurs when the surrounding matrix is stronger. An increase in the 

hardness of ferrite will have as a consequence the delay of the transfer of the applied 

stress to the austenite and hence the onset of TRIP phenomenon.   

In general any increase in the hardness of the surrounding matrix phase can be 

beneficial for the mechanical properties. 

At the design of TRIP steels it should be noted that any increment of matrix strength 

may not always be beneficial. Sakuma et al. [22] showed that increasing carbon 

content from 0.1 to 0.4 wt% increases the volume fraction as well as the stability of 

the retained austenite ,which leads to a reduce in the ferrite content, thereby increasing 

strength with an associated loss in ductility. As a result from this any advantage 

associated with TRIP steels is removed. 

 

2.8.2.4 Temperature 

The austenite stability is temperature dependent. Higher temperatures stabilize the 

austenite by both the reduction of the chemical driving force and the increase in 

intrinsic–fault energy. The strength and elongation of the individual phases are very 

likely to depend on the temperature. 

 

2.8.2.5 Strain rate and stress state 

The stress and the strain rate are two additional factors which influence the strain-

induced martensitic transformation. 

Most investigations carried out to clarify the effect of strain rate on the strain-induced 

transformation have indicated that the transformation is suppressed with increasing 

strain rate [23]. This was explained in terms of adiabatic heating, which decreases the 

chemical driving force of the transformation according to several studies. On the other 

hand, it has been found that high strain rate (      ) promoted shear band formation 

in AISI 304 steel compared to the low strain rate         . 
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Figure 17: Effect of strain rate on the formation of strain-induced α’-martensite 

in AISI 304 austenitic stainless steel examined in uniaxial tension [24] 

 

This led to an increase in the number of shear band intersections and higher volume 

fraction of α’-martensite at the early stages of tensile deformation as it can be seen in 

Figure 17. However, at strains higher than 0.25 the volume fraction of α’-martensite 

was suppressed at the high strain rate. This was attributed to a decrease in the 

chemical driving force of the transformation due to adiabatic heating. 

 

High strain rate tensile testing is referred as dynamic mechanical testing. The volume 

fraction size, morphology and distribution of retained austenite have all been shown to 

affect the dynamic mechanical properties. Strain rate is believed to promote formation 

of shear-bands, which aid the strain-induced martensitic transformation due to the 

formation of more nucleation sites. Figure 18 depicts the effect of strain rate on the 

flow curve at different test temperatures. 
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Figure 18: Effect of strain rate on the flow curve at different test temperatures 

[25] 

 

The martensitic transformation is sensitive to the stress state. For example, hydrostatic 

stresses have been shown to suppress the transformation, as it is associated with an 

increase in volume. Patel and Cohen [26] have found that biaxial stress produces more 

matrensite than uniaxial stress or compression. 

 

Unlike uniaxial tension or compression, strain-induced martensitic transformation is 

always known to be suppressed by the hydrostatic pressure. Hence, the stability of the 

retained austenite can be enhanced by applying hydrostatic pressure during tensile 

test, resulting higher uniform elongation. That’s important because retained austenite 

in such a case would not be fully transformed during forming, thereby allowing the 

TRIP effect to be utilized for crash-worthiness. 

To summarize the strain-induced transformation of retained austenite has been 

considered to be the major influencing factor of the mechanical performance of the 

steel. A moderately stable austenite appears to be the key to optimize ductility. A 

progressively austenite transforming is desirable during strain-induced transformation. 

The kinetics of the strain-induced transformation and how each of the above 

mentioned factors influences the transformation is the subject of this thesis.  
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2.9 Effect of temperature and strain rate on plastic deformation of single –

phase face-centered cubic (FCC) metals 

2.9.1 Effect of temperature and strain rate on flow stress 

Temperature and strain rate influence flow stress of a crystalline material due to the 

thermal activation of dislocation motion. The flow stress   consists of two 

components: 

 

            (2.2) 

  : thermal component 

  : athermal component 

 

The athermal component originates from long-range forces caused by, e.g. other 

dislocations. These long-range forces cause barriers, which are too high to be 

surpassed by thermal activation. Thus, it is considered that the athermal component is 

temperature dependent only through the temperature dependence of the elastic 

modulus, which is indicated by the subscript E.  

The thermal component    is significant when the dislocations are overcoming short-

range obstacles. As the temperature increases, so does the thermal activation. 

Consequently, the thermal component of the flow stress decreases. 

The strain rate affects the thermal component of the flow stress. The reason is that 

with increasing strain rate the probability of thermal activation decreases. Therefore, 

the thermal component of the flow stress increases with increasing strain rate. This 

behavior is referred as positive strain rate sensitivity. On the other hand, during high 

speed deformation the adiabatic heating increases the thermal activation and may 

cause decrease at the thermal component of the flow stress. 

In FCC metals the thermal component of the flow stress is small. This means that 

these metals exhibit a rather small temperature dependence of the yield strength. 

However, the work-hardening rate of the FCC metals is largely affected by the 

stacking fault energy. As the temperature decreases the same happens to the stacking 

fault energy. Consequently, the work-hardening rate of FCC metals may increase with 

decreasing temperature. 

 

2.9.2 Effect of temperature and strain rate on flow ductility 

According to Considére’s criterion the onset of the plastic instability, corresponding 

to uniform elongation is described by the following Equation: 

 

  
  

  
      (2.3) 

 : flow stress 
  

  
: work-hardening rate 
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As mentioned again in the previous section, the work hardening rate of FCC metals 

increases with decreasing temperature, while the yield strength stays relatively 

unaffected by the temperature. On the other hand, strain rate affects both the yield 

strength and the temperature due to adiabatic heating. The uniform elongation of FCC 

metals is affected both by temperature and strain rate. The uniform elongation 

increases with decreasing temperature.  

Besides the uniform elongation, also the post-uniform elongation is affected by the 

temperature and strain rate. Adiabatic heating softens the material. The influence of 

adiabatic heating on the softening of the material is more intense in the neck area 

where the local strain is higher. 

 

2.10 Modeling of the mechanical constitutive behavior 

A constitutive model for TRIP steels should predict the rate of martensitic formation 

and how the evolution of martensite affects the stress-strain curve. There are several 

parameters, which should be taken into consideration by the model. Several modeling 

efforts have been undertaken in the past mainly focused on homogeneous austenitic 

steels. 

One of the first attempts was made by Olson and Azrin [27]. They proposed a model 

that makes use of the "rule of mixtures" relation in order to relate the flow stress of 

TRIP steels to the deformation induced martensite content: 

 

              (2.4) 

    is the austenite flow stress 

    is the strength difference between austenite and martensite 

 

In Figure 19 the dashed  -ε curves are the experimental data, which were addressed in 

the same study by Olson and Azrin.  The dotted lines      and    labeled represent the 

flow properties of stable austenite and martensite, respectively. The transformation 

curves observed at temperatures above and below   
  and their associated  -ε curves 

are denoted by the solid curves in Figure 19 (a) and (b) respectively. 
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Figure 19: Comparison of the results obtained by equation 2.4 with the 

experimental data. (a) Behavior of material above   
 , (b) behavior of material 

bellow   
 [28] 

 

As Figure 19 suggests, the curve measured above   
  are in qualitative agreement 

with the rule of mixtures. On the other hand, the corresponding curve for temperature 

below   
  differs significantly because of the “dynamic softening” effect, which takes 

place due to the simultaneous transformation of the austenite into martensite, during 

deformation. 

Narutani et al. [29] based on the rule of mixture, which was previously described and 

after experimental measurements proposed the “Strain Corrected Rule of Mixtures, 

SCRM”. This rule predicts the flow behavior    of metastable austenite from the 

strain-induced transformation kinetics and the flow properties of the two separate 

phases. 

 

          γ   ε α      α
  ε α     (2.5) 

 

where   
  and    are the flow stresses of austenite and marteniste respectively. The 

strain is denoted by ε and α is considered a parameter, which takes the value of 0.12. 

The volume fraction of martensite forming is denoted by f.  

The following expression was adopted to describe the flow stress of the transformed 

material: 

 

             (2.6) 
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The calculated flow behavior   , allows us to calcutale the dynamic softening effect 

     Narutani found out that the “dynamic softening”     is proportional of the 
  

 ε
 

and is given by the following expression: 

 

     
  

 ε
       (2.7) 

 

Where  , is a parameter and takes the value of         .By the combination of 

equations (2.5), (2.6) and (2.7) derives the following expression: 

 

          γ ε α      α
 
 
 ε α         

  

 ε
   (2.8) 

 

The functional form used in this model yields reasonable agreement with 

experimental data from uniaxial tension tests, as shown in Figure 20. 

 

 
Figure 20: Comparison of experimental and calculated stress strain curves for 

14Ni-7Cr stainless steel studied by Naturani, et al. [29] 

 

In the following chapter, a brief review of several models used to describe the kinetics 

of strain-induced martensitic transformation is presented. 
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2.11 Conclusions 

In this chapter a literature review of the TRIP phenomenon and it’s applications on 

the automotive industry were presented. A review on several factors affecting 

austenite stability was investigated. In the following chapter a model describing the 

kinetics of strain-induced transformation of dispersed austenite in low-alloy TRIP 

steels is presented.  
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3 Model describing the kinetics of strain-induced transformation 

of dispersed austenite in low-alloy TRIP steels 

3.1 Introduction 

In the previous chapter a brief description of the martensite transformation and of the 

factors influencing the austenite stability has been presented. The austenite stability is 

as important as the volume fraction of the retained austenite in the TRIP steel. In this 

chapter a model describing the kinetics of the evolution of martensite volume fraction 

during the strain-induced transformation of dispersed austenite in low-alloy TRIP 

steels has been developed. The model is based on the modification of the nucleation 

site potency distribution by the applied stress and plastic strain for the description of 

the stress-assisted and strain-induced transformation regimes respectively. The model 

is fitted to available experimental data regarding the evolution of martensite as a 

function of plastic strain for several steels containing austenitic dispersions. The 

influence of several parameters on the expression used to describe the kinetics of the 

transformation is presented. Besides chemical composition of retained austenite and 

temperature, the model takes into account the effects of austenite particle size and 

stress triaxiality. Austenite particle size refinement has a strong stabilizing influence 

by retarding the strain-induced transformation kinetics. Stress triaxiality becomes 

important in stabilized austenite dispersions (either chemically stabilized or by size 

refinement) by enhancing the kinetics of the strain-induced transformation. The 

kinetic model can be used for the development of a constitutive model describing the 

mechanical behavior of TRIP steels. 

A description of the   
  temperature as a characterization of the retained austenite 

stability is being discussed. As mentioned in the previous chapter   
  temperature 

depends on several factors, which influence austenite stability.  

The   
  model [14] was implemented in the steel presented in a previous work of 

Haidemenopoulos et al. [30], in order to calculate the carbon content of the retained 

austenite of the steel presented in this paper. 

Chemical composition, austenite particle size, neighboring phases, and stress-

triaxiality are the most important factors influencing the stability of retained austenite 

and the strain-induced transformation kinetics [31-36]. These factors are interrelated 

and it is difficult to separate each individual effect. In an effort to gain a deeper 

understanding on the effects of these factors, several models have been developed for 

the kinetics of strain-induced transformation of austenite in TRIP steels. These models 

have been reviewed by Samek et al. [37] and they are presented in Figure 21. 
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Figure 21: Models for the strain-induced martensitic transformation kinetics 

[37] 

 

The model by Angel [15] and Ludwigson et al. [38] is empirical and takes into 

account autocatalytic effects, i.e., the acceleration of transformation by the 

transformation-induced generation of new martensitic nuclei. The model by 

Matsumura et al. [39], which was based on the work of Burke [40] and modified by 

Tsuchida et al. [41], takes into account the stability of austenite and autocatalytic 

effects. In the model proposed by Sugimoto et al. [42] the rate of transformation is 

proportional to the fraction of untransformed austenite and austenite stability. The 

model by Olson et al. [43] was the first to take into account the physical mechanisms 

of martensitic nucleation induced by plastic strain. In that model, shear band 

intersections were considered as the potential nucleation sites for the transformation. 

The rate of shear band formation is influenced by composition and temperature 

through the stacking fault energy. All models described above were developed for 

homogeneous austenitic alloys and do not take into account that, in low-alloy 

multiphase TRIP steels, the austenite phase is dispersed in the form of particles in the 

microstructure. Therefore, the effect of austenite particle size on transformation 

kinetics is not considered in the aforementioned models. Only recently Zhang et al. 

[44] investigated the effect of particle size through a modification of the Burke-

Matsumura-Tsuchida model [39-41]; however, it was not possible to differentiate 

between the effects of particle size and carbon partitioning in the austenite. There are 

also experimental data showing that particle size and stress triaxiality have important 

influence on strain-induced transformation and associated mechanical behavior [45, 

46].  

The aim of this work is to develop a kinetic model for the description of the fraction 

of martensite formed as a function of plastic strain in steels, where the austenite is 

present in the form of a dispersion of particles. The model is able to predict the effects 

of austenite particle size, chemical composition of austenite particles, temperature and 
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stress-state triaxiality on the strain-induced transformation kinetics. In section 3.2 a 

literature review of the basic elements of martensite nucleation theory and the potency 

distribution of nucleation sites is presented. The new model is then described in 

sections 3.3-3.5. 

 

3.2 Model description 

3.2.1 Martensitic nucleation and potency distribution of nucleation sites 

The model is developed for steel containing retained austenite in the form of dispersed 

particles of average volume    per particle. Martensitic transformation can be 

mechanically-induced in these dispersed austenite particles by two distinct 

mechanisms: stress-assisted and strain-induced nucleation [47] as described in the 

previous chapter. In the stress-assisted regime, martensite nucleates on pre-existing 

nucleation sites. Those are the same sites which operate during the traditional 

transformation on cooling. In the strain-induced regime, new and more potent 

nucleation sites are created by plastic deformation of the austenitic phase. As the steel 

is stressed and deformed plastically, retained austenite will transform to martensite by 

the simultaneous operation of both mechanisms. The stress-assisted mechanism 

prevails at stresses lower than the yield-strength of austenite, whereas the strain-

induced mechanism prevails after the yield-strength has been surpassed. The volume 

fraction of martensite forming as a result of the mechanically-induced transformation 

is denoted by f. This is the relative volume fraction with respect to the initial volume 

fraction of austenite and takes values between 0 and 1. 

The model is based on the Olson-Cohen theory of heterogeneous martensitic 

nucleation [48-50]. According to this theory, the formation of a martensitic nucleus 

takes place by the dissociation of an existing defect, which serves as a nucleation site 

for the transformation. Dissociation of such a defect creates a fault structure or 

martensitic embryo, the growth of which is determined by the energy change 

accompanying the dissociation. The energy per unit area of an embryo with a 

thickness of n crystal planes is denoted by  f
n and is given by 

 

    2
f ch str f s

n n G E W          (3.1) 

where 
ch

G  is the chemical driving force for martensitic transformation (energy per 

mole), 
s

  is the fault/matrix interfacial energy,   is the density of atoms in the fault 

plane (moles per unit area), 
str

E  is the elastic strain energy associated with distortions 

in the fault interface plane (energy per mole), and f
W  is the frictional work of 

interfacial motion (energy per mole), which occurs during the dissociation process. 

Spontaneous martensitic nucleation occurs when   0
f

n  . In this case, the 

dissociation is barrierless and occurs at a critical value of the driving force, i.e., when

0
f

  .  The change of the energy per unit area is presented in Figure 22. 
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Figure 22: Change of the energy per unit area for three different thicknesses 

of n crystal planes (n1, n2, n3) [11] 

 

Based on the above, the potency of a nucleation site can be defined by the thickness 

n  (in number of crystal planes) of the nucleus that can be produced from the defect 

by barrierless dissociation. The critical value *
n  for nucleation follows from Equation 

(3.1) as: 

 

.   
 

* 2
s

ch str f

n
G E W



 
 

 
    (3.2) 

 

The critical *
n for martensitic nucleation is temperature-dependent through the term 

ch
G . Later it will be shown that it could also be stress-dependent, through the 

addition of a stress-dependent mechanical driving force G


 in the denominator of 

(3.2). The critical value *
n also depends on the chemical composition of the austenite 

through the compositional dependence of 
ch

G  and f
W . 

Let 
0

vN be the total number of nucleation sites of all potencies per unit austenite 

volume and 

   the number of sites of sufficient potency to nucleate martensite (operational sites) 

per unit austenite volume. Cohen and Olson [51] derived the cumulative defect-

potency distribution     from the Cech and Turnbull small-particle experiments in 

Fe–30%Ni alloys [21] as: 

     

     
*

0
e

a n

v v
dN dN


     (3.3) 

 

where a is a shape factor. 

 

The model developed in this work is based on a modification of the potency 

distribution of equation (3.3); the modification is based on Kuroda’s [52] suggestion 

that the overall potency distribution is the sum of the stress-modified and strain-
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modified distributions of nucleation sites:        
     

  . This accounts for the 

effects of stress   and plastic strain ε on the evolution of the number of operational 

sites    in a uniaxial tension test. The modification of the potency distribution by 

stress and strain is described in sections 3.3 and 3.4 respectively, while the overall 

potency distribution is described in section 3.5. 

 

3.3 Potency distribution for stress-assisted transformation 

Application of a uniaxial stress   that causes elastic strains only can trigger 

martensitic nucleation through a mechanical contribution  G


   to the chemical 

driving force
ch

G : 

 

              
 

* 2
s

ch str f

n
G G E W






   
 

   
 

.   (3.4) 

 

The potency distribution of Equation (3.3) becomes: 

 

    
 

*
0

e
a n

v v
dN dN   




                 (3.5) 

 

where a


 is the shape factor in the stress-modified distribution. 

If we make the assumption that the variation of G


  with   is insignificant, then *
n  

is constant to first approximation and the last equation can be integrated to yield: 

 

                                                     0 *
exp

v v
N N a n

 

                                           (3.6) 

 

3.4 Potency distribution for strain-induced transformation 

Plastic strain in the austenite phase generates new nucleation sites and the factor dN
o

v
   

in equation (3.3) depends on plastic strain. Let N be the maximum number of sites per 

unit austenite volume and N
o

v
  the total number of nucleation sites of all potencies per 

unit austenite volume. In a uniaxial tension test an increment of plastic strain dε 

causes a change dN
o

v


, which is proportional to the number of available nucleation 

sites Ν N
o

v
  it also assumed that dN

o

v


 ,  is proportional to the value of plastic strain ε 

raised to a power, say m-1, i.e., we write 

 

       1
dN N dε

o o m

v v

 



        (3.7) 

where α is a proportionality constant. Then  

 
0 *

exp
v v

dN dN a n
 

   
 

,              
 

* 2
s

ch str f

n
G G E W






   
 

   
 

, (3.8)
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where α    is the shape factor in the strain-modified distribution. Equation (3.7) can be 

integrated to yield  

 

                      0
1 exp

n

v
N N k


    

 
,  k

n


 ,                              (3.9) 

where the initial condition  
0

0 0
v

N


  has been used. 

 

Again, if we make the assumption that the variation of    with   is insignificant, 

then *
n   is constant to first approximation and equation (3.8a) can be integrated to 

yield 

 

     0 *
exp

v v
N N a n

 


                      (3.10) 

where  
0

v
N


  is defined by (3.9) above. 

 

3.5 Overall Potency distribution and transformation fraction 

Let a
V  the austenite volume, m

V  the martensite volume, and a m
V V V   the total 

volume, so that the volume fraction of martensite is /
m

f V V . If 
v

N  changes to

v v
N dN , the martensite volume created per unit austenite volume is p v

v dN , where      

is the average volume of the austenite particles (here we assume that the martensite 

volume equals the austenite volume; a correction that accounts for volume change is 

possible). The total change in martensite volume     due to     is  

 

   m a m

p v p v
dV v dN V V V v dN      (3.11) 

 

If we divide the last equation by the total volume V, we find that 

 

              1

m m

p v

dV V
v dN

V V

 
  
 

        or      1
p v

df f v dN  ,     (3.12) 

 

which is integrated to yield 

 

               1 exp
v p v

f N v N          with     v v v
N N N

 
  ,  (3.13) 

 

where it was taken into account that f vanishes for 0
v

N  . 

 

If we now make the assumption that the variation of G


  with   is insignificant, 

then Equations (3.6) and (3.10) can be used for the evaluation of v
N


 and v

N

; in that 
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case the above expression (3.13a) for the martensite volume fraction f  can be written 

in the form 

 

                                       1 exp
p v

f v N    
 

,    (3.14) 

where  

                                         v v v
N N N

 
   ,      (3.15) 

            

    0 *
exp

v v
N N a n

 

  ,     (3.16) 

 

      0 *
exp

v v
N N a n

 


   ,      0

1 exp
m

v
N N k


    

 
. (3.17) 

 

When the plastic strain   vanishes, f  takes on the stress-assisted portion of the 

transformation
SA

f . According to Equation (3.14) we have that 

 

   0 1 exp
SA p v

f f v N


        (3.18) 

 

It is interesting to note that the amount of transformation depends on the size of the 

austenite particles through p
v  in (3.14) and (3.18). In fact, the volume fraction f 

increases with the particle size p
v . 

 

3.6 Fitting the model to available experimental data 

3.6.1 Experimental steels 

The result described by equation (3.14) was fitted to available experimental data by 

Samek et al. [37] and Itami et al. [19]. The chemical composition of the steels used 

from these works is shown in Table 2. 

 

Table 2: Chemical composition (in mass%) of the steels considered in this study 

Steels C Mn Si Al P Reference 

Steel 1 0.24 1.61 1.45 0.03 0.006 [37] 

Steel 2 0.25 1.70 0.55 0.69 0.007 [37] 

Steel 3 0.19 1.68 0.48 0.84 0.066 [37] 

Steel 4 0.14 1.66 1.94 0.025 0.008 [19] 

 

Steels 1 and 4 are typical CMnSi steels, Steel 2 is a CMnSiAl steel with partial 

replacement of Si with Al, and Steel 3 is a CMnSiAlP steel with partial replacement 

of Si with Al and P. In all steels under consideration the TRIP microstructures were 

obtained by a two-step heat treatment consisting of intercritical annealing followed by 

holding at the bainitic isothermal transformation temperature. The resulted 

microstructures in all cases consisted of ferrite, bainite and retained austenite. Steels 
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1, 2 and 3 have received identical heat treatment. Steel 4 has three variants 

corresponding to three holding times (10, 60 and 480 sec) at the bainite 

transformation temperature of 400
o
C. These variants are listed as Steel 4/10, Steel 

4/60 and Steel 4/480 respectively. The transformation fraction f was determined as a 

function of plastic strain ε by measuring the saturation magnetization interrupted 

tensile testing. In Steels 1, 2 and 3 the measurements were performed for temperatures 

in the range of 10 to 100
 o

C whereas in Steel 4 the measurements were performed at 

room temperature. 

Details on retained austenite volume fraction and particle size as well as chemical 

composition of austenite are given in [31] and [45]. 

In order to apply the model to the steels of Table 2, various components entering the 

equations (3.15)-(3.17) have to be calculated as described in the following. 

 

3.6.2 Chemical driving force 

The chemical driving force ΔGch for martensitic transformation of austenite particles 

is a function of chemical composition (carbon and manganese in the austenite) and 

temperature. The chemical driving force for martensitic transformation is defined as 

 

                                    bcc fcc
ch

G G G        (3.19) 

 

where  bccG  and  fccG  are the free energies of bcc and fcc phases of the same 

composition. These free energies were calculated with the Thermo-Calc software 

system by employing the TCFE6 database [53]. The results for steels 1, 2 and 3 are 

given as a function of temperature as follows: 

 

Steel 1:    5071.56 7.12
ch

G T T     (in J/m o l )         (3.20) 

 

Steel 2:    4755.31 6.95
ch

G T T     (in J/m o l )         (3.21) 

 

Steel 3:    4470.02 6.79
ch

G T T     (in J/m o l )         (3.22) 

 

where T  is temperature in K. 

 

The driving force term described by Equations (3.20)-(3.22) is plotted as a function of 

temperature in Figure 23.  
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Figure 23: Variation of chemical driving force with temperature 

 for Steels 1, 2 and 3 

 

It can be deduced that, regarding chemical stabilization, the retained austenite in Steel 

1 has the lowest stability while the retained austenite in Steel 3 has the highest 

stability. The retained austenite in Steel 2 possesses an intermediate stability between 

the other two steels. These observations are in accordance with the carbon content of 

retained austenite as determined in [37]. For Steel 4 the ΔGch term was calculated at 

20
o
C, since the fraction martensite vs strain data were obtained at room temperature. 

The calculations were carried out for the three variants and the results are -2546, -

2341 and -2091 J/mol for the 4/10, 4/60 and 4/480 variants respectively. 

 

3.6.3 Mechanical driving force 

The mechanical driving force contribution G


  is proportional to the applied stress  : 

 
G

G






 


    (3.23) 

 

and is given as a function of the stress-state by Patel and Cohen [26] as 

 

 0.715 0.3206
h

G 

 


  


 (in 

J

mol M Pa
),      (3.24)

  

where / 3
h kk

   is the hydrostatic stress and    is the von Misses equivalent stress. 

The ratio /
h

   is known as the “triaxiality” of the stress state. In uniaxial tension, 

  

  
      and the mechanical driving force contribution from Equation (3.24) is -

0.822 J/(m ol M Pa) . In considering stress effects on the potency distribution of 

Equation (3.3), two limiting cases are considered. A fully-biased distribution, which is 
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based on the assumption by Patel and Cohen [26] that the operative nucleation sites 

have an optimum orientation for maximum interaction with the applied stress. In this 

case the G


  term is given by Equations (3.23) and (3.24) and is used in Equation 

(3.8b) for the calculation of *
n . Second, it is considered the opposite extreme of a 

fully-random distribution, which is based on the assumption by Olson et al. [54] that 

the nucleation sites are randomly oriented. In this case, G


  is approximately one 

third (1/3) of that predicted by the fully-biased distribution. Therefore, the G


  term 

is replaced by / 3G


  in Equation (3.4), which describes the potency distribution in 

the stress-assisted transformation regime. The value of stress in Equation (3.23) was 

taken equal to the yield strength of retained austenite. A value of 550 MPa was 

adopted from the work of Samek et al. [37] for steels 1, 2 and 3, while the values 382, 

382 and 527 MPa were adopted for steel variants 4/10, 4/60 and 4/480 respectively 

from the work of Itami et al. [19]. 

 

 
Figure 24: Variation of operational sites under applied stress with yield strength  

for Steel 1 at 20oC 

 

The value of the yield strength depends mainly from the C but also from the Mn 

content of the retained austenite. The mechanical driving force, while it favors the 

martenstitic transformation, has not as strong contribution in the energy equilibrium 

of the martensitic transformation as the chemical driving force. However, the effect of 

the mechanical driving force on the kinetics of the martenistic transformation is 

enhanced at really stable austenite particles.  In Figure 24 we can observe how the 

yield strength affects the number of operational sites, which trigger martensitic 

nucleation during stress-assisted transformation in Steel 1. The value of
v

N


follows a 

linear increase with the yield strength. 
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3.6.4 Frictional work of interfacial motion 

The frictional work of interfacial motion during martensitic nucleation 
f

W  is a 

function of chemical composition of retained austenite. Frictional work is taken equal 

to the critical driving force at the    temperature.Two ways have been followed in 

order to develop an expression of 
f

W . The first way is to assume a linear increase of  

f
W  with C and Mn content: 

1169 8777 2246 19900
f C Mn C Mn

W X X X X       (3.25) 

 

The second way takes into account the treatment of Labusch [55], where the solution 

hardening effect is proportional to the 2/3 power of the alloying elements and 

adopting the data of Kuroda [52] for Fe-C-Mn alloys, we obtain a 2/3 power-law 

expression. This 2/3 power-law expression was adopted for the present work. 

According to Labusch, the critical shear stress to move a dislocation through a 

random array of obstacles in the glide plane is proportional to the 2/3 power of the 

concentration of alloying element and is given by the following expression: 

 
3 2 / 3 4 2 / 3

1.893 10 1.310 10
f M n C

W X X     (in J/m o l )    (3.26) 

 

where Mn
X  and C

X  are the mole fractions of Mn and C in the austenite. 

It is interesting to obtain the contribution of each one of these two alloying elements 

in the total frictional work (Figure 25).  
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Figure 25: Frictional work of interfacial motion as a function of mole fraction of C 

and Mn in austenite. The two families of curves correspond to the linear and the 

2/3 power-law approximation respectively 

 

The frictional work of interfacial motion f
W  has the highest preventing contribution in 

the energy equilibrium of the martensitic transformation. The effect of the alloying 

elements of C and Mn in the frictional work is evident. An increase in the contents of 

those elements leads to an increase in the frictional work f
W . This results to the total 

energy equilibrium of the martensitic transformation by retarding or even preventing 

the transformation at high carbon contents. An increase in the content of those 

elements hinders transformation kinetics not only by increasing the value of f
W  but at 

the same time by decreasing the contribution of chemical driving force as discussed in 

previous section. It is also interesting to note that compared to Mn, C is a much more 

stabilizing factor concerning retained austenite. At low carbon contents, the 

discrepancy between the linear and the 2/3 power-law model is large approaching 

almost 1000 J/mol. 

 

3.6.5 Shape parameters and other constants 

For the Fe-30%Ni small particle experiments of Cech and Turnbull [21], the shape 

parameter of the potency distribution of equation (3.3) has been evaluated by Olson 

and Cohen [51] as 0.866a  . For the less stable retained austenite in the low-alloy 

Fe-Mn-C steels considered in this work, the shape parameter for the pre-existing 

nucleation sites should have a much lower value. The value of 0.1a

  was used in 

Equation (3.5) for the stress-modified distribution. Based on the assumption that the 

nucleation sites created by plastic strain are more potent than the pre-existing sites, a 
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lower value of 0.03a

  was adopted for the strain-modified potency distribution in 

Equation (3.8a). The values of the remaining parameters were taken from [14, 56] as 

follows: 
str

E  500 J/mol, 
s

  0.15 J/m
2
, 

5
3 10


   mol/m

2
, 46k   and 3.45n  . 

The average volume of austenite particles was taken equal to 3 184
4.18 10

3
p

v R


    

m
3
 considering a mean radius of 1 μm as suggested by the measurements of austenite 

particle size by TEM in [37]. The values of the various parameters used in this work 

are summarized in Table 3. 

 

Table 3 Values of various parameters used in the model describing the kinetics of 

evolution of martensite during strain-induced transformation 

Parameter Value Parameter Value 

a 0 .1    5
3 10


  mol/m2 

a
  0 .03  k  46 

str
E  500 J/mol m  3 .45  

s
  0.15 J/m2 

p
v  

18
4.18 10


  m3 

 

3.6.6 Fitting parameters 

Non-linear curve fitting was performed with fitting parameters the pre-existing 

nucleation sites 
o

v
N


 and the maximum sites that can be produced by plastic 

deformation N  per unit volume. It should be noted that the fitting parameters for all 

temperatures and steel compositions considered are quite stable and of the order of 

1.5-4x10
17

m
-3

 for 
0

v
N


 and 1.9-5x10

19
m

-3
 for N. The value of the 

0

v
N


 parameter is 

consistent with the value of 2x10
17

m
-3

 reported in [52] for Cu-Fe alloys and the value 

of 10
16

m
-3

 reported in [57] for ceramic systems. 

 

3.6.7 Effect of austenite composition 

The effect of chemical stabilization of retained austenite, arising mainly from carbon 

partitioning, is shown in Figure 26, where the fraction martensite, from Equation 

(3.14), is plotted against plastic strain and compared against experimental data from 

interrupted tensile testing. Figures 26a-c correspond to testing temperatures 10, 20 and 

65
o
C for Steels 1, 2 and 3 of Table 2. Figure 26d corresponds to 20

o
C for the three 

variants of Steel 4 (variants 4/10, 4/60, 4/480).  
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Figure 26: Variation of martensite volume fraction   with axial strain. 

Comparison of model and experimental data: (a) 10
o
C, (b) 20

o
C, (c) 65

o
C for 

Steels 1, 2, 3 and (d) 20
o
C for Steels 4/ 10, 4/60, 4/480 

 

The model predicts well the sigmoidal shape of the strain-induced transformation, i.e., 

initially the rate of transformation increases with strain, reaches a fairly constant rate 

/df d   and then the rate decreases at higher strains as saturation is approached. 

Regarding Steels 1, 2 and 3, the model predicts higher transformation fractions for 

Steel 1, lower for Steel 3 and intermediate fractions for Steel 2 at the three 

temperatures and for the strain range considered, reflecting the effect of chemical 

stabilization of retained austenite, in accordance with the discussion of Figure 23. The 

same holds for the three variants of Steel 4 in Figure 26d, where in Steel 4/10 the 

retained austenite possesses the lowest stability, in Steel 4/480 the highest and in Steel 

4/60 an intermediate stability, in accordance with the chemical driving force 

calculations presented in the previous section. 

In Figures 26a-d, the value f  at zero plastic strain  0   is the aforementioned 

stress-assisted portion of the transformation 
SA

f  and agrees well with the experimental 

data. In the stress-assisted case, the transformation is exclusively triggered by the pre-

existing nucleation sites. The value of 
SA

f  increases as the chemical stability of 

retained austenite decreases. 

Other important aspects are the constant transformation rate /df d   and the 

saturation level at high strains. The rate /df d   and the saturation level follow the 
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chemical stabilization of retained austenite, i.e., /df d  increases as the chemical 

stability of retained austenite decreases. The difference between the saturation levels 

of Steels 1, 2 and 3 are high at 65
o
C and almost diminish at 10

o
C. It is important to 

note, that the saturation level does not reach the value of 1 (complete transformation) 

for the transformation temperatures considered. 

 

3.6.8 Effect of temperature 

The effect of temperature on the kinetics of strain-induced transformation is shown in 

Figure 27 for Steels 1, 2 and 3. The transformation fraction increases with decreasing 

temperature due to the increase of the chemical driving force 
ch

G  for martensitic 

transformation. The rate /df d  and the saturation level also increase with decreasing 

temperature due to the temperature dependence of the driving force. 

 

 
Figure 27: Variation of martensite volume fraction   with axial strain. 

Comparison of model with experimental data for (a) Steel 1 (b) Steel 2 and (c) 

Steel 3 

 

As mentioned in section 3.2.1 the critical *
n for martensitic nucleation is temperature-

dependent through the term
ch

G . In Figure 28 it can be seen how temperature affects 

the critical nucleation thickness for Steels 1, 2 and 3. With decreasing temperature 

less potent nucleation sites (sites of low number of n crystal planes) are activated to 

produce transformation. Always at the same temperature, strain-induced 

transformation triggers nucleation sites of lower potency compared to stress assisted 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:13:51 EET - 137.108.70.7



56 

 

transformation. This is due to the optimal orientation of the nucleation sites to the 

applied stress in strain-induced mechanism. 

 

 

At low temperatures the discrepancy between the critical thicknesses *
n of the two 

distinct mechanisms is low. However, as the temperature increases the thicknesses 

needed to trigger stress-assisted transformation increase with higher rate compared to 

strain-induced transformation. It is interesting to note that at temperatures a little bit 

higher than room temperature the more stable Steel 3 cannot practically trigger stress 

assisted transformation, because of the significant decrease in the chemical driving 

force. The model predicts that stress assisted transformation can occur for Steel 3 until 

approximately 75
o
C but the critical thickness needed is in the range of thousands. The 

lower the *
n value is the higher is the contribution of each transformation mechanism 

in the total transformation kinetics as it can be seen by Equations (3.6 and 3.10). 

These observations resulting from the model about the potency distribution of the 

nucleation sites are in accordance with the experimental data as determined in [37].  

 

3.7 Implications of the model 

The model presented above predicts the evolution of martensite during strain-induced 

transformation taking into account the effects of the chemical composition of 

austenite, temperature, average size of austenite particles and stress triaxiality. In this 

section the effect of temperature on the stress assisted portion of the transformation is 

discussed together with the effects of austenite particle size and stress triaxiality. 

 

3.7.1 Stress-assisted transformation 

It was shown in the previous section that both the transformation fraction and the 

transformation rate increase with decreasing temperature. The same holds for the 

stress-assisted portion of transformation
SA

f , which is plotted against temperature in 

Figure 28: Variation of critical value of n* for martensitic transformation with 

temperature   for Steels 1, 2 and 3 
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Figure 29. It is clear that the lower the temperature, the higher the contribution of 

stress-assisted transformation relative to the strain-induced transformation. 

 

 
Figure 29: The fraction martensite formed through stress-assisted 

transformation (fSA) as a function of testing temperature   for Steels 1, 2 and 3 

 

 

 

 
Figure 30:  Variation of operational sites under applied stress  

with temperature for Steel 1 
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As we observe from Equation (3.6) the operational sites under applied stress (the sites 

that produce transformation during stress-assisted transformation) increase with 

decreasing temperature. In Figure 30 we can observe the increasing trend of the 

operational sites 
v

N


with decreasing temperature for Steel 1. The stress-assisted 

portion of the transformation 
SA

f  , depends directly from the operational sites 
v

N


value from Equation (3.18). 

 

3.7.2 Effect of austenite particle size 

In order to investigate the effect of the austenite particle size, the model was applied 

to an austenite-containing steel for the following conditions: carbon content of 

retained austenite 0.8 mass%, tensile testing temperature 20
o
C, 

0

v
N


=2x10

17
m

-3
and 

N=2x10
19

m
-3

. According to Equation (3.14), the particles size affects the 

transformation through p
 , the average volume of the austenite particles. The 

austenite particles are assumed to be spherical with radius R , so that 
34

3
p

v R . The 

results are shown in Figure 31 where the transformation fraction is plotted as a 

function of plastic strain for spherical austenite particles with 0.1-1.0 μm average 

radius.  

 

 
Figure 31: Effect of particle size on the curve for a steel with 0.8 mass% C 

(T=20
o
C). R is the radius of the spherical austenite particles 

 

The stabilizing effect of austenite particle size refinement is evident. For example at 

ε=0.2, while the transformation in the steel containing 1μm - sized particles has been 

completed, the transformation for the steel with 0.1 μm-sized austenite particles has 
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barely started. In addition the transformation rate /df d   increases with the size of 

the austenite particles and the transformation is completed (f=1) only for steels 

containing large particles.  

 

3.7.3 Effect of stress triaxiality 

Stress triaxiality (stress state) influences the transformation kinetics through the 

interaction with the transformation dilatation. The effect is complex and to a first 

approximation can be taken into account through the mechanical driving force 

contribution, as described by Equations (3.23) and (3.24). In order to investigate the 

effect of stress triaxiality, the model was applied to a steel containing dispersed 

austenite of higher carbon content (1 mass%), which reduces the chemical driving 

force 
ch

G  for martensitic transformation. This leads to an increased relative 

contribution of the mechanical driving force G


  to the total driving force and 

emphasizes the effect of stress triaxiality. The temperature was set to 20
o
C and two 

cases regarding the average austenite particle size were considered: 1 and 0.3μm 

radius. The same 
0

v
N


 and N values as in the case of section 3.7.2 were adopted. The 

results are shown in Figure 32, where the transformation fraction is plotted as a 

function of plastic strain for three values of the triaxiality factor 
  

  
: -1/3 

corresponding to uniaxial compression, 1/3 corresponding to uniaxial tension, and 3, 

which is a relatively high triaxiality factor representing a stress state ahead of a 

plastically deforming plane-strain mode-I crack tip.  

 

 
Figure 32: Effect of stress triaxiality on the   curve for a steel with 1 mass% C 

(T=20
o
C, R=1μm and R=0.3μm) 
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Relative to the case of uniaxial tension, uniaxial compression results in a lower 

transformation fraction, while the high-triaxiality crack-tip stress state results in a 

higher fraction of transformation. The effect of stress triaxiality changes with the 

average austenite particle size. In the less stable 1μm particle dispersion, stress 

triaxiality affects the stress-assisted transformation and the strain-induced 

transformation at low strains, while in the more stable 0.3μm particle dispersion the 

stress triaxiality effect is stronger at higher plastic strains. Judging from Figure 32, the 

stress triaxiality effect is not as strong as the particle size effect of Figure 31, 

however, as stated above, it could become important in austenitic dispersions with 

high chemical stability. 

 

3.8 Effect of various parameters used in this model 

In the model described several parameters have been used. The values of these 

parameters influence the kinetics of the transformation and they have been adopted 

through literature review and specifically from the work of Kuroda [52]. For instance 

as mentioned before in this chapter the values of the shape parameters have changed 

in comparison to Kuroda’s study. In this section several diagrams are presented 

showing the effect of those parameters. Steel 1 of Samek’s work was adopted in order 

to investigate the effect of those parameters and the conditions: tensile testing 

temperature 20
o
C, 

0

v
N


=2x10

17
m

-3
and N=2x10

19
m

-3
 were used to proceed to the 

calculations. 

 

 
Figure 33: Variation of additional sites produced by plastic strain with axial strain  

for Steel 1 for three different values of the parameter k 
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According to Equation (3.9) the additional sites produced by plastic strain change 

when the value of k changes. The results are shown in Figure 33 where the additional 

sites produced by plastic strain 
0

v
N


are plotted as a function of plastic strain. It is 

evident that as the value of k  increases so does the number of 
0

v
N


parameter. 

However, for the values of k  under consideration it can be seen that the order of the 

additional sites produced stays quite stable. 

 

 
Figure 34: Variation of additional sites produced by plastic strain with axial strain  

for Steel 1 for three different values of the parameter n 

 

Figure 34 presents the variation of additional sites produced by plastic strain with 

axial strain for Steel 1 under consideration for different values of the n parameter. An 

increase of the n value of Equation (3.9) leads to a decrease in the number of 
0

v
N



value and consequently to a decrease of the strain-induced portion of the total 

transformation. At the same strain (i.e. 0 .2  ), while additional sites by plastic strain 

have been produced for the 3 .45n   value, for the two other n  values the strain-

induced transformation has barely or not even started. 
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Figure 35: Variation of operational sites under applied stress with critical value of   

for stress-assisted martensitic transformation for Steel 1 

 

Equation (3.16) shows that the operational sites under applied stress, which trigger 

stress-assisted transformation, depend from the critical thickness of the nucleation 

sites. As the critical thickness for stress-assisted transformation decreases less potent 

nucleation sites transform leading to an increase in the value of the operational sites. 

In Figure 35 we observe that for a given critical thickness as the shape parameter of 

the stress-assisted transformation a


increases the number of operational sites 

decreases. Even with the initial shape parameter of 0.84a

 , which was adopted in 

Kuroda’s [52] work as obtained in Figure 35, in order stress-assisted transformation to 

be triggered in the less stable Steel 1, sites of really low potency need to be activated. 

Through this observation it can be better understood why a diminished value of 

0.1a

 was adopted in the present work. According to the model, by adopting a 

shape parameter a


 in the range of 1.5-5 a dissociation of a defect with critical value 

of 
*

s a
n


 greater than approximately 6 crystal planes is impossible to happen. 

In Figure 36 below it can be seen how the new shape parameter affects the value of 

the operational sites
v

N


.  
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Figure 36: Variation of operational sites under applied stress with critical value of   

for stress-assisted martensitic transformation for Steel 1 

 

3.9 Implementation of the   
  model for the calculation of the carbon content 

in the retained austenite 

The model of the 
s

M
 temperature [14], which was described in the previous chapter, 

is based on the Olson and Cohen [48-50] theory. In a previous work of 

Haidemenopoulos et al. [30], high cycle fatigue tests were carried out to determine the 

S-N fatigue curve of TRIP steel 700. The austenite stability of this steel was measured 

by implementing a special technique for determination of 
s

M
 temperature.  

The 
s

M
 temperature was measured using the Single Specimen-Temperature Variable-

Tensile technique (SS-TV-TT). The accuracy of the method increases with the 

amount of retained austenite in the microstructure. After having measured the 
s

M


temperature, calculation of the carbon content of the retained austenite by applying 

the 
s

M
  model, which is described in the following section, follows.  

 

3.9.1 Calculation of the   
  temperature 

The transformation stress 


   , at which the martensite nucleation is triggered, can 

be found by combination of Equations (3.4), (3.6), (3.23), (3.13a) : 

 
0

p

2α γ1
* [ ]

ln 1
ln

  V
v

s

t ch f str
G W E

G f

N







  
  

 


 

 

   (3.27) 
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The 
s

M
 temperature can be found by setting the transformation stress equal to the 

yield strength (
y

  ) in Equation (3.27) and solve for the temperature. The 

temperature is hidden into ΔGch  term. 

Implementing a linear curve fitting in available experimental data the following 

expression for ΔGch  is given: 

 

ch

C M n C M n C
 G 7381.6 69447x 19296x 38776x x 6.7821T 33.45x T            (3.28) 

 

The 
s

M
 temperature can be obtained if we insert the expressions for the chemical 

driving force Equation (3.28), mechanical driving force Equation (3.24) and frictional 

work, Equations (3.25)-(3.26) into the expression for the transformation stress, 

Equation (3.27), and solve for the temperature. The resulting expressions are the 

following:  

 

for the linear Wf  model, Equation (3.25) : 

 s
   6           xC 

 1   A 5712 6 78224xC 

 21542xMn  18876xCxMn     0 715 0 3206 /
h

     

 

 

  (3.29) 

for the 2/3 power law Wf  model, Equation (3.26) : 

 s
   6           xC 

 1   A 6881   69447xC  19296xMn 

 38776xCxMn  1893xMn

2
3  13100  

 
     0 715 0 3206 /

h
     

(3.30) 

where A is given by the following expression: 

 

  

 

 

The values of the various parameters used in the 
s

M
 model are summarized in Table 

4. 

Table 4: Values of various parameters used in the   
  model 

Parameter Value Parameter Value 

a


 0.866   3x10-5  mol/m2 

0

v
N


 2 x1017 m-3 

str
E  500  J/mol 

γs 0.15  J/m2 f 0.01 

  
 α


  

     
       

0

v
N


   

 

 

(3.31) 
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The austenite particle volume 
p

v  has been assumed to be spherical. A mean radius of 

3 μm was adopted in the calculations based on the measurements of the work of 

Haidemenopoulos et al. [30] for the TRIP steel under consideration. 

 

3.9.2 Material and heat treatment 

The chemical composition (in mass%) of the investigated TRIP steel is presented in 

the following table: 

 

Table 5: Chemical composition (in mass%) of the steel under consideration 

Steel C Αl Mn Si P Reference 

ΤRIP 700 0.2 1.33 1.8 0.04 0.016 [30] 

 

Following cold rolling the material was subjected to a specific heat treatment in order 

to produce a microstructure with dispersed austenite content at room temperature. 

Two different annealing procedures were carried out, resulting to two different initial 

austenite volume fractions and stabilities. Heat treatment (A) included itercritical 

annealing at 890
 o
C for 60 s, to obtain a ferrite-austenite structure , cooling at 50K/s to 

400
 o

C and holding for 420 s to enable the isothermal transformation of austenite to 

bainite. Heat treatment (B) included intercritical annealing by holding at 890
 o
C for 60 

s, cooling at 50K/s to 460
 o

C and holding for 120 s. The heat treatment schedules are 

presented in Figure 37. 

 

 

Figure 37: Representation of heat treatment A and B for TRIP steel 700 [30] 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:13:51 EET - 137.108.70.7



66 

 

 

The carbon enrichment of austenite from bainite during bainitic transformation leads 

to the stabilization of the retained austenite. In addition, material (A) is more stable 

than material (B), because of the more efficient carbon partitioning from bainite to 

austenite, during isothermal holding at the bainite transformation temperature and 

therefore, carbon enrichment of retained austenite. The different austenite stability 

leads to different yield stresses for the two materials. 

 

3.9.3 Calculation of the carbon content of the retained austenite 

The values of the 
s

M
 temperature were measured through the experimental procedure 

(SS-TV-TT) as mentioned before. However, there is not any information concerning 

the carbon content of the retained austenite. Scope of this section is to observe the 

prediction of the 
s

M
 model concerning the carbon content of the retained austenite, 

after implementing the measured 
s

M
 temperature values of the two materials into the 

model. This information is very useful, because without any experimental procedure 

an estimation of the retained austenite carbon content can be made. In order to 

proceed to calculations it should be mentioned that the Mn content, which is needed in 

Equations (3.29)-(3.30) was taken equal to the initial Mn content of the TRIP 700 

steel under consideration.  

The properties of the TRIP steel 700 are shown in Table 6. 

 

Table 6: Tensile properties of TRIP 700 (A) and (B) materials 

TRIP 700 RA(%)   
  (oC)     (MPa) 

Α 11.2 -15 538 

Β 14.3 -5 482 

 

The results, which were given by Equations (3.29)-(3.30) about the C content of the 

retained austenite are presented in the Table 7. 

 

Table 7: Chemical composition (in mass%) of the retained austenite of Steel (A) 

and (B) for the linear and the 2/3 power low   
  model 

TRIP 700 Linear model 2/3 power law model 

Α 0.943 0.910 

Β 0.910 0.883 

 

From the results presented in Table 7 we can come to the following conclusions: 

 

 There is a strong chemical stabilization effect associated with C mainly 

enrichment of the austenite particles. A small increase in the carbon content of 

the retained austenite results to a significant drop of the 
s

M
  temperature. In 

this case the 
s

M
 temperature decreases by 10

o
C for an 3.62% and 3.05% 
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increase in the carbon content of the retained austenite according to linear and 

2/3 power law model respectively. As the austenite stability decreases the 
s

M
  

increases. 

 The discrepancy between the linear and the 2/3 power law 
s

M
 models is 

significant, when we have to choose the model, which we want to adopt to 

estimate the chemical composition of the carbon, because of the 

aforementioned stabilizing effect of the carbon.  

 Knowing the 
s

M
 temperature Equations (3.29) or (3.30) can be used to 

calculate the carbon partitioning in the retained austenite. 

 
s

M
 temperature defines an approximate boundary between the temperature 

regimes where separate modes of transformation dominate. 
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4 Evolution of the austenite grain size during the strain-induced 

transformation 

4.1 Introduction  

One of the key factors, which can influence metal sheet mechanical properties during 

material multi-step deformation process, is pre-strain. In this study it is investigated 

the influence of the strain factor in the transformation-induced plasticity of the steel. 

The plastic deformation accompanying the pre-strain tests leads to an increase in the 

number of nucleation sites. The nucleation site probability derives not only by the 

stress triaxiality, temperature and plastic strain, but also by pre-strain to simulate the 

transformation-induced plasticity characteristic for TRIP steel. As the strain increases 

the shear-band intersections increase and new more potent nucleation sites are 

created. The excellent mechanical properties of TRIP steels derive from the 

transformation of the retained austenite during plastic strain deformation, which 

deduces a localized increasing of the strain-hardening coefficient during deformation 

process of TRIP steels and delays the onset of necking and ultimately leads to a higher 

uniform and total elongation. Pre-strain tests were applied to clarify the deformation 

behavior of uniaxial tension of the TRIP steel in five different pre-strains. In each 

strain the pre-strain test was implemented twice in order to verify the credibility of the 

results delivered. As the strain increases the fraction of the retained austenite 

decreases. The main reason why this experiment took place was to show that the mean 

size of the retained austenite decreases as the strain increases. This rational 

assumption is concluded from the fact that the larger the grain size of the retained 

austenite is, the higher is the probability a nucleation site of great potency to be found. 

It has been experimentally observed in studies of fully austenitic alloys and 

multiphase TRIP steels that the resistance to martensitic transformation increases as 

the grain size of the austenite decreases (Leal and Guimaraes [58] and Jeong et al. 

[59]). Gonzáles et al.[60] studied the effect of austenite grain size on the strain-

induced α’- martensite transformation in AISI 304 steel. The transformation was 

found to be enhanced by large grain size. The grain size of the retained austenite to 

some extent can be controlled through a suitably chosen thermal processing route 

[61]. Consequently, in order to optimize the mechanical characteristics of TRIP steels, 

it is relevant to understand in detail the effect of the austenitic grain size on the onset 

and evolution of the martensitic transformation, which is the main objective of the 

present chapter. 

Various models have been proposed for transformation-induced plasticity but only a 

few of them address the issue of grain size effects. Adopting a geometrically linear 

framework, Reisner et al. [62] studied the transformation rate in a Cu–Fe and a low-

alloyed TRIP steel, although grain size effects were only included for the Cu–Fe 

alloy. They predicted that the number of alternating bands of martensitic twins 

increases with increasing grain size. Based on a modification of a model proposed by 

Olson and Cohen [43] and applying the Hall–Petch relation for the austenitic phase, 

Iwamoto and Tsuta [63] studied the influence of grain size on the mechanical 

response of an austenitic stainless steel. Their phenomenological model, which does 
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not explicitly take into account the crystallography of the transformation systems, 

predicts an increase in effective tensile strength for an increase in austenitic grain size. 

This result is ascribed to the formation of less martensite for smaller grain sizes. Also 

based on a modification of the Olson-Cohen model, Perlade et al. [64] proposed a 

one-dimensional constitutive formulation for low-alloyed TRIP steels. The effective 

strength resulting from stress-assisted and strain-induced transformations was found 

to be sensitive to the austenitic grain size. 

Through this experimental procedure it is interesting to note how the strain percentage 

influences the rate of the retained austenite grain size reduction. 

Following cold rolling the material was subjected to a specific heat treatment in order 

to produce the final microstructure. In this microstructure austenite is found in the 

form of dispersion. After the pre-strain experiment followed measurement of the 

fraction as well as of the size of the retained austenite. Through this procedure useful 

results regarding the impact of the size of the retained austenite in the martensitic 

transformation can be exported. The methods used to determine the size and the 

fraction of retained austenite after the pre-strain test are examined in this chapter. 

 

4.2 Material  

The steel under consideration in this study is the continually annealed TRIP 700 with 

initial volume fraction of retained austenite 15.8% and 1.5 mm thickness. This steel is 

widely used and belongs to the advanced high strength steels (AHSS). It presents high 

yield strength and consists of ferrite, bainite and metastable retained austenite. The 

strain hardening, which results from the TRIP phenomenon, is the reason why this 

material is widely used for critical structural body parts of automotive industry.  

The material under study was given to us by Voestalpine company. The chemical 

composition of the material is presented in the table below. 

 

Table 8: Chemical composition in (%) weight of the steel 

Material C Αl Mn Si P 

ΤRIP 700 0.202 1.07 1.99 0.348 0.009 

 

From this material twelve different specimens have been cut according to ASTM 

standards from a flat sheet at 0
o
degrees rolling direction. The tensile geometry is 

presented in Figure 38. Mechanical testing was carried out by means of uniaxial 

tensile tests towards the rolling direction at different deformations. The objectives of 

the tensile tests were to study the effect of the austenitic particle size on the kinetics of 

the transformation. 

The evaluation of transformation plasticity strain is a very difficult task, especially in 

the case of tensile loading. In the transformation plasticity test, a charge is applied to 

the specimen just before the beginning of the transformation. This charge is 

maintained constant during the transformation. 
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Figure 38: Tensile specimen geometry 

 

 

Extensometer 25 mm was used in the longitudinal direction of the specimens (Figure 

39).  

 

 
Figure 39: Demonstration of pre-strain test experiment 

 

The mechanical properties of the material were determined by uniaxial tensile tests 

and they are collated to the microstructure of the steel. Those tests were carried in 

order to analyze the transformation of retained austenite into martensite during 

deformation. The first two specimens were pre-strained till fracture and from the data 

exported from the tensile testing machine the following diagram of Figure 40 is 

presented. 
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Figure 40: Engineering stress-strain curve in TRIP 700 steel 

 

Table 9: Tensile properties of TRIP steel 700 

Material σy02 σuts εg εfailure 

TRIP 700 474 731 23.3 29.9 

 

Table 9 shows the tensile properties of TRIP steel 700. Pre-strain tests were 

performed twice at each strain at: 4, 8, 12, 18 and 22 % plastic strain.    

 

4.3 Optical microscopy and etching technique 

The optical microscopy was adopted as another method to investigate the 

microstructure and specifically the austenitic particle reduction during the 

deformation. From the tensile test specimens, samples parallel to the tensile axis were 

cut by the cutting machine. Digital micrographs were taken from each sample at 

arbitrary locations. Purpose of this procedure is the examination of the morphology of 

the steel and the average austenite particle size. 

From the microscopy various grain sizes were obtained but it was difficult to 

distinguish the austenitic matrix. Attempts have been made with Scanning Electron 

Microscopy to distinguish the austenitic from the marentisitic matrix. 

The metallographic preparation of TRIP steel specimens is performed in a standard 

fashion. In order to reveal the microstructure, an appropriate etchant is required which 

attacks various phases to different extent, producing a surface relief. After literature 

review and trials and errors it was found that better results are obtained by a two-stage 

etching using nital and 10% Na2S2O5 solution [65]. The ten different samples were 

grinded with 220, 500, 800, 1000 silicon carbide paper grade followed by polishing 

with 1 mm diamond past. Upon grinding and polishing, the specimens were etched 

with 3% nital (HNO3) for 5 seconds to reveal grain boundaries. The Nital etching is 

used for visualizing grain boundaries. This etchant is a 3 % solution of HNO3 in 
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ethanol. For the next step one minute etching 10% solution of Na2S2O5 

(sodiumbisulfide etching) is used to reveal separately martensite, austenite and 

carbide containing phases. In this step, in addition to height differentiation of phases, 

the hardened phases (bainite or martensite) are colored.  

These two etches reveal: 

• Ferrite: It appears brown(grain). 

• Bainite: Appears dark blue. 

• Austenite: The austenite stays white but the island boundaries are etched. 

• Martensite: It has the same color with austenite. 

 

 

 

 

 
Figure 41: Microstructure of TRIP 700 steel (a) in untransformed material 

(15.8% RA) (b) after 4% deformation (13.7% RA) (c) after 8% deformation 

(12.1% RA) (d) after 12% deformation (7.1% RA) 

Bainite Ferrite Austenite or 

Marteniste 
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Upon the selective etching produces, a light microscope with polarizing prism can be 

used as well. Figure 41 shows that different phases appear in different colors, which 

aids the identification of microstructure. 

 

4.4 Magnetic method and volume fraction results 

Determining the exact fraction of retained austenite is crucial in order to understand 

the impact not only of the retained austenite size on the kinetics of the transformation 

but also of the trend of  s
  temperature.  

The magnetic method was adopted for the determination of retained austenite. 

Magnetization measurements have intrinsic advantages compared to other methods 

because they are accurate and probe the bulk of the material. This procedure took 

place in Linz Austria by Voestalpine company using saturation magnetization 

measurements. This method is based on the basic principle that ferrite (α’-Fe) is 

ferromagnetic while austenite (γ-Fe) is paramagnetic. The difference in saturation 

magnetization of specimens with and without austenite is related to the volume 

fraction of non-ferromagnetic retained austenite. Ferrite, martensite and cementite are 

ferromagnetic at temperatures below the Curie temperature while the austenite is 

paramagnetic. At first the exact volume of each specimen was measured. This was 

important because the following measurements were carried out based on the volume 

of the specimen. A quantitative determination of the volume fraction of the existing 

phases and especially of the retained austenite is essential for the evaluation of the 

TRIP steel properties. The size of the specimens was 14 x 3.5mm. 

Before the measurement each specimen is inserted in a core of soft iron, where there 

is an inductive coil and a measuring coil. If the vacancy of the core and the 

permeability of the iron are large enough, we can assume that the magnetic lines, 

which come out from the edges of the specimen are entirely closed by the core. Thus, 

the magnetic field of the bar has the same value, assuming the coil and the bar had 

infinite length. 

The specimen is magnetized till corrosion and it is afterwards rapidly exported from 

the core. Meanwhile, the local maximum     of the voltage is measured and through 

this measurement the magnetic induction    can be calculated. The retained austenite 

is given by the following equation: 

 

Retained austenite     [%]                     (4.1) 

 

                                             (4.2) 

 

   is the saturation of the specimen without austenite and     is the saturation after 

the measurement. 

This method has the advantage of measuring the entire volume of the specimen. On 

the other hand the disadvantage is that there is no accurate method for the calculation 

of    without any error. That’s the reason why the absolute value of this measurement 
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hides an error, which while comparing the measurements does not create any 

problem. 

The volume fraction of the retained austenite, which was measured by the magnetic 

method as a function of the deformation is presented in Table 10. 

 

Table 10: Measurments of retained austenite (RA) prior and after pre-strain test 

Sample # Deformation 

 

Initial volume 

fraction (%)RA 

Volume 

fraction (%)RA 

after test 

 

% transformation of 

retained austenite 

1_1 4% 15.8 13.0 17.72 

1_2 4% 15.8 12.6 20.25 

1_3 8% 15.8 10.3 34.81 

1_4 8% 15.8 10.5 33.54 

1_5 12% 15.8 8.6 45.56 

1_6 12% 15.8 9.5 39.87 

1_7 18% 15.8 6.7 57.59 

1_8 18% 15.8 6.9 56.32 

1_9 22% 15.8 5.2 67.08 

1_10 22% 15.8 5.5 65.18 

 

The stabilizing effect of the size of the retained austenite in the martensitic 

transformation is evident. This can be deduced from Table 10. Strain-induced 

transformation is affected by the austenite particle size. At the beginning of the strain-

induced transformation at low strains the transformation rate is high whereas as the 

strain increases, the rate of the strain-induced transformation decreases. At higher 

strains the larger grains of austenite transform fully into martensite and as the 

transformation continues the more stable smaller austenitic particles suppress the 

kinetics of the transformation mechanism. 

 

4.5 Determination method of the fraction of retained austenite 

As it was mentioned again in previous chapter our model predicts that the austenite 

particle refinement has a strong stabilizing influence by retarding the strain-induced 

transformation kinetics. In order to validate this assumption ten pre-strained 

specimens (1_1-1_10) were sent in Cyprus University of Technology, in the 

Department of Mechanical Engineering where magnetic force microscopy (MFM) 

was implemented by Prof. G. Constantinides. The purpose of this research was to 

resolve the evolution of the morphological characteristics of the TRIP steel’s 

microstructure as a function of the applied stress/strain. Exploiting the magnetic 

characteristics of the ferrite and bainite phases in contrast to the paramagnetic nature 

of the retained austenite useful results were extracted. 

Magnetic force microscopy (MFM) has been in use ever since the principles of 

scanning probe microscopy have been presented. The feedback mechanism in this 

type of imaging is the magnetic interaction between a magnetic probe and magnetic 
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domains that might be present in a materials’ microstructure. This type of interaction 

can be exploited for imaging purposes in which ferromagnetic and paramagnetic 

domains can be separated with high spatial resolution ([66]-[68]).  

AC-MFM mode records the space distribution of the phase shift of a vibrating 

magnetic cantilever caused through the magnetic interaction with the surface. The 

nature of the interaction depends on the distance between the tip and the surface – one 

therefore needs to ensure that this is accounted, which in practice is taken into account 

by means of a ‘two-pass method’. In the first pass the topography of the specimen is 

determined in ‘semi-contact’ mode. During the second pass the cantilever raster-scans 

at a fixed (predetermined) distance from the sample surface and the magnetic 

interactions during this constant-height flight are determined. The tip-sample 

separation is kept at a distance of 50-100nm in order to eliminate any Van der Waals’ 

forces and probe only the long-range magnetic force. For every scan the height-image 

and the magnetic image are collected. 

In the AC MFM during second pass the cantilever resonance oscillations are used to 

detect the magnetic force data (just as in the non-contact or semicontact modes). In 

AC MFM the microscope detects the force derivative: the force gradient in the point 

dipole approximation can be written in the form: 

 

F' = n grad(n F), F = (m grad) H   (4.3) 

 

where n is unit vector normal to the cantilever plane. It is seen that AC MFM signal is 

proportional to the stray field second derivative. 

In this study MFM has been used to isolate the paramagnetic phases from the 

microstructure and quantify their size and volumetric proportions, as a function of the 

pre-stressing of the material. An Ntegra-Prima, NT-MDT instrument has been used. A 

silicon cantilever with magnetic cobalt-chromium coating (and additional anti-

corrosive layers) has been used in this study. 

 

4.6 Results extracted by the MFM 

Figure 42 presents a typical result of an AC-MFM image of TRIP steel. The 

deformation profile is shown in a 2-d (Figure 42(a)) and 3-d (Figure 42(c)) mode. It is 

evident that in the deformation mode only topographical characteristics are visible, 

which relate to the roughness resulted from the polishing procedure during the 

preparation of the specimens. It is impressive to see that the magnetic signal (2-d 

Figure 42(b), 3-d Figure 42(d)) reveals a completely new structure not evident in the 

deformation profile. This magnetic image is the result of the magnetic interaction 

between the magnetically coated silicon tip and the ferromagnetic phases that are 

present in the microstructure. Magnetic oscillations can be attributed to a series of 

factors including crystal orientation, crystal anisotropy, etc. Dark zones (close to zero-

interaction) can be interpreted as areas where paramagnetic phases are present. It 

should be noted however that the selection of the level below of which is interpreted 

as zero interaction is a rather arbitrary process. Once a threshold level is defined one 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:13:51 EET - 137.108.70.7



76 

 

can proceed with a grain analysis where the number of grains, mean grain size and 

volumetric proportions of the grains can be calculated. The image processing has been 

performed using the open source SPM software Gwyddion. 

 

 
Figure 42: Deflection (a,c) and Magnetic (b,d) image of a TRIP steel (ε=4%). 2-d 

(a,b) and 3-d (c,d) visualizations 

 

MFM images for all pre-strained TRIP specimens are shown in Figure 43 and the 

results of grain analysis are presented in Table 11. Dark zones in the MFM images are 

areas of low magnetic interactions whereas green and red areas correspond to 

ferromagnetic domains. The only paramagnetic phase in TRIP steels is the retained 

austenite; therefore the grain analysis gives access to retained austenite 

characteristics: volume fractions, mean RA size, number of RA grains. It is evident 

that as the deformation of the specimen increases the volume fraction of retained 

austenite decreases with an associated reduction in the mean grain size as it can be 

seen in Figure 44. 
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Figure 43: Deflection (a,c) and Magnetic (b,d) image of a TRIP steel (ε=4%). 2-d 

(a,b) and 3-d (c,d) visualizations 

 

Table 11: Results from image grains analysis using the threshold method 

Strain, 

ε [%] 

Volume Fraction of RA 

[%] 

Mean Grain Size 

[nm] 

0 15.8 340 

4 13.7 305 

8 12.1 135 

12 7.1 134 

18 3.3 116 

22 0.5 112 

 

 
Figure 44: Evolution of retained austenite volume fraction (a) and mean grain 

size (b) as a function of specimen deformation 

ε=4%, φα=13.7%

ε=22%, φα=0.5%

ε=8%, φα=12.1% ε=12%, φα=7.2%

ε=18%, φα=3.3%
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The volume fraction of the strain-induced martensite formed can be detected through 

the previous diagram.  It is reasonable to say that the austenitic particle size influences 

considerably the kinetics of the transformation, especially at low strains where as it 

can be seen from 0 to 4% deformation the transformation rate is quite rapid (almost 

20% transformed austenite) in comparison to further strain values. At the beginning of 

the transformation the larger austenitic particles, which are more likely to offer more 

potent nucleation sites transform and as the size of the mean austenitic particle size 

reduces so does the transformation rate. 

The model describing the kinetics of strain-induced transformation of dispersed 

austenite, which was presented in the previous chapter, was applied in the 

experimental data of Figure 44a. In Figure 45 Equation (3.14) has been fitted to the 

available experimental data and the martensite volume fraction is plotted against 

plastic strain.  

 

 
Figure 45: Variation of martensite volume fraction f with axial strain ε. 

Comparison of model and experimental data at 25
o
C for TRIP Steel 700 

 

The average austenite particle size was set equal to the initial mean radius (R=340 

nm) , which was measured at 0% deformation. The model predicts well the sigmoidal 

shape of the strain-induced transformation. The saturation level does not reach the 

value of 1.The pre-existing nucleation sites 
o

v
N


 and the maximum sites that can be 

produced by plastic deformation were found by the above non-linear curve fitting and 

are 3.031x10
17

m
-3

 and 5.88x10
18

m
-3

 respectively. The results of the fitting parameters 
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come in accordance with the fitting parameter values, which were presented in the 

previous chapter. 

 

4.7 Results  

The tensile tests have shown us that the stability of the austenite increases as the grain 

size decreases. Austenite stability influences the unaxial performance of the material. 

The rate of the transformation in strain-induced martensite in tensile straining depends 

on the austenitic grain size. The mean grain size from 340 nm at the untransformed 

TRIP steel decreased after the deformation to 112 nm at 22% deformation. 

Consequently, the effective strength is initially higher for smaller grains. In addition, 

the martensite transformation is partially suppressed as the grain size decreases. The 

transformation is more homogeneous for smaller grains and consequently, the 

effective transformation strain is larger. Apart from the austenitic grain size the 

austenitic grain orientation influences the transformation (whether it is favorable to 

the applied stress or not).  

At strains greater than 18 % the stabilizing effect of the particle size becomes more 

evident. The larger the particle size is the lower the strain needed to transform it. 

Large austenitic particle size favors the martensitic transformation at small applied 

plastic strains. An efficient way to produce a TRIP steel with great work-hardening is 

to produce a microstructure of finer distribution and small medium austenitic particle 

size.  

Mean austenite particle size affects both the stress-assisted and the strain-induced 

portion of the total martensitic transformation. During the early stages of deformation, 

mainly the larger grains deform, whereas smaller grains deform at later stages. The 

larger the mean austenite particle size is, the higher is the contribution, especially of 

the strain-induced portion on the transformation. This trend indicates that the size as 

well as the carbon concentration (important stabilizing factor) play an important role 

in the stress and strain partitioning between the phases and also between different 

austenite grains resulting on the kinetics of the martensitic transformation. 

 

 

 

 

 

 

 

 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:13:51 EET - 137.108.70.7



80 

 

5 Modeling of intercritical annealing 

5.1 Introduction 

Industrial processing of TRIP steels involves various stages of heat-treating, such as 

Intercritical Annealing and Bainitic Isothermal Treatment, in order to produce a 

dispersion of retained austenite particles and bainite in a ferritic matrix as mentioned 

again in Chapter 2. Retained austenite then transforms to martensite during forming 

processes undergone by the steel. In the present chapter a coupled thermodynamic / 

kinetic calculation of austenite formation during intercritical annealing of low-alloy 

TRIP steels is presented. Two low-alloy TRIP steels were investigated. The first of 

them represents a typical composition of the low-alloy TRIP steels, while the other 

one contains aluminum as alloying element.  

After cold rolling the steels undergo a two-step heat treatment shown in Figure 46, 

consisting of intercritical annealing followed by isothermal annealing at a lower 

temperature, to stabilize the retained austenite via the bainitic transformation. Much 

attention has been paid to the second step, i.e. isothermal annealing, since it was 

realized that bainite transformation temperature and annealing time affect the amount 

and stability of retained austenite [69]. 

 

 

 
Figure 46: Schematic representation of the two stage heat treatment typically 

applied in TRIP steels [69] 

 

The first step has received much less attention and in most investigations intercritical 

annealing is performed at a temperature necessary to produce 50% ferrite and 50% 

austenite. Usually this temperature is established either experimentally or directly read 

off the Fe-C phase diagram. It is very important, however, to consider phase 

transformations which occur upon heating, because the microstructural state after 

intercritical annealing, i.e. volume fraction, chemical composition and homogeneity of 

austenite, has a great influence on the kinetics of bainite transformation during the 
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isothermal annealing step and, thus, on the stability of retained austenite, resulting on 

the kinetics of the martensitic transformation. 

In recent years, computational alloy thermodynamics and kinetics have enabled the 

simulation of the microstructural evolution during heat treatment under either 

isothermal or continuous heating conditions. Numerical models have been developed 

for the solution of the diffusion equations, which enable the prediction of austenite 

formation during heating of hypoeutectoid steels. In the present chapter, simulation of 

intercritical annealing is presented. The simulation was performed with the use of 

Dictra computational kinetics software, which employs a procedure for the numerical 

solution of the coupled diffusion equations involved, as well as mobility databases for 

the retrieval of the appropriate kinetic data. Simulation results, regarding the amount 

and composition of austenite, the rate of transformation and the effect of annealing 

temperature, are presented and discussed. It is concluded that the simulation can assist 

the design of the intercritical annealing in these steels. 

 

5.2 The model 

The starting microstructure of low-alloy TRIP steels consists of proeutectoid ferrite 

and pearlite. It is well established that austenite (γ) formation during heating of 

ferrite/pearlite microstructures proceeds in two steps. The first step is relatively rapid 

and involves the formation of high-C γ from pearlite. The second step is substantially 

slower and involves the growth of γ in expense of proeutectoid ferrite (α). Therefore, 

in the model employed here, the assumption was that pearlite transformation to 

austenite is completed in a negligible amount of time. The conditions at the end of the 

first step (i.e. volume fractions and compositions of phases) were considered as initial 

conditions for the second step. Consequently, the system was considered to initially 

consist of a high-C γ region (formed of pearlite) with width L


, and a proeutectoid α 

region with width L
 , Figure 47.  

 

 

 
Figure 47: Geometrical model for austenite formation during intercritical 

annealing 
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The model is one-dimensional and a planar geometry is assumed. Thus, the initial 

widths of the two regions L


 and L
  , can be directly related to the moles of the two 

phases, n

 and n

 , calculated at a temperature 
s

T  , which corresponds to the 

temperature where all pearlite has been dissolved and only γ  and proeutectoid α 

remain in the system : 

 

 
n L

n L

 

 

    (5.1) 

 

The moles n

 and n

  are calculated with the aid of computational alloy 

thermodynamics software Thermo-Calc [53] at 
s

T , and consequently since L
  is 

known (proeutectoid ferrite grain-size measurement), then L


 can be calculated by 

equation (5.1).  

Under these conditions simulation of γ formation within the intercritical range (α+γ) 

can be performed by solving the coupled diffusion equations in the two phases 

involved. The evolution of concentration profiles of species k, as a function of time in 

each phase i,  ,
i

k
c x t   

is described by Fick’s second law: 

 
i i

ik k

k

c c
D

t x x

  
  

   

  (5.2) 

 

where i

k
c  is the concentration and i

k
D  the diffusion coefficient of species k (C, Mn, Si 

or Al) in phase i (γ or α). The flux of atoms in a multicomponent system with n 

components is given by Onsager’s extension of Fick’s first law: 

 

 
1

n
j

k jk

j

c
J D

x



 




 


   (5.3) 

 

in the austenite-γ region and 

 

 
1

an
ja a

k jk

j

c
J D

x


 


   (5.4) 

 

in the ferrite-α region. Onsager’s law accounts for the diffusive flux of a species k, 

triggered by the existence of a concentration gradient of another species. 

Calculation of the γ/α interface velocity, v, is achieved by applying a mass balance to 

the interface, which is given by the following equation: 

 

  / /

/ /

a k k

k k k k

c c
v c c D D

x x

 

      

   

    
     

    

 (5.5) 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:13:51 EET - 137.108.70.7



83 

 

In equation (5.5), v denotes the velocity of the interface, while 
k

D
  and 

k
D

  are the 

diffusion coefficients of species k in the two phases. The diffusion coefficients are 

temperature and concentration dependent and are calculated using the kinetic data 

available in Dictra, mob2. /

k
c

    and /

k
c

    are the concentration of k at the γ and α sides 

of the interface, respectively. These concentrations are calculated by Thermo-Calc 

using the SSOL2 database, under the assumption that the phases are in local 

thermodynamic equilibrium at the interface. 

The system is considered not to exchange matter with the surroundings, resulting in 

the following boundary conditions: 

 

 
0

0
k

x

c

x






  (5.6) 

 

         0

a

k

x L L

c

x
 





  (5.7) 

 

Finally, the initial conditions express the concentration of solute atoms in γ and α at 

the starting temperature
s

T , and are given by the following equations: 

 

    , 0 ,     0 x L
k k s

c x c T
 


     (5.8) 

 

    , 0 ,     L x L L
k k s

c x c T
 

  
      (5.9) 

 

The initial concentrations  k s
c T
  and  k s

c T
  are calculated by Thermo-Calc, as 

mentioned earlier. The resulting 1-D moving-boundary diffusion problem can be 

solved by a numerical method for the solution of coupled diffusion equations 

developed by Ågren [70], which is incorporated in the Dictra computational kinetics 

software.  

Additionally, regarding the annealing temperature T
 , it was considered steady and a 

little greater than the temperature where all pearlite has been dissolved s
T . 

 

5.3 Results and discussion 

Conventional TRIP steel compositions are usually based on the original 0.12–0.55 wt. 

% C 0.2–2.5 wt. % Mn 0.4–1.8 wt. % Si concept proposed by Matsumura et al [71]. 

The C content plays a key role in the composition. The typical Mn content in low- 

alloy TRIP steel is ~1.5% Mn, which is required to achieve hardenability. Mn, being 

an austenite stabilizer, lowers the temperature at which the cementite starts to 

precipitate. Mn also lowers the activity coefficient of C in ferrite and austenite and 

increases the C solubility in ferrite [72]. Si significantly increases the C activity 

coefficient in both ferrite and austenite and reduces the C solubility in ferrite. Si also 
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increases the temperature at which the cementite starts to precipitate in ferrite at a 

given aging time and inhibits the formation of cementite during the austempering 

stage. This is usually explained by the fact that Si has an extremely low solubility in 

cementite. 

The evolution away from the conventional CMnSi composition is mainly driven by 

the requirement for continuous galvanizing of AHSS sheet steel for automotive 

applications: the high Si content results in film-forming surface oxides which prevent 

the formation of the inhibition layer during hot dip galvanizing [73]. This prevents the 

wetting of the sheet by the liquid Zn. CMnAl TRIP steels have also received much 

attention. Aluminum is known to have similar effects on the TRIP behavior as silicon, 

but giving a better finishing surface at the end of the cold rolling and more 

importantly accelerating the bainite formation [74]. The disadvantages of the use of 

Al are the lower solid solution hardening [75] and the fact that Al increases the Ms 

temperature considerably [73], i.e. Al destabilizes the austenite and moves the start 

temperature and the Ms –Mf range partly above room temperature. 

Simulations of intercritical annealing were performed for the two different low-alloy 

TRIP steels shown in Table 12. Steel 1 has a typical low-alloy TRIP steel composition 

containing carbon, manganese and silicon as the major alloying elements. Steel 2 

differs from the classical low-alloy TRIP composition as it contains aluminum in the 

place of silicon. 

 

Table 12: Chemical composition (in mass %) of TRIP steels employed in 

simulations 

Material C Mn Si Al 
Steel 1 0.2 1.5 1.49 - 

Steel 2 0.216 1.65 - 1.25 

 

The initial intercritical austenite contains more C than the equilibrium C content of 

austenite in the intercritical range. The C reaches equilibrium partitioning between the 

ferrite and the austenite even for relatively short annealing times. The early stages of 

intercritical austenite formation are controlled by C diffusion, which is followed by 

the much slower process of Mn and Si diffusion. In industrial continuous annealing 

lines and in galvanizing lines, the partitioning of the substitutional elements Mn, Si, 

Al will never reach the equilibrium as the homogenization of the austenite and ferrite 

is controlled by sluggish substitutional diffusion processes. Figure 48 depicts 

concentration profiles for C, Mn, Si, Al in steel 1 and steel 2 across the austenite-

ferrite phase boundary during intercritical annealing after 10s, 50s, 90s.  
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Figure 48: Concentration profiles for (a) C (c) Mn (e) Si in steel 1 , (b) C (d) Mn 

and (f) Al in steel 2 across the austenite-ferrite phase boundary during 

intercritical annealing after 10s, 50s, 90s at 817 
o
C. The arrow indicates the 

direction of movement of the phase boundary during intercritical annealing. 

Whereas the C is expected to reach equilibrium composition, the substitutional 

solutes are not 

 

The volume fraction of austenite during intercritical annealing depends on the 

annealing temperature, the residence time at this temperature and the chemical 

composition of the steel. As it can be seen in Figure 49 which depicts the variation of 

volume fraction austenite with time for steel 1 and steel 2, annealed at 777
 o

C, 797
 o

C 

and 817
 o

C, the volume fraction increases with increasing intercritical annealing 

temperature. According to literature for the Al-TRIP steel, the volume fraction of 

retained austenite increases with increasing intercritical annealing temperature. 

However, for the Si-TRIP steel, the amount of retained austenite - i.e., 

nontransformed austenite - increases and then decreases with increased annealing 

temperature. At high temperatures, higher amounts of the initial austenite phase lead 

to greater nucleation of bainite at the isothermal holding temperature. Thus, at 

annealing temperatures near Ac3 (temperature at which ferrite completes its 

transformation into austenite), it is expected that the amount of retained austenite is 

reduced. Conversely, at relatively low temperatures near Ac1 (temperature at which 

austenite begins to form), the volume fraction of the retained austenite decreases due 

to the lower amount of austenite present at this temperature [76]. The optimum 

temperature for intercritical annealing has been reported by Chung [77] as: 

 1 3
20

2

oc c
A A

C


   (5.10)  
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Figure 49: Austenite volume fraction as a function of annealing time for (a) steel 

1and (b) steel 2 at 1050K (777 
o
C), 1070K ( 797 

o
C) and 1090K (817 

o
C) 

 

 

Kinetics simulation offers a possibility to study the rate of transformation. This can be 

done by examining the velocity of the γ/α interface with respect to time. Figure 50 

presents a typical diagram of v as a function of time, for steel 1 and steel 2 annealed at 

817
 o

C. It can be seen that the interface velocity decreases rapidly since the annealing 

temperature is steady and according to literature interface velocity reaches a 

maximum value and when temperature stabilizes it decreases. This happens, because 

the driving force decreases as the transformation proceeds. Moreover, the velocity in 

steel 1 is much greater than the one in steel 2 which justifies the greater volume 

fraction of austenite as it can be seen in Figure 51 which depicts the variation of 

volume fraction austenite with time for steel 1 and steel 2, annealed at 817
 o

C. Figure 

52 depicts the position of interface as a function of annealing time for steel 1and steel 

2 at 817
 o
C. 
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Figure 50: Interface velocity as function of annealing  

time for steel 1and steel 2 at 817
o
C 

 

 

 

 

 
Figure 51: Austenite volume fraction as a function of annealing  

time for steel 1and steel 2 at 817
o
C 
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Figure 52: Position of interface as a function of annealing  

time for (a) steel 1and (b) steel 2 at 817
o
C 

 

 

Another interesting result of the kinetics simulation is the concentration profile 

diagrams, which show the redistribution of the alloying elements during the 

transformation. Figure 53a shows the concentration profile diagrams for C in steel 1 

and in steel 2 annealed at 817
 o

C for 90s, while Figure 53b shows the corresponding 

diagrams for Mn. It can be seen that in steel 2 the formed austenite is more enriched 

in carbon and manganese, resulting in enhanced austenite stability. This can lead to 

more stable retained austenite at the final microstructure, i.e. after the isothermal 

bainite transformation step. 
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Figure 53: Concentration profiles for (a) C and (b) Mn mass contents in % in 

steel 1and steel 2, after annealing at 817
o
C for 90s 

 

 

5.4 Conclusions 

 

Computational kinetics modeling of austenite formation, during intercritical annealing 

of TRIP steels, leads to the following concluding remarks: 

 

 The initial intercritical austenite contains more C than the equilibrium C 

content of austenite in the intercritical range due to the pearlite dissolution. 

 The volume fraction of austenite during intercritical annealing depends on the 

annealing temperature, the residence time at this temperature and the chemical 

composition of the steel. The volume fraction increases with increasing 

intercritical annealing temperature and time and is greater for CMnSi TRIP 

steels 

 Interface velocity decreases rapidly when temperature stabilizes. Moreover, the 

velocity is controlled by the component with the slower diffusion rate.  

 In CMnAl TRIP steels the formed austenite is more enriched in carbon and 

manganese, resulting in enhanced austenite stability. This can lead to more 

stable retained austenite at the final microstructure, i.e. after the isothermal 

bainite transformation step. 

 Computational kinetics modeling of austenite formation can be used as a 

powerful tool, for a more accurate design of the intercritical annealing 

treatment, during the processing of TRIP steels. 
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6 Conclusions and Suggestions for future work 

6.1 Conclusions 

A model that describes the kinetics of the evolution of martensite volume fraction 

during the strain-induced transformation of dispersed austenite in low-alloy TRIP 

steels has been developed.  It is worthy of note that whereas all traditional mechanical 

constitutive equations do not have a “length scale”, the present model introduces 

though p
v  an intrinsic “material length”, which is the austenite particle size that can 

be defined as 1/ 3

p
L v  or 

1/ 3
3

4

p
v

R


 
  
 

. Aim of the work presented is to distinguish the 

individual effect of each one of the factors influencing the austenite stability. The 

model has been fitted to available experimental data regarding the evolution of 

martensite as a function of plastic strain for several steels containing austenitic 

dispersions. Uniaxial tensile tests were carried out and specific experimental 

procedures were adopted in order to investigate the evolution of mean austenite 

particle size during deformation. Finally simulation of the intercritical annealing of 

low-alloy TRIP steels has been carried out.  

The experimental techniques and the simulations, which were utilized in the present 

study, enabled us to obtain a more representative picture of the strain-induced 

transformation kinetics. The results deducted from the present work are presented 

below: 

 

 Several factors influence the austenite stability. Besides temperature, the 

chemical content and the size of the retained austenite are strong stabilizing 

factors. The chemical driving force ΔGch is a function of chemical composition 

and temperature. Especially carbon content has a very strong stabilizing impact. 

In addition, the transformation fraction increases with decreasing temperature 

due to the increase of the chemical driving force
ch

G . Stress triaxiality 

influences the transformation kinetics through the interaction with the 

transformation dilatation. It is important to note that the model predicts that the 

effect of stress triaxiality changes with the average austenite particle size. The 

effect of stress triaxiality according to the model is not as strong as the particle 

size effect. However, the stress state applied could become important in 

austenitic dispersions with high chemical stability. 

 

 As mentioned, austenite particle refinement has a strong stabilizing influence 

by retarding the strain-induced transformation kinetics according to the model. 

The experimental results concerning the evolution of the mean austenite 

particle size during deformation indicate that with increasing plastic strain the 

martenstitic transformation rate initially increases. As the transformation 

continues the transformation rate /df d   becomes fairly constant and then at 

higher plastic strains the rate decreases. These results are in agreement with the 

results obtained by MFM measurements concerning the evolution of the mean 
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austenite particle size during deformation. The austenitic particles transform 

progressively. The mean austenitic grain size decreases with increasing plastic 

strain. At high strain rates the mean austenitic grain size reaches a quite 

constant value. The stabilizing impact of austenite particle size refinement is 

evident. Heat treatment, which leads to thinner austenite particle refinement in 

the final microstructure, enhances the stability of the retained austenite and 

therefore increases the strength of the steel.  

 

 The transformation rate /df d   and the saturation level of the steels examined 

follow the stability of the retained austenite according to the model describing 

strain-induced transformation kinetics. The same holds for the stress-assisted 

portion of the transformation
SA

f . The lower the stability of the retained 

austenite, the higher is the contribution of stress-assisted transformation relative 

to the strain-induced transformation. This is a very important result which 

indicates that in order to take advantage of the TRIP phenomenon, the design of 

the heat treatment should lead to optimal stability of the retained austenite.  

Austenite should transform progressively during deformation. 

 

 The model predicts well the sigmoidal shape of the strain-induced 

transformation in all of the cases examined in the present work.  

 

 The  s
  temperature can be used to characterize the stability of the retained 

austenite. The  s
  model presented in this thesis can be used as an approximate 

way to predict the carbon content of the retained austenite, given the fact that 

the  s
  temperature is known.  

 

 Computational kinetics modeling of austenite formation, during intercritical 

annealing of TRIP steels have proved that the volume fraction of austenite 

depends on the annealing temperature, the residence time at this temperature 

and the initial chemical composition of the steel. With an increase in the 

intercritical annealing temperature and residence time, the volume fraction of 

the formed austenite increases. The initial intercritical austenite contains more 

C than the equilibrium C content of austenite in the intercritical range due to 

the pearlite dissolution. 

 

The kinetic model described in this thesis can be used for the development of a 

constitutive model describing the three dimensional mechanical behavior of TRIP 

steels containing austenite dispersions. This model could be used for the 

microstructural design of low-alloy TRIP steels in order to achieve the desired 

mechanical behavior. 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:13:51 EET - 137.108.70.7



93 

 

6.2 Suggestions for further work 

Based on the work presented in this thesis there are several other aspects, which could 

be object of future research: 

 The model describing the kinetics of evolution of martensite volume fraction 

during strain-induced transformation, which has been described in the present 

work, considers stable mean particle size p
v  during the transformation. 

However, as the transformation proceeds the mean austenite particle size 

decreases. The mean austenite particle size is a function of plastic strain. An 

equation describing the evolution of the mean austenite particle size as a 

function of plastic strain could be developed. The implementation of this 

equation on the available model should not however change the sigmoidal 

shape of the curve describing the strain-induced transformation. 

 

 The aforementioned constitutive model could be used in connection with the 

finite element method to predict, not only the tensile behavior, but the more 

complex stress states encountered in forming operations as well. 

 

 Several other parameters influencing austenite stability could be taken into 

account by the model.  

 

 Measurement of the C and the Mn content in the retained austenite with the 

implementation of electron microscopy.  

 

 Further investigation of the intercritical annealing with the use of DICTRA 

computational software combined with experiments, in order to define the heat 

treatment, which leads to the optimal stability of the retained austenite. 
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