View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Thessaly Institutional Repository

MANEMIZTHMIO OE22AAIA2
NMOAYTEXNIKH 2XOAH
TMHMA MHXANIKQN H/Y,
THAEMIKOINQNIQN KAI AIKTYQN

AvaAuon kot Avamtuén AAyopiOuwv yla tn BeAtiotomnoinon
Wndlakwv KukAwpdatwv oe Opoug Taxvutntac & Katavalwong
loxuocg

Analysis and Development of Digital Circuits Optimization
Algorithms in Terms of Speed and Power Dissipation

Metamtuylokn Alatplpn

Xpnotocg N. KaAovakng Anpoc M. Ntoudng

EruBAénovtec KaOnyntég :

ItapoUANG MewpyLog
Evpopdomouvrog NEotwp
Mrmolavng Mavaywwtng

BoAog, louviog 2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

https://core.ac.uk/display/132825198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

MANEMIZTHMIO OE2ZANIAZ
MOAYTEXNIKH 2XOAH
TMHMA MHXANIKQN H/Y,
THAEMIKOINQNIQN KAI AIKTYQN

AvaAuon ko Avamntuén AAyoplBuwv ylo tn BeAtiotomnoinon
Wndlakwv KukAwpdatwv oe Opoug Taxvutntac & Katavalwong
loxuocg

Metarmtuxlakn Atotplpn

Xpnotoc N. KaAovakng AApoc M. Ntoudng
EmBAEmoOvVTEG :
ITopoUANG MNewpyLog
Evpopdomouvrog NEotwp

Mrmolavnc Mavaywwtng

EvkplOnke amo tnv tpLHeAn e€eTaoTIKN emttporn tnv 4n louviouv 2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

AutAwpatikn Epyaoia yia tTnv amoktnon tov MEeTamtuylakoU AUTAWHOTOS Tou
Mnxavikou HAektpovikwv YmoAoylotwy, TnAsmikowwviwy Kal ALKTUwV Tou
MNavemotnuiov Oeocoaiiag, ota mAaiowa tou Mpoypdppato¢ lMpomtuyxlakwy
Inoudwv tou Tunuatog Mnxavikwy H/Y, TnAETKOWWVIWY Kal ALKTUWV Tou
Mavemniotnuiov Oscoaliog.

Xpriotog N. KaAovakng Anpog M. Ntoudng

AutAwpatovyol Mnxavikot HAEKTpoviKwY YIToAoyLlotwy, TNAETLKOWVWVLWY KoL

AwtOwv MNaveniotnuiov Oscoaliog

Copyright © Kalonakis Christos, Ntioudis Dimos, 2015
Me emipuAagn mavtog dSikatwpatog. All rights reserved.

Anayopevetal n avilypadr), anmobnkeuaon kat Slavopr) Tng napovoog epyaciag, €€
OAOKANPOU] TUAMATOG QUTNC, VLA EUTIOPLKO OKOTO. EMITpEMEeTAL N avatumwon,
armoBnkevon Kot Slavoun ylwo OKOMO Hn KEPOOOKOTIKO, EKMALOEUTIKAG N
EPELVNTIKAG PpUONG, UTTO TNV TPOoUTOBeoN va avadEpetal n Ny MPoEAELONG Kal
va dlatnpeital to moapov pnRvupa. Epwtipata mou adopouv tn XPAon tng
epyaciag yla KepOOOKOTIKO OKOTO TPETMEL va ameubuvovtal TPo¢ TOou(g
ouyypoadeic.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

To our friends and families

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Euxaplotieg

Me tnv mepdtwaon tng napoloog epyaociog, Ba BEAape va euxoplotiooupe Bepud Toug emBAEMOVTEG
™G SMAWUATIKAG gpyaciag yla TNV epmotoolvn Tou emédel€av oTo MPOCWNO MG, TNV APLOTN
ouvepyaoia, TNV cuvexn kabodrynaon Kot TI¢ oucLwdeLg uTtodeitelg kol mapepBaceLg, mou SleukOAuvay
TNV EKMOVNON TNG LETAMTUXLOKAG auTtnG Statplpng. Emiong, Ba BéAapue va euxaplotriicoupe Ttoug diloug
KoL ouvepyadtec tou Epyaoctnpiou E5 ylwa tnv umootnplén kat tnv Snuloupyia evog €uxdploTou Kot
Snuloupytkol KAIpATOC, ylol TIG €UOTOXEC UTOSElEELC TOUG Kol TNV ouvexy otnplen toucg. TEAog,
odelhoupe €va HeYANO €UXOPLOTW OTLG OLKOYEVELEC HOG KOL OTOUG PIAOUG HAG yla TNV OUEPLOTN
UTTOOTAPLEN KOl TNV aVEKTIUNTN BonBela mou pag mapeiyav téoo Kotd TNV SLEPKELA TWV CTIOUSWV Hag
000 KOl KATA TNV EKMOVNON TNG LETAMTUXLAKAG QUTAG SLatpLPAc.

KaAovakng Xpnotog,
NTloudng Arpog
BoMog, 2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Contents

LIST OF FIGURES......uuuuuttttiiiiiiiiinneeeiinisissssneesissssssssssssesssssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssessssssssssssnnses \"J
I IO T o 172 2 8 RN Vil
LIST OF ALGORITHIMS....ccciiiiiiiiinneetiiiiisssnnesesiisssnsans X
LIST OF ACRONYIVIScuveiiiiiiiiiinsnnneeiiissssssssssesssnnsssssssssssns Xl
ABSTRACT ...iiiiiiinnrettiieiiissssneeettsssessesssssssssssnsssssssss Xiv
TIEPIAHWHccoiiiiiiinnieiiiieiineneeessinsssssssnssnsssssssssssssssnsesssssssnss XVI
INTRODUCGTION ...iiunereriiiiiissnneeesissnsans 1
1.0 PROBLEM DESCRIPTION ..uvteiuteeeuteesureessessseeasessseessessssessssesssesansessnsessnsessnssssnsessnssssnsessnsesensessssssensesensesansesensessnsessnss 1
1.2 RELATED WORK ON TRANSISTOR SIZING ...etteeeeeeiiuuurteeeeessaauurttteeeesasauusteeeeessasaanseeeeeeeaesaaassseaaeeessaannseaeeeessasaunseeeeaeesanan 2
L3 DESIGN FLOW ... eetttttee e e ettt et ettt et et e ettt et e e e e e e aab e et e e e e e e aab et e e eee e e anbee et e e e e e s nbeeeeeeeeesaansnsbeeeeeesasnnbbeeeaeesanann 2
CELL-RESIZING METHODS.......cittiiiiiiniiiieniiiieniiiiensiiiiesiiiiessosttsssistssssisssssssssssssssssssssssssnssssssnsssssssssssssnsssssansssssansass 5
2.0 LOGICAL EFFORT ..uutteeuteeiuteesiteesteesiteesateestteesuteesuteesubeessteesaseessteesateesateesaseeateesase e st e esaeeeabae e steeabeeesbeenbaeeseesbeeenseennn 5
2.1 T INEFOAUCTION ..ttt sttt s e st e st e st e st e e s bt e s ateesabeesateesabaesasaesseasaseesbeenasesnns 5
D B 0 =1 [0 VN T B B o Yo [Tol C Lo 3SR 5
D BB/ (V1L 3o [[0 Moo | ol AV L= e ¢SS 7
2.2 UNIFIED LOGICAL EFFORT.c.tttiutttetteeitte ettt estteestteestee st e e stteesbteesateebbeesbte e bteesate e bt e esseeeasteesaseebeeesaseebbeesabeensteenaseennens 11

2.2.1 Introduction
2.2.2 Delay Model Of LOGIC GALES With WISueeeeieeeeeeieeeee ettt eet ettt e e e e ettt aaaeeesssassaaaaeeessssnnnens 11
2.2.3 Delay Minimization using Unified LOGICQI EffOrtuuueeieeeeeeieeeeee ettt eeeseeteee e e et ccateaaaaeesesannens 13
2.2.4 ULE Optimization in PAths With BIOANCRESccoccuuueeeeieeeeeeiieeee e e eeecteeaa e e e e e tettaa e e e e e e e ssssasaaaaeeessasenees 14
2.2.5 CONCIUSION ..ottt ettt ettt s e st e e e e at e st eesate e s ate e ateesataesateasataenateesasaenaseenasaenaseas 17
SOFTWARE ARCHITECTUREcoiiitiiutretiiniiisnsnnenesisssssssssssessnsssssssss 19
3.1 INTRODUCTION .etutteeuteeettesueesteeesseessseeesseesseeesseessaeenseessseeenseessseeesseeesseeessseenseeenssesssseesnseeseeesssesnseeesnsesssseessesnsens 19
BL2 FILE FORMATS «.etteutteetteetteeitteetteestte s bt e e bt e s bt e s bt e s bte e st e e bt e e st e e bt e e bt e e abaeesaeeeabeeesbeeabeeesabeebeeenabeebaeesnbeensteenaseennees 20
I I 411V L AR /=141 oo I 0 RS 20
3.2.2 Input Standard Parasitic EXChANGE FOIrMAL (.SPEf).......uueoeueeeeeeeeeeeeee ettt e e srea e e 24
3.2.3INPUL LIDEILY (1ID) ..ottt et e e ettt e e et e e ettt e e e et seattaa e e e tesaeesasaseeeasraeennenaan 29
3.2.8 OULPUL FIlES (LV .SCI) ettt ettt e et e ettt e e et e e et e e e et e s e e aaaaaeeeatesaeestsaseeesssasenassnaan 34
3.3 INTERNAL REPRESENTATIONuuiiitittteeeeaautttteeeesaaauteeteeeeeesaasaeeeeeeeesaaaunseeeeeaesaaasnseeeeeeeaeaaunseeaeeeesesaunbebaeeeeeesansnnneaeens 35
3.4 LOGICAL EFFORT PARAMETERS. ... utteeutteetteeseeeteessseesssteesseessseeesstessesesseesssseesssessssenssesssssesssesnsesesssessseeessesssseesssesnsees 37
3.4.1 Logical effort parAmeEter @XtIACLIONc..eeeeeeueeseeceeeeeeceeeeestte e et e e es e e e estteaessseaesssesasesssesesssseasesseeeas 37
RV T [= (=1 PRSPPI 40
3.5 TIMING ANALYSIS c.tteeuteeetteeteeetteesseessbeeesseeebaeesseessteesseeebeeesteesseeeseeesseeesaseeabeeasbeeaseeasaseeseeenaseensteesaseesteesaseenses 41
GBI A (1 g oo [V o1 [OO PRSPPI 41
3.5.2 StALIC TiMUNG ANGIYSIS ...t e ettt e e e e e e ettt e e e e e e e e st saaaeeeestsssaaaaaeeeassssaseaaaeeassssenens 42
3.5.3 Functions of delay ANd SIEW fOI COIIS ...ttt e ettt a e e e e ettt e e e e e e s asenees 44
3.5.4 Functions of delay and SIEW fOr INtEICONNECTuuueeeieeeeeeieeeee e eeeeecette e e ettt e e e e e sttt aaaeeesesannens 49
NN e 14 0 o (=1 [+ | USSP 53
3.5.6 Static Timing Analysis IMPIEMENTATLION............cc.eeeeeeeeeeeeeeeeeeie e e ettt e e ettt e e eee e es e e e s staeaessseaeesneees 54
3.5.7 CritiCQl PATR @XEIACTION.cccceveeeeeee e et e ettt e etee e et e e ettt e e et e e ettt e e e asteaessssaeeassesasesseaesasseassssnenean 56

iv

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

3.5.8 OPLIMUZATIONS c.cceveeeeeeeeieeeeiiiiiieieeeeteeeeeeeeeeeteaeeeaeaeaeaeae st aea s seaesesesese s e sesesesesesesesesesese s e sesesesesenesenesesesennsenesennnens 57

3.6 RESIZING ALGORITHM ..vvveviieeieeiirreeeeeeeeasissseeeeeseeensssssesesesssasssssesseessesssssessesssensssssssesessemsssssssssessemmssssssessessmnssssseeees 66
N A [T e e [V [1o o EO OSSR 66
R A o 14 o W =] o] o Yol =X [L USSR 68
3.6.3 Terminal NOAES RE-EVAIUGLIONeueeueeeeeeeeeeeeeeieeeieieieieieieieteeeeeeessesesesesesssens 69
3.6.4 S5eqUeNtiQl CeIIS RANGIING...........cc.c...uueeeeeieeeeeeeee ettt e e e e ettt e e e e e ettt e e e e e eeesssssaseaaaeeessssenees 70
3.6.5 AlGOItRM OVEIVIEW ...ttt e e e e ettt e e e e e e ettt s e e e e eaastsasaaaeeeassssasaaaaeeessssenens 72

RESULTS ... ctteeueieeeeetteeennsseeeeeeeeenssssssseeesessnsssssssssssssnsssssssssessssnsssssssssssessssssssssssssssnnsssssssssssssnssssssssssssnnnsnssssssssesnnnnnes 76
[SCAS BENCHIMARKS. ... vvvvvereeeeteeiurrereeeeeeessssereeeeeeasissssseeeeesssatsssesseesssssssssssssessassssssesssessenssssssseessenssssssseessemssssssseeseennns 76
LARGER BENCHIMARKS. .1 vvvteeeeeeeeiuutrereeeseeaisssereeeeeeasisssesessseesmsssssesssesssssssssssssesssmsssssesssessensssssssesssemssssssssesssemmssssesseesennnns 77

CONCLUSION & FUTURE WORKcctttteuunieieeeereennsseeeeeeeeessssssssssessnsssssssssssssnsnssnssses 78

BIBLIOGRAPHYccetteeeueiieeeereeeenneeeeeeeeeeesssssesesesessssssssssssessesnnssssssssssessnnnnes 80

AP PENDIX A .cicieiiiiiieitirettetretreteettastestastrsssastasessssastassasssassassssssassassssssassassssssassassssssassassssssassassssssassnsssnssassnnes 84

(@00 N TR T = PNE 84

EXTRA SUPPORTED VERILOG FILES ...ciiieiiieieie ettt ettt ettt ettt ettt ettt e e e e e e e e e e s e aeeeeeeeeeaeaeaaanas 87
EXPLICIE VEISION ...ttt e ettt e e e e e et e e e e e e ettt e e e e e e e e e atssseaaaeeeaatsssasaaaesaasasssanaaaesaassssssnens 87
LT[Tol =3 Y Lo USRS 88
INSEANTIATEA MOGUIC......ooccooeeeeeee ettt ettt e ettt e e e e e ettt e e s e e e s st aeaeeeessssseseaeeseesassseees 90
Y [o (=2 =3 91

APPENDIX Bceeeeueeeeeeeteeennnneeeeeeeeessssseeeseeseessnssssssssssssssssssssssssssssnnssssssssssssnnssssssssssenns 94

AALGORITHMS ... e eutttreeeeeeeeeeitreeeeeeeeesiatsareeeeeeaasstsaseaeeeesaassssaseaessaassssseseeessaaassssaseeesseaastbaseeeeseaasstssseeeeeesansssseseeeesenssnrees 94
I =Tk oI T A e 1= e | USSP 94
Breadth FirSt TIQVEISAL...........cccooveieeiiiiiiiiiiiiiiee e 94
POSE-0Order TIAVEISOL.......cccooooeeieieeiieeiieeeeeeee e 94
KPUSKQI'S SPANINING TIEE ...ttt e e e ettt e e e e e ettt a e e e e e ettt s e e e e e e et asesaaaaeaassstaseaaaeeasassssaaaaans 95

\

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

List of Figures

T U O R Yy T = o T ol 1o 1V SRR 4
Figure 2 - Logical effort optimization for gates without wires is based on equal stage efforts, g;h,;=g;h,

L= o PSSP PP OPPTPPPPP 5
Figure 3 - In the case of gates with wires, the rule of equal effort breaks down because of fixed wire
(o1 10 0 1= =] TP PSPPSR POPPPPPPPPPPPPPRE 11
Figure 4 - Cascaded logic gates with resistive-capacitive interconnect.........cccoccveeevvcieeiivcieee e, 11
Figure 5 - Delay components in characterizing ULE for [ong WIres.coccveeeeiiiiieeciieee e 14
Figure 6 - A logic path segment including RC interconnect and two branches.ccccccoeecveeeeiiieeeicineen. 15
FIBUrE 7 - RWI = R1 4 R2 4 R3 ettt ettt e s st e s st e e s s ata e e s s tae e s sabaeeesssaaeesnsaneean 16
Figure 8 - The SOftWare arChit@CTUIE.c..eii ittt e et e e et e e e e e abaee e e aneeaaan 19
Figure 9 - Implementation Of CL7.V. ... e e e et e e e rata e e e e atae e e eaaaeeean 22
Figure 10 - Parasitics of net *15 (N11). The R (C) labels refer to resistors (capacitors).ccccccveeeeurnennn. 28
Figure 11 - Implementation Of CL7.V. ...t e e e e e ata e e e s ataee e senaaeeean 35
Figure 12 - The nodes of @ pin based raph...........oo i aaee e 35
Figure 13 - The graph including the cell coNNECLIVItY. ..ccccuvviiiiiiiiecee e 36
Figure 14 - The graph including the cell internal conNectiVity.......ccccoeeuieieiciiie e, 36
Figure 15 - The final internal representation, including the cell instances.ccccceeeeiiieeecciieeeccciee e, 37
Figure 16 - Three dimensional plot of the timing data.c.cceeciiiieciiie e 38
Figure 17 - NaNGaAte’'s XL INVEITEI. ..uuiiiciieiiiiiee et eeeeitee et e e stae e e s sree e e st e e e sssbaee e e sbeeeeesaseeeeennseeesssnsees 39
Figure 18 - The linear regression output for the highlighted yellow data..........ccccceeeciiiiieiiee e, 40
Figure 19 - A unit inverter driving another unit inverter for zero slew.cccccovciiieecce e, 41
Figure 20 - Slews and delays in @ Circuit @lemMENt.occ.eeei i 42
T (UL I R @ LU o T8 L =1 o T= Lol 1 = o Lol PRE 46
FISUPE 22 - POSITIVE UNGTE. ..uiiiiiiiiiiiiiiittee ettt sttt e st e e e e s s s st ae e e e e e s sasssnbeaaeeeesssnsssreneaeeas 47
(O I AR B LY=o Y A AV L o - | TR POE 47
Figure 24 - Non Unate, (RiSING EAZE). ..uvieiiiiiiie et eettee ettt et e et e e e et e e e e ate e e s eeabee e e entaeeeenreeas 47
Figure 25 - Non Unate, (FAlliNg EAZE). ..uvveouieeiiei ettt ettt ettt et e st e e aa e e nre e e bae e enes 47
Figure 26 - Non Unate, (Combinational EAZE).eeiiouiiie ittt ettt e et e areea s 48
FIBUIE 27 - INTEICONNECTE. ..cciiiiiiiiiiiiiiiiiiiete ettt et e et e e e et e ee e e e et et e e e e e e e e e eaeeaeeaeeeseesasaeeeseneeannnnns 50
Figure 28 - DOWNSTream CAPACITANCE. ..uiiiiiiiiiiiriiitiitiettteteeteetetereeteeteeereretettrereetreretttttetetetatt.. 50
Figure 29 - Parasitics of the Net *15 (NLL). ..oceiiiiiiiieiiiee ettt e et e e e eta e e e e eara e e e e aaee e e aaneeaan 51
Figure 30 - Parasitics containing resistor loop and coupling capacitance.cccccevevviieeeeicieeecciiee e, 53
Figure 31 - Delays aCross @ Path.... ...t e e e e e e e e e e e e e e e e e arnaeeeeeaeeean 53
Figure 32 - Levelization eXamPIe. ...ttt e e e e e et e e et e e e e nata e e e e ntaaeeennaaaeean 55
Figure 33 - An UNIEVEIIZEA CIFCUIL. .oiiiiiiiie et e e e e et e e e eara e e e entaeeesnaaeeean 55
Figure 34 - Affected cells and Net after r@SIZING.cccveii it aaee e 59
FISUIE 35 - FANOUT COME. ciiiiiiiiiiiiiiiiiiiiiieieiteeeetete ettt ettt ettt et ettt et e e et e e e e ee e e e e ee et e e e e e s e e e e e s e e e e e e e e e s e s e s eseseseaesesesanenen 61
Figure 36 - Min and MaX IEVEIS.uuiiiiie ettt e e s e e e e e e e aeb e e e e e e e e e esnreaaeaeeeaeean 64
Figure 37 - Aninstance of @ resized Path. ... e 67
Figure 38 - AN iNStanCe Of UP-SiZiNG. c..uuieiieciiiiiieiiie ettt e e e e e s e aaa e e e s ata e e e enbaeeesnaaeaean 67
FIgure 39 - Path PreprOCESSING. oo iiiiiieee et e e e e e e e e e e e e et e e e e e e e e seesanntaeeeeeeeeeennnrerenees 68

vi

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Figure 40 - Path tOKENIZAtioN.t re e e e e e e snb e e e e e e e e s e snateeeeaaenas 69

Figure 41 - Terminal N0des re-eXamiNatioN........c..eiiiiiiiieiiiiee e e et e e e eae e e esaae e e ssaaeeeessraeeeenaneeees 70

Figure 42 - Sequential Cell RAaNAIING.coee it e e e e e e e e e e e e aanreeeeaaeean 71

Figure 43 - CCSopt algorithm OVEIVIEW. ..c...eeiiiieieee et e e e e e e s rr e e e e e e e s s saaaeeeeaaeean 72

Figure 44 - ULE MethOd OVEIVIEW. ...c...uiiiiiiiiie ettt ettt et e et e e e saa e e e raaae e e esntaee e e nbaaeesnnanneen 73

Figure 45 - STA algOrithm OVEIVIEW. ...cccii ittt e e e e e e e e e aab e e e e e e e e esanaaeeeeeeaeean 74
vii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

List of Tables

Table 1 - Logical effort for inputs of static CMOS gates, assuming y=2. y is the ratio of an inverter's pull-

up transistor width to pull-down transistor Width.cocciiiiiiiir e 7

Table 2 - Two-dimensional NLDIM table........ ...ttt e et e e e e e e e nnara e e e e e e 45

LI o1 [l Tl Eor= T = T=T ol oV g o - [RS 76

Table 4 - Larger BENCNMAIKS......coiiiieeee ettt e e e e e ettt e e e e e e e e e sabtaee e e e e e s e s nnstsseeeeassenanssennneaaasan 77
viii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

List of Algorithms

Algorithm 1 - Output SIeW CalCUIAtIoN.eeiiieeee e e e e e et ee e e e e e e eennes 48

FAN Fedo a1 o o T AR I A SR UURSN 56

Algorithm 3 = PArallel STA. ..ottt e e e e s ette e e e s ate e e e ebtaeeesntaeeeeataeeesstaeassnstaeasanns 58

Algorithm 4 - Minimum affected cell level optimization. ..o 61

Algorithm 5 - Dominant edges Optimization.........ccccccuiiiiiiiiee i e e et e e e e srre e e s e saeaeeeeaes 63

Algorithm 6 - Maximum terminal node level optimization.ccccvviiiiiiiei e 65
X

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Xi

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

List of Acronyms

EDA
CCSopt
IC
CMOS
FINFET
RTL
VHDL
DEF
SPEF
LE

VLSI
ULE
CCs
NLDM

STA

Electronic Design Automation

Continuous Cell Size Optimizer

Integrated Circuit

Complementary Metal Oxide Semiconductor
Fin shaped Field Effect Transistor

Register Transfer Level

Very High Speed Integrated Circuit Hardware Description Language
Design Exchange Format

Standard Parasitic Exchange Format

Logical Effort

Very Large Scale Integration

Unified Logical Effort

Composite Current Source

Non Linear Delay Model

Static Timing Analysis

Xii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

xiii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Abstract

Optimal continuous transistor/device sizing has been a holy grail in the EDA community.
However, efforts to this end have been hampered by the sheer size of the optimization problem
(millions of variables and constraints), modeling issues especially in the timing domain. This
research work proposes Continuous Cell Size Optimizer (CCSopt), a continuous transistor sizing
tool taking into consideration power and timing constraints, in order to arrive at solutions that
are reliably implemented in silicon, and easily integrated into mainstream design flows. CCSopt
comprises a hybrid heuristic approach and state-of-the-art algorithms for finding the optimal
transistor sizes. In addition, CCSopt can exploit the computational power of parallel
architectures in order to decrease execution time and enable analysis of very large-scale
integrated circuits.

Keywords:

Transistor sizing, power optimization, delay optimization, logical effort, static timing analysis

Xiv

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

XV

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

NepiAnyn

H elpeon twv BéAtotwv peyebwv twv tpaviiotop, umnpée 1O Aylo SLOKOMOTNPO TOU
amaoxoAnaoe tnv kowotnta tou EDA. NapoAa autd, OMOLEG MPOOTIABELEG TpayLOTOTIOWONnKay,
yld OUTOV TO OKOTO, TOAPEUMOSIOTAKAV Onmd TO TEPAOTIO HEyeBOC TOu TPOPANUATOG
(exatoppUpla LeETOBANTEG KoL TTEPLOPLOUOL) Kal amd INTAHUATA HLOVIEAOTIONONC, KUPLWG oToV
TOUEQ TOU XPOVIOHOU. H CUYKEKPLUEVN EPELVNTIKN TipoomdBela mpoteivel to Continuous Cell
Size Optimizer (CCSopt), éva gpyadeio KAlLAKWONG TwV HeyeBwY Twv Tpaviiotop, UE CUVEXN
TpoOmo, 1o omoio AapPdvel umdYPn TEPLOPLOMOUG LOXUOG KOL XPOVIOMOU, HE OKOMO va
TipooeyyioeL AUCELG OL omoieg umopolv va uAomotnBouv oto mupitlo Pe a§LoOmLoTo TPOTO, EVW
Umopel eVKoAa va evorolnBel otic emkpatovoeg poég oxedStaopou. To CCSopt mephapPavel
pLot UBPLOIKI) EUPECTLKA TIPOCEYYLON, O cUVOUAOUO UE e€lSIKEUEVOUG OAyoplOOUC e OKOTIO
NV gUpeon Twv BEATIOTWY peyeBwv Twv Tpaviiotop. Emiong, to CCSopt ekpeTtaAAeVETAL TNV
UTTOAOYLOTLKN) SUVAUN TwV TTAPAAANAWY OPXLITEKTOVIKWY WOTE VO LELWOEL TO XPOVO EKTEAECNC
KOl VO KOTOLOTAOEL LKAVA TNV avAAUGH OAOKANPWHUEVWY KUKAWUATWY TTOAU PeYAANG KALLAKALG.

Né€elc KAelbia:

KAwpakwon Tpavliotop, BeAtiotonoinon oxvog, BeAtiotonoinon kabuotépnong, logical effort,
OTATLIKI) OVAAUON XPOVIOHOU

XVi

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

XVii

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Chapter 1

Introduction

1.1 Problem Description

This thesis is part of the research project Nanotrim, a work supported by EU and the Greek
State through ESPA 2017-2013, Action SYNERGASIA 2011, Project Code: 11SYN 5 719. The
project aims to make significant advances in Electronic Design Automation (EDA) technology, to
develop key enablers for the performance optimization of nanoscale integrated circuits (ICs)
and allow for significantly more power-efficient chips. This is targeted by means of innovative
methods and algorithms for physical (i.e. gate- and transistor-level) synthesis, which are
pioneered by the partners. The project shall build on top of existing technology and knowledge
owned by the partners, proven through several years of Silicon Valley expertise and a
distinguished commercial track record.

The proposed activity is building on the learnings from both academic and industrial attempts
to tackle a difficult yet attractive design problem. The approach taken is to perform continuous
sizing optimization but in a constrained mode, in order to arrive at solutions that are reliably
implemented in silicon, and easily integrated into mainstream design flows. The project’s team
brings together experience in all areas required to not only provide a world-class solution to the
continuous sizing problem but also to eventually, successfully incorporate this solution into a
viable product, addressing all issues that have prevented previous academic and industrial
efforts from arriving at this goal.

The major research vectors are:

1. Development of a continuous transistor sizing EDA tool, which takes into account timing
and power constraints.

2. Development of a layout (physical design) manipulation tool, which will implement in
the physical layout, the sizes that are calculated by the continuous transistor sizing tool.

3. Special, parallelized algorithms and distributed data models that will deal with the
massive data requirements of this undertaking.

4. Development of nano-device models (for CMOS transistors under 45nm, with a focus on
FINFETs at 22nm and beyond), which will express both timing performance and
dissipated power of basic circuit cells.

This thesis deals with the implementation of the 1° aforementioned research vector.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

1.2 Related Work on Transistor Sizing

Transistor sizing tools have been around since the publication on TILOS [1] [2]. Initially the
sizing effort was focused on transistor sizes only, for which a number of approaches have been
developed (posynomial sizing [3], logical [4] [5], AMPS [6]). Further strains of the
aforementioned basic approaches have been proposed initially for timing and area
optimization, and, later for multi-objective cost functions involving mainly power [7] [8]. Most
of the sizing tools are path based, meaning that they treat the transistors of gates along a path
as an optimization sub-problem, which can cause serious conflicts especially in similarly timed
reconvergent fanout paths.

A major undertaking has been to observe design constraints while performing transistor sizing.
Minimum and maximum slope constraints have been the most difficult to implement as they
are not very compatible with any of the sizing methods that have been proposed thus far.
Minimum and maximum transistor sizes, maximum delay constraints, and fixed relative
transistor sizing are more straightforward to implement. Recent academic papers and patents
incorporate interconnect capacitance and, in some cases resistance, to account for the delay in
interconnect lines [9].

Our hybrid heuristic approach takes into account all the aforementioned constraints as well as
interconnect capacitance and resistance. It also takes into account reconvergent fan-outs and
arrives at a stable solution in all cases without the possibility of divergence, which has plagued
even commercial tools like AMPS.

1.3 Design Flow

This section presents the top-down design flow and its steps. As shown in Figure 1 the first step
is the creation of synthesizable VHDL' Register Transfer Level (RTL) models. Such models
describe the structure and the behavior of the design at a relatively high level of abstraction.
VHDL RTL models can be then verified using logic simulation. VHDL test-bench models define a
relevant set of stimulus to be applied to the design under test and verification procedures on
the output signals of the design under test. Logic simulation uses abstract logic signals and
event-driven behaviors to achieve fast simulation times. The simulation of VHDL RTL models
essentially checks the design functionality. No timings are considered yet at that stage.

The RTL (or logic) synthesis step infers a possible gate-level realization of the input RTL
description that meets user-defined constraints such as area, timings or power consumption.
The design constraints are defined outside the VHDL models by means of tool-specific

! Very High Speed Integrated Circuit Hardware Description Language

2

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

commands. The targeted logic gates, also known as standard cells, belong to a library that is
provided by a foundry or an IP company as part of a so-called design kit. Typical gate libraries
include a few hundreds of combinational gates (e.g., inverter, NAND or MUX gates) and
sequential logic gates (e.g., flip-flops, latches). Each logic function is implemented in several
gates to accommodate several fanout capabilities or drive strengths. The gate library is
described in a tool-specific format that defines, for each gate, its function, its area, its timing
and power characteristics and its environmental constraints. The synthesis step generates
several outputs one of which is a Verilog gate-level netlist. The Verilog netlist can be used as
input to our CCSopt tool, as well as the input to the place & route step.

The Place & Route (P & R) step infers a geometric realization of the gate-level netlist, so-called a
layout. The standard cell design style places logic gates in rows of equal heights. As a
consequence, all standard cells from the library have the same height, but may have different
widths. Each cell has a power rail at its top and a ground rail at its bottom. The interconnections
(routing) between gates are done over the cells since current processes allow several metal
layers (i.e. up to 9 metal layers for the UMC 90nm CMOS process). As a consequence, the rows
may be abutted and flipped so power and ground rails are shared between successive rows.
Placement and routing can consider timing constraints, usually the same as the ones defined
for the RTL synthesis step. Special nets such as power/ground wires and clocks are usually
routed separately to meet specific constraints such as, respectively, voltage drop and electro
migration, or clock skew.

The P & R step generates a geometric description (layout) in DEF format which can used as
input to the parasitic extraction step as well as the input to the layout sizing step which is the
2" major vector of the Nanotrim project.

This parasitic extraction step calculates the parasitic effects in both the designed devices and
the required wiring interconnects of an electronic circuit. The major purpose of parasitic
extraction is to create an accurate analog model of the circuit, so that detailed simulations can
emulate actual digital and analog circuit responses. Digital circuit responses are often used to
populate databases for signal delay and loading calculation such as: timing analysis; circuit
simulation; and signal integrity analysis. Analog circuits are often run in detailed test benches to
indicate if the extra extracted parasitics will still allow the designed circuit to function. The
parasitic extraction step generates a net parasitic in spe1c2 format which is used as the second
input to our tool.

? Standard Parasitic Exchange Format

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

RTL describedin a From Cell Modeling

Cont. Cell

HDL such Verilog or Engine Szing config.
VHDL | ogjcal design file
i
I
3 party ynthesis |
tool such as Shopsys : Gatelevel
Design Gompiler | netlist
: B -unoptimized
- le=--" @y ¥ e
I
I
I
I
I
I
: Gate-level
L netlist Scale factors
-optimized ist wi of each cell in
the design
Physical design
i
3%partyPlace& |
Route tool suchas :
Cadence SC |
I
Encounter | Layout in DEF
: format
3 party Parasitic : Final layout in @ Final layout in
Extraction tool such : et DHE-format GDSll format
as Cadence SC : =
Encounter I format
I
L

Figure 1 - Design Flow.

The rest of this thesis is organized as follows. In section 2 we give background material on
certain useful fragments of cell resizing. In section 3 we present the implementation steps of
the CCSopt tool. Section 4 presents experimental results on several benchmarks. Section 5
provides ideas for future work.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Chapter 2

Cell-Resizing Methods

2.1 Logical Effort

2.1.1 Introduction

Timing modeling and optimization are two of the primary issues in high complexity circuit
design. The method of Logical Effort (LE) [10], a term invented by I. Sutherland and B. Sproull in
1991, is a straightforward technique for fast evaluation and optimization of delay in logic paths
(see Figure 2). The technique has since been adopted as a basis for numerous CAD tools, for the
sake of its simplicity.

hi=G/ Gy h=G/ G, G|

Figure 2 - Logical effort optimization for gates without wires is based on equal stage efforts, g;h,=g,h,
etc.

2.1.2 Delay in a Logic Gate

The LE method is founded on a simple model of delay [4] through a single MOS logic gate. The
model describes delays caused by the capacitive load that the logic gate drives and by the
topology of the logic gate. Clearly, as the load increases, the delay increases, but delay also
depends on the logic function of the gate. Inverters, the simplest logic gates, drive loads best
and are often used as amplifiers to drive large capacitances. Logic gates that compute other
functions require more transistors, some of which are connected in series, making them poorer
than inverters at driving current. Thus a NAND gate has more delay than an inverter with similar
transistor sizes that drives the same load. The method of logical effort quantifies these effects
to simplify delay analysis for individual logic gates and multistage logic networks.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

As a first step, delay is expressed in terms of a basic delay unit, 73, which is the delay of an
inverter driving an identical inverter with no parasitic capacitance. The unit-less number
associated with this is known as the normalized delay. The absolute delay is then simply defined
as the product of the normalized delay of the gate, d, and t:

dabsdeT (1)

The delay incurred by a logic gate is comprised of two components, a fixed part called the
parasitic delay p and a part that is proportional to the load on the gate’s output, called the
effort delay or stage effort f. The total delay, measured in units of 7, is the sum of the effort
and parasitic delays:

d=f+p (2)

The effort delay depends on the load and on properties of the logic gate driving the load. We
introduce two related terms for these effects: the logical effort g captures properties of the
logic gate, while the electrical effort h characterizes the load. The effort delay of the logic gate
is the product of these two factors:

f=9gX%Xh (3)

The logical effort g captures the effect of the logic gate’s topology on its ability to produce
output current. It is independent of the size of the transistors in the circuit. The electrical effort
h describes how the electrical environment of the logic gate affects performance and how the
size of the transistors in the gate determines its load-driving capability. The electrical effort is
defined by,

Cout (4)

where C,,; is the capacitance that loads the output of the logic gate and C;,, is the capacitance
presented by the input terminal of the logic gate. Electrical effort is also called fanout by many
CMOS designers.

Combining the last two equations, we obtain the basic equation that models the delay through
a single logic gate, in units of t:

d=gXh+p (5)
This equation shows that logical effort g and electrical effort h both contribute to delay in the

same way. This formulation separatest, g, h, and p, the four contributions to delay. The
process parameter T represents the speed of the basic transistors. The parasitic delay p

’Ina typical 600-nm process T is about 50 ps. For a 250-nm process, T is about 20 ps. In modern 45 nm processes
the delay is approximately 4 to 5 ps.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

expresses the intrinsic delay of the gate due to its own internal capacitance, which is largely
independent of the size of the transistors in the logic gate. The electrical effort, h, combines the
effects of external load, which establishes C,,;, with the sizes of the transistors in the logic
gate, which establish C;;,. The logical effort g expresses the effects of circuit topology on the
delay free of considerations of loading or transistor size. Logical effort is useful because it
depends only on circuit topology.

Number of inputs
Gate type 1 2 3 4 5 n
Inverter 1
NOR 5/3 7/3 9/3 11/3 (2n+1)/3
NAND 4/3 5/3 6/3 7/3 (n+2)/3

Table 1 - Logical effort for inputs of static CMOS gates, assuming y=2. y is the ratio of an inverter's pull-
up transistor width to pull-down transistor width.

Logical effort values for a few CMOS logic gates are shown in Table 1. Logical effort is defined so
that an inverter has a logical effort of 1. An inverter driving an exact copy of itself experiences
an electrical effort of 1. Therefore, an inverter driving an exact copy of itself will have an effort
delay of 1, according to third equation.

The logical effort of a logic gate tells how much worse it is at producing output current than is
an inverter, given that each of its inputs may present only the same input capacitance as the
inverter. Reduced output current means slower operation, and thus the logical effort number
for a logic gate tells how much more slowly it will drive a load than would an inverter.
Equivalently, logical effort is how much more input capacitance a gate must present in order to
deliver the same output current as an inverter.

It is interesting but not surprising to note from Table 1 that more complex logic functions have
larger logical effort. Moreover, the logical effort of most logic gates grows with the number of
inputs to the gate. Larger or more complex logic gates will thus exhibit greater delay. These
properties make it worthwhile to contrast different choices of logical structure.

2.1.3 Multistage Logic Networks

The method of logical effort reveals the best number of stages in a multistage network and how
to obtain the least overall delay by balancing the delay among the stages. The notions of logical
and electrical effort generalize easily from individual gates to multistage paths.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

The logical effort along a path compounds by multiplying the logical efforts of all the logic gates
along the path. We use the uppercase symbol G to denote the path logical effort, so that it is
distinguished from g, the logical effort of a single gate in the path. The subscript i indexes the

logic stages along the path.

The electrical effort along a path through a network is simply the ratio of the capacitance that
loads the last logic gate in the path to the input capacitance of the first gate in the path. We use
an uppercase symbol H to indicate the electrical effort along a path.

Cout (7)

H =
Cin

In this case, C;;, and C,,,; refer to the input and output capacitances of the path as a whole, as
may be inferred from context. We need to introduce a new kind of effort, named branching
effort, to account for fanout within a network. So far we have treated fanout as a form of
electrical effort: when a logic gate drives several loads, we sum their capacitances, to obtain an
electrical effort. Treating fanout as a form of electrical effort is easy when the fanout occurs at
the final output of a network. This method is less suitable when the fanout occurs within a logic
network because we know that the electrical effort for the network depends only on the ratio
of its output capacitance to its input capacitance. When fanout occurs within a logic network,
some of the available drive current is directed along the path we are analyzing, and some is
directed off that path. We define the branching effort b at the output of a logic gate to be

h= Con—path + Coff—path _ Ctotal (8)

Con—path Cuseful

where Cyp,_parn is the load capacitance along the path we are analyzing and Cyrf_pqen is the
capacitance of connections that lead off the path. Note that if the path does not branch, the
branching effort is one. The branching effort along an entire path B is the product of the
branching effort at each of the stages along the path.

B=[]h (9)

Armed with definitions of logical, electrical, and branching effort along a path, we can define
the path effort F. Again, we use an uppercase symbol to distinguish the path effort from the
stage effort f associated with a single logic stage. The equation that defines path effort is
reminiscent of the third equation, which defines the effort for a single logic gate:

F=GXBXH (10)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Note that the path branching and electrical efforts are related to the electrical effort of each

stage:
C
B X H= Outl_[bizl_[hi (11)
Cin

Although it is not a direct measure of delay along the path, the path effort holds the key to
minimizing the delay. Observe that the path effort depends only on the circuit topology and
loading and not upon the sizes of the transistors used in logic gates embedded within the
network. Moreover, the effort is unchanged if inverters are added to or removed from the
path, because the logical effort of an inverter is one. The path effort is related to the minimum
achievable delay along the path, and permits us to calculate that delay easily. Only a little more
work yields the best number of stages and the proper transistor sizes to realize the minimum
delay.

The path delay D is the sum of the delays of each of the stages of logic in the path. As in the
expression for delay in a single stage (equation 5), we shall distinguish the path effort delay Dy
and the path parasitic delay P:

D= di=Dp+P (12)

The path effort delay is simply:
DFzzgiXhi (13

and the path parasitic delay is:

P=Zpi (14)

Optimizing the design of an N-stage logic network proceeds from a very simple result: The path
delay is least when each stage in the path bears the same stage effort. This minimum delay is
achieved when the stage effort is:

f=gixh=F/ (15)
We use a hat over a symbol to indicate an expression that achieves minimum delay.

Combining these equations, we obtain the principal result of the method of logical effort, which
is an expression for the minimum delay achievable along a path:

D=NxF'/N+p (16)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

To equalize the effort borne by each stage on a path, and therefore achieve the minimum delay
along the path, we must choose appropriate transistor sizes for each stage of logic along the
path. Equation 15 shows that each logic stage should be designed with electrical effort

FY/n (17)
9i

—~

R =

From this relationship, we can determine the transistor sizes of gates along a path. Start at the
end of the path and work backward, applying the capacitance transformation:

gi X Couti (18)
Cini =—
f

This determines the input capacitance of each gate, which can then be distributed
appropriately among the transistors connected to the input.

10

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

2.2 Unified Logical Effort

2.2.1 Introduction

The LE method benefits from an uncomplicated and intuitive delay model and closed-form
optimization conditions. The optimization rule of logical effort, however, only addresses logic
gates and does not consider on-chip wires. As VLSI circuits continue to scale, the contribution of
wires to the delay increases and cannot be neglected. This characteristic occurs not only with
respect to long wires connecting separate modules but also to the interconnect within logic
modules where the delays introduced by the wires connecting closely coupled gates approach
and can exceed the gate delays. The useful LE rule that the path delay is minimum when the
effort of each stage is equal breaks down, because interconnect has fixed capacitances which
do not correlate with the characteristics of the gates (see Figure 3). This behavior is described
by the authors of the LE method as “one of the most dissatisfying limitations of logical effort”.

G

Figure 3 - In the case of gates with wires, the rule of equal effort breaks down because of fixed wire
parameters.

2.2.2 Delay Model of Logic Gates with Wires

The logical effort model is modified to include the interconnect delay [3]. This change is
achieved by extending the gate logical effort delay by the wire delay, establishing a Unified
Logical Effort (ULE) model. Thanks to the Elmore [12] delay model the delay of a circuit
comprising logic gates and wires (see Figure 4) can be easily calculated.

Gi - wiresegment _ N Goiv1 . — wiresegment _
n [/\%\/ ’\I l I: W \I o
Nt = - s S — /’

Figure 4 - Cascaded logic gates with resistive-capacitive interconnect.

The total combined delay expression is [13]:
Di= Ry X (Cyi + Cy; + Cig1) + Ry X (0.5 X Gy + Cipq) (19)
11

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

where R; is the effective output resistance of the gate i, C,,; is the parasitic output capacitance
of gate i, C,,; and R,,; are, respectively, the wire capacitance and resistance of segment i, and
C; 44 is the input capacitance of gate i + 1.

This expression can be rewritten similar to [14], [15] and [16] in function of the delay of a
minimum sized invertert = RyC,, where Ry and Cy, are the output resistance and input
capacitance of a minimum sized inverter:

Ri Cwi + Ci+1 + Cpi Rwi (20)

Di:TXdi:TX[R—OX CO +R0XCOX(O.5XCWi+CL‘+1)

The delay d; normalized with respect to a minimum sized inverter delay 7 is defined by:

Cwi\ RwiXx (0.5 x C,; X C; 21
di = g; X (hi+ ﬂ)+ wi (wi L+1)+ ; ()
Ci T
where,
gi = R; xC;)/(Ry X Cp) is the logical effort, (22)
h; = Ciy1/C; is the electrical effort, (23)
pi = (Ri X Cp;)/(Ro X Cp) is the parasitic delay. (24)

The capacitive interconnect effort h,, and the resistive interconnect effort p,, are, respectively:

Cyi (25)
hwi = TWLL
_ Ry X (0.5 % Cyy + Ciyq) (26)
Pwi = T

The wire influences the electrical effort of the logic gate with h,, and contributes more delay to
the total delay with p,,. The final expression of the ULE delay of a single logic gate considering
the interconnect is:

d=gx(h+hy)+{@+pw (27)
For an N stage logic path with interconnect the ULE delay is the sum of each delay of the single
stage:

N (28)
d =Zgi X (h; + hy) + (0i + Dwi)

i=1

Note that in the case of short wires, the resistance R, of the wire may be neglected,
eliminating p,, and leaving only the capacitive interconnect effort h,, in the expression. When

12

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

the wire impedance along the logic path is negligible, the extended delay expression reduces to
the standard LE delay equation.

2.2.3 Delay Minimization using Unified Logical Effort

As a first step in the path delay optimization process, consider a two-stage portion of a logic
path with wires (as shown in Figure 4). The condition for optimal gate sizing is determined by
equating the derivative of the delay with respect to the gate size to zero. As proven [11] the
resulting optimum condition is:

(Ri + Ry,) X Ci1 = Ryy1 X (Ciyz + Cyyy) (29)

The meaning of the optimum size of gatei + 1is achieved when the delay component
(R; + Ry,;) X Ci;1 due to the gate capacitance is equal to the delay component R; 1 X (Cjy, +
Cw,,,) due to the effective resistance of the gate. A schematic model describing the related
delay components is shown in Figure 5.

After solving the differential equations that occur in the optimization problem [3], we get the
expression for the optimum input capacitance of each gate based on the ULE model:

Ciope = X it X (Cira +)

fopt R, XCi_
. i-1 l
gi-1 t Ry X Co

CWi i
= JCi.y X Cip1 X [(1+ C) X Ry X Ci

i+1
gi-1 t Ry X C,

(30)

The first part of the resulting expression is similar to the condition described by the LE model
for a path of identical gates. The second component expresses the influence of the interconnect
capacitance. The last component is related to the resistance of the wire and the difference
among the individual logical efforts (types of logic gates) along the path. This expression
illustrates the quadratic relationship between the sizes of the neighboring gates. The gate size
based on ULE can be determined by solving a set of N polynomial expressions for the N gates
along the path.

13

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

\ \
_______ -~ —— e ——_d -
\ Giil 2 Guil 2 ; \ Gl 2 Gl 2 ,
\ I I / \ I I/
\ = < / \ L =/
\ / \ /
\ / \ /
RCHl + RNiG+l = I%+1Cwi+1 + IR/\/i+1G+2

Figure 5 - Delay components in characterizing ULE for long wires.

Later in this thesis we will show how this expression can be further extended in order to include
fixed side branches and multiple fan-outs. In order to simplify the solution, a relaxation method
has been used. The technique is based on an iterative calculation along the path while applying
the optimum conditions. Each capacitance along the path is iteratively replaced by the
capacitance determined from applying the optimum expression of the capacitance to two
neighboring logic gates.

2.2.4 ULE Optimization in Paths with Branches

As we mentioned earlier, the expression of the optimum input capacitance of each gate based
on the ULE model can be further extended to address the general design case where the logic
path may include branches or gates with multiple fanout. For instance, consider the circuit
shown in Figure 6. The circuit shows the general structure containing a side branch with RC
interconnect and/or a fanout load with arbitrary capacitance where R, and C, are the
resistance and capacitance of branch wires, respectively, and Cy is the fanout load capacitance.

The ULE expression of the total delay of stagesi and i + 1 containing branches and fanout can
be written as:

Cp1, +Cr1, Cpy, +Cpa,
d=gi><[hi+hw.+ L MLy P le]
' Ci Ci

Wi

T

tgi+1 X

+

X [0.5 X Cy, + h; X C; + Cp, + Cpy,|

[CWL'+1 tCiyz + Cb1i+1 + Cf1i+1 + Cb2i+1 + Cf2i+1]
h; X C;

Ry, (31)
+ [0.5% Cy,,, + Civz + Cpa,,, + Crz,,. |
14

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

where T = R X Cyis the minimum inverter delay. Following the same procedure as in the case
with no branches and fan-outs, we equate the derivative of the delay with respect to the gate
size to zero, and the optimum expression for the input capacitance of each gate can be written
as:

9i X Ci—q X (Cy; + Ciyq + Cpy, + Cpq, + Cpp; + Cr2))

i

R, XCp,
Gy + iz X i
(Cbli + Cfli + (32)
C,. Cpy. + Cry. i
= 1/Ci_l X CL'+1 X |14+ ad + b2y fZL) X Rgl C
Cit1 Cit1 Wi X Ci-1
gi-1 T

This ULE optimum expression can be generalized for any combination of side branch wires and
fanout gates by determining the total effective capacitance of the fanout branches for each

stage of the path:
CBF = Z Cbn + Z Cfm
1 1

where n and m are the number of branch wires and fanout gates in a path, respectively. Taking
into consideration the last equation, the general ULE optimum expression for the input
capacitance is determined [11]:

(34)

i+1 Cit1

Cw. Chr :
Ci=,/Ci_1xCi+1x\/1+CW‘ + Blej Rg‘ =
i '_1

T

branch wire

RN ch LS

! \
T

Nt -

G/ I Qn/Z% Gu

branch wire

PRl S

T
o C:' cNilz‘\i"/_\{vE,t_/E :I:}c;bc;jz\i' '@G{Ni}/'zi’ ’
! ! | |

Figure 6 - A logic path segment including RC interconnect and two branches.

15

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

In the case of a more complex parasitic tree (see Figure 7), the resistance of a wire, between
two adjacent cells, is defined as the sum of all the resistances in the path between the adjacent

ceIIs,
R E R 35
wi — i-i+1 ()

%\/f
e
] f

Figure7-R,; = R{ + R, +

In order to simplify the solution, a relaxation method is proposed in [11]. The technique is
based on an iterative calculation along the path while applying the optimum conditions. Each
capacitance along the path is iteratively replaced by the capacitance determined from applying
the optimum expressions to two neighboring logic gates. The technique consists of the
following steps:

a) (Initialization) Set the gate capacitances along the path to arbitrary values (only the first
and last values are given).

b) (Iteration) Replace each capacitance by the value determined from applying the
optimum expressions on two neighboring logic gates

c) (Stop check) If any of the new values differ by more than a given precision from the
previous value, reiterate step b

The application of the algorithm generally produces the optimal size, converging to 5% accuracy
after three iterations. The gates in the last few stages of the path are the first to converge, since
the accuracy increases while propagating along the path from the leaf to the root of the path.
Consequently, fewer calculations are performed in each successive iteration.

16

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

2.2.5 Conclusion

Delay minimization in logic paths with wires is an important issue in the high complexity IC
design process. The interconnect is a dominant factor in performance-driven circuits and must
be explicitly considered throughout the design process. The characteristics of the wires are not
correlated with those of the gates, thereby not permitting the use of the standard logical effort
model. In fact, gate sizing in the presence of interconnect does not correspond to equal effort
of all of the stages along a path. The ULE method is proposed for delay evaluation and
minimization of logic paths with general gates and RC wires. The ULE method provides
conditions to achieve minimum delay. Optimal gate sizing in logic paths with wires is achieved
when the delay component due to the gate capacitance is equal to the delay component due to
the effective resistance of the gate. The ULE method converges to the standard Logical Effort
when wire resistance and capacitance are negligible. Gate sizing determined by the proposed
ULE method makes ULE suitable for both manual calculations and integration into existing EDA
tools.

17

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

18

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Chapter 3

Software Architecture

3.1 Introduction

CCSopt is a stand-alone tool, which was built on top of the ULE method in order to achieve high
convergence rate to the optimal cell sizes solution. The core of algorithm consists of fast Timing
Analysis Incremental engine which evaluates the design’s timing information throughout the
execution of the algorithm. The inputs of the tool consists of the design’s external topology or
cell connectivity information (.v file), the cell’s internal information such as internal connectivity
and delay (.lib file), the parasitic information derived after placing and routing (.spef file), along
with a set of instructions for the algorithm (.cfg file). The outputs of the tool consists of the
transformed design (.v file) along with the new cells scale factors (.scf file). CCSopt was

developed in C++, using OpenMP for multithreading.

Liberty parser

cell delay arcs

Logical Efort
Bxtraction

logical effort: g

s

Gate-Level
Netlist parser

Spef
Hle

circuit topology | Constraints&
graph other directives

wire RC—
parasitic data

e, [———

Figure 8 - The software architecture.

19

Institutional Repository - Library & Information Centre - University of Thessaly

09/12/2017 13:12:30 EET - 137.108.70.7

3.2 File Formats

In this section, the files, imported and produced, by the tool are described [17]. The .cfg file is
available in Appendix A.

3.2.1 Input Verilog (.v)

The Verilog file specifies the top-level hierarchy of the design. For this thesis, we will be
using a small set of keywords with the Verilog language. Our Verilog parser supports the set of
keywords found within the simple.v file (reproduced below for clarity). It also supports
comments that start with ‘//’. The expected syntax is:

module <circuit name> (
<input 1>,
<input n>,
<output 1>,

eey

<output m>);
input <input 1>;

input <input n>;
output <output 1>;

output <output m>;

// begin wire definitions
wire <wire 1>;
// end wire definitions

// begin cell definitions
<cell type> <cell instance name> (.<pin name> (<net name));
// end cell definitions

endmodule

The expected structure of the Verilog file is to start with the module declaration, defining the
interface of the module with name <circuit name>. The inputs and output pins are explicitly
declared; the initial wires are optionally declared with the keyword wire. For each cell

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

definition, every <cell type> (.<pin name>) should be a specified cell type (pin) in the library file,
and every <cell instance name> and <net name> should be found in the design specification.
Each field is considered a string. The following example is from c17.v; its corresponding
implementation is shown in Figure 9.

01. module c17 (

02. N1, N2, N3, N6, N7,

03. N22, N23

04.);

05.

06. // Start Pls

07. input N1, N2, N3, N6, N7;

08.

09. // Start POs

10. output N22, N23;

11.

12. // Start wires

13. wire NO, N4, N5, N8, N9, N12, N10, N11, N16, N19;
14.

15. // Start cells

16. INV_X21_5 (.A(N12), .ZN(N23));

17. AND2_X2 NAND2_6 (.A1(N16), .A2(N19), .ZN(N12));
18. INV_X21_4 (.A(N9), .ZN(N22));

19. AND2_X2 NAND2_5 (.A1(N10), .A2(N16), .ZN(N9));
20. INV_X21_3(.A(N8), .ZN(N19));

21. AND2_X2 NAND2_ 4 (.A1(N11), .A2(N7), .ZN(N8));
22. INV_X21_2 (.A(N5), .ZN(N16));

23. AND2_X2 NAND2_3 (.A1(N2), .A2(N11), .ZN(N5));
24. INV_X21_1(.A(N4), .ZN(N11));

25. AND2_X2 NAND2_2 (.A1(N3), .A2(N6), .ZN(N4));
26. INV_X21_0 (.A(NO), .ZN(N10));

27. AND2_X2 NAND2_ 1 (.A1(N1), .A2(N3), .ZN(NO));
28.

29. endmodule

Lines 01 and 29 define the start and end of the specified design with the keywords module and
endmodule. Lines 01-04 specify the input and output connection names of the module (note
that the direction is not specified here). Line 07 specifies the primary inputs (Pls) of the module
with the keyword input. These names must match the ones started with module (lines 01-04).
Line 10 specifies the primary output (PO) of the module with the keyword output. This name
must match the one stated with the module (lines 01-04). Line 13 specifies the connections or

21

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

nets within the module with the keyword wire. These connections specify both the external Pls
and POs as well as the internal connections between gates (explained further after lines 16-27).
Lines 17-27 specify the cells used in the design, as well as how the cells are connected. For
example, on line 16, an INV_X2-type cell instance of |_5 is specified, it’s A pin is fed by primary
input N12, and its ZN pin feeds the primary output N23. On line 27, N1 feeds the Al pin of the
AND2_X2-type cell instance NAND2_1. Line 29 terminates the module definition.

N1 L NAND2 1 1.0 L
NAND2
N A N N9 N2
= >]
N2 N3 WD

D,

N2
N3
N6 NAND2 6 12 15 N23
NG N3 E I
D, NS

= w

Figure 9 - Implementation of c17.v.

The developed tool can handle multiple Verilog files, in the case that the design is not flat and
contains a hierarchy of modules, which may be scattered across different files. For instance a
file containing 4 modules, including the top module, s27, is presented,

01. module dff_d(clk, g, d);
02. input clk, d;

03. output g;

04. wire clk, d;

05. wire q;

06. DFF_X1 q_reg(.CK (clk), .D (d), .Q (q), .QN ());
07. endmodule

08.

09. module dff d_4(clk, g, d);

10. input clk, d;

11. output g;

12. wire clk, d;

13. wire q;

14. DFF_X1 g_reg(.CK (clk), .D (d), .Q (q), .QN ());
15. endmodule

16.

22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

17. module dff _d_3(clk, g, d);

18. input clk, d;

19. output g;

20. wire clk, d;

21. wire q;

22. DFF_X1q_reg(.CK(clk), .D (d), .Q(q), .QN ());

23. endmodule

24.

25. module s27(CK, GO, G1, G17, G2, G3,);

26. input CK, GO, G1, G2, G3;

27. output G17;

28.

29. wire CK, GO, G1, G2, G3;

30. wire G17;

31. wire G5, G6, G7, G10, G11, G13,n_0, n_1;

32. wire n_2;

33.

34. dff_d DFF_0(.d (G10), .clk (CK), .q (G5));

35. dff_d_4 DFF_1(CK, G6, G11);

36. dff d_3 DFF_2(CK, G7, G13);

37.

38. INV_X32 p1579A(.A (G11), .ZN (G17));

39. NOR2_X1 p5988A(.Al(G11), .A2 (n_0), .ZN (G10));
40. NOR2_X1p2151D(.Al (n_2), .A2 (G5), .ZN (G11));
41. AOI22_X1 p2104A(.Al (n_1), .A2 (G3), .B1 (n_0), .B2 (G6), .ZN (n_2));
42. NOR2_X1 p6096A(.Al (n_1), .A2 (G2), .ZN (G13));
43. NOR2_X1 p2096A(.Al (G1), .A2 (G7), .ZN (n_1));
44. INV_X1 Fp2096A(.A (GO), .ZN (n_0));

45. endmodule

Line 34 instantiates the module dff_d, and the arguments are passed in explicit format, where
in line 35 the module dff_d_4 is instantiated in implicit format.

The keyword assign can also be handled along the constants 1’b0, 1’b1, where the later can be
used as wires.

assign <wire_name_a> = <wire_name_b>

Designs containing busses only in the top level module can also be partial handled (bus
operations are not supported). See Appendix A for a more detailed example.

23

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

3.2.2 Input Standard Parasitic Exchange Format (.spef)

This file contains the parasitics of a set of nets as a resistive-capacitive (RC) network. If a (e.g.
gate-to-gate) connection does not have parasitics, then that connection has 0 delay and the
output slew is equivalent to the input slew. Our SPEF parser supports the format specified in
simple.spef (see Appendix A) (portions reproduced for clarity). It also supports comments
beginning with ‘//’. The format is:

// begin header

*SPEF <string>

*DESIGN <string>

*DATE <string>
*VENDOR <string>
*PROGRAM <string>
*VERSION <string>
*DESIGN_FLOW <string>
*DIVIDER <string>
*DELIMITER <string>
*BUS_DELIMITER <string>
*T_UNIT <int> <string>
*C_UNIT <int> <string>
*R_UNIT <int> <string>
*L_UNIT <int> <string>
// end header

// begin nets

// ...
// end nets

The header describes the general set of units for the file. In this thesis, the DELIMITER field will
be set to “:’, the C_UNIT field will be set to one picoFarad (1 PF), and the R_UNIT field will be
set to one Ohm (1 OHM). All other fields in the header will not be used. Below shows an
example header.

01. *SPEF "IEEE 1481-1998"

02. *DESIGN "c17"

03. *DATE "Thu Sep 25 17:47:29 2014"

04. *VENDOR "Cadence Design Systems, Inc."

05. *PROGRAM "Encounter"

06. *VERSION "13.13-s017_1"

07. *DESIGN_FLOW "PIN_CAP NONE" "NAME_SCOPE LOCAL"
08. *DIVIDER /

24

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

09. *DELIMITER :

10. *BUS_DELIMITER []
11. *T_UNIT 1 NS

12. *C_UNIT 1 PF

13. *R_UNIT 1 OHM
14. *L_UNIT 1 HENRY

Line 01 specifies the SPEF format date. Line 02 specifies the design name. Line 03 specifies the
date at which the file was generated. Line 04 specifies the consumer of this file. Line 05
specifies the tool used to generate the file. Line 06 specifies the version of this file. Line 07
specifies the format in which this file is used. Line 08 specifies the hierarchy divider character.
Line 09 specifies the pin divider character. Line 10 specifies the bus delimiter characters. Line 11
specifies the time units for the design. Line 12 specifies the capacitance units for the design.
Line 13 specifies the resistance units for the design. Line 14 specifies the inductance units for
the design. To reduce file size, SPEF allows long names to be mapped (optional) to shorter
numbers preceded by a *. This mapping is defined in the name map section. For example:

01. // MMMC spef file for corner 'typ'
02.

03. *NAME_MAP
04.

05. *1 N1

06. *2 N2

07. *3 N3

08. *4 N6

09. *5 N7

10. *6 N22

11. *7 N23

12. *8 NO

13. *9 N4

14. *10 N5

15. *11 N8

16. *12 N9

17. *13 N12

18. *14 N10

19. *15 N11

20. *16 N16

21. *17 N19
22.*181.5

23. *19 NAND2_6
24.%201 4

25. *21 NAND2_5
26.%221 3
27.*23 NAND2_4

25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

28. %241 2
29. *25 NAND2_3

30.*261_1
31. *27 NAND2_2
32.%281.0

33. *29 NAND2_1

Later in the file, N1 can be referred to by its name or by *1. Name mapping in SPEF is not
required. Also, mapped and non-mapped names can appear in the same file. Typically, short
names such as a pin named A will not be mapped as mapping would not reduce file size. One
can write a script that will map the numbers back into names. This will make SPEF easier to
read, but greatly increase file size.

After the name map section, each net’s parasitics will be defined by the following format:

*D_NET <net name> <total net capacitance>

*CONN

<pin type> <pin name> <pin direction>

// more pin definitions

*CAP

<integer label> <pin or node name> <pin or node capacitance>
// more capacitor definitions

*RES

<integer label> <pin or node name> <pin or node name> <pin or node resistance>
// more resistor definitions

*END

Each net’s definition begins with the keyword *D NET followed by its name and the sum of all
the capacitors of the net. The <net name> will be unique for each net. The <total net
capacitance> will be a decimal value, and is the sum of all the capacitors defined in the *CAP
section. The *CONN keyword describes the set of pins attached to the net. The <pin type> field
will either be of type port (*P), which is a primary input or output pin, or internal (*1), which is
an internal pin in the design. In this section, only design pins will be referenced — no
intermediate SPEF-specific node will be listed. The <pin name> field will be either a primary
input, a primary output, have the syntax <cell name>:<cell pin name>, e.g., NAND2_1:A1, or
have the syntax <net name>:i<int>, e.g.,, N1:1. The <pin direction> field refers to the pin
directional type (not the net), and will be either input (I) or output (O).

The *CAP keyword describes the set of grounded capacitors that are in the net. Namely, each
capacitor will be connected to a specified node and GND. For each capacitor, the <integer
label> is a unique integer that identifies the capacitor for this net. The <pin or node name> is a
string, and can be a primary input, primary output, a design pin with the syntax <cell
name>:<cell pin name>, or an intermediate SPEF-specific node with the syntax <net

26

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

name>:<integer>. The <pin or node capacitance> will be a decimal value specifying the
capacitance attached to the node. The actual capacitance will be this value multiplied by the
C_UNIT value specified in the header. For example, if C_UNIT is 1 PF and <pin or node
capacitance> is 1.2, the capacitance is 1.2 pF.

The *RES keyword describes the set of resistors in the net. Each resistor connects two pins or
nodes (whose format is identical to the *CAP field), and similarly has a unique <integer label>.
The <pin or node resistance> is a decimal value; the actual resistance value is this field
multiplied by the R_UNIT value specified in the header. For example, if R_UNIT is 1 OHM and
<pin or node resistance> is 3.4, then the resistance is 3.4 Q. The *END keyword indicates the
end of the net parasitics. An example net definition is shown below:

01. *D_NET *15 0.000332396

02. *CONN

03. *I1*23:A11*C43*L0.00166 *D AND2_X2
04. *1*26:ZN O *C43*L0 *DINV_X2
05. *1*25:A21*C46*L0.00173 *D AND2_X2
06. *CAP

07. 1*15:00.000117155

08. 2 *15:10.000134821

09. 3 *15:21.83593e-05

10. 4 *15:3 3.06835e-05

11. 5 *23:A19.17966e-06

12. 6 *26:ZN 9.17966e-06

13. 7 *15:6 1.30172e-05

14. *RES

15. 1 *15:6 *25:A24

16. 2 *15:3 *15:61

17. 3 *15:2 *26:ZN 1.03143

18. 4 *15:2 *23:A11.03143

19. 5*15:1 *15:3 1.35714

20. 6 *15:0 *15:24

21. 7 *15:0*15:19

22. *END

Let *R_UNIT and *C_UNIT be the same values as in the header above, i.e., *R_UNIT is 1 OHM
and *C_UNIT is 1 PF. Line 01 defines the net *15 (or N11 before name mapping) with a total
lumped capacitance of 0.000332396 pF. Lines 02-05 define the connectivity of the net *15. Line
03 specifies the internal deisgn pin *23:A1 is an input type. Line 04 specifies the internal design
pin ¥26:ZN in an output type. Line 05 specifies the internal design pin *25:A2 is an input type.
Lines 06-13 define the set of capacitors for the net *15. Line 07 specifies capacitor 1 between
the SPEF-specific intermediate node *15:0 and GND with a value 0.000117155 pF. Line 08

27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

specifies capacitor 2 between the SPEF-specific intermediate node *15:1 and GND with a value
0.000134821 pF. Line 09 specifies capacitor 3 between the SPEF-specific intermediate node
*15:2 and GND with a value 1.83593e-05 pF. Line 10 specifies capacitor 4 between the SPEF-
specific intermediate node *15:3 and GND with a value 3.06835e-05 pF. Line 11 specifies
capacitor 5 between the SPEF-specific intermediate node *23:A1 and GND with a value
9.17966e-06 pF. Line 12 specifies capacitor 6 between the SPEF-specific intermediate node
*26:ZN and GND with a value 9.17966e-06 pF. Line 13 specifies capacitor 7 between the SPEF-
specific intermediate node *15:6 and GND with a value 1.30172e-05 pF. Lines 14-21 defines the
set of resistors of net *15. Line 15 specifies resistor 1 between the SPEF-specific intermediate
nodes *15:6 and *25:A2 with a value of 4 Q. Line 15 specifies resistor 1 between the SPEF-
specific intermediate nodes *15:6 and *25:A2 with a value of 4 Q. Line 16 specifies resistor 2
between the SPEF-specific intermediate nodes *15:3 and *15:6 with a value of 1 Q. Line 17
specifies resistor 3 between the SPEF-specific intermediate nodes *15:2 and *26:ZN with a
value of 1.03143 Q. Line 18 specifies resistor 4 between the SPEF-specific intermediate nodes
*15:2 and *23:Al with a value of 1.03143 Q. Line 19 specifies resistor 5 between the SPEF-
specific intermediate nodes *15:1 and *15:3 with a value of 4 Q. Line 20 specifies resistor 6
between the SPEF-specific intermediate nodes *15:0 and *15:2 with a value of 4 Q. Line 21
specifies resistor 7 between the SPEF-specific intermediate nodes *15:0 and *15:1 with a value
of 9 Q. Line 22 ends the net definition. Figure 10 illustrates the parasitics described above for
net *15.

= *25 (NAND2_3)

OpinZI

Figure 10 - Parasitics of net *15 (N11). The R (C) labels refer to resistors (capacitors).

28

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

3.2.3 Input Liberty (.lib)

This file contains the set of all cells or gates that are available to the design. All cell instances
found in the .v file will have corresponding cell type that is located in this file. Gate-level delay
and output slew calculations will use the relevant timing information found for the appropriate
cell type. For this thesis, we will be using the NanGate 45nm Open Cell Library and the Open
Source Liberty parser. The parser supports the full logical (.lib) set of constructs including
Composite Current Source (CCS) Modeling Technology, and noise, plus syntax, and common
semantic checks.

The relevant portions of the .lib file are explained below. The library consists of (i) a header, (ii)
a set of lookup-table definitions, and (iii) a set of cell definitions, where a cell will be a
combinational element (e.g., NAND2) or a sequential element (e.g., flip-flop DFF). While there
are many keywords available, this thesis will only use the following set. For readability, each
syntax set is discussed in separate subsections below.

HEADER. The header sets the general information about the library, and is defined in the
NanGate 45nm Open Cell Library with the following format:

01. /* Documentation Attributes */

02. date :"Thu 10 Feb 2011, 18:11:20";
03. revision : "revision 1.0";
04. comment : "Copyright (c) 2004-2011 Nangate Inc. All Rights
Reserved.";
05.
06. /* General Attributes */
07. technology (cmos);
08. delay_model : table_lookup;
09. in_place_swap_mode : match_footprint;
10. library_features report_delay_calculation,report_power_calculation);
11.
12. /* Units Attributes */
13. time_unit :"1ns";
14. leakage_power_unit :"1InW";
15. voltage_unit VA
16. current_unit :"1mA";
17. pulling_resistance_unit : "lkohm";
18. capacitive_load_unit (1,ff);
19.
20. /* Operation Conditions */
21. nom_process :1.00;
22. nom_temperature :25.00;
29

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

http://www.synopsys.com/Tools/Implementation/Pages/default.aspx

23. nom_voltage :1.10;

24,

25. voltage_map (VDD,1.10);

26. voltage_map (VSS,0.00);

27.

28. define(process_corner, operating_conditions, string);
29. operating_conditions (typical) {

30. process_corner :"TypTyp";
31. process :1.00;

32. voltage :1.10;

33. temperature : 25.00;
34. tree_type :balanced_tree;
35.}

36. default_operating_conditions : typical;

Line 08 specifies the delay model used. Lines 13-18 specify the units in which the values in the
lib file are referenced. Lines 21-23 specify the nominal process, temperature, and voltage at
which the library is characterized at. Lines 29-35 specify a set of operating conditions for the
“typical” profile. Line 24 sets the default operating conditions of the library. All other lines are
being ignored.

LOOKUP TABLES. Most of the cell libraries include table models to specify the delays and timing
checks for various timing arcs of the cell. The table models are referred to as NLDM (Non-Linear
Delay Model) and are used for delay, output slew, or other timing checks. The table models
capture the delay through the cell for various combinations of input transition time at the cell
input pin and total output capacitance at the cell output. The lookup table templates are
defined as follows:

lu_table_template (<table label>) {
variable_1 : <variable name>;
index_1 (<string of data points for variable_1>);
variable_2 : <variable name>;
index_2 (<string of data points for variable_2>);

}

The <table label > and <variable name> fields are considered to be strings, and may or may not
be enclosed in ““ and “”’. The string of data points will be a set of integer or double values
indicating the index values of the table. The variable and index definition lines can be in any
order, e.g., all variable definitions can come before all index definitions. Each <table label> can
be referenced in the cell definitions. An example table template looks like:

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

01. lu_table_template (delay_template_3x3) {
02. variable_1 :input_net_transition;

03. variable_2 : total_output_net_capacitance;
04. index_1("1000,1001,1002");

05. index_2("1000,1001,1002");

06.}

Line 01 and 06 define the table template with label “delay_template_3x3”. Line 02 specifies
that variable_1 is the input transition time. Line 03 specifies that variable 2 is the output
capacitance. The table values are specified like a nested loop with the first index_1 (line 04)
being the outer (or least varying) variable and the second index_2 (line 05) being the inner (or
most varying) variable and so on. There are three entries for each variable and thus it
corresponds to a 3-by-3 table. In most cases, the entries for the table are also formatted like a
table and the first index (index_1) can then be treated as a row index and the second index
(index_2) becomes equivalent to the column index. The index values (for example 1000) are
dummy placeholders which are overridden by the actual index values in the cell fall and
cell_rise delay tables. An alternate way of specifying the index values is to specify the index
values in the template definition and to not specify them in the cell_rise and cell_fall tables.
Such a template would look like this:

01. lu_table_template(delay_template _3x3) {
02. variable_1 :input_net_transition;

03. variable_2 : total_output_net_capacitance;
04. index_1("0.1,0.3,0.7");

05. index_2("0.16,0.35, 1.43");

06.}

Based upon the delay tables, an input fall transition time of 0.3ns and an output load of 0.16pf
will correspond to the rise delay of the inverter of 0.1018ns. Since a falling transition at the
input results in the inverter output rise, the table lookup for the rise delay involves a falling
transition at the inverter input. This form of representing delays in a table as a function of two
variables, transition time and capacitance, is called the non-linear delay model (NLDM), since
non-linear variations of delay with input transition time and load capacitance are expressed in
such tables. The table models can also be 3-dimensional - an example is a flip-flop with
complementary outputs, Q and QN. The NLDM models are used not only for the delay but also
for the transition time at the output of a cell which is characterized by the input transition time
and the output load. Thus, there are separate two-dimensional tables for computing the output
rise and fall transition times of a cell.

CELL DEFINITIONS. A cell specifies a gate that could be used as part of a design, e.g.,
combinational
gate NAND2 and flip-flop DFF. Its relevant specified syntax in the .lib format is:

31

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

cell (<cell type>) {
pin(<pin name>) {
direction : <direction>;
capacitance : <double>;
max_capacitance :<double>;
min_capacitance :<double>;
timing() {
related_pin : <pin name>;
/* combinational or sequential definitions */
}
/* other timing() definitions */
}
/* other pin definitions */

}

In a cell, multiple pins can be defined, e.g., a standard NAND2 will have 3 pins — two inputs and
one output. For each pin, the direction field indicates the type of pin: (i) input, (ii) output, or (iii)
internal. The capacitance, max capacitance, and min capacitance fields specify the respective
pin capacitance, maximum and minimum expected pin loads. A timing() definition creates a
timing arc (directed pin-to-pin) inside a cell. The specific syntax is different for a combinational
and sequential connection (discussed below). Combinational timing arcs. Combinational arcs
propagate delay and output slew from a source pin to a sink pin. They are found in common
combinational logic gates, e.g., NAND2 or as a clock-trigger segment in flip-flops. A propagate
segment’s timing() syntax is:

timing() {
related_pin : <pin name> ;
timing_sense : <timing sense>;
timing_type : <timing type>;

cell_<transition> (<table label>) {
<table instance> /* omitted for space */
}
<transition>_transition(<table label>) {
<table instance> /* omitted for space */

}

/* other cell transition table definitions */

The related pin is the source of the segment, and the pin (from the pin definition) is the sink of
the segment. The timing sense field specifies the transition mode: (i) positive unate, where the
source and sink transitions are the same (e.g., rise-to-rise), (ii) negative unate, where the source
and sink transitions are opposite (e.g., rise-to-fall), and (iii) non unate, where the source
transition has no relation to the sink transition. The timing type field specifies if the arc is
combinational, where the unateness is be defined as either positive unate or negative unate, or

32

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

<timing type edge> edge, where the unateness is defined as non unate and <timing type edge>
is either rising or falling, and refers to the source. The cell <transition> table refers to delay; the
<transition> transition table refers to output slew. In both tables, the <transition> refers to the
sink of the arc, and is either rise or fall. Note that in the case of (i) positive unate and (ii)
negative unate, the direction of the source-to-sink transition is implicitly defined by knowing
the unateness and the <transition> transition. For instance, if the arc is negative unate and
there exists a table with fall transition, the arc described is a rise-to-fall transition. In the case of
non unate, both <timing sense> and <transition> transition must be used, where the former
describes the source edge, and the latter describes the sink edge. For example, if <timing
sense> is rising edge and there exists a table with fall transition, the arc described is a rise-to-
fall transition. The <table label> will be a string that corresponds either (i) to a previously-
declared lookup-table template or (ii) be the keyword scalar, indicating that the value stored is
a single element (i.e., a 1x1 table). A sample gate is shown below:

01. cell(OR2_X2) {

02. pin("0"){

03. direction : output ;
04. capacitance : 2.00;

05. timing() {

06. related_pin: "a";

07. timing_sense : positive_unate;
08. timing_type : combinational;
09. cell_fall (scalar) {

10. values ("40.00");

11. }

12. fall_transition (delay_slew_load 6x1) {
13. index_1 ("1.050, 2.000, 5.000, 5.500, 9.000, 20.00");
14. index_2 ("1.0000");

15. values (\

16. "1.050000", \

17. "2.000000", \

18. "5.000000", \

19. "5.500000", \

20. "9.000000", \

21. "20.000000" \

22.);

23. }

24, '}

25. }

26.}

33

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Lines 01-26 define the cell OR2 X2. Lines 02-25 define the pin o inside cell OR X2. Line 03
specifies that o is an output pin. Line 04 specifies that the pin capacitance of the cell (for both
rise and fall) is 2fF. Lines 05-24 specify a timing arc between source pin a (line 06) and sink pin
o. Line 07 specifies that this timing arc is of type positive unate, which propagates the incoming
transition to the output transition (i.e., rise-to-rise and fall-to-fall). Lines 09-11 specify that the
arc contains a fall transition at the output with a fixed (scalar) delay value of 40ps. Due to the
cell fall definition and the positive unate type, this arc is implicitly a fall-to-fall transition. Lines
12-23 specify the output slew table using lookup-table template delay slew load 6x1, with lines
13-22 matching the corresponding table syntax.

3.2.4 Output Files (.v .scf)

The produced files comprise of a verilog file, as described in a previous section, containing the
new cell names, after the resizing has taken place, and a file containing the scale factors of the
new cells. The output Verilog file will be flatten, which means that if the input Verilog files
contained a hierarchy of modules, the output file will contain only the top module which will
include all the instantiated cells and nets of the hierarchical modules.

The .scf file defines the scale of the new cells compared to the cell sizes contained in the
original design, and the format is defined as,

<instance_name_1> <scale_factor_1>

<instance_name_2> <scale_factor_2>

<instance_name_n> <scale_factor_n>

34

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

3.3 Internal Representation

The Verilog files describe the circuit connectivity, in the abstract level of cells and nets. In order
to apply the resizing algorithm, that connectivity information must be interpreted and mapped
into a graph, which is performed in the parsing module. For example visualizing the circuit c17.v
(see Figure 11), in the abstract model of cells and nets will yield the following connectivity map.

NL O ‘o NAND?. 5 . L4 22
Al
A2
N2 N3 N16

5

N2
N3
D_ N NAND2 6 15 o3
N6 _ z N N2 A N hes ,
- N

> v

Figure 11 - Implementation of c17.v

Many of the algorithms used in the industry, consists of graph explorations or different graph
operations, which means that the connectivity map must be transformed into a simple directed
graph representation (nodes/edges).

The nodes of the graph will be the pins of each cell (see Figure 12), and the ports (Primary
inputs/Primary outputs). The names of each node must be unique, which means that the name
of the pins cannot uniquely define a node. In that case an enhanced name must be used, which
uses as a prefix the instance name of the cell, which is already unique. The ports are already
unique, but for simplicity reasons, have a prefix of input/output.

<NAND2_1>:Al
<input>:N1 e <NAND2_1>ZN < _0>A <I_0>ZN <NAND2_5>:Al
°
<NAND2_1>A2 <NAND2 557N <I_4>A <|_4>ZN <output>:N22
<input>:N2 e - - . °
<NAND2_5>A3
e <NAND2_3>:Al .
<input>:N3 ® NAND2 3>ZN < 2>A <I_2>7N
™ ° ° ° <NAND2_6>Al
<NAND2_2>:AL <NANDZ_3>A2 ® <NAND2_6>ZN <|_5>A <|_4>27ZN <output>N23
<input>:N6 o <NAND2 2>7ZN <I_1>A <|_1>7N . . . °
® . [.) <NAND2_6>:A2
<NAND2_2>:A2 <NAND2_4>:Al .
<input>:N7 L ® NAND2 4>7N <I_3>A <I_3>ZN
s} . L . .
<NAND2_4>:A2

Figure 12 - The nodes of a pin based graph.

35

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

The edges of the graph, that describe the connectivity between cells, will be the nets of the
circuit (see Figure 13). There is no need for naming the edges, but for simplification the actual
name of the nets are used. These edges are described as net edges.

<NAND2_1>Al
<inpu.[y0 <NAND2_1>ZN <|_0>A <I_0>2N <NAND2_5>:Al
— > — e
NI ananDe_1>A2 NO N10 <NAND2_5>ZN <I_4>A <|_4>ZN <output>N22
<input>:N2 o ———»>e ———>»o
<NAND2_5>A3 N9
<NAND2_3>:Al . N22
N16
<input>: ® <NAND2 3>ZN <I_2>A <|_2‘>Z:
. — e SNAND2_6>AL
<NAND2_2>Al <NANDZ_3>A2 N5 NG >® <NAND2 657N <I_5%A <I_4>ZN <output>N23

<input>:N6 N3 o <NAND2 272N <I_1>A <|_1>7ZN N11_ye a >o a >e
——>e <NAND2_6>:A2
wm 25A2 “ AND2_4>:AL . N12 N23
<input>:N7 N6 “he N1l “*e <NANDZ 4>ZN <I_3>A <I_3:V'
'Nr: 4>A2 . > N19
- N8
N7 L]

Figure 13 - The graph including the cell connectivity.

The tool cannot extract the total graph of the circuit by only using the Verilog files. The
connectivity information inside its cell, is described in the .lib file. Each output of a cell has a set
of input related pins, for which the timing information is specified. Those relations specify the
internal connectivity of a cell and the edges are described as cell edges (see Figure 14).

<NAND2_1>Al
<i”"”.‘y" NANDZ2_1>ZN <I_0>A <l 02N <NAND2_55:A1L
NI <nanD2_1>p2 NO N10 7T UGNANDZ B>ZN <I_4>A <I_4>7ZN <output>:N22
<input>:N2 i ——»e ——>o
<NAND2_5>:A3
<NAND2_3>:Al Y N9 N22
N16
<input>: ® _<NANDZ_3>ZN <|_2>A <|_2‘>Z:
) ————>e <NAND2_6>:Al
<NANDZ_2>Al <NAND2_3>A2 N5 Nig ¢ <NAND2 6>7N <|_5>A <I_4>7ZN <output>N23

<input>:NG N3 o <NAND2_2>ZN <I_1>A < _1>7N N11_ye >e >e
—>e <NANDZ_6>A2 N12 N23
.\WA‘LVDZ_2>?P2 NA IAND2_4>Al -
<input>=N7 N6 “he N11 ® <NAND2_4>ZN <I_3>A <|73‘>V'
o
H_4>:A2 ™ N19
N8
N7 ®

Figure 14 - The graph including the cell internal connectivity.

The internal representation is further enhanced by grouping all the associated pins in the same
data structure, which is the cell instance (see Figure 15). The pins are also categorized by its
type, input or output.

36

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

inputs outputs

inputs outputs

| 7@ inputs _outputs
® @ inputs _ outputs
| »@®
® NANDZ 1 {] inputs _outputs 14
. -
NAND2_5
inputs outputs /,. 2
) inputs outputs
0 inputs _outputs NAND2 3 \.
® inputs _outputs
o 1 inputs outputs o E o o
| @ 15
NAND2_2 \‘. inputs _outputs
*— NAND2_6
—® 13
NAND2_4

Figure 15 - The final internal representation, including the cell instances.

The nodes of the circuit store the transition and arrival times. The net edges store the wire
capacitance, the resistance, and the calculated delay. The cell edges store the timing tables and
calculated delay.

3.4 Logical Effort Parameters

3.4.1 Logical effort parameter extraction

There are multiple methods for extracting the logical effort parameter. A good standard cell
library (.lib file) contains multiple sizes of each common gate. The sizes are typically labeled
with their drive strength [18] . For example, a unit inverter may be called inv_x1. An inverter of
eight times unit size is called inv_x8. A 2-input NAND that delivers the same current as the
inverter is called nand2_x1. It is often more intuitive to characterize gates by their drive
strength, x, rather than their input capacitance. If we redefine a unit inverter to have one unit
of input capacitance, then the drive strength of an arbitrary gate is:

Cin (36)

g

In order to redefine the unit inverter, every input capacitance must be scaled by the
capacitance of the unit inverter

S

% (37)
x=—2
g

37

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Since the drive strength of cell is defined in a standard cell library, the logical effort can be
extracted by,

Cin (38)

In particular, since every input pin has different capacitance, according to its state (falling,
rising), there will exist two logical effort: g values for every input pin (g, 8rise)-

This extraction methodology is used in the resizing algorithm.

An alternative method, when using a standard cell library, is to the extract logical effort of gates
directly from the delay timing tables.

A
Data
{delay)

Output

Capacitance s

Figure 16 - Three dimensional plot of the timing data.

Using the logical effort delay expression,d = g xh + p, where h = %, linear regression

mn

can be performed in order to extract g and p, in the NLDM tables.

For example linear regression on cell INV_X1 can be performed as,

38

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

. | 000334769 | 0,00529785 0,00763425 0,0122592 0021471 0,0398747 0076665 |

| 000461096 | 0,00678237 0,00912396 0,0137631 0,0229885 0,0413991 0,0781923
|

| 0,00565781 | N.0N963029 0.013391 0.0192072 0.0284937 0.0468495 0.0836153

i 000501217 ! 0,0107451 0,0162361 0,0248924 0,0380191 0,0575991 0,0941587

|

|

0,00228759 | 0,00977055 0,0169885 0,0284204 0,0459573 0,0721436 0,111006
|

I
I
: -0,00275926 : 0,0064151 0,0153503 0,0295626 0,0514378 0,0844139 0,133051
I
I
I

-0,0102639 |0,000468768 0,011068 0,0280603 0,0542902 0,0939467 0,15297

Figure 17 - NanGate’s x1 inverter.

Where the input transitions are,

0,00117378 0,00472397 0,0171859 0,0409838 0,0780596 0,130081 0,198535

And the capacitance loads are,

0,365616 1,89781 3,79562 7,59125 15,1825 30,365 60,73

Since there exist seven input transition values, the regression will produce seven lines (seven
different pairs of g, p). By simply averaging all the g, and all the p, the algorithm produces the
final line.

39

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

0 10 20 30 40
Cout/Cin

0 |

Figure 18 - The linear regression output for the highlighted yellow data.

3.4.2 Unit Inverter

The unit inverter is a cell, which belongs to the standard cell library and it is usually an inverter.
That cell in needed in order to normalize the input capacitance of every cell, for the logical
effort parameter. The unit inverter capacitance is defined as,

. C;gﬁinv + C;Li?éinv (39)
0 =
2

Where Crqy1, and G are the input capacitance values as described in the .lib file.

The ULE method requires the calculation of another constant, the unit inverter delay (t), which
is defined as,

T= R, XC(, (40)

The lib file does not provide any information regarding the resistance of cell, so in order to
calculate the unit inverter delay, the delay timing tables must be used. Assuming zero slew as
the input of the unit inverter, and another unit inverter as the driving cell, bilinear interpolation
can be performed in order to acquire the delay. The interpolation method will be described
further, in the cell delay calculation part of the Static Timing Analysis (STA) chapter.

40

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

G

!

Figure 19 - A unit inverter driving another unit inverter for zero slew.

In the same context 7 is defined as,

dfall + drise (41)
T

Where dfqy, and d,;. are the delays, as calculated using bilinear interpolation.

3.5 Timing Analysis
3.5.1 Introduction

The resizing algorithm performs the ULE method for delay evaluation and minimization in paths
composed of CMOS logic gates. Each path, that will be evaluated, can be chosen arbitrarily from
a pool of paths, but this technique will not yield the best results. A choosing criterion must be
used in order to select the most suitable path every time. That criterion would ideally be a
combination of metrics, which is power consumption and delay. The developed algorithm only
uses the delay as a filter when examining paths.

41

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Timing analysis must be performed in order to sort the available paths according to their
criticality, that is extracting the paths with the worst or best delay (Late / Early timing analysis).
Since the resizing algorithm is very conservative, the timing analysis will only be performed for
the worst delay paths. There are different approaches for timing analysis, such as static timing
analysis, dynamic timing analysis, statistical timing analysis, and each of them uses a different
methodology to analyze the circuit.

Static timing analysis verifies circuit timing by “adding up propagation delays along paths
between clocked elements” in a circuit. It checks the delays along each path against the
specified timing constraints for each circuit path and reports any existing timing violations.

Dynamic timing analysis verifies circuit timing by applying test vectors to the circuit. This
approach is an extension of simulation and ensures that circuit timing is tested in its functional
context. This method reports timing errors that functionally exist in the circuit and avoids
reporting errors that occur in unused circuit paths.

Statistical timing analysis is a variation of the static timing analysis which replaces the normal
deterministic timing of gates and interconnects with probability distributions, and gives a
distribution of possible circuit outcomes rather than a single outcome.

Every method has its own advantages and disadvantages, but for the purposes of the resizing
algorithm, static timing analysis was selected, to provide an estimate of the worst paths, with
the least algorithm complexity.

3.5.2 Static Timing Analysis

: Primary Primary : P
| Inputs Outputs | e S
|
QI ot I———ﬂ: 77 AN
[I 7 Anput 9
| P2 nput Jews \
|] - | \
[|
I | | 9 — - T I | // day OJtpUtEG‘WSOy\
(. ' o= . [\
=S : N * |
, Ne 3 | l
I T I Input Sewsis
N o R /
[r [
| Le 4 S —— \ /
I No g I
! F T T L2y /
N ' AN s
: I___J : \\ //

—_— e —— =

Figure 20 - Slews and delays in a circuit element.

42

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Static timing analysis [18] [19] computes the amount of time required for signals to propagate
in a circuit from its primary inputs (Pls) to its primary outputs (POs) through various circuit
elements and interconnect. Signals arriving at an input of an element will be available at its
output(s) at some later time; each element therefore introduces a delay during signal
propagation. Furthermore, signal transitions are characterized by their input slew and their
output slew, which is defined as the amount of time required for a signal to transition from high
to low or low to high. For example, the delay across the circuit element from input A to output
Y is designated be d4_,y, the input slew at A by S;4, and the output slew at Y by S,y (see Figure
20). Both the delay and the output slew are functions of input slew.

Starting from the primary inputs, we quantify the instant that a signal reaches an input or
output of a circuit element as the arrival time (at). To account for multiple sources of within-
chip variation, such as manufacturing variations, temperature fluctuation, voltage drops, and
electro-migration, the timing analysis is typically performed using an early / late split, which
each circuit node has an early (lower) bound and a late (upper) bound on its time. The early /
late mode is applied in both the arrival times and slews.

The arrival time propagation is performed by starting from the primary inputs, and the arrival
times are computed by adding delays across a path, and performing the minimum (in early
mode) or maximum (in late mode) of such accumulated times at a merge point, which is the
output of a circuit element.

In early mode, we are concerned with computing the earliest time instant that a signal

transition can reach any given circuit node. For example, let atjarly and atgarly to be the early
arrival times at pins A and B. Then the early mode arrival time at the output pin Y will be

atg™™ = min(atg®™ + d5% atg™ + dg) (42)
Conversely, in late mode, we are concerned with computing the latest time instant that a signal
transition can reach any given circuit node. Following the same example, the late mode arrival

time at output pin Y will be:

atift® = max(at)**® + d{¢ , atite + dite) (43)

The delays that are accumulated in a path, fall into two categories; delays introduced by the
circuit elements and delays introduced by the interconnect.

The slew propagation is performed by starting from the primary inputs, but in this time, the
values are not accumulated, but instead they are changed based on some function. Similar to
the arrival time propagation, when reaching at a merge point, the minimum (in early mode) or
maximum (in late mode) must be performed, in order to propagate the best/worst slew.
Following the same example, the early mode and late mode slew at output pin Y are,
respectively:

Ses™ = min(fasy (S5, foor (SE7)) (44)

43

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Sgi’te = max(fAey(Silgte)'fBeY(Silgte)) (45)

Typically the function of the slew is different in early and late mode, but in our case, the
developed algorithm uses the same function.

The functions of slew fall into two categories; functions of slew for the circuit elements, and
functions of slew for the interconnect.

The values of slew and arrival times at the primary inputs can be initialized to arbitrary values. If
the design contains constants (1'b0, 1’b1), which are handled as virtual primary input wires,
their slews and arrival times will be initialized to 0.

3.5.3 Functions of delay and slew for cells

The .lib file provides the functions for delay and slew for each circuit element, in fall and rise
state, that can be used for a valid design. Each cell has a function for every timing arc, and
sometimes has multiple functions for even the same timing arc. The functions have two
variables, which are input slew and total output capacitance, and usually are constructed as
two-dimensional tables. The values on the tables are either the slew on the output of a pin, or
the delay for the given timing arc. The tables basically contain some corner cases, which were
extracted over simulations, and the model used is the NLDM. In order to obtain the value of the
function, given the input slew and the total output capacitance, as inputs, bilinear interpolation
needs to be performed when the inputs belong in the domain of the variables. When any of
inputs lie outside the domain of the function, bilinear extrapolation needs to be performed.

If a table lookup is required for (x, y,), the lookup value is obtained by interpolation, which is
given by:

Too = X20 * Y20 * T11 + X 20* Vo1 * T1z + Xo1 * Yoo * To1 + Xo1 * Vo1 * T2z (46)

where,

Xo — X1 X2 — Xo Yo— M1 Y2—Yo 47
X20 = (47)
X2 — X1 X2 —Xq V2= Y2—W1

Xo1 =
X1,X2, Y1, Y, belong to the domain of variables (input transition, total output capacitance), with

X1 < X9 <Xz andy; < yo <y,. T are the corresponding values in the two-dimensional
array.

44

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Tm-2,n-2

Tm—l,l Tm—l,2 Tm—1,3

Tm—l,n—2

Tm—l,n—l

Tm—l,n

Tm,l Tm,2 Tm,3

Tm,n-2

Tm,n-l

Table 2 - Two-dimensional NLDM table

The above equation is valid both for interpolation and extrapolation.

In the case of multiple tables per timing arc in the same cell, the algorithm calculates the worst

case which is the maximum (in late mode) and the minimum (in early mode).

Consider the table lookup for fall transition for the input transition time of 0.15ns and an
output capacitance of 1.16pF. The corresponding section of the fall transition table relevant for

two-dimensional interpolation is reproduced below.

fall_transition(delay_template_3x3) {
index_1("0.1,0.3...");
index_2 ("...0.35, 1.43");
values (\
" ..0.1937,0.7280", \
"...0.2327,0.7676"

Substituting 0.15 for index_1 and 1.16 for index_2 results in the fall_transition value of:

Too = 0.75 * 0.25 * 0.1937 + 0.75 * 0.75 * 0.7280 + 0.25 * 0.25 * 0.2327 + 0.25

* 0.75 * 0.7676 = 0.6043

45

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Total output capacitance

Onet

;

annl

Figure 21 - Output capacitance.

The total output capacitance of a cell is defined as:

Ctotat = Cnet +

= (48)
Cpini
i=1

The net capacitance is the total capacitance for a given net, as defined in the .spef file.

Timing arcs and unateness

Every cell has multiple timing arcs. For example, a combinational logic cell, such as AND, OR,
NAND, NOR cell, has timing arcs from each input to each output of the cell. Each timing arc has
a timing sense, that is, how the output changes for different types of transitions on input. The
timing arc is positive unate if a rising transition on an input causes the output to rise (or not to
change) and a falling transition on an input causes the output to fall (or not to change) (see
Figure 22). A negative unate timing arc is one where a rising transition on an input causes the
output to have a falling transition (or not to change) and a falling transition on an input causes
the output to have a rising transition (or not to change) (see Figure 23). In a non-unate timing
arc, the output transition cannot be determined solely from the direction of change of an input
but also depends upon the state of the other inputs. For example, the timing arcs in a xor cell
(exclusive-or) are non-unate. In the case of non-unate three sub cases are specified, when
considering the timing type field in the lib file. In the case of rising edge and falling edge, the

46

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

output transition can be specified by the input transition (see Figure 24, Figure 25). In the case
of combinational edge, every combination of input transition must be taken into account, so
the output transition will be computed as the worst/best combination (maximum for late mode
and minimum for early mode) (see Figure 26).

Unateness is important for timing as it specifies how the edges (transitions) can propagate
through a cell and how they appear at the output of the cell.

- I
RsetoRise Fdl to Fall

Figure 22 - Positive Unate.

N
Rse toFall Fdl to Rise

Figure 23 - Negative Unate.

-
AN

Rse toFall
Figure 24 - Non Unate, (Rising Edge).

U N
- -
Fdl to Falland

Fdl to Rise
Figure 25 - Non Unate, (Falling Edge).

47

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

RsetoRiseor Fdl to Fall or
RsetoFall Fdl to Rise

Figure 26 - Non Unate, (Combinational Edge).

In that context, the interpolation for the output slew of a circuit element will be performed as,

if timing_sense is POSITIVE_UNATE
{
O_tr_r = interpolate (transition_rise, |_tr_r, C_out_r)
O_tr_f =interpolate (transition_fall, |_tr_f, C_out_f)
}
else if timing_sense is NEGATIVE_UNATE
{
O_tr_r = interpolate (transition_rise, |_tr_f, C_out_r)
O_tr_f =interpolate (transition_fall, |_tr_r, C_out_f)

}
else if timing_sense is NON_UNATE
{
if timing_type is FALLING_EDGE
{
O_tr_r = interpolate (transition_rise, I_tr_f, C_out_r)
O_tr_f = interpolate (transition_fall, I_tr_f, C_out_f)
}
else if timing_type is RISING_EDGE
O_tr_r = interpolate (transition_rise, |_tr r, C_out_r)
O_tr_f =interpolate (transition_fall, |_tr_r, C_out_f)
}
else if timing_type is COMBINATIONAL
{
tr_r_1 =interpolate (transition_rise, |_tr_r, C_out_r)
tr_r_2 =interpolate (transition_rise, |_tr_f, C_out_r)
O_tr_r=compare (tr_r_1,tr r_2)
tr_f 1 =interpolate (transition_fall, |_tr_r, C_out_f)
tr_f 2 =interpolate (transition_fall, |_tr_f, C_out_f)
O _tr f=compare (tr f 1,tr f 2)
}
}

Algorithm 1 - Output slew calculation.

48

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

where |_tr_r, |_tr_f are the slews at the input of a cell, O_tr_r, O_tr_f are the slews at the
output of a cell, and C_out_f, C_out_r are the total output capacitances at the output of a cell.
In the case of early and late mode every slew will be calculated twice. For instance at an input
of cell there will exist 4 slew values, |_tr_r_early, |_tr_f early, |_tr_r_late, |_tr_f late. The delay

for each timing arc is calculated exactly the same way as slew, with the difference that the
cell_rise/cell_fall tables are used in the interpolation instead of transition_rise/transition_fall.

3.5.4 Functions of delay and slew for interconnect

The .spef file provides the resistances and capacitances, in segments, for each net found in the
circuit, so the delay of each net (port to taps) can be calculated once using the elmore delay
model. In that context the function of delay is just a constant value. The function of slew at any
given tap T can be approximated by a two-step process. First, the output slew of the impulse
response is computed, which can be well-approximated by,

. (49)
Sor = |2Br - d%

Where St is the second moment of the input response at node T, and dr is the corresponding
elmore delay. Second, the slew of the response to the input ramp is computed by the

expression:
N 50
Sor ® ‘/5i2+ Sor (0)

where s; is the input slew (see Figure 27).

The unateness of the interconnect is defined as positive unate, that means if a signal is
rising/falling, it will not change through the interconnect.

49

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

tap
N
L
[
port
dr SI)IT
L
\‘
tap

Figure 27 - Interconnect.

Elmore delay model

Elmore delays are applicable for RC trees, which meet the following three conditions. They have
a single input (port) node, they do not contain any resistive loops, every capacitance is
connected between a node and ground (lumped capacitance). ElImore delay can be considered
as finding the delay through each segment, as the R times the downstream capacitance, and
then taking the sum of the delays from the root to the sink.

The downstream capacitance is defined as sum of the enclosed capacitances, under the same
color, including the capacitance of the node with the same color (see Figure 28).

Figure 28 - Downstream capacitance.

50

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

The ElImore delay at node e is defined as,

de = Z Ry Cy (51)

KEN

where N is the set of all nodes in the RC network.

= *25 (NAND2_3)

*23 (NAND2_4)

Figure 29 - Parasitics of the net *15 (N11).

For instance the delays at taps (see Figure 29) *25:A2 and *23:A1l of the net *15 (N11) can be
calculated as,

dirsiny =Rz % (C3+ Ci+ Co+ Cy+ C7 + Cg + Cpiny + Cs + Cpinz)
+Rg * (CL + C, + C4 + C; + Cg + Cpina)
+R; * (C, 4 Cy 4 Cy + Cg + Cping)
+Rs * (Cy + C7 + Cg + Cpiny)
+Ry * (C; + Cg + Cpiny)

+R; * (Cg + Cpin1)

di3.41 = Ry * (Cs +C +C+Cy+Cy+ Cg+ Cying +Cs + Cpinz)

+R4 * (CS + Cpinz)

51

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

The second moment of the input response (B7) at node n can be calculated as:

Br = Z RyrCrdy (52)

KEN

where dj, is the Elmore delay.

For instance the beta factors at taps *25:A2 and *23:A1l of the net *15 (N11) can be calculated
as,

Bizsiaz = Ry x (C3xd3+ Cyxdy + Cyxdy + Cuxdy + C7 % dy + [Cg + Cping] * dissinn + [Cs
+ Cpinz] * di23:41)

+Re* (Cyxdy + Cyxdy + Cyxdy + Cq xdy + [Cg + Cpint] * dissaz)
+R; x (Co*xdy + C4*dy + C7 xd7 + [Cg + Cpina] * dizsiaz)

+Rs * (Cy xdy + C7 xdy + [Cg + Cping] * dizs.a2)

+Ry * (C7 xd7 + [Cg + Cpin1] * diss.42)

+ Ry * ([Cg + Cpina] * di25.42)

Bizziar = Ry x (C3%d3+Cy*dy +Cy*dy+ Cyxdy+ Crxd7 + [Cg + Cping] * dinsan + [Cs +
Cpinz] * d.23.41)

+R, * ([Cs + Cpinz] * dy23.41)

The developed algorithm in the resizing tool, traverses the tree in post order (see Appendix B),
in order to accumulate the downstream capacitance at every node, and then traverses the tree
using depth first traversal (see Appendix B) in order to calculate the elmore delay at each node.
During the depth first traversal, the sum of C; * d; is also accumulated at each node. The
process is finalized with a second depth first traversal, which calculates the beta factors at
every tap.

Parasitics with coupling capacitances and resistive loops

Ideally all the nets of a design must be trees, but sometimes that is not the case. Spef can
contain capacitances between two nodes (coupling capacitances) along with lumped
capacitances. The resistance network for a net can be very complex. Spef can contain resistor

52

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

loops or seemingly ridiculously huge resistors even if the layout is a simple point to point route
(see Figure 30). This is due how the extraction tool cuts nets into tiny pieces for extraction and
then mathematically stitches them back together when writing spef.

"D

—h

: l

Figure 30 - Parasitics containing resistor loop and coupling capacitance.

The elimination of coupling capacitances is performed while parsing the .spef file, but the
elimination of resistor loops requires the creation of the spanning tree.

First a loop detection algorithm takes places during the first post order traversal, and if a loop is
discovered the elmore delay calculation must be stopped. At this point a spanning tree
algorithm needs to be performed in order to reduce the graph into a tree. Since the whole
analysis is pessimistic, only the largest resistances need to be part of the final tree. Kruskal’s
maximum spanning tree algorithm is deployed, which sorts all the resistances of a given net
into descending order, and then every resistance is inserted into the final tree if it does not
create a loop. The loop detection step in Kruskal’s algorithm is implemented with disjoint-set
data structure (union—find data structure). After the spanning tree step, the elmore delay
algorithm needs to be perform again from the beginning. (see Appendix B).

3.5.5 Path delay

O Ta Tl T Tl Tc 3
ST NN NN NN Y
f NO N1 N2 N3
UINVa UINVD UINVC 1 doad

Figure 31 - Delays across a path.

53

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Consider the three inverters in series (see Figure 31); every inverter has negative unate. While
considering paths from net NO to net N3, we consider both rising edge and falling edge paths.
Assume that there is a rising edge at net NO. The transition time (or slew) at the input of the
first inverter may be specified; in the absence of such a specification, a transition time of 0
(corresponding to an ideal step) is assumed. The transition time at the input UINVa/A is
determined by using the elmore delay model as specified in the previous section. The same
delay model is also used in determining the delay, TnO, for net NO. The total capacitance at the
output UINVa/Z is obtained based upon the net load at the output of UINVa, and the
capacitance of the pin UINVb/A. The transition time at input UINVa/A and the total load at
output UINVa/Z is then used to obtain the cell output fall delay. The elmore delay model at pin
UINVa/Z is used to determine the transition time at pin UINVb/A and the delay, Tn1, on the net
N1.

Once the transition time at input UINVb/A is known, the process for calculating the delay
through UINVb is similarly utilized. The RC interconnect at UINVb/Z, and the pin capacitance of
pin UINVc/A are used to determine the total load at N2. The transition time at UINVb/A is used
to determine the rise delay through the inverter UINVb, and so on. The load at the last stage is
determined by any explicit load specification provided, or in the absence of which only the wire
load of net N3 is used.

The above analysis assumed a rising edge at net NO. Similar analysis can be carried out for the
case of a falling edge on net NO. Thus, in this simple example, there are two timing paths with
the following delays:

Trau = TnOpise + Tasqy + Tnlsey + Thyise + Tn2pi5e + Tcrau + TN3pqy
Trise = Tnofall + Tarise + Tnlrise + beall + Tnzfall + Tcrise + Tn3rise
In the case of asynchronous timing arcs, like preset or clear arcs, which appear in some

sequential elements, the arrival time propagation can be disabled through those
aforementioned arcs, if static timing analysis is done in a synchronous mode.

3.5.6 Static Timing Analysis Implementation

The basic requirement to correctly calculate the slew at the output of a cell and the delay of a
cell is, that every cell needs to be processed when the slew has arrived in all of its inputs, and
not earlier. In order to achieve this requirement, the circuit must be ordered based on distance
from the primary [20].

54

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Levelization

The distance of a cell from the primary inputs is defined as its level and it can be obtained as,

Level(Cell;) = maxj(Level(Cellj) + 1) and Cell; - Cell;

= TL—

n 1
1 3 1
; —p- : —p—
0 oI
Figure 32 - Levelization example.

Starting from the primary inputs (see Figure 32), a breadth first traversal (see Appendix B) is
deployed to propagate the levels through the circuit. So cells that are connected directly to the
primary inputs should be level 1, and so on. The levelization algorithm exhibits a problem when
sequential elements (flip flops or latches) are found in our design, since these elements
introduce loops in the cell connectivity graph. In order to resolve this issue the breadth first
algorithm does not propagate the level through a register pin of a sequential element. If loops
are present in the design (see Figure 33), the levelization algorithm will fail to proceed the
design.

Figure 33 - An unlevelized circuit.

55

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

After the levelization has taken place, a histogram is created, which indicates which cells are in
which level.

Static timing analysis algorithm

The pseudocode of the STA algorithm is presented,

for every net

{
calculate elmore delay
calculate beta factors
}
for every PI
{
propagate (slew, arrival time) at level 1 cells
}
for every level i
{
for all the cells at level i
{
calculate (slew, arrival time) at the output of the cell
propagate (slew, arrival time) at driving cells
}
}

Algorithm 2 - STA.

The calculation of the slew and arrival time at the output (merge point) of a cell, and the
propagation through the interconnect, is done as specified in the previous sections. The STA
algorithm only propagates the late slews and arrival times, since the resizing algorithm needs
only the worst paths of the circuit.

3.5.7 Critical path extraction

After the propagation of slew and arrival time, every node on the circuit has the worst possible
arrival time from all the paths that converge to that node. Tracing back from every node will
produce the worst possible sub-path for each node.

The resizing algorithm uses a set of terminal nodes, from which will select the node with the
worst arrival time. Every node has two arrival times, one indicating the fall state and one

56

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

indicating the rise state. So in order to find the worst arrival time from all the nodes the
algorithm uses,

maxg,e = max(max; (at}a”),maxi (at;'ise)) where i € terminal nodes
At this point starting from the node with the worst arrival time, in addition with the state of
that arrival time, the algorithm extracts the path in backward traversal, until it reaches a
primary input.

Terminal nodes

The set of terminal nodes, is initialized as the leaves of the graph, which was produced from the
node representation of the circuit. That leaves can be categorized as the primary outputs, the
register pins, and every pin of a cell that is not connected to any net. The initialization of the set
can be configured by the user.

The set of terminal nodes, is updated by the resizing algorithm, so the whole circuit can be
examined. Nodes will be removed from the set, while new nodes will be inserted during the
execution of the resizing algorithm.

3.5.8 Optimizations

Exploitation of the benefits that current multi-core architecture have to offer is of high
importance for compute intensive problems. The resizing algorithm can be compute intensive
for large designs, because the timing information needs to be reevaluated after a change occurs
in the design. For this reason a series of algorithmic optimizations, which target multi-core
architectures or reduce the problem space are deployed in order to reduce the required
execution time.

Multi-threading optimization

The presented pseudocode for STA has two embarrassingly parallel regions, that do not share
any data, and there is not any need for a locking scheme to be deployed.

The first region corresponds to the elmore delay and beta factor calculation, because every net
is completely independent from each other. The computation that needs to be performed in
this region, requires path tracing to be deployed in the interconnect graph (one post order
graph traversal, two depth first graph traversals), and on top of that, in case of resistor loops

57

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

the maximum spanning tree algorithm needs to be deployed to alleviate the problem. In very
large designs with millions of nets, which can be very complex, an optimization at this region
might have a big impact on the execution time.

The second region corresponds the calculation and propagation of the slew and arrival time, for
all the cells that are in the same level, because all the cells at that level do not share any
common points in the graph of the circuit. This region of STA is the main hotspot of the resizing
algorithm, since the timings of the design need to be revaluated over and over again. In very
large designs, the STA algorithm will have to be performed thousands of times, which means
that an optimization in this region will have a huge impact on the execution time.

The pseudocode of the STA algorithm, including parallelization, is presented,

partition the (nets) into chunks
assign the chunks to the threads
thread j:

{

for every net in the chunk

{

calculate elmore delay
calculate beta factors

}
}
for every PI
{
propagate (slew, arrival time) at level 1 cells
}
for every level i
{
partition the (cells at level i) into chunks
assign the chunks to the threads
thread j:
{
for all the cells in the chunk
{
calculate (slew, arrival time) at the output of the cell
propagate (slew, arrival time) at driving cells
}
}
}

Algorithm 3 - Parallel STA.

58

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Incremental optimization

STA needs to be performed every time a set of changes has occurred in the design, which is the
resizing of some cells within a path. The initial STA algorithm propagates the timing information
in the design, starting from its primary inputs. The same approach can be used throughout the
execution of the resizing algorithm. Although this is a valid way of performing the STA, it does
not take into account that some portion of the design will stay unchanged, in terms of timing
information, even if a change has taken place. A better approach would be to first find points
that will be affected by the change, and then deploy the STA from those points.

Examined Path
Resized cells
Affected cells

el Ly —— [~

|
|
|
|
|
|
|
|
|
|
:
|
| PIs
|
|
|
|
|
|
|
|
|
|
|
|
|

S

Figure 34 - Affected cells and net after resizing.

Consider the case that two cells have been resized in the examined path (see Figure 34), cells
celll and cell2. The only elements, cells or interconnect, that are directly affected by the resized
cells, are cell3, cell4, netl, net2 for the cell celll and cell5, cell6, net3, net4 for the cell cell2.

For all the affected nets, the STA algorithm needs to recalculate the elmore delay and the beta
factors, since the input pins capacitance has changed for their driving cells.

In the case of cells, every affected cell will be tagged for examination, but that is not enough for
the STA algorithm. The minimum affected cell level needs to be found, so that the STA can
initialize the propagation from this level. During the stage of the STA, a cell at a given level will
be examined only if it was tagged earlier during the sta. Each examined cell will tag for
examination its driving cells. In this way the slews and arrival times will be propagated through
the circuit, reaching the primary outputs.

59

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

The pseudocode of the incremental STA, including parallelization, is presented,

for every resized cell

{

find the affected nets
find the affected cells

partition the (affected nets) into chunks
assign the chunks to the threads

thread j:
{
for every net in the chunk
{
calculate elmore delay
calculate beta factors
}
}
for every affected cell
{
tag the cell for examination
}

find the min level from the affected cells

if min level is O

{
propagate (slew, arrival time) at level 1 cells
set min level to 1

starting from min level for every level i
{
partition the (cells at level i) into chunks
assign the chunks to the threads
thread j:
{

for all the cells in the chunk

{
if the cell is tagged

{

calculate (slew, arrival time) at the output of the cell
propagate (slew, arrival time) at driving cells

60

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

tag the driving cells for examination

Algorithm 4 - Minimum affected cell level optimization.

Fanout cone and dominant edges

The fanout cone is defined as a set of cells that were tagged by the incremental sta. Each of the
tagged cells may or may not have its values for slew or arrival time changed. This counter
intuitive problem, that is a cell will not be updated even if its predecessor in the fanout cone
was updated, arises from edges that originate outside the fanout cone and connect to a cell
inside the cone.

e Examined Path
= Resized cells
= Affected cells

Dominant Edge
Fanout Cone

Fs

————

Figure 35 - Fanout cone.
For instance the cells, cell7 and cell8, originate outside the cone and they are connected to cells

inside the cone (see Figure 35). Let’s assume that the slew and arrival time, originating from
cell8, that were propagated in an earlier STA execution, dominates the slew and arrival time at
the output of cell9. This means that there is no need to further examine the fanout cone of
cell9, since all the slews and arrival times of that cone are already calculated from an earlier
STA step. In this way, all the driving cells of cell9 will not be tagged by the STA, which leads into
further reduction in the execution time.

61

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

The pseudocode of the incremental STA with dominant edges, including parallelization, is
presented,

for every resized cell

{

find the affected nets
find the affected cells

partition the (affected nets) into chunks
assign the chunks to the threads

thread j:
{
for every net in the chunk
{
calculate elmore delay
calculate beta factors
}
}
for every affected cell
{
tag the cell for examination
}

find the min level from the affected cells

if min level is O

{

propagate (slew, arrival time) at level 1 cells
set min level to 1

starting from min level for every level i

{

partition the (cells at level i) into chunks
assign the chunks to the threads
thread j:

{

for all the cells in the chunk

{
if the cell is tagged

{

calculate (slew, arrival time) at the output of the cell

62

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

if (slew, arrival time) differs from the old values

{

propagate (slew, arrival time) at driving cells
tag the driving cells for examination

Algorithm 5 - Dominant edges optimization.

Maximum propagation level

The increment STA produces the same results, in terms of slews and arrival times at each node,
in comparison to the non-incremental version of the algorithm, with the least possible
execution time. Every value will be propagated through the circuit all the way until they reach
the primary outputs. A further optimization step can be applied, when the points in the circuit,
in which the arrival times will be requested, are known beforehand. Knowing this information,
the STA algorithm can terminate the propagation at the furthest point.

The resizing algorithm requires the critical path, within a set of points in the circuit, which is the
set of terminal nodes. The terminal nodes can be part of a cell, or primary outputs, which
means that they can have a corresponding level assigned to them.

If the terminal node is a primary output, its level is derived as,

level =1 if PI - PO
level = Level(Cell]-) + 1if Cellj - PO

If the terminal node is a register pin of a sequential cell, its level is derived as,

level =1 if PI > Sequential Cell
level = Level(Cellj) + 1 if Cell; - Sequential Cell

If the terminal node is an output pin of a cell, its level is derived as,
level = Level(Cell) + 1

At this point the maximum level from all the terminal nodes must be found, so that the STA can
be performed up until that level (see Figure 36).

63

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Resized cells

)

|

l .

| Examined Path
|

| Affected cells
|

Term FO
Nodes
| A O
|
« |
Minimum Level Maximum Level

Figure 36 - Min and Max levels.

The pseudocode of the incremental STA with dominant edges, until the maximum level,
including parallelization, is presented,

for every resized cell

{

find the affected nets
find the affected cells

partition the (affected nets) into chunks
assign the chunks to the threads

thread j:
{
for every net in the chunk
{
calculate elmore delay
calculate beta factors
}
}
for every affected cell
{
tag the cell for examination
}

find the min level from the affected cells

if min level is O

64

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

propagate (slew, arrival time) at level 1 cells
set min level to 1

find the max level from the terminal nodes

starting from min level for every level i until the max level

{
partition the (cells at level i) into chunks
assign the chunks to the threads
thread j:
{
for all the cells in the chunk
{
if the cell is tagged
{
calculate (slew, arrival time) at the output of the cell
if (slew, arrival time) differs from the old values
{
propagate (slew, arrival time) at driving cells
tag the driving cells for examination
}
}
}
}
}

Algorithm 6 - Maximum terminal node level optimization.

65

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

3.6 Resizing Algorithm

3.6.1 Introduction

The core of the resizing engine is the ULE method, which uses an iterative approach, in order to
converge into the optimal cell input capacitances for a given path, and therefore the optimal
cell sizes. The method, as mentioned before, takes into account branches and wire load
(Resistances/Capacitances), along with the slope at every pin in the path (Rise/Fall). The path is
evaluated, using a backward traversal, for a number of iterations until the values of all the input
capacitances have not changed, in comparison to a defined error threshold, from the values in
the previous iteration. At the initialization step, instead of assigning arbitrary capacitance
values to the cells in the examined path, the original capacitance values of the current cells are
used.

A continuous sizing algorithm will then use the new capacitance values to generate the lib file
data for the new version of cells, which meet those input capacitance restrictions. An alternate
approach was used, since the modeling algorithm that would produce the new cells was not in
its final stage in order to be included into the resizing tool (was under development by another
group of researchers). For that reason, the input capacitance values must be approximated, by
the corresponding type cell in the lib file, which has the closest capacitance value to the optimal
value. In order to achieve better results with this approach, the lib file, which contains the
discrete versions of the cells (x1, x2, x4...), must be changed in order to include intermediate
cells sizes (x0.5, x1, x1.5...). Creating a lib file with a small discretization step will lead to better
approximations, which could be done by the modeling algorithm.

The final step is to substitute every cell in the path, excluding the first cell, according to ULE
input capacitance values in the case of continuous cells resizing, or the approximation in the
case of discrete cell resizing. All the cells in the path, including the first cells in the off-path
branches, excluding the off-path branch cells of the first cell (since the first cell cannot be
changed there is no need to mark its off-path branch cells), will be marked as examined (see
Figure 37). The marked cells will not be changed again throughout the execution of the tool.
Additionally two lists will be created, containing the cell instances that were changed, and the
nets that were affected by the changes, which will be processed by the STA algorithm in order
to calculate the new arrival times.

66

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

)
e)

Examined Path
Resized (marked)
cells

(marked) First Cell

Changed

Figure 37 - An instance of a resized path.

)

The unified logical effort method optimizes a path in terms of performance (delay), so in order
to achieve a power-performance optimization, an optional criterion was implemented, in the
resizing algorithm, which will not allow the upsizing of the cells. The ULE method will converge
to input capacitance values, which are greater than the original capacitance values for a given
cell. Although the method would lead to an optimal performance path, the upsizing of a cell
would increase the overall power consumption. If a case of upsizing arises, no cell will be
changed in the examined path, and the first cell that created the upsizing exception will be

marked as examined (see Figure 38).

k coo—

oy

Examined Path
Not Changed
(marked) Upsized

:). i

>

wd)

U

)

Figure 38 - An instance of up-sizing.

67

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

3.6.2 Path Preprocessing

The ULE method, evaluates a given path, which was not re-examined before by the resizing
algorithm. In order to filter the paths into examined (Partially) or not, a sub-path extraction
algorithm was implemented. This algorithm takes as input a path from the STA engine, and
specifically from the critical path extraction algorithm. The path is then tokenized into smaller,
not examined portions of the path, if any, and each sub path is then processed by the ULE
method (see Figure 39).

In the case of disallowing upsizing, the ULE method fails to process the given path, which will
lead to even further preprocessing of the path.

Critical Path

Preprocessing

Path Tokens

— o
Tokenization
g

Path

Sub-path

Figure 39 - Path preprocessing.

Path Tokenization

The path tokenization algorithm uses the information, in each cell instance, which define if a
cell was examined before throughout the execution of the resizing algorithm, in order to create
smaller tokens of the path, given as input. In that case a simple string tokenization approach is
used, where the delimiter is the examined information. A simple modification can be used in
the tokenization algorithm, which takes into account that the ULE method will never change
the first cell in a path. In that case a token is defined as a set of not examined consecutive cells,

68

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

which may or may not have the first cell in the sequence re-examined before (see Figure 40).
Including this extra cell in the path token will yield better results in the ULE method.

Bxamined cells
Qriticd path

=T — o _Sﬁl —
:::H

Figure 40 - Path tokenization.

3.6.3 Terminal Nodes Re-evaluation

The main purpose of keeping a set of the terminal nodes, ensures that the whole circuit will be
examined by the resizing algorithm, which means that the set must be updated throughout the
execution of the algorithm. The ULE method populates a list of changed cells, along with the
affected nets. The cells are defined as changed, only if they were replaced by a downsized
version. The ULE method, often cannot replace any cell in the examined path, which means that
the resizing algorithm reached a dead-end. This issue arises when all the cells in the current
path were already marked as examined by the algorithm. In that case the algorithm must
continue the examination of the rest of the circuit, by finding the next in line critical path. Since
no cell was changed during the last path examination, there is no need to execute the STA
algorithm. The problem that arises, is the critical path extraction algorithm, which is searching
for a path that ends in the terminal nodes set, will simply produce the same path as before. In
order to alleviate that problem, the terminal node that produced the dead-end must be
removed from the set. The total examination is ensured by adding, as terminal nodes, all the
cells that feed into the problematic path, and specifically the outputs of those cells will be
added into the terminal nodes set, if they were encountered for the first time (see Figure 41).

69

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Bxamined Path
New Terminal Nodes

> -
}/ \‘jp

.

L
VD

] 1 1

Figure 41 - Terminal nodes re-examination.

The new terminal nodes, added in the set, can only be outputs of cells, which means that the
level of that terminal node is defined as,

level = Level(Cell) + 1

The levels of the new terminal nodes, added to the set, are always lower than the old terminal
node, which leads to the effectiveness of the maximum propagation level STA optimization, as
described earlier in the STA chapter. This property also ensures that the arrival times and slews
from earlier executions will be valid for a new execution of the algorithm, since an earlier
execution would have propagated the values in a level greater or equal to the new maximum
terminal node level.

3.6.4 Sequential cells handling

The resizing tool uses a different methodology for sequential cells, if any, in the design. The two
available options are: No change, which means that all the sequential cells will stay the same
throughout the execution of the algorithm. Minimum size, which means that every sequential
cell will be replaced by the lowest driving strength cell candidate. In both cases, the cells will be
marked as examined. The tokenizing algorithm, as described before, will produce sub paths, if
the examined path contains a sequential cell (see Figure 42).

70

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Sequential
Hement
Path Tokens

Figure 42 - Sequential cell handling.

71

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

3.6.5 Algorithm Overview

Terminal
Nodes Update

Input Fles
Parsers Qritical Path

Extraction

Logical Effort
Bxtraction

Path
Preprocessing

Qutput Hle
Handler

Sequential
Cells
Hements

Levelization TRUE
Initial
Terminal FALSE

Nodes

Incremental
STA

Figure 43 - CCSopt algorithm overview.

72

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

ULE

Input Capadtance
Initialization

Traverse the path
and apply
Optimum
Expression

Cdll Resizing
Approximation

Mark on-path &
off-path cells

Hnd Affected nets
& changed cells

Figure 44 - ULE method overview.

73

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

STA

Hmore delay &
beta factors
calculation

Arrival time
propagation (Fs)

Bxamine anew cell

Yew & arrival time
calculation

Jew & arrival time
propagation

More cells

at level
TRUE

More levels

Figure 45 - STA algorithm overview.

74

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

STA Incremental

Yew & arrival time
caculation

BHmore delay & beta
factors calculation
(affected nets)

Tag the affected cells

Sew & arrival time
propagation

Fnd minimum affected
cell

Tag the updated cells

Fnd maximum terminal
node level

Examine a new cell

Figure 45 - Incremental STA algorithm overview.

75

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Chapter 4

Results

In this section, a number of benchmarks is presented, indicating the number of the resized cells,
using the discrete resizing algorithm, along with the potential number of resized cells when
using the continuous algorithm. The suite of larger benchmarks where found in TAU 2015
timing contest.

Iscas Benchmarks

Benchmark # Cells #Primary | #Primary | # Resized # Resized Execution
Inputs Outputs (Discrete) | (Continuous) | Time (s)
c432 168 36 7 9 24 0.491
c499 210 41 32 6 17 0.547
c880 383 60 26 16 39 0.743
c1355 554 41 32 19 37 0.913
c1908 932 33 25 30 59 1.178
c2670 1278 233 140 41 63 1.649
c3540 1719 50 22 18 106 2.034
c5315 2332 178 123 62 174 2.773
6288 2416 32 32 22 171 2.836
c7552 3573 207 108 101 156 3.811
s298 136 4 6 10 25 0.449
s344 175 10 11 8 17 0.462
s382 183 4 6 16 25 0.493
s400 188 5 6 9 23 0.498
s420 237 19 1 15 50 0.523
s641 398 36 24 21 72 0.631
s5378 2970 36 49 78 335 2.984
s38417 23835 29 106 346 2574 19.361

Table 3 - Iscas Benchmarks

76

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Larger Benchmarks

Benchmark # Cells # # Primary | # Resized # Resized Execution
Primary | Outputs | (Discrete) | (Continuous) | Time (s)
Inputs
ac97_ctrl 14341 84 48 1350 3603 15.545
aes_core 22938 260 129 1728 2965 29.054
des_perf 105371 235 64 7695 16665 161.352
mem_ctrl 10531 115 152 1027 2186 13.710
pci_bridge32 19057 162 207 1170 4234 25.073
systemcaes 6484 260 129 573 1236 9.055
systemcdes 3441 132 65 219 469 3.776
tv80 5285 14 32 307 773 6.492
usb_funct 15743 128 121 1576 3593 18.424
wb_dma 4195 217 215 326 891 5.052
vga_lcd 139529 80 109 17073 34146 290.549
cordic_ispd 45359 34 64 11992 20118 52.970
des_perf_ispd 138878 234 140 52814 83548 198.536
edit_dist_ispd 147650 2562 12 73386 88152 251.985
fft_ispd 38158 1026 1984 6833 13824 45411
matrix_mult_ispd 164040 3202 1600 41485 68545 261.750
pci_bridge32_ispd | 40790 160 201 18366 21701 44.429
usb_phy_ispd 923 15 19 356 551 1.044
netcard_iccad 1496719 1836 10 287608 369598 17942.690

Table 4 - Larger Benchmarks

77

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Chapter 5

Conclusion & Future Work

A lot of effort has been put, over the years, in arriving at the optimum transistor sizes both in
respect of delay and power. The proposed method builds on the learnings from previous
attempts at continuous transistor sizing by resolving all the issues that have prevented such
attempts from arriving to a viable solution. Our hybrid heuristic approach takes into account
interconnect capacitance and resistance. It also considers reconvergent fanouts and arrives at a
stable solution in all cases without the possibility of divergence, which has plagued even
commercial tools. The CCSopt tool can be easily incorporated into a standard cell based digital
IC design flow.

A number of possible extensions and changes should be revisited, that will allow CCSopt to
have better quality and performance. Those extensions can be summarized as:

Implementing the cell characterization models that will allow the tool to behave as a
continuous sizing tool.

Reducing the number of cells that do not get resized, such as the first cells of the off-
path branches.

Using a better criterion, in addition to only allowing down-sizing, to further reduce the
power consumption.

Changing the delay calculation method, to use the CCS model as described in the lib file,
to better approximate the delays of a cell, since the NLDM is not so accurate in the sub-
nanometer regime.

Altering the incremental STA, in order to only propagate the slews and arrival times
through cells that lead to active terminal nodes, which will improve the overall
performance.

Changing the busses handling, in order to provide a better functionality.

Introducing a multi-threaded approach for parsing the .spef file, since the parsing
overhead for large designs is significant.

78

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

79

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

(1]

(2]

(3]

(4]

(5]
(6]
(7]
(8]

(9]

Bibliography

J. Fishburn and A. Dunlop, "TILOS: A posynomial programming approach to transistor sizing," in Proceedings of
the IEEE International Conference on Computer-Aided Design, 1985.

A. E. Dunlop, "Transistor Sizing for integrates Circuit". U.S. Patent No.4827428.

S. S. Sapatnekar, B. V. Rao, P. M. Vaidya and S. M. Kang, "An exact Solution to the Transistor Sizing Problem
for CMOS Circuits using Convex Optimization," in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 1993.

I. Sutherland, D. Harris and B. Sproull, Logical Effort - Designing Fast CMOS Circuits, Morgan Kaufmann
Publishers, 1999.

L. Sutherland, "Determining transistor widths using the theory of logical effort". U.S. Patent No.6629301.
H. H. F. Jyu, "Minimization of circuit delay and power through transistor sizing". U.S. Patent N0.6209122.
L. G. Jones, "Method and apparatus for designing an integrated circuit". U.S. Patent No.5666288.

R. F. Leimbach, "Method of optimizing signal timing delays and power consumption in LSI circuits". U.S. Patent
No.4698760.

A. Morgenshtein, "Logic circuit delay optimization". U.S. Patent N0.12292931.

[10] F. R. Sproull and E. S. Ivan, "Logical Effort:designing for speed on the back of an envelope," in IEEE Advanced

Research in VLSI, 1991.

[11] A. Morgenshtein, E. Friedman, R. Ginosar and A. Kolodny, "Unified logical effort - a method for delay

evaluation and minimization in logic paths with RC interconnect.," in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems.

[12] C. W. Elmore, The trasient response of damped linear networks with particular regard to wide band

amplifiers, vol. 19, J. Appl. Phys., 1948, pp. 55-63.

[13] "Closed form solution to silmutaneous buffer insertion/sizing and wire sizing," in ACM Trans. Design Autom.

Electron. Syst., 2001.

[14] K. Venkat, "Generalized delay optimization of resistive interconnections through an extension of logicla

effort," in Proc. IEEE Int. Symp Circuits Syst., May 1993.

[15] M. Moreinis, A. Morgenshtein, I. Wagner and A. Kolodny, "Logic Gates as repeaters (LRG) for area-efficient
timing optimization," in IEEE Trans Very Large Scale Integr. (VLSI) Syst., Nov. 2006.

[16] A. Cao, R. Lu and C. K. Koh, "Post-Layout logic duplication for synthesis of domino circuits with complex
gates," in Proc. ASP-DAC, Jan. 2005.

80

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

[17] TAU Workshop, "tauworkshop," 9 2 2015. [Online]. Available:
https://sites.google.com/site/taucontest2015/resources/documents/contest_file_formats.pdf?attredirects=0.

[18] H. E. N. Weste and M. D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 4th ed., Addison-
Wesley Publishing Company, 2010.

[19] J. Basker and C. Rakesh, Static Timing Analysis for Nanometer Design: A Practical Approach, New York:
Springer, 2009.

[20] TAU Workshop, "tauworkshop," 19 1 2015. [Online]. Available:
https://sites.google.com/site/taucontest2015/resources/documents/contest_education.pdf?attredirects=0.

[21] A. Mittas, "Timing Analysis of Integrated Circuits".

81

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

82

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

83

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Appendix A

Config File

The resizer uses a simple interface in order to initialize the performed operations. The list of the
available commands

output_capacitance <state> <output_node_name> <value>
<state>: [-fall | -rise]
<output_node_name>: [-all | node_name]

This command sets the output capacitance, either for rise or fall state, on the specified output.
If the -all specifier is set, then the given capacitance value is set on every output node of the
circuit. The capacitance value must be given in the liberty file capacitance unit.

input_slew <state> <mode> <input_node_name> <value>
<state>: [-fall | -rise]

<mode>: [-late]

<input_node_name> : [-all | node_name]

This command sets the input slew, either for rise or fall state, in late mode, on the specified
input. If the -all specifier is set, then the given slew value is set on every input node of the
circuit. The slew value must be given in the liberty file time unit.

input_at <state> <mode> <input_node_name> <value>
<state>: [-fall | -rise]

<mode>: [-late]

<input_node_name>: [-all | node_name]

This command sets the input arrival time, either for rise or fall state, in late mode, on the
specified input. If the -all specifier is set, then the given arrival time value is set on every input
node of the circuit. The arrival time value must be given in the liberty file time unit.

84

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

resize_sequential <mode>
<mode>: [-no | -min]

This command sets the resizing mode for the sequential cells. If -no is specified, the resizer will
not resize any sequential cells. If -min is specified, the resizer will resize the sequential cells,
with the corresponding minimum drive strength sequential cells.

path_type <type>
<type>: [-all | -out | -reg]

This command sets the path type examined by the resizer. The paths are categorized into: Paths
starting from primary inputs and end at every node in the circuit without any fanout, if -all is
specified. Paths starting from primary inputs and end on primary outputs, if -out is specified.
Paths starting from primary inputs and end on register pins, if -reg is specified.

preset_clear_arcs <enable>
<enable>: [-on | -off]

This command enables the asynchronous timing arcs on sequential elements.

upsizing <enable>
<enable>: [-on | -off]

This command enables upsizing on cells by the resizer. If -off is specified the resizer will not
allow upsizing on cells.

unit_inverter <cell_name>

This command sets the unit inverter. The unit inverter specified must be included in the lib file.

c_unit_lib <value> <unit>
<value>: [1 | 10 | 100]

<unit>: [PF | FF]

85

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

This command specifies the capacitance unit that will be used by the resizer. The unit must
match the unit defined in the lib file. For instance if the value is 10 and the unit is FF, then
every capacitance value is scaled as 10 femtofarad.

t_unit_lib <value> <unit>
<value>: [1 | 10 | 100]
<unit>: [NS| PS]

This command specifies the time unit that will be used by the resizer. The unit must match the
unit defined in the lib file. For instance if the value is 10 and the unit is PS, then every delay
value is scaled as 10 picoseconds.

max_iterations <value>

This command sets the maximum iterations that will be used by the unified logical effort
algorithm.

tolerance <value>

This command sets the tolerance that will be used by the unified logical effort algorithm.

cell_delimiters <characters>

This command sets the delimiter characters in the name of a cell. For instance if a cell is named
AND2_X1, then the delimiter should be the character X. If the lib file contains cell names with
different delimiters, every delimiter must be included. For instance if the lib file contains the
cells AND2_X1 and NOR2_Y1, both characters X and Y must be included as delimiters.

report_timing <value>

<value>: [-all | numerical_value]

This command reports the worst paths, sorted by their arrival time. The reported paths are
filtered by path_type. Warning this command requires the examination of every path in the
design, which leads to exponential complexity. It is only designed for debugging purposes.

86

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Extra Supported Verilog Files

Explicit version

module adder_explicit (
result , // Output of the adder
carry , // Carry output of adder

ri , // first input
r2 , // second input
ci // carry input

);

// Input Port Declarations
input [3:0] rl1 ;
input [3:0] r2 ;
input ci ;

// Output Port Declarations
output [3:0] result ;
output carry

// Port Wires
wire [3:0] rl ;
wire [3:0] r2 ;

wire ci ;
wire [3:0] result ;
wire carry

// Internal variables

wire cl ;
wire c2 ;
wire c3 ;

// Code Starts Here
addbit u0 (

.a (r1[0]) ,
.b (r2[0]) ,

.Ci (ci) ,
.sum (result[0]) ,
.CO (c1)

);

87

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

addbit ul (
.a (r2[1]) ,
.b (r2[1]) ,

.Ci (c1) ,
.sum (result[1]) ,
.CO (c2)

);

addbit u2 (

.a (r1[2]) ,
.b (r2[2]) ,

.Ci (c2) ,
.sum (result[2]) ,
.CO (c3)

);

addbit u3 (

.a (r1[3]) ,

.b (r2[3]) ,

.Ci (c3) ,
.sum (result[3]) ,
.CO (carry)

);

endmodule // End Of Module adder

Implicit version

module adder_implicit (
result , // Output of the adder
carry , // Carry output of adder

ri , // first input
r2 , // second input
ci // carry input

);

// Input Port Declarations
input [3:0] rl1 ;
input [3:0] r2 ;
input ci ;

88

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

// Output Port Declarations
output [3:0] result ;
output carry

// Port Wires
wire [3:0] ri ;
wire [3:0] r2 ;

wire ci ;
wire [3:0] result ;
wire carry ;

// Internal variables

wire cl ;
wire c2 ;
wire c3 ;

// Code Starts Here

addbit uO (
r1[0] ,
r2[0] ,
Ci ,
result[0] ,
cl

);

addbit ul (
rif1] ,
r2[1] ,
cl ,
result[1] ,
c2

);

addbit u2 (
rif2] ,
r2[2] ,
c2 ,
result[2] ,
c3

);

addbit u3 (
ri[3] ,
r2[3] ,

89

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

c3 ,
result[3] ,
carry

);

endmodule // End Of Module adder

Instantiated module

module addbit (
a ,//firstinput
b ,//Second input
ci ,//Carryinput
sum ,// sum output
co //carryoutput
);
//Input declaration
input a;
input b;
input ci;
//Ouput declaration
output sum;
output co;
//Port Data types
wire a;
wire b;
wire ci;
wire sum;
wire co;

wire xorl_wire, and1_wire, and2_wire;
//Code starts here

XOR2_X1 xor1(.A (a), .B (b), .Z (xor1l_wire));

XOR2_X1 xor2(.A (xorl_wire), .B (ci), .Z (sum));

AND2_X1 and1(.A1 (ci), .A2 (xorl_wire), .ZN (and1_wire));
AND2_X1 and2(.A1 (a), .A2 (b), .ZN (and2_wire));

OR2_X1 or1(.Al1 (and1_wire), .A2 (and2_wire), .ZN (co));

endmodule // End of Module addbit

90

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Simple spef

*SPEF "IEEE 1481-1998"

*DESIGN "simple"

*DATE "Tue Sep 25 11:51:50 2012"
*VENDOR "TAU 2015 Contest"
*PROGRAM "Benchmark Parasitic Generator"
*VERSION "0.0"

*DESIGN_FLOW "NETLIST_TYPE_VERILOG"
*DIVIDER /

*DELIMITER :

*BUS_DELIMITER []

*T _UNIT 1 PS

*C_UNIT1FF

*R_UNIT 1 KOHM

*L_UNIT1UH

*D_NETinpl15.4
*CONN

*Pinpll
*lul:al

*CAP

linpl11.2
2inpl:11.3
3inpl:21.4
4ul:albs

*RES
linplinpl:13.4
2inpl:1inpl:23.5
3inpl:2ul:a 3.6
*END

*D_NET inp2 2.0
*CONN

*Pinp2 1
*lul:b |

*CAP

1inp20.2

91

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

2inp2:10.5
3inp2:20.4
4ul:b0.9

*RES
linp2inp2:11.4
2inp2:1inp2:21.5
3inp2:2ul:b 1.6
*END

*D_NET out 0.7
*CONN
*lu3:00
*PoutO

*CAP
1u3:00.2
20ut0.5

*RES
lu3:ooutl4d
*END

*D_NETn11.0
*CONN
*lul:oO
*lud:al

*CAP
1ul:00.2
1nl1:10.3
2u4:20.5
*RES
lulionl:11.1
2nl:1ud:al.0
*END

*D_NETn2 1.2
*CONN
*lud:o O
*1f1:d |

*CAP
lu4.00.7
2f1:d 0.5
*RES

92

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

lud:0fl:id2.1
*END

*D_NET n323.4
*CONN
*f1:g O
*lu2:al
*ud:b |

*CAP
1n3:16.7
2n3:27.8
3n3:38.9
*RES
1f1:gn3:31.2
2n3:3n3:12.3
3n3:1u2:a34
4 n3:3n3:24.5
5n3:2u4:b 5.6
*END

93

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Appendix B

Algorithms

Depth First Traversal

1. procedure DFS(G,v):

2.

W NOUL W

let S be a stack
S.push(v)
while S is not empty
v & S.pop()
if v is not labeled as discovered
label v as discovered
for every edge from v to w in G.adjacentEdges(v) do
S.push(w)

Breadth First Traversal

1. procedure BFS(G,v):

2.

O 00 NOU AW

create a queue Q
enqueue vonto Q
while Q is not empty
t & Q.dequeue()
for every edge e in G.adjacentEdges(t) do
u & G.adjacentVertex(t,e)
if u is not in visited
set v as visited
Q.enqueue(u)

Post-order Traversal

1. procedure postorder(node):

2.
3.
4.

if node == null then return
for every child of the node
postorder(node.child)

94

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

Kruskal’s Spanning Tree

1. procedure KRUSKAL(G):
2.A=0

3. foreveryvinG.V:

4. MAKE-SET(v)

5. for every (u, v) ordered by weight(u, v), decreasing:
6. if FIND-SET(u) # FIND-SET(v):

7. A=AU{(u,v)}

8 UNION(u, v)

9. return A

95

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 13:12:30 EET - 137.108.70.7

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Abstract
	Περίληψη
	Introduction
	1.1 Problem Description
	1.2 Related Work on Transistor Sizing
	1.3 Design Flow

	Cell-Resizing Methods
	2.1 Logical Effort
	2.1.1 Introduction
	2.1.2 Delay in a Logic Gate
	2.1.3 Multistage Logic Networks

	2.2 Unified Logical Effort
	2.2.1 Introduction
	2.2.2 Delay Model of Logic Gates with Wires
	2.2.3 Delay Minimization using Unified Logical Effort
	2.2.4 ULE Optimization in Paths with Branches
	2.2.5 Conclusion

	Software Architecture
	3.1 Introduction
	3.2 File Formats
	3.2.1 Input Verilog (.v)
	3.2.2 Input Standard Parasitic Exchange Format (.spef)
	3.2.3 Input Liberty (.lib)
	3.2.4 Output Files (.v .scf)

	3.3 Internal Representation
	3.4 Logical Effort Parameters
	3.4.1 Logical effort parameter extraction
	3.4.2 Unit Inverter

	3.5 Timing Analysis
	3.5.1 Introduction
	3.5.2 Static Timing Analysis
	3.5.3 Functions of delay and slew for cells
	Total output capacitance
	Timing arcs and unateness

	3.5.4 Functions of delay and slew for interconnect
	Elmore delay model
	Parasitics with coupling capacitances and resistive loops

	3.5.5 Path delay
	3.5.6 Static Timing Analysis Implementation
	Levelization
	Static timing analysis algorithm

	3.5.7 Critical path extraction
	Terminal nodes

	3.5.8 Optimizations
	Multi-threading optimization
	Incremental optimization
	Fanout cone and dominant edges
	Maximum propagation level

	3.6 Resizing Algorithm
	3.6.1 Introduction
	3.6.2 Path Preprocessing
	Path Tokenization

	3.6.3 Terminal Nodes Re-evaluation
	3.6.4 Sequential cells handling
	3.6.5 Algorithm Overview
	ULE
	STA
	STA Incremental

	Results
	Iscas Benchmarks
	Larger Benchmarks

	Conclusion & Future Work
	Bibliography
	Appendix A
	Config File
	Extra Supported Verilog Files
	Explicit version
	Implicit version
	Instantiated module
	Simple spef

	Appendix B
	Algorithms
	Depth First Traversal
	Breadth First Traversal
	Post-order Traversal
	Kruskal’s Spanning Tree

