View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Thessaly Institutional Repository

Electronic Design Automation Algorithms for
Standard Cell Legalization in Microelectronic
Circuits

Master Thesis by

Nikolaos K. Sketopoulos

University of Thessaly

Department of Electrical and Computer Engineering

Supervisor:
Dr. Christos Sotiriou, Associate Professor, University of Thessaly
Commiittee:
Dr. George Stamoulis, Professor, University of Thessaly
Dr. Nestor Eumorfopoulos, Assistant Professor, University of Thessaly

Volos, Greece
October 2016

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

https://core.ac.uk/display/132825026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

ITANEIIIZTHMIO OEZZAAIAY
IIOAYTEXNIKH XXOAH

TMHMA HAEKTPOAOT'QN MHXANIKQN KAI MHXANIKQN YIIOAOTIZTQN

AAyopi9potr HAektpovikou Autopatiopou yia Noptpomnoinon
Zroixeiov oe MikponAektpika KukAopata

Audopatikn Epyacia
vwa tnv Anéktnon Metantuxiakod AtmA®patog Znouvdav
Tou:

NikoAaog K. Zretonoulog

ErmpAenovteg:
Ap. Xpriotog Twtnpiou, Avardnpwtmg Kadnynuig, [averuotmpio @scoadiag
Ap. Tewpylog ZtapovAng, Kadnyntrg, [avermotpio ®eooaliag
Ap. Néotwwp Eupop@onouvdog, Enikoupog Kadnyntrg, ITavermotipio @soocaliag

Eykpi9nke and 1) tpipedrn) e§etaotikn ermrporni) v 26 OktopBpiou 2016

Xprjotog Zotnpiou Fedpylog ZtapouAng Néotwp Eupopgomnourog
AvarAnpotg Kadnyntig Kadnyntg Enikoupog Kadnyning

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

Acknowledgments

To my family, my friends & Dr. Sotiriou

Nikolaos Sketopoulos
Volos, Greece
26/10/2016

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

CONTENTS

CONTENTS

1 Introduction to EDA

1.1 Placement e
1.1.1 Global Placement
1.1.2 Legalization

1.1.3 Detailed Placement

2 Background

2.1 Global Legalization Approaches
2.2 Local Legalization Approaches
2.2.1 Tetris Legalizer
2.2.2 Abacus Legalizer
2.2.2.1 Quadratic Program

2.2.2.2 Displacement Cost Function

2.2.2.3 Row Search Bounding

2.2.2.4 Cells SelectionOrder

2.2.2.5 Abacus Algorithm

2.2.3 Our Motivation

3 Our Work

3.1 Cell Selection Order v v v v v v v ..

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

CONTENTS

3.2 Displacement Cost Functions, 30
3.3 Row Search Bounding s 30
3.4 Legalization Artifactso o o 32
3.5 Blockage Handling Strategies, 34
3.6 Multi-Row Height Cells Handling Approach 35
3.7 Abacus2 Algorithm L 38
3.8 ExtraFeatures e e 44
4 Results 47
4.1 Cell Selection Order Comparison v v v v v v v v v v v v v v o 47
4.2 Displacement Functions Comparison 50
4.3 SRAvs SRR Comparison v v v vt v i i e e e e e e e 52
4.4 Multi-Row HeightCells oo o 000 54
5 Conclusions and Future Work 59
Bibliography 60
8

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

LIST OF FIGURES

LIST OF FIGURES

1.1 Placement Flow o e 17
1.2 Global placement Algorithm Methodologies 18
3.1 Cell Selection Order Example, 29
3.2 Row Search Bound Example 31

3.3 Legalization Artifacts for Single-cell and Multi-cell total displacement functions 33

3.4 Blockage Handling Approaches Example 35
3.5 (Sub-)Row Diviation from a MRHC v v v . 36
3.6 MRHC Legalization Example: Global Placement 37
3.7 Bottom-Up Sub-row Scan o 38
3.8 Top-Down Sub-row Scan Lo 39
3.9 Cell Up-scaling Example 0o 46
4.1 Blockages Pattern oL s 48
4.2 Placement I/O Pins Position oo 49
4.3 cordic_I4 Benchmark GPExample 51
4.4 cordic_I4 Benchmark SRA Displacement Function Example 52
4.5 cordic_I4 Benchmark SRR Displacement Function Example 52
4.6 SRAvs SRRTWL Comparison o v v v v v i v v viv oo 53
4.7 SRAvs SRRTD Comparison« o v v v v v v oo 53
4.8 SRAvs SRR Execution Time Comparison 54
10

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

LIST OF FIGURES

4.9 MRHC TWL CompariSomn v v v v v v i ettt e e i e e e 56

4. 10MRHC TD Comparison v v vt v v vt et it e et e e e 56

4.11 MRHC Execution Time Comparison 57

4.12des_per f_1 Benchmark MRHC Legalization Example 58
11

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

Abstract

Nowadays EDA tools use both combinatorial and analytical methods to place circuits’ com-
ponents. However, analytical methods render placement illegal. This phenomenon occurs
because analytical methods use components as physical points. Thus, after global place-
ment, components may overlap each other and receive non-aligned positions in the circuit’s
grid. For this reason, legalization is used by eliminating components’ overlapping and align-
ing them in the circuit’s grid. The aim of legalizers is to minimize the components’ movement
from their positions at global placement.

In this work, implementation, optimization and evaluation of a legalizer are presented.
We present a novel evolution of fundamental Abacus legalizer [10]. Abacus has been chosen
due to its great performance in terms of minimizing the perturbation of the optimal solution.
However, the fundamental algorithm supports legalization only at flat circuits and without
blockages. In this way, the fundamental legalization algorithm has been extended to support
not only flat circuits, but also hierarchical and circuits with blockages. Moreover, fundamen-
tal Abacus legalizer, can not handle components which height are greater than the placement
row. As a sequence, we modify and tune Abacus2 also to support cells with different heights
than the placement row height.

Additionally, different approaches for the individual stages of legalization have been im-
plemented, such as the calculation of the components’ movement cost. Execution time of
legalization has been optimized by using heuristic algorithms and legalization with blockages
have also been studied. We performed experiments and comparisons between the features of
Abacus and Abacus2. Finally, the legalizer has been integrated in developing an industrial
EDA tool, taking its restrictions into account.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

LIST OF FIGURES

[lepiAnyn

Ta onpepwva epyaieia EDA mpaypatonololv v tortofEtnon twv OTOIXEIOV T000 HE ouvd-
UaoTikoug, 000 Kadl 1€ avadutikoug pebobdoug. Qotoco, ot avadutikoi péSodol kabiotouv v
TortoBEtnon P €ykupn. To patvopevo autd apouoiaetat S101t ot avaiutikoi pédodot petayeipi-
Jovtatl ta otoxeia wg onpeia oto xwpo. 'Etot, petd v tonobetnon napatnpouvidal EMMKAAUYELS
HETady TV otolXeiwv Kal ermrdéov ta otoixeia AapBavouv un eubuypappiopéveg 9€oelg oto
MALYHA TOU KUKAOPAtog. [a 1o Adyo autd mpaypatornoleital 1 VOUIPOnoinon TV ototXeiov
eSadeipoviag 1§ ermKaAuyelg Kat eubuypappidoviag ta otoiyeia oto MAEYHA TOU KUKAQUATOG.
H &adikaocia avt mpaypatornotleital aro toug VORTHOIIOUTEG. LTOX0S TOV VOUHOIOU TRV elvatl
N €Aax10tonoinon g PETaKivnong tov ototxeiov ano 1g PéAtioteg Yoeig ou €édabav amnod v
YEVIKI] TOTI00£TN0T).

Zin napovuoca Sumlepatikiy dwatpBn napouocidadetal n vdomnoinon, n PeAtiotonoinon kat 1
a§loAdynorn evog adyopiBpou yla tn VOUIHOIoiNnoT TV OTOXEIOV EVOG KUKA®UATOG, O OI0iog
ovopaletat Abacus2. O vOUPOIOmrg autdg aroteAel eEEAEN Kal EMEKTAOT €VOG €UPEWS H1-
adedopévou vopporoutr), tou Abacus [10]. H emmdoyr tou, mpaypatoro)fnke Adyo TV
Kadv emdooewnv oe 0,11 agopd tnv eAaxilotn tporornoinon g PéAtiotng Avong. Qotdéco, o
KAQO1KOG aAyop1Opog unootnpidel) VORPoroinon povo ermnedov KUKAOPAT®OV Kal XOPIg sp-
nodia. Emopévag, pedetr)9nkav kat uAoror)9nKav rmpooeyyioelg yia TV UrootHpi§n 1EpapX KOV
KUKAQUAT®V KAl KUKAQPATEV pe eprioda. EmmAéov, EmmumAéov, o Sepediwdng alyopiBpog be
propel av xeplotel KUKA@OPATA T@V OMMOi®V ta ototXeia £Xouv UWog, To oroio eivatl moAAardd-
010 TOU UYOoUS TRV YPAPH®OV Tou KUukAopatog. H abduvapia auty), pag o9noe otnv nepetaipem
avdrtut) tou aAyopibpou yia va priopet va avupetornidet tétola ototyeia.

EmumAéov, vdorom)9nkav 51apopeTikeég TPOOeYYioel§ yla 1ta empépoug otadla tng vopt-
portoinong, Onwg yia rmapddetypa tou UIoAoy1lopoU 10U KOOTOUG HETAKIVIIONG T®V OTOLXEI®V.
BeAtuotorou)9nke 0 Xpovo eKTEAEONS TOU AAyopiOpou XPNOHOIIOI)VIAS EUPLOTIKOUG aAyopio-
poug kat pedet)9nke n unootrpign KUKAOUAtov pe epnodia. [Mpaypatonondnkav nepdpata
yla va eAexBel n mowdnta g teAd1kng £ykupng tonobéong. Emnpoobeta mpaypatonoOnkav
OUYKPUOELG petadu tou Abacus kat tou Abacus2. TéA0G, O VOUIHOIIOTHS EVOOPRATOINKE Ot éva
uno avarrtudn Blopnxaviko epyaleio EDA, AapBavoviag unoytv 1oug Blopnxavikoug meplopio-

poug.

14

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

CHAPTER 1

Introduction to EDA

Integrated circuits (ICs) have had an astonishing effect on our everyday life as there are
vital parts of conveniences such as cell phones, personal computers, navigation systems and
music players, just to name a few. In fact, almost everything and every daily task has been
influenced by ICs. The modern integrated circuits are among the most complex products
ever built by humans. Moreover, the number of transistors per integrated circuit has been
doubled almost every two years, following the Moore’s Law. So, the design of very large-
scale integrated (VLSI) circuits, has become very challenging, inspiring designers to develop
electronic design automation (EDA) tools. The aim of EDA tools includes area and power
minimization, circuit performance optimization, and manufacturability e.t .c..

EDA is a software which helps engineers to create new ICs. EDA tools have always been
focusing on automating the entire circuit design process and combining the design tasks
into a complete design flow. Due to the high complexity of modern designs, EDA handles
many aspects of the IC design flow. However, such integration is challenging, since some
designing tasks need additional degrees of freedom, and scalability requires tackling some
tasks independently. On the other hand, the constant decrease of transistors and wire
dimensions have obscured not only the boundaries, but also the abstractions that separate
successive designing tasks. That is, EDA tools are mostly used in automated design tasks
such as logic design, physical design, simulation and verification.

1.1 Placement

Circuit placement is one of the most important tasks of EDA tools. After partitioning the
circuit into smaller modules and floorplanning the layout to determine block outlines and pin
locations, placement aims to determine the locations of logic components within each block.
The placement’s main objective is to optimize wirelength, timing, and congestion, thermal
hotspot and power consumption [7]. If logic cells are not all exactly the same in size, then the
physical size of each cell must be known so that placement does not overlap with the cells in

16

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

1.1. Placement

the layout. Some standard cell systems support large array macros (soft and/or hard) such as
RAMs. The placement of these components is troublesome for the automated procedure, so
these macros might have to be manually placed. Because the locations of circuit components
and corresponding interconnect delays are determined during the placement procedure, it
has notable impact on the final performance of the circuit [1].

In the placement process, there is no single cost function or trivial algorithm that guar-
antees success. Hence, it is crucial to choose the right algorithm to optimize the right cost
function at the right time. This needs a deep understanding of different aspects for the
placement problem. Today’s placement tools use this strategy, but in an ad-hoc way. Fun-
damental research is required to devise the methodology which systematically suggests the
solution to the placement problem [9].

In order to handle large-scale circuits, placement is usually done in three tasks, Figure
1.2: (i) global placement, (ii) legal placement (or legalization) and (iii) detailed placement.
Global placement is mainly concerned with the location of the cells, e.g., which region of the
chip a cell is located. Some cells may be overlapping with each other in a global placement.
These overlaps are then removed during legal placement and local optimizations are done
during detailed placement.

Figure 1.1: Placement Flow

1.1.1 Global Placement

There are many different methodologies which can be used to find where a cell must be
placed in the global placement stage, like methods which are based on a simulated annealing,
top-down cut-based partitioning, or analytical techniques [1].

Simulated annealing is an iterative optimization method that has been inspired by the
physical metal cooling process. With the given objective function, the process tries to achieve

17

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

1.1. Placement

Figure 1.2: Global placement Algorithm Methodologies

a better solution via a set of predefined moves. The move which achieves a better solution,
is always accepted. If a move produces a worse solution, it is accepted based on some
probability functions. At early stages (with high temperature), a bad move has a higher chance
to get accepted while at later stages of placement (with lower temperature), the probability is
reduced. These worse-yet-accepted moves are essential for a simulated annealing placement
algorithm to overcome a local optimum solution where a placement might be stuck. When a
greedy move-based placement method steps into local optimum, it cannot escape from this
sink.

Top-down cut-based partitioning placers, partition circuit area into either two or four
regions, then recursively partitions each region until a good coarse placement solution is
achieved. When each region is partitioned, every circuit component outside the region is
assumed to be fixed at the current location and pseudopins are created around the region
under consideration. This is called a terminal propagation. Because the main algorithm is
based on partitioning, the typical objective function is the number of netcuts between sub-
regions, i.e. the cut-size. Finding a good partitioning indicates that good logical clustering
of circuit elements are found with less cut-size among them that can lead to a better total
wirelength (TWL). In general, cut-based multilevel partitioning placement can be performed
quite well when designs are dense. Moreover, partitioning-based placement is a relatively
fast placement algorithm, as the placement problem is subdivided into smaller placement
problems with less parameters.

The main idea of analytical placement is based on first placing the cells optimally, in
terms of wirelenght estimation and then working toward disjointness. The second task, aims
to modify the objective function in small steps so as to force cells to move away from each
other. Such force-directed approaches reduce overlaps by recursive partitioning of the chip
area resulting in the set of cells to be placed in the core area. This partitioning is done in such
a way that no sub-region of the chip area contains more cells than it can fit. Consequently,
when the regions are small enough, the cells will be spread over the chip area. There are
plenty of techniques for cell spreading in force-based analytic placement techniques. During
placement, some form of density analysis is performed to calculate spreading forces. Once
the spreading forces are determined, these forces can be applied to each circuit component

18

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

1.1. Placement

via forces.

1.1.2 Legalization

Global placement assigns locations to standard cells and larger circuit modules, e.g.
macro blocks. However, these locations do not align with the circuit placement grid, and
may have continuous coordinates rather than discrete coordinates. Therefore, a legalization
step must be performed. The allowed legal locations are equally spaced within placement
rows, and the positions from global placement should correspond to the closest possible
legal position [6]. Legalization is necessary not only after global placement, but also after
incremental changes as cell resizing and buffer insertion during physical synthesis. Legaliza-
tion tries to find legal, non-overlapping placements for all cells so as to minimize its impact
on wirelength, timing and other design objectives as little as possible. Unlike algorithms
for cell spreading during global placement, legalization typically assumes that the cells are
sufficiently distributed throughout the core area and have relatively small mutual overlaps.

Some algorithms for legalization and placement are co-developed with global placement
algorithms. For instance, in the context of min-cut placement, detailed placement can be
performed by optimal partitioners and placers invoke in very small bins that are produced
after the netlist is repeatedly partitioned. Given that these bins contain a small number
of cells, optimal locations can be found by exhaustive position search. For larger bins,
partitioning can be performed optimally. Some analytic algorithms perform legalization in
iterations [3]. At each iteration, cells closest to legal sites are identified and snapped to legal
sites, then they are considered fixed thereafter. After a round of analytic placement, another
group of cells is snapped to legal sites, and the process continues until all cells have been
given legal locations. A common problem with simple and fast legalization algorithms is that
some cells may travel a long distance, thus significantly increasing the wirelength and, hence,
delaying the incident nets. This phenomenon can be eased by detailed placement.

1.1.3 Detailed Placement

Once a legal placement is available, it can be improved with respect to a given objective
by means of detailed placement techniques, such as swapping neighboring cells or sliding
cells to one side of the row when unused space is available, to reduce total wirelength . Some
detailed placers target routability, given that route topologies can be determined once a legal
placement is available.

19

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

CHAPTER 2

Background

Many legalization strategies have been proposed throughout the years trying to minimize
the impact on the legalizer as little as possible. These strategies can be classified as (i) global
or (ii) local approaches [8]. The main difference between these approaches is that the former
legalizes groups of standard cells simultaneously, while the latter legalizes one standard
cell at a time. Table 2.1 presents additional techniques which are widely used directly or
combined in modern legalizers.

Greedy moves to free locations
Ripple Cell Movement
Diffusion Based

Legalization Dynamic Programming
Techniques Computational Geometry
Network Flow
Linear Programming
Top-Down Opt. & Clustering

Table 2.1: Legalization Techniques [8]

2.1 Global Legalization Approaches

Global legalization approaches are applied, mainly, in network flow techniques or similarly
in maximum bipartite matching to get a direction guideline in which cells have to be moved.
The main idea of these approaches is to exploit the global view of the cells’ positions and guide
them to positions avoiding local optima [2]. In this way, the placement area is subdivided into
regions or bins and cells are moved from dense to sparse regions by solving a transportation
problem, where the nodes are the regions and the cells, the edges are the matching between
cells and regions, and the edges’ weights are the movement cost of the cells.

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

2.2. Local Legalization Approaches

Brenner [2] subdivides the chip area into bins and assigns cells to bins. Then, in order to
manage bins which exceed their cell capacity, a network flow problem is solved to distribute
cells between bins, while achieving minimum total cell displacement. Doll et al. [4] propose
an iterative approach, whereby the chip area is divided into overlapping regions. For a given
order of the regions, a minimum-cost, maximum-flow problem is then solved, per region, to
identify the cells with minimum local displacement, which may be legalized per row. Another
iteration is then performed with different region orders, until no improvement is achieved.

The drawback of global legalization algorithms is its high complexity, and the fact that
flow models estimate the cost of moving cells between regions. In the case that the estimation
is inaccurate, the end result may be suboptimal. Moreover, the majority of global legalization
approaches do not lead directly to a legal placement. Although the cells have been spread in
the placement core area, many cells may continue overlapping. So, a final legalization step
must be taken to assign the cells to the placement rows without overlaps.

2.2 Local Legalization Approaches

On the other hand, local approaches, like Tetris [5] and Abacus [10], legalize one cell after
another by using mostly greedy decisions. Each cell is selected to be legalized based on an
order. Cell order may depend on the cell GP position, the cell area and the cell influence on
the critical path e.t.c.. The cells’ order significantly influences the legal result, as each
alternative order may lead to different legal placements. A legal position is selected in order
to minimize the GP perturbation as little as possible. The next sections present the two most
common local approaches, Tetris and Abacus legalizers.

2.2.1 Tetris Legalizer

Tetris [5] is a greedy and sequential legalizer which handles mixed cells, i.e. standard
cells and macroblocks. This method is remarkably simple and trivial to be implemented.
Algorithm 1 describes how Tetris works. For the simplicity of the above pseudocode, let’s
assume that a component is either a standard cell or a macroblock.

Tetris, first assumes a virtual grid which corresponds to the available positions, x and v,
where each component can be placed. Actually, the coordinates x and y are determined by
"Library Exchange Format (LEF)" files which depend on current technology. x coordinates
are based on the vertical core area sites and y coordinates on the horizontal, which is actually
the placement rows. Then, the components are legalized one at a time, lines: 3-14. For each
component C;, all the available positions (z,y) are checked for each position where there is
no overlapping with pre-placed components and cost D is determined, lines: 3-8. Tetris aims
to place each component to the nearest GP position without overlaps. As a consequence, it’s
cost function is the displacement between the GP position and the trial legal position. If the
current component’s displacement is less than the minimum, then the best cost is updated,
lines: 9-11. When all available positions are checked, then the current component C; is
assigned to the legal position (Zpest, Yoest) With the lowest displacement cost, best_cost, line:

21

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

2.2. Local Legalization Approaches

Algorithm 1: Tetris

create (z,y) grid;
cell_ordering();
for each component C; do

1
2

3

4 best_cost = oo;

5 for each x do

6 for each y do

7 if component_fits_at_position(C;, x, y) then
8 Determine cost D;

9 if D < best_cost then

10 Thest = T Ybest = Y5 /* Trial */
11 best_cost = D;

12 end

13 end

14 Assign C; to (Tpest, Yvest) /* Final */
15 end

14.

In its purest form, Tetris has several known drawbacks [6], one being its obliviousness
to the netlist, because the cells’ relative GP order is not maintained. As a consequence, if
component a is on the left of (or above) b in GP, then component a may be legalized on the
right of (or below) b, leading to greater total displacement cost and total wirelenght. Another
drawback is that in the presence of large amounts of whitespace, once a module is legalized,
it will not be moved anymore. These main drawbacks are solved by several evolutions of
Tetris, like Abacus.

2.2.2 Abacus Legalizer

Abacus [10] is also a sequential and greedy algorithm which is more effective, as for total
wirelength, than Tetris. In contrast to Tetris, Abacus legalizes only standard cells with the
same height, but different width, trying to minimise their displacement (movement) from
the GP positions. In order to achieve the minimal total displacement, standard cells are
allowed to be moved through placement rows by keeping their initial global placement order.
Quadratic and dynamic programming is used to find the cells’ position with the minimum
displacement from their GP positions. The following sections describe the most important
features of Abacus legalizer.

2.2.2.1 Quadratic Program

Abacus tries to move the cells as little as possible, in order to minimise it’s influence on
the optimal global placement solution. In this way, pre-placed cells are allowed to be shifted

22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

2.2. Local Legalization Approaches

through its placement rows to optimize the total quadratic movement of all cells within one
row. The new positions are found by the following quadratic program:

min» [x(i) — 2/ (i)]” 2.1)

st x(i) > z(i—1)—w(i—1) i=2,..,C, (2.2)

For Equations 2.1 and 2.2 we assume that the row has C). cells and for each cell i we have
the following properties, the initial global placement x-coordinate z'(i), the legal placement
x-coordinate z(i) and the width w(i). Besides this, the cell selection order is known. So,
cells i and i — 1, equation z(i) > z(i — 1) must be satisfied, so as to keep the cells initial
order. Objective function 2.1 presents the total squared displacement of all row cells between
the global and legal positions. The objection can be weighted, like Equation 2.3, where e(i)
is a weight parameter for cell ;. This parameter can take the cell’s area, cell’s connections,
e.t.c. into account.

Cr
mmZ e(i) * [x(i) — ' (i)]? 2.3)

Constraint 2.2 guarantees that there is no overlapping between the two cells 7 and 7 —
1. Additionally, this constraint ensures the cells initial order maintenance. However, the
solution of Objective function 2.3 with Constraints 2.2 is time consuming. Abacus faces this
problem by solving the system with "=" constrains. In this way, the system is solved very fast,
but cells must abutt to satisfy "=" constrain. So, 2.2 is transformed to:

v(i) =z(1)+ > wk) i=2,.,C, (2.4)

By, using 2.2 in 2.3 the quadratic function depends only on x(1) and 2.3 can be re-written
as:

f}mmm—kmwm+imnﬁm—§mﬂ}w 2.5

i=1 i=2 k=1
Then the optimal position x(1) of cell i = 1 is given by 2.6 and optimal positions z(i) of
the remaining cells in the row are given by Equation 2.4.

wwfm+22wwkw—z;ww}
z(1) = (2.6)

Zz(il e(i)

23

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

2.2. Local Legalization Approaches

2.2.2.2 Displacement Cost Function

Abacus, tentatively places each cell to all or to a number of the placement rows, until the
best row is found. The best row is the row with the minimal displacement cost. The displace-
ment cost is determined by the movement of cell © between its global and legal placement
position. Equation 2.7 shows the Euclidean displacement cost function of Abacus, for cell ¢
legalization,

V(@ (i) = 2/(0)? + (y(0) — v (1)), (2.7)

where {z(4), y(i)} and {2'(i), ¥/(i)}, the legal and global placement coordinates for cell i.

2.2.2.3 Row Search Bounding

In order to find the row where the cell displacement cost is minimal, Abacus theoretically
will try to legalize each cell in each placement row. However, this is time consuming even
for small designs. In this way, this algorithm eliminates the number of the row with bounds.
The bounds depend on the current best displacement cost. It is pointless to search for rows
where their distance is greater than the best displacement cost. So, each cell is trial legalized
in it’s nearest row depending on it’s global placement y-coordinate and then the displacement
cost is determined. This algorithm will not try to legalize the cell in any row, which vertical
distance from the nearest row is greater than the calculated best displacement cost. The aim
of row search bound is only to reduce the execution time of legalization.

2.2.2.4 Cells Selection Order

Similar to Tetris, Abacus is a sequential algorithm, i .e. cells must be sorted in a specified
order and then they are placed in the core area, one by one. In Abacus, Spindler suggests
using the increasing and decreasing order. Abacus, tries to keep this initial cell order by
supposing that the maintenance of the order will lead to the least GP perturbation, i.e. to
minimal total cells displacement.

2.2.2.5 Abacus Algorithm

On the top level Algorithm 2, cells are sorted either in increasing or in decreasing order
based on their GP x-coordinates, line: 2. In this way, each cell in the specified order, is trial
legalized in a number of rows and finally placed in the row with the minimum displacement
cost, lines: 2-15. In the case that blockages are presented, the algorithm slices the placement
rows to sub-rows, so that all new sub-rows are blockage free. The current cell is inserted in
each available (sub-)row and P1aceRow function is used to find the new cells’ position, lines:
6-7. When the cell position is found, the displacement cost is determined, line:8. In the case
that new displacement cost is better than the best, Abacus updates the best cost and row.
Next, the number of the available rows is updated.

24

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

2.2. Local Legalization Approaches

Algorithm 2: Abacus Top Level Algorithm

1 cell_ordering();

2 for each cell i do

3 B = all placement rows;

4 c_best = 0o;

5 for each row r in B do

6 Insert cell ¢ into row 7;
7 PlaceRow r (trial);

8 Determine cost c;

9 if (c < c_best) then

10 cbest = c;

11 rbest = r;

12 B = min(cost_to_rows(D), B);
13 Remove cell ¢ from row r;

14 end

15 Insert Cell ¢ to row r_best;

16 PlaceRow rpest (final);
17 end

Algorithm 3, describes the dynamic programming implementation, where Abacus finds
the optimal legal position for each cell. Overlaps with other cells are detected, for each cell
in the current row. If there is no overlapping, i.e. z.(c) + w.(c) < 2'(i), a group or cluster
of cells is created. The cells of a group will be abutted and all these cells will be considered
as one. The width of the group w,(c) is the sum of the widths of the cells that belong to this
group, the z.(c) will be the optimal legal position of the group and e.(c) the total weight of
the group. Moreover, ¢.(c) will be the dividend of Equation 2.5.

On the other hand, if the cell overlaps with a group (pre-placed cells), the cell is inserted
in the group with Function 4, AddCell(c,i), which adds the cell’s parameters to the group.
Moving on, Function 6, Collapse(), finds the final position for the cluster, line: 2. The
final position is determined by Equation 2.6. However, the new position of the cluster may
protrude from the core area, so the alignments are necessary, lines: 4-7. Next, the algorithm
must check if the current cell group overlaps with other groups, lines: 10-14. If an overlap
exists, the two groups are merged to create one group with no cell overlapping. Function
AddCluster() is similar to Function AddCell(), but corresponds to group of cells.

Finally, Abacus places the cells of each group to the legal positions depending on the
position of the group, that has been previously found, lines: 15-22. Abacus achieves an
impressive improvement on TWL in contrast to Tetris. This is due to the fact that Abacus
ensures the maintenance of the initial cell order. On the other hand, Abacus is slower than
Tetris since many cells must be re-legalized in each placement row, so as to find the legal
positions with the best total displacement.

25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

2.2. Local Legalization Approaches

Algorithm 3: PlaceRow
1 fori=1,...C, do

2 c = Last cluster;

3 /* First cell or cell 7 does not overlap with last cluster: */
a | ifi==1o0rz.(c) +wcc) <2'(i) then

5 Create new cluster c;
6

7

8

9

Init e.(c), we(c), gc(c) to zero;
ze(e) = 2’ (i);
Nfirst(C) = 1
AddCell(c, 2);

10 else

11 AddCell(c, 1);
12 Collapse(c);

13 end

14 /* Transform cluster positions xc(c) to cell positions x(i) */
15 ¢ =1;

16 for all clusters c do
17 | z=2x.(c);

18 for i < ny,s(c) do
19 x(i) = x;

20 z=x+ w(i);
21 end

22 end

Algorithm 4: AddCell(c,):

1 nlast(c) =1;
2 e.(c) = ec(c)
3 ¢c(c) = ge(c)
4 we(e) = we(e) + w(i);

Algorithm 5: AddCluster(c, ¢):

1 Ngst(€) = Nigst(¢):

2 e.(c) = eq(c) + ec();

3 qc(c) = qe(c) + gelc) — ec(c) x we(c);
4 we(c) = we(c) + we(cd);

2.2.3 Our Motivation

Standard cell placement is one of the most important steps in the physical design flow.
Placement, just as it’s sub steps, like legalization, are very complicated and not trivial prob-

26

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

2.2. Local Legalization Approaches

Algorithm 6: Collapse(c)

1 /* Place cluster c: */
2 2e(c) = qelc) [ec(c):
/* Limit position between i, and Tyq, - we(c) */
if z.(c) < Ty then
| 2e(€) = Tonins
if z.(c) > Tymae — we(c) then
| 2e(€) = Timaz — we(c):
/* Overlap between c and its predecessor %/
¢ = Predecessor of c;
10 if ¢ exists and x.(c) + w.(c') > x.(c) then
11 /* Merge cluster c to c:*/
12 AddCluster(c, ¢):
13 Remove cluster c;
14 Collapse(c'];

w

© ® N O O »

lems. Standard cells legalization significantly influences the final placement, motivating
many people to solve this problem efficiently. So, we have also been motivated to implement
a novel legalizer, that legalizes standard cells not only fast but also with the less influence on
the optimal global placement solution.

In this chapter we analyze the two categories of legal placement, the global and the local.
The former legalizes many cells at a time, by having a global overview of all cells’ positions.
However, these legalizers are very slow. On the other hand, local approaches are quite fast,
but make greedy decisions.

Abacus is a local and greedy approach achieving minimal standard cell displacement,
which is widely used in industry. However, in designs with blockages, Abacus legal place-
ments are sub-optimal, as it violates the initial standard cells order which is the key to
minimizing total wirelength. Moreover, the original Abacus, legalizes only standard cells with
the same height. Last but not least, Abacus and generally, local legalization approaches do
not produce efficient solutions in overlapping dense regions.

We developed our legalizer, Abacus2, based on the well-known greedy legalizer Abacus
[10], as it achieves minimal movement to the standard cells. Abacus2, adopts many ideas
from the fundamental Abacus legalizer, like dynamic programming and row search bounding.
Additionally, Abacus2, is capable of handling designs with blockages efficiently, by keeping
the initial standard cell order. Abacus2 can also handle standard cells with different heights,
with a strategy which is based on both Tetris and Abacus approaches. Moreover, Abacus2 has
a super set of features which focus on better QoR (Quality of Results). In the following chapter
we present Abacus2 and its features analytically and we compare them to the corresponding
original Abacus features.

27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

CHAPTER 3

Our Work

Chapter 2 presented the state of the art techniques in placement legalization. Abacus
[10] is one of the dominant legalization algorithms, which achieves minimum standard cell
displacement. This chapter describes Abacus2, an evolution of the original Abacus algorithm.

Abacus? is based on the original Abacus framework, but it contains several new features.
Abacus2 supports (i) two new displacement cost functions, multi-cell mean and multi-cell
total, (ii) an additional cell order, centre-outwards, (iii) and two approaches for handling
blockages, SRA, the proposed approach in the original Abacus paper, and SRR, a more ad-
vanced blockage handling approach, which allows cells to move between sub-rows. The new
displacement cost functions also establish different row search bounds. Moreover, Abacus2
also includes a row overflow check, to ensure that a row has enough space for the current
cell. Lastly, Abacus2 is capable of legalizing multi-height standard cells, i.e cells with dif-
ferent heights. Table 3.1 illustrates a feature set comparison between the two algorithms.
These features are analyzed analytically in the following sections.

3.1 Cell Selection Order

Abacus2, like Abacus, is a sequential legalizer. Cells are placed one at a time in legal
positions in a specified order. Cell ordering in different approaches, depend on different
parameters, like cell global position, cell area or even the influence of each cell on the timing of
the circuit. Abacus2 focuses on minimizing its influence on global placement, by minimizing
the displacement of the cells from its global to legal positions. In this way, cells are legalized
based on their global x-coordinate. In Abacus2, three orders are supported, the (i) increasing,
(ii) decreasing, (iii) and center-outwards. Figures 3.1a and 3.1b, show a GP example and the
cell legalization order, depending on the selection order for the given GP, respectively. It is
worth mentioning, that cell ordering significantly influences the final legal placement, so the
key is to use many orders and choose the best one.

28

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.1. Cell Selection Order

Features H Abacus | Abacus2
Increasin, Yes Yes
Cell Ordering 1, g
Decreasing Yes Yes
Support
Centre-outwards No Yes
Displacement Single-cell Yes Yes
Cost Functions Multi-cell Mean No Yes
Support Multi-cell Total No Yes
Exhaustive Yes Yes
Row Search -
. Single-cell Yes Yes
Bounding
Bounded | Multi-cell
Methods No Yes
Mean
Multi-cell
No Yes
Total
Sub-Row
Blockages/ . No Yes
Assign Approach
Hard-Macros
Sub-Row
Support . No Yes
Re-Assign Approach
Row Overflow Checks No Yes
Multi-Row Height Cell Support No Yes

Table 3.1: Abacus, Abacus2 Feature Set Comparison

Cell 1

Cell 3

Cell 4

Cell 2

(a) Global Placement

Order Type

Legalization Order

Increasing

{Cell 3, Cell 1, C

ell 4, Cell 5, Cell 2}

Decreasing

{Cell 2, Cell 5, C

ell 4, Cell 1, Cell 3}

Center-Outwards

{Cell 4, Cell 1, C

ell 5, Cell 3, Cell 2}

(b) Cell Selection Orders

Figure 3.1: Cell Selection Order Example

29

Institutional Repository - Library & Information Centre - University of Thessaly

09/12/2017 06:29:44 EET - 137.108.70.7

3.2. Displacement Cost Functions

3.2 Displacement Cost Functions

Abacus and Abacus?2 try to minimize cells displacement from the global to legal positions.
Both algorithms, choose the legal positions of the cells depending on the displacement cost of
each cell. Abacus algorithm uses the Euclidean distance of the last legalized cell. Equation
3.1 corresponds to the displacement cost function of Abacus, assuming that z.(p), y.(p)
and z.(n), y.(n) are the legal placement and global placement positions, respectively, for the
current cell c. We call this displacement cost function single-cell.

dy = \/(we(p) = we(n)? + (ye(p) — ye(n))? (8.1)

However, single-cell displacement cost function has a local overview of the global place-
ment perturbation, as it only considers the displacement of the last legalized cell. This
cost function does not take the perturbation of the pre-placed cells into account. This phe-
nomenon appears mainly in dense overlapping regions. So, we propose two additional dis-
placement cost functions, the multi-cell meanandmulti-cell total, which take all
the perturbed cells into account. Equations 3.2 and 3.3 determine the cost of the above cost
functions.

dy + it o /(@i(p) — 2:(n))* + (yi(p) — yi(n))?
N+1

(3.2)

ds + Z V (@i(p) — z:(n))? + (i(p) — yi(n))? (3.3)

The multi-cell mean and multi-cell total cost functions are the mean and the sum dis-
placements of the N perturbed cells and the current cell ¢, respectively. These cost functions
have a global overview of the global placement influence.

3.3 Row Search Bounding

So as to reduce the number of the candidate rows, we first place a cell in the nearest row,
to its global placement y-coordinate, and then determine its displacement. The displacement
cost function is interpreted to a number of rows, depending on the placement row height,
i.e. the number of the searched rows, around the nearest placement row, will be the
result of the division in Equation 3.4. The number of candidate rows is updated when a new
displacement cost is greater than the best.

(3.4)

best displacement cost
core site height

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.3. Row Search Bounding

It is important to point out, that row search bounding must not influence the quality of
the solution, but only the execution time. The results from an exhaustive and a bounding
row search must be the same. However, the single-cell displacement cost function may
lead to sub-optimal solutions, as its row bounds are extremely tiny. Figure 3.2 illustrates a
simple example to understand why single-cell displacement function can lead to suboptimal
solutions. The cells are legalized in increasing order and their names correspond to their
selected order.

row 1 row 1
6
6 5 6,\
2
A+ _ row 2 ~o row 2
1 7_ : 4 ’/" 1 3 ; Zz ‘ : ,/"
R 3 row 3 <9 SO row 3
5 4 5
4| row 4 ~|o— row 4
row 5 row 5
(a) Global Placement (b) Tentative Cell 8 Legalization in Row 3
row 1
2 6.\
~ I- row 2
1 3 = 2,00
I b Yy I 5%*}, 0% row 3
7 5 =
| row 4
row 5
(c) Suboptimal Legal Placement - (d) Optimal Legal Placement - Multi-cell
Single-cell Mean, Total or Exhaustive

Figure 3.2: Row Search Bound Example

Figures 3.2a and 3.2b depict the global placement and the legalization of the first seven
cells, respectively. Figure 3.2b also illustrates the global position of cell 8 and its nearest
row, row 3. Firstly, single-cell displacement cost function will try legalizing cell 8 in the row
3 and will determine its displacement cost, which is depicted as an arrow from the global to
the legal position. As we can see, this displacement cost function is very small, so, the row
search bound will be extremely tiny, bounding the row search only to row 3. On the other
hand, if the exhaustive or the multi-cell displacement cost functions are used, a legalization
with a better total displacement cost may be found. In the same example, Figure 3.2d, the
algorithm exhaustively explores all the available rows and finds a better legal placement,

31

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.4. Legalization Artifacts

in terms of total displacement cost. In the same way, multi-cell total and multi-cell mean
displacement cost functions will examine the necessary rows, as they have a global overview
of the legalization in the row. The results of the latter two displacement cost functions are
the same even if we use the row search bounds or not. However, multi-cell total creates very
loose bounds in overlapping dense regions, as the sum of all the perturbed cells are very big.
So, the execution time for multi-cell total displacement cost function is comparable to the
relative exhaustive row search execution time.

3.4 Legalization Artifacts

Another interesting finding of our legalization experiments was the observation of certain
placement artifacts, stemming from the single-cell and multi-cell total displacement func-
tions. We tested Abacus2 using minimum quadratic TWL placements, generating from the
solution of the formulated QP placement problem. The difference in the results, deriving from
a GP, is that the QP solution does not spread cells therefore, reducing overlaps.

We observe horizontal stripe artifacts in very dense QP placements and when the single-
cell displacement function is used, i.e. uneven row occupancy, with certain rows forming
horizontal stripes. On the other hand, when using the multi-cell total displacement function
for the same dense design, we observe vertical stripe artifacts, i.e. vertical stripes formed
across rows.

Figure 3.3 illustrates the cordic_I4 benchmark, which reveals this trend. In this ex-
ample, chip utilisation is 50%, the aspect ratio is 3:1, and cells are selected in decreasing
x-coordinate order. The aspect ratio is selected so as to accentuate the horizontal stripe
artifact. The reason why the horizontal stripe artifact occurs is the following. As the design is
very dense, after the first set of GP cells is placed, any new legalized cell will push its already
legalized counterparts to the right for two reasons. Firstly, since both Abacus and Abacus2
aim to maintain the original cell order, thus scanning new cells to the left, pushes the already
legalized ones to the right. Secondly, since the single-cell bound does not take the displace-
ment of the cells that moved to the right into account, the algorithm will greedily stick to this
solution. Thus, other rows further than the nearest one will seldom be searched. Figure 3.3b,
illustrates the horizontal stripe artifacts produced by the single-cell displacement function
and bound.

In contrast to single-cell, multi-cell total displacement considers all the perturbed cells.
In this way, the more overlapping cells there are, the greater increment in displacement cost
is observed. So multi-cell total actually tries to move as less cells as possible from their GP
positions. However, in overlapping dense regions, in order to move few cells, current cell is
legalized far away from its nearest row, creating vertical artifacts like the example in Figure
3.3d. Moreover, as displacement cost is increasing, row search bound is also increasing,
leading multi-cell total to great execution time.

When multi-cell mean is used as displacement function and bound, the legalization result
will not produce any artifacts, as illustrated in Figure 3.3c. Multi-cell mean is horizontal

32

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.4. Legalization Artifacts

(a) Minimum QP TWL Global Placement

(b) Single-cell Legalization

(d) Multi-cell Total
Legalization

(c) Multi-cell Mean Legalization

Figure 3.3: Legalization Artifacts for Single-cell and Multi-cell total displacement functions

artifact free because it takes all the perturbed cells into consideration.

33

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.5. Blockage Handling Strategies

3.5 Blockage Handling Strategies

Abacus2 supports two approaches for handling blockages. The first approach, Sub—Row
Assign (SRA), was proposed in the original Abacus work but not experimentally evaluated.
In the SRA approach, blockage locations divide rows in row segments, called sub-rows. The
legalization algorithm can then operate on sub-rows, instead of placement rows, with the
restriction that cells were once assigned, they may not move between sub-rows. Thus,
legalization will identify the nearest sub-row, instead of the nearest chip row.

The key disadvantage of the SRA approach is that it will only maintain the relative cell
order of GP within sub-rows, but will very likely violate it across sub-rows. We illustrate this
with a contrived example. Figure 3.4a shows a GP with two blockages, depicted in gray, and
three cells, 1, 2 and 3. If we assume increasing x-coordinate order, cells will be considered
in the order 1, 2, 3. Figures 3.4b, 3.4c illustrate the legalized positions for cells 1 and 2.
cell 1 is legalized in the middle sub-row, where its displacement cost is minimal. As cell 2
cannot fit there too, it is placed within the right sub-row. The last cell, cell 3 will have little
choice, but to be legalized in the left sub-row. Figure 3.4d, illustrates the SRA legalization,
with arrows representing cell displacement from their GP location. The original cell order is
thus not maintained, due to the presence of blockages, and the fact that cells may not move
across sub-rows.

The alternative blockage handling approach, Sub—-Row Re—-assign (SRR), tackles this
issue by allowing cells to be reassigned to other sub-rows, so as to maintain the original
relative cell order as much as possible. The operation of SRR is recursive in the case where a
sub-row becomes full when a cell is moved there. An inter sub-row cell move thus creates a
wave of recursive, or iterative, such moves, to ensure that: (i) no sub-row overflows, and (ii)
the original cell order is maintained.

SRR identifies the nearest sub-row for the cell, but it maintains cell order. The selected
cell order determines how to achieve this. First, SRR identifies the cell’s closest sub-row.
Then, it identifies the rightmost cell of the current placement row. The nearest sub-row then
becomes the sub-row with the largest x-coordinate between the closest cell sub-row, and the
sub-row of the rightmost legalized cell. For the other two cell orders, SRR uses the same idea
in their respective orders.

In the same example of Figure 3.4, and after cell 1 is legalized, the SRR approach will
attempt two tentative legalizations for cell 2. The first is to move cell 1 to the left sub-row, so
as to make room for cell 2 in the middle sub-row. The second is to place cell 2 in the right
sub-row, as in the SRA approach. Note that in the case where a decreasing x-coordinate
order is used, the first tentative move of SRR would correspond to moving the existing cells
of the middle sub-row to the right instead. Out of the two tentative moves, the one with the
least displacement is the second one, i.e. the same result as that of SRA, Figure 3.4c. When
cell 3 is to be legalized by SRR, it will not fit in either the middle or right sub-rows. Thus, the
former is assigned to its nearest sub-row, the right sub-row, reassigning cell 2 to the middle
sub-row, which then recursively reassigns cell 1 to the left sub-row. The result of SRR, which

34

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.6. Multi-Row Height Cells Handling Approach

2
(a) Global Placement
- 1

(b) Cell 1 Legalization in Middle Sub-row

- 1

(c) Cell 2 Legalization in Right Sub-row

(d) SRA - Cell 3 Legalization in Left Sub-row

1 2
_“ [

(e) SRR - Cell 3 Legalization in Right Sub-row

N

.

5

Figure 3.4: Blockage Handling Approaches Example

maintains the original, relative cell order, is illustrated in Figure 3.4e. Its TD is less then the
SRA solution.

It is interesting to note that if blockages are not present, the two legalization approaches
produce the same result as sub-rows do not exist and both SRA and SRR will maintain the
cell order.

3.6 Multi-Row Height Cells Handling Approach

Our legalizer, Abacus2, can also handle cells with different heights, i.e. Multi-Row
Height Cell (MRHC).MRHCs can have arbitrary heights, but it must be integral multiple
of the row height. In contrast to the classic soft macros, the number of MRHCs in a modern
circuit is much larger. In this way, the legal positions of MRHCs must be selected efficiently,
so as to influence TWL as little as possible. MHRCs are mainly flip-flops, which play an
important role in the design timing, so their legal positions must differ as little as possible
from the optimal, in terms of TWL, global placement positions. It is inefficient to use the
original Abacus approach to legalize MRHCs, as MRHCs will move cells from many rows and

35

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.6. Multi-Row Height Cells Handling Approach

increase both legalization execution time and final TWL. As a consequence, we decided to
use the legalization strategy of Tetris [5] algorithm, to place MRHCs, by fixing them to their
nearest GP position, in order for pre-placed cells not to be moved. Abacus2 can be subdivided
into two stages, the Multi-Row Height Cell and Single-Row Height Cell legalization. The latter,
legalizes cells according to the features that have been described in the previous sections.
Single-Row Height Cells are the standard cells, which height is equal to the placement row
height. The former, legalizes and fixes each MRHC to the legal position with the minimum
cell displacement. The MRHC will not be moved again from this legal position, throughout
the legalization procedure. As a result, the displacement cost function for the MRHCs is the
single-cell, as only one cell moves at a time.

The MRHC handling approach, treats the already legalized MRHC as blockages, by subdi-
viding placement rows into sub-rows. Figure 3.5 shows a simple example, so as to understand
how a (sub-)row can be subdivided into sub-rows.

row 1
%)
oe}g’q o row 2
> MRHC \@Q
2 \00
82
row 3
MRHC
1 Q@
cjb'z’g row 4
®\0
row 5

Figure 3.5: (Sub-)Row Diviation from a MRHC

Blockages and already legalized MRHCs may exist in core area, gray colored boxes. We
assume that the optimal legal position for M RH (' 2 is depicted in the figure. In this example,
we can see how a (sub-)row can be subdivided, i.e. (i) in row 1, M RHC 2 subdivides the
row into two sub-rows, (ii) in the second row, MRHC subdivides the middle sub-row, (iii) in
row 3, the current sub-row is shrinked and (iv) in row 4, the M RHC 2 occupies the hole
sub-row, so this sub-row ceases to exist.

Next, the MRHC handling approach will be presented with a contrived example. The
algorithm starts from the global placement solution with blockages already placed in the core
area, Figure 3.6.

The white MRHC must be legalized in the nearest legal position. The algorithm will
find all the legal positions for the cell and will legalize it to the position with the minimum
displacement from the global position. In order to find the corresponding sub-rows, Abacus2
scans the core area into two opposite directions, i .e. bottom-up and top-down. Both scan

36

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.6. Multi-Row Height Cells Handling Approach

MRHC

ge 2

lockage 3

Figure 3.6: MRHC Legalization Example: Global Placement

directions are necessary, so as to find all the available sub-rows. Figures 3.7 and 3.8 depict
the core area bottom-up and top-down scan of the GP example in Figure 3.6.

Firstly, by taking the lower y-coordinate of the MRHC as a reference, the algorithm, starts
from the nearest row and tests all the available sub-rows that the cell fits. Then, algorithm
determines the new cell x-coordinate. The algorithm searches, from the current sub-row to
the height of the MRHC, if the cell can be legalized in the determined by x-coordinate position.
This mean that in a legal position the MRHC will not overlap with any MRHC or blockage.
In the example of Figure 3.6, the nearest row to the lower side of the cell, is row 4 and more
specifically the left most sub-row. The upper left figure of Figure 3.7 illustrates that in the
new x-coordinate, cell can’t be legalized, since Blockage 1 blocks the second row. The next
nearest sub-row is the sub-row in row 5. Again, the nearest x-coordinate to the GP position
will lead to an illegal placement because of the existence of Blockage 2. Moving on, the left
most sub-row of row 3 will also lead to illegal placement. Finally, the right most sub-row
of row 3 leads to a legal placement (lower right figure). When a legal placement is found,
the displacement cost is determined. Each MRHC will be placed in the position with the
minimum displacement cost of the cell.

However, the bottom-up scan is not enough to find all the available sub-rows. In Figure
3.7, it is clear that there are many other corresponding sub-rows. As a consequence, a top-
down scan is necessary to find the remaining available sub-rows. Only the combined results
of bottom-up and top-down scans cover all the possible cases. In Figure 3.8, the top-down
scans are presented, starting each time from the nearest sub-row of the upper y-coordinate
of the cell. The algorithm scans the sub-row in the same way as in bottom-up, but in the
opposite direction.

Finally in this example, we can see that there are four available positions to legalize
the MRHCs. The algorithm will legalize the cell in the position with the least displacement
cost, i.e. the position which is illustrated in the lower left figure in Figure 3.8. After the
legalization of each MRHC, it is fixed in this position and never moved again. The solution

37

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.7. Abacus2 Algorithm

Figure 3.7: Bottom-Up Sub-row Scan

space can be reduced by using the row search bounding approach (see Section 3.3). This
method can be used not only to reduce the number of the explored rows, but also to reduce
the number of the explored sub-rows in each row.

The drawback of this approach, like the Tetris approach, is that the fixed cells will create
many whitespaces between the MRHC. This problem can be handled efficiently, in terms
of TWL, by the SRR algorithm as cells may be shifted to the gaps with the recursive re-
legalizations. However, the execution time, of the legalizer, will be very slow.

3.7 Abacus2 Algorithm

In this section we present how features from the previous sections are combined, in Aba-
cus2. Algorithm 7, describes the top level pseudocode of Abacus2 legalizer. The algorithm
starts from the solution of a global placement (GP), where cells C' have been placed in the
optimal, in terms of TWL, positions. C' contains information about the cells, like their global
coordinates, their width and height, e.t.c. Moreover, the coordinates of blockages and
placement rows are already known. The user can specify the legalization cell order O (see
Section 3.1), the blockage handling approach (SRA of SRR) (see Section 3.5) and the dis-
placement function (DF) . The output of the algorithm is the legal placement (LG) of cells C,
in the core area, where blockages may exist.

38

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.7. Abacus2 Algorithm

C

Figure 3.8: Top-Down Sub-row Scan

Firstly, Abacus2 defines the placement sub-rows Sy of each row 7, lines: 7-10. The sub-
rows are created by the intersection of the original placement rows R and the positions of the
blockages H. If blockages are not present, rows and sub-rows are the same. Next, cells are
subdivided into the Multi-Row Height Cells (MRHC) and the classic Single-Row Height
Cells (SRHC), lines: 13-18. Function isM H RC', checks the cell’s height and determines if
the cell is MRHC or not. In the first case, the cell is inserted in ('), a union of all the MRHC.
However, in the second case, Cg contains all the SRHC. Then, the algorithm separates the
cells, and it legalizes the MRHC first and then legalizes the SRHS. It is worth mentioning, that
MRHC can be sorted not only by their x-coordinate, or by their height, but also by combining
them. For example, the tallest cells may be sorted and legalized first and then the shortest.

39

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.7. Abacus2 Algorithm

Algorithm 7: Abacus2 Algorithm

1 Input: GP (C), Blockages (H), Placement Rows (R), Order (O),

Blockage Approach (SRA), Displacement Function (DF)

3 Output: Legalized Placement

[S 0

© ® N o

11

12
13
14
15
16
17
18

19
20
21
22

23
24
25
26
27
28
29

Multi-Row Height Cells Cjy;
Single-Row Height Cells C’;

/* Define placement sub-rows */
for each r € R do
for each r N H do
‘ create sub-rows Sg;
end
end

/* Find Multi-Row Height and Single-Row Height Cells */
for each c € (' do
if isMRHC(c) then

‘ Cy =CpUc
else
‘ Cs=CgUc;
end
/* Legalize Multi-Row Height Cells */

Chr = cell_sorting(Cys, O);
if C); # () then
‘ legalize. MRHC(C'yy);

/* Legalize Single-Row Height Cells */
Cg = cell_sorting(Cg, O);
if Cs # () then
if SRA) then
‘ SRA(Cy, DF);
else
| SRR(Cs. DF, O);

As for cells with the same height, the user specified order O determines the legalization order.
Function 8, legalizes the MRHC. The algorithm gets a list of MRHC (C);) and the place-
ment sub-rows Sy and produces a legal placement for the MRHC. For each MRHC and each
placement row in the bounded list of rows B, Abacus2 makes tentative legalizations to find
the optimal legal position, in terms of TD. As we described in Section 3.6, MRHC are legalized
by taking two points of view into account , the bottom-up and top-down. Starting from the
lower row 7, bottom-up approach finds the available sub-rows, line: 9. Function get_subrows,
returns a sorted list of sub-rows in row r, where cell c fits. This list, is sorted based on the
the distance of the sub-row from cell ¢ x-coordinate.

40

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.7. Abacus2 Algorithm

Algorithm 8: legalize_ MRHC

1 Input: Sorted Multi-Row Height Cells List (C'3s), Placement Sub-Rows (SRg)
2 Output: MRHC Legalization

3 for each c € C); do

4 B = placement rows;

5 best_cost = oo;
6
7
8
9

flag = 0O;
for each r € B do

/* Bottom-Up Trial Legalization */

A = get_subrows(c, 7, S;);
10 backtracking_trial_legalizations(c, best_cost, r + 1, r + get_height(c), A);
11 /* Top-Down Trial Legalization */
12 A = get_subrows(r + get_height(c), Sy);
13 backtracking_trial_legalizations(c, best_cost, r + get_height(c) — 1, r, A);
14 end
15 Select best legalization; /* final */

16 update_subrows();
17 end

Then, Algorithm 9, backtracking trial_legalizations, scans the sub-rows to find if there is
free space in the sub-rows above the current sub-row. The number of rows above, that the
algorithm checks, depends on the height of the current cells, which is given from function
get_height. The backtracking_trial_legalizations algorithm finds the new position that the cell
¢ can be placed, for each sub-row in the sorted list A. This position is the nearest x-coordinate
to the global position that the cell can be legalized in sub-row s. For the new x-coordinate,
the algorithm checks the above (bottom-up) or the bellow (top-down) rows vertically, and
discovers if MRHC fits in the respective sub-rows of these rows. Function can_legalized
scans if the cell fits in the specified sub-row and if it does, a flag rises. On the other hand,
if the cell can not be legalized in a sub-row, the flag falls so the backtracking scan for the
current sub-row s fails. If backtracking scans, find a number of sequential vertical sub-rows
that the cell fits, the displacement cost D is determined. In the case that cost D is less than
the best, the best legal placement is updated.

Moving on, when all the available sub-rows in A are checked, the algorithm uses the
top-down approach. This method is similar to the bottom-up scan approach, but scans the
rows from the upper to the lower row of the current cell. Finally, when all the available
rows are checked, the algorithm selects the legalization result with the less displacement
cost and updates the sub-rows (see Section 3.6). The legalization of each MRHC changes the
placement sub-rows as the cell is fixed to the legal position.

The result of the function legalize_ M RHC, it is that all the MRHC have been legalized in
the core and new sub-rows have been created. From now on, MRHC are treated as blockages,
so as to disable them from moving. Then, Abacus2, legalizes the Single-Row Height Cells

41

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.7. Abacus2 Algorithm

Algorithm 9: backtracking trial_legalizations

1 Input: Current Cell (c), Best Cost (best_cost), Lower Cell Row (l,), Lower Cell Row (u,.),
Sub-Rows of Current Row (A4)

2 Output: Best Cost (best_cost), Tentative Best Legalization
3 for each s € A do

4 find_new_position(c, s);

5 | for eachu € [l, : u,] do

6 if !can_legalized(c, u) then

7 flag = O;

8 break;

9 else

10 ‘ flag=1;

11 end

12 if flag then

13 D = determine_cost();

14 if D < best_cost then

15 Update best legalization; /* tentative */
16 best_cost = D;

17 end

(SRHC), with the user specified blockage handling approach (SRA or SRR).

The SRA approach pseudocode is illustrated in Algorithm 10. Each cell, in the specified
order is tentatively legalized within a bounded range of sub-rows, lines: 3-7, where the bound
is initially the entire set of rows. For each sub-row, where the cell can fit, a trial legalization
is performed, and the displacement cost D is determined, lines: 8-10. If the new cost D is
greater than the current best cost, the current best cost and the cells best legal location are
updated, lines: 11-13. At this point, the row bound is relaxed, based on the displacement
cost of the current best solution, line: 14. After all sub-rows within the bounded range are
explored, the cell will be legalized at the sub-row location of minimum displacement cost,
line: 17.

The SRR approach pseudocode, which supports cell sub-row reassignment, is illustrated
in Algorithm 11. Similarly to SRA, each cell, in the specified cell order, is tentatively legalized
within a bounded range of sub-rows, lines: 3-6. Here, the nearest valid, sub-row is identified,
line: 7. The nearest valid, sub-row is the nearest sub-row, where (i) the current cell may
fit, and (ii) the original cell order is maintained, within the chip row. If cells need to be
moved for the current cell to fit within the identified sub-row, SRR will recursively move the
necessary number of already legalized cells, from sub-row to sub-row, by calling function
recursive_moves, line: 9. The pseudocode for recursive_moves is illustrated in Algorithm 12.

In the first recursive iteration, we check if the current cell C; fits in the nearest sub-row,
considering C; as the only cell in the moving group M, line: 3. If the cell fits in the sub-row,
it is legalized there, line: 12. In the case where the nearest sub-row is already occupied,

42

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.7. Abacus2 Algorithm

Algorithm 10: SRA Approach

1 Input: Sorted Single-Row Height Cells List (Cs), Displacement Function (D F)
2 Output: Legalized Placement

3 for each cell C; in Cs do

4 B = # placement rows;

5 best_cost = oo;
6
7
8
9

for each row R in B do

for each sub-row Sy do
if cell fits_in_subrow(C;, Sr) then
Legalize C; in Sg;

10 D = determine_displacement_cost(D F);
11 if D < best_cost then
12 Update best legalization; /* tentative */
13 best_cost = D;
14 B = min(cost_to_row_range(best_cost), B);
15 end
16 end
17 Select best legalization; /* final */
18 end

already legalized cells will be re-legalized in previous sub-rows. Function previous returns
the previous sub-row for a specified sub-row, depending on cell order O, i.e. in the increasing
order, the previous sub-row of the i’" is the i — 1!, in the decreasing order, the previous sub-
row is the i + 1" and in the centre-outwards order, the previous sub-row depends on the
direction of the selected cell compared to the central cell. Similarly, function next returns
the next sub-row, to a specified sub-row. On the other hand, function next returns the next
sub-row. In this way, if there is a previous sub-row, a new moving group M’ is created, line:
5. M’ consists of the cells that must be removed from the current sub-row so as to legalize M
group there. However, in very thin sub-rows, the new group M’ may contain cells from the
previous moving group M, so after each legalization each moving group must be updated,
line: 11.

After the creation of the new moving group M’, the algorithm recursively tries to move cells
to previous sub-rows, until either all cells are legalized in the sub-rows, or there is a moving
group but there are no more previous sub-rows, line: 7. In the second terminating condition,
the whole legalization procedure fails to re-legalize cells. If the recursive re-legalizations are
achieved, the displacement cost D is determined and the best legalization is updated, if the
new cost is greater than the best, lines: 10-13.

Next, SRR will try to legalize C; in the opposite direction of the recursive cells move, so
as to find a legal position without any cell movement, again maintaining their initial order
and finding the new cost, lines: 15-20. When the above approaches are both finished, the
algorithm updates the number of the available rows which may be influenced by the best

43

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.8. Extra Features

cost.

When all the available rows are checked, cell C; will be assigned to the best sub-row by
reassigning cells in other sub-rows, if needed, and then will continue legalizing the remaining
cells.

Algorithm 11: SRR Approach

Input: Sorted Single-Row Height Cells List (C'g), Displacement Function (DF), Order (O)
Output: Legalized Placement
for each cell C; in Cs do

1
2
3
4 B = # placement rows;
5 best_cost = oo;
6 for each row R in B do
7 Find nearest sub-row S,,;
8 /* phasel */
9 if recursive_moves(Cj;, S,,, O) then
10 D = determine_displacement_cost(D F);
11 if D < best_cost then
12 Update best legalization; /* tentative */
13 best_cost = D;
14 /* phase2 */
15 if next(S,,, O) then
16 Legalize C; in next(S,);
17 D = determine_displacement_cost(D F);
18 if D < best_cost then
19 Update best legalization; /* tentative */
20 best_cost = D;
21 B = min(cost_to_row_range(best_cost), B);
22 end
23 Select best legalization; /* final */
24 end

3.8 Extra Features

This section contain extra applications that Abacus2 supports. Abacus2 is capable of
handling highly dense overlapping regions with and/or without blockages. In this way,
Abacus2 can be used as a look-ahead legalizer in the placement flow. In [3], a look-ahead
legalizer is used so as to legalize the cells after a number of spreading iterations. In this
hill climbing approach, the final legal placement is the best legal placement found through
all iterations. However, the whole placement execution time is very slow, mainly in the first
iterations, due to the great number of cell overlaps.

44

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.8. Extra Features

Algorithm 12: recursive_moves

1 Input: Moving Group M, Current Sub-row .S, Order (O)
2 Output: Legalized Cell in Sub-row

3 if !cell_fits_in_subrow(M, S) then

4 if previous(S, O) then

5 Create M’;

6 S" = previous(S, 0);

7 if !Irecursive_moves(M’, S’, O) then

8 ‘ return(False);

9 else

10 ‘ return(False);
11 Update M;
12 Legalize M in S;

Abacus2 can be used when cells are up-scaled, i.e. to increase its width. In this way,
we can use the legalizer in a previous legal placement, taking the new cells’ sizes into account.
The same procedure can be used if the height of the cells is changed. This application of the
legalizer is important, as it is time consuming to start placement procedure from scratch.
Figure 3.9 presents a simple example so as to understand how Abacus2 legalizes an up-
scaled circuit. Figures 3.9a and 3.9b show the example’s GP and LG, respectively. Blue lines
depict the cell connections and the orange lines the connections between placement I/O pins
and cells. Then, if we increase, for example, the width of the same cells by 14%, cell overlaps
will occur, Figure 3.9c. Finally, Figure 3.9d shows the legalization of the up-scaled placement
of Figure 3.9c. As we can see in this simple example, the legalizer’s work will be trivial and
the final legal placement differs infinitesimally. More specifically, the initial TWL in Figure
3.9b is 121.250um, the TWL after the legal placement of Figure 3.9c is 178.250um and the
final TWL, after the cells’ up-scale legalization, is 186.030um. As for the execution time, the
legalizer is very fast as there are a few overlapping cells.

Moreover, Abacus2 can be used to legalize hierarchical circuits. Abacus2 handles hierar-
chical circuits with a divide and conquer technique. A floorplanning approach can subdivide
the core area into smaller areas, called bounded boxes. Each bounded box contains other
bounded boxes and/or cells. Abacus2 can be used in any stage of the divide and conquer
technique. The legalization of hierarchical designs is faster than if the same designs is flat-
tened because the legalizer manages a fewer number of cells and placement rows for each
separate problem. However, the TWL of the legal placement is worse in hierarchical than in
flat legalizations, as the legalizer loses the global overview of the cells.

45

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

3.8. Extra Features

(a) Up-scaling GP Example (b) Legal Placement

(c) Up-scaling about 14% Flops Widths (d) Up-scaled Legal Placement

Figure 3.9: Cell Up-scaling Example

46

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

CHAPTER 4

Results

This chapter presents the results of this thesis. Abacus2 is implemented in C and has
been embed in an under development industrial placer. The placer reads verilog and Library
Exchange Format (LEF) files and produces the necessary structures for placement. Verilog
files have the description of the circuit and LEF files have the physical information about
the cells and its connections. In this way, the experiments presented in this chapter, are
produced from the ISPD2014, ICCAD2014 and small industrial benchmarks. Moreover, the
core area utilization is set to 50% and the core aspect ratio to 1:1, i.e. the core area width
is similar to its height. The 1:1 aspect inhibits artifacts occurring in the original Abacus, as
discussed in Section 3.4. Table 4.1, presents the names, the number of the standard cells,
the number of the placement rows and the GP TWL of the benchmarks that we examined. Our
legalization results were obtained by using minimum quadratic TWL placements, obtained
directly from the solution of the formulated QP placement problem, i.e. without any cell
spreading to reduce overlaps. We focused on legalizing circuits with high cell overlaps, to
handle the worst-case scenario of a legalizer. By ensuring that Abacus2 works efficiently,
even for designs without cell spreading, we demonstrate that it can be used as a look-ahead
legalizer, i.e. it can be use during the cell spreading steps of Global Placement [3].

In order to test Abacus2 with blockages, we used a standard, scalable blockages pattern,
which tests many legalization corner cases. Our scalable blockages pattern is illustrated in
Figure 4.1. We scaled this pattern so as to have blockages which occupy about 20% of the
entire chip area.

4.1 Cell Selection Order Comparison

We tested three different cell selection orders, i.e. increasing, decreasing and centre-
outwards. Table 4.2 illustrates the results of our cell ordering experiments, for the three
displacement cost functions, in terms of total displacement, and the best ordering, per
benchmark. The minimum displacement cost for each experiment is highlighted in bold.

47

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.1. Cell Selection Order Comparison

Num. of Num. of

Benchmark Cells Rows GP TWL (pum)
indl 2346 71 1.04E+5
ind?2 18796 160 4. 54E+5
bridge32_1 30675 135 5.29E+5
fft 32281 144 5.51E+6
cordic_TI4 41601 152 2.02E+5
des_perf_1 112644 299 8.33E+5
edit_dist_1 130661 273 5.12E+6
matrix_mult 155325 294 2.13E+7
b1l9 219268 521 1.51E+6

Table 4.1: Benchmarks Characteristics

Figure 4.1: Blockages Pattern

The average results are presented respectively to the increasing cell order and can even differ
up to 40%.

Moreover, the table shows that, the decreasing order produces the best, on average,
results for the three displacement cost functions. This is a random observation, which is
produced because the GP places the cells on the left side of the core for all testcases. The
reason why the cells are placed on the left side is that most of the placement I/O pins are
places on that side. As a consequence, the cells which are connected to the I/O pins are
forced to be placed near them. Figure 4.2, depicts the GP of edit_dist_1 benchmark. The

48

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.1. Cell Selection Order Comparison

Single-cell Multi-cell Total Multi-cell Mean
Benchmark
Inc. ‘ Dec. ‘ C-0. Inc. ‘ Dec. ‘ C-0. Inc. ‘ Dec. ‘ C-0.
indl 2.01E+4 | 2.16E+4 2.40E+4 8.62E+3 8.68E+3 8.45E+3 9.10E+3 7.85E+3 8.21E+3
ind2 4.30E+5 | 4.24E+5 | 4.40E+5 2.35E+5 2.22E+5 2.35E+5 2.82E+5 2.09E+5 2.34E+5

bridge32_1 2.18E+6 2.22E+6 2.27E+6 1.23E+6 1.26E+6 1.25E+6 1.58E+6 1.08E+6 1.12E+6

fft 2.22E+6 2.03E+6 2.21E+6 5.92E+5 4.70E+5 5.85E+5 5.15E+5 3.06E+5 4.10E+5

cordic_T4 3.31E+6 3.29E+6 3.20E+6 2.07E+6 2.15E+6 | 2.07E+6 2.65E+6 1.82E+6 1.89E+6

des_perf_1 1.53E+7 1.54E+7 1.56E+7 8.59E+6 9.23E+6 8.94E+6 1.14E+7 7.65E+6 8.23E+6

edit_dist_1 1.69E+7 1.69E+7 1.80E+7 8.73E+6 9.57E+6 9.73E+6 1.08E+7 8.44E+6 9.28E+6

matrix_mult 2.02E+7 2.11E+7 2.23E+7 1.02E+7 1.02E+7 1.08E+7 1.17E+7 8.40E+6 9.41E+6

bl9 6.10E+7 5.47E+7 5.70E+7 4.33E+7 3.24E+7 3.86E+7 5.64E+7 3.19E+7 3.43E+7

Average H 1.00 ‘ 0.96 ‘ 1.00 H 1.00 ‘ 0.87 ‘ 0.96 H 1.00 ‘ 0.63 ‘ 0.68 ‘

Table 4.2: Cell Selection Orders Displacement Costs

cells are in green and the connections between cells and I/O pins are depicted with orange
lines. The mass of the cells are on the top left side of the core, where there are many 1/0O
placement pins. On the other hand, in the case where the mass of the cells are placed on the
right core side, increasing order is observed to produce the best, on average, results.

Figure 4.2: Placement I/O Pins Position

49

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.2. Displacement Functions Comparison

4.2 Displacement Functions Comparison

In this section we compare the results of the three displacement functions, i.e. single-
cell, multi-cell total and multi-cell mean. Tables 4.3 and 4.4 present comparative, relative
Total Wirelength (TWL) and Total Displacement (TD) results, with and without the scalable
blockages pattern respectively. The best ordering result of Table 4.2, for the multi-cell mean
and total functions is compared against the original Abacus single-cell.

As for the results in the Table 4.3, no blockages are present, thus the SRA, SRR ap-
proaches produce the same result, as sub-rows correspond directly to chip area rows. It can
be observed that multi-cell total presents worst TWL and TD, on average. This occurs, be-
cause the latter considers the total displacement of all cells, per legalization. Thus, it cannot
distinguish between a cell which moved far, and another which moved near their original
GP, as it considers the sum of their distances. It thus tends to move certain cells further
away from their GP location. Multi-cell mean produces, on average, comparable results to
the original single-cell, for designs without blockages, with multi-cell mean producing better
results on certain benchmarks.

Multi-cell Multi-cell
Benchmark Total Mean
TWL TD TWL TD
indl 1.27 2.49 0.99 1.04
ind?2 1.32 1.97 1.16 1.03
bridge32_1 1.73 1.96 1.25 1.1
fft 1.64 6.43 0.86 1.49

cordic_1I4 1.05 1.71 0.97 1.10
des_perf_1 1.71 1.93 1.33 1.09

edit_dist_11 1.48| 195 | 1.16 1
matrix_mult || 1.61 2.33 1 1.17
b19 0.98| 1.66 0.7 | 0.99
Average | 1.42] 249 [1.05] 1.11

Table 4.3: Displacement Cost Functions without Blockages Comparison to Single-cell

Table 4.4 presents results, for the same designs, but with the specified blockage pattern
included. The table presents relative TWL, TD comparisons, between the displacement func-
tions, and the SRA and SRR approaches, compared against single-cell SRA. Multi-cell total
exhibits the worst results overall, both with SRA and SRR. On the other hand, multi-cell
mean reduces both TWL and TD, by about 2%, when using the SRA approach. As for the
SRR approach, multi-cell mean reduces TWL and TD, by 9% and 2% respectively. The reason
why multi-cell mean exhibits better results when blockages are present is due to high density
regions. These are created by the blockage pattern. Such regions are likely to produce place-

50

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.2. Displacement Functions Comparison

ment artifacts, horizontal for the single-cell, and vertical for the multi-cell total displacement
functions. Artifacts will thus lead to increased TWL. However, multi-cell mean, being artifact

free, correlates TWL better to TD.

Single-cell Multi-cell Total Multi-cell Mean

Benchmark SRR SRA SRR SRA SRR
TWL| TD [[TWL|[TD [TWL| TD |[TWL|[TD [TWL | TD
indl 0.98 | 0.98 || 1.26 | 2.54 [1.17 | 2.14 [[0.89 | 1.03 | 0.89 | 1.03
ind2 0.98 | 0.97 || 1.64 | 1.95 [1.30 | 1.52 || 1.09 | 0.98 | 1.05 | 0.98
bridge32_1 [[0.97[0.97 [1.77[1.91 | 1.32 | 1.52 || 1.15 | 0.98 | 1.04 | 0.97
fft 0.98 094 | 1.53 | 2.80 | 1.29 | 2.46 || 0.78 | 0.99 | 0.78 | 1.00
cordic_I4 [0.98/0.99 | 1.41[2.09[1.15]1.71 || 0.93 | 1.05 | 0.93 | 1.05
des_perf_1 [[1.04[0.97 [1.99 | 1.92 | 1.40 | 1.55 || 1.26 | 1.01 | 0.84 | 1.00
edit_dist_1[096|098 || 1.95|1.94 |1.44[1.50| 1.03[0.90 | 1.03 | 0.90
matrix_mult || 0.96 | 0.97 || 1.69 | 2.39 | 1.32 [1.80 || 0.82 [0.98 | 0.82 | 0.97
b19 0.84 | 1.09 || 1.47 | 1.54 [1.26 | 1.41 || 0.87 | 0.90 | 0.85 | 0.90
Average [0.97]099] 1.63[2.12]1.29]|1.73]0.98]0.98[0.910.98 |

Table 4.4: Displacement Cost Functions with Blockages Comparison to Single-cell SRA

Figures 4.3, 4.4 and 4.5 show the GP and legalization of cordic_I4 benchmark, with
the three displacement cost functions, for SRA and SRR approaches. The artifacts described
in Section 3.4 are presented in this legalization example. Multi-cell total and single-cell DF
create vertical and horizontal artifacts, respectively. On the other hand, multi-cell legalizes

the cells uniformly.

Institutional Repository - Library & Information Centre - University of Thessaly

09/12/2017 06:29:44 EET - 137.108.70.7

Figure 4.3: cordic_I4 Benchmark GP Example

51

4.3. SRA vs SRR Comparison

(a) Multi-cell Total DF LP (b) Multi-cell Mean DF LP (c) Single-cell DF LP

Figure 4.4: cordic_I4 Benchmark SRA Displacement Function Example

(a) Multi-cell Total DF LP (b) Multi-cell Mean DF LP (c) Single-cell DF LP

Figure 4.5: cordic_I4 Benchmark SRR Displacement Function Example
4.3 SRA vs SRR Comparison

This section presents the compared results between SRA and SRR approaches. As we can
see in the previous Figures 4.4a and 4.5a, the SRA may place cells far away, so as to minimize
the total cell displacement. On the other hand, SRR makes the necessary recursive moves,
proceeding better legal placement, in terms of TWL and TD. The same trend can be observed
when SRA and multi-cell mean or single-cell are used. However, the specified blockage patter
does not reinforce this feature.

The best achieved SRR and SRA results are compared to each other, as depicted in Figures
4.6, 4.7 and 4.8. The relative TWL, TD and Execution Time of the best SRR solution are
compared to the best SRA solution. It can be observed that SRR results are significantly
better and achieve an average 8% reduction in both TWL and TD. This reduction stems from

52

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.3. SRA vs SRR Comparison

the fact that SRR maintains the original, relative cell order, and has the ability to move cells
across sub-rows. However, SRR’s execution time is 23% slower, on average, compared to that
of SRA. In terms of absolute execution time requirements, the multi-cell mean legalization of
b19 requires 183 minutes, with SRR, and 175 minutes, with the SRA approach.

Blockage Handling Appoaches Comparison

1 1 1 1 1 1 1 1 1

- | I I I 1 007 | I I
2 1 1 1 1 1 1 1 1 1
2]
5 0% I I I I I I I I I SRA
€ oo 1 1 1 1 1 1 1 1 1 (Reference)
o 0 —- T 1 1 [T i 1 1 —
(@]
< 1 1 1 1 1 1 1 1 1
& -0,05 0,03 | | I | | | ! ! !
° 1 1 1 1 1 1 1 1 1
< 0,10 I I 907 o081 I I I 1| -008
3 I 010 | I I I I ' 011 'eooan !
5015 | | | | ! I g13 | ! !
S 1 1 015 |1 1 1 1 1 1 1
=)

20,20 1 1 1 1 1 1 1 1 1

ind1 ind2 bridge32_1 fft cordic_I4 des_perf_1 edit_dist_1 matrix_mult b19 Average
Benchmarks
m SRR
Figure 4.6: SRA vs SRR TWL Comparison
Blockage Handling Appoaches Comparison
0,00
c 000 T i T T T | T T T SRA
2 -0,02 1 1 1 1 1 1 1 1 000
S 0,04 ! 1 1 1 1 1 1 1 1 (Reference)
o 'y
S 1 1 1 1 1 1 1 1 1
g 006 I | I I I I I I I
£ -0,08 1 1 1 0.08 1 1 1 1 1 1
g 0,10 000 ! 1 | . 1 1 1 1| -0,08
g 1 I o0 ! 1 ’ 1 1 1 1 1
& 012 1011 ' | I I I o1 | | I
2014 1 1 1 1 1 1 1 0 1 1
0,14
E ind1 ind2 bridge32_1 fft cordic_l4 des_perf_1 edit_dist_1 matrix_mult b19 Average
X Benchmark
HSRR

Figure 4.7: SRA vs SRR TD Comparison

53

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.4. Multi-Row Height Cells

Blockage Handling Appoaches Comparison

0,90
0,80
0,70
0,60
0,50
0,40
0,30
0,20
0,10 0,00
0,00

0,78

0,48

0,23
SRA
(Reference)

0,23
0,16
0.09 0,04

ind1 ind2 bridge32_1 fft cordic_l4 des_perf_1 edit_dist_1 matrix_mult b19 Average

0,00

% Execution Time Comparison

Benchmarks

m SRR

Figure 4.8: SRA vs SRR Execution Time Comparison
4.4 Multi-Row Height Cells

In this section we present results of the MRHC’s impact on TWL, TD and execution time.
Table 4.5, provides information about the testcases and the benchmarks of the experiments,
i.e. it presents the benchmark names, the total number of standard cells, the percentage
of the MRHC in each design and the initial TWL. It is worth mentioning that the number of
the MRHC in a design is equal to the number of its flops and the initial GP does not differ
when we increase its height.

‘ Benchmark ‘ Num. of Cells | MRHC % | GP TWL (um) ‘

indl 2.346 15.39 1.04E+05
ind2 18.796 5.16 4.54E+05
bridge32_1 30.675 10.95 5.29E+05
fft 32.281 6.15 5.51E+06
cordic_1I4 41.601 2.96 2.02E+05
des_perf_ 1 130.661 6.74 8.33E+05
edit_dist_1 130.661 4.33 5.12E+06
matrix_mult 155.325 1.87 2.13E+07
b1l9 219.268 3.01 1.51E+06

Table 4.5: MRHC Bechmarks

In order to record the influence of MRHC in legalization, we performed experiments where
the cells’ height is (i) the same as the placement row height, i.e. single-row height cell,
(ii) twice (z2) the placement row height and (iii) triple (z3) the placement row height. Table
4.6, presents results for the TWL, the TD and the execution time for the benchmarks of

54

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.4. Multi-Row Height Cells

Table 4.5, where the three, x1, 2, 3, up-scale height factors are used on each flop. The
results have been produced from the best cells selection order, the best dispalcement cost
function and the best blockage handling approach. This table shows that not only TD, but
also TWL are extremely increased when the flops heights are increased. The increase occurs
for two reasons. The first is that Abacus2 fixes the MRHC to their legal position. As a
consequence, it forces many cells, MRHC or not, to be legalized far away from the optimal GP
position. Moreover, the GP of the testcases is the solution of a quadratic placement without
minimizing the cells density. In this way, many cells overlap and are then forced to be legalize
to sup-optimal positions. On the other hand, the execution time of legalization is significantly

decreased.
Flops Up-scale Height Factor
Benchmark x1 x2 x3
TWL TD Exec. TWL TD Exec. TWL TD Exec.
(um) (um) Time (m:s) (um) (uwm) Time (m:s) (um) (um) Time (m:s)
indl 1.80E+05 | 8.45E+03 0:01 2.70E+05 | 2.08E+04 0:01 3.07E+05 | 2.43E+04 0:01
ind2 3.17E+06 2.22E+05 1:05 4.24E+06 4.97E+05 0:33 4.69E+06 6.04E+05 0:29
bridge32_1 1.07E+07 1.23E+06 3:46 1.31E+07 2.49E+06 1:49 1.42E+07 2.99E+06 1:46
fft 8.23E+06 | 4.70E+05 2:07 9.30E+06 | 7.48E+05 1:15 9.62E+06 | 8.35E+05 1:10
cordic_I4 1.58E+07 | 2.07E+06 7:20 1.88E+07 | 2.82E+06 5:30 2.16E+07 | 3.16E+06 5:26
des_perf_1 7.54E+07 | 8.59E+06 56:00 9.79E+07 | 1.59E+07 39:16 1.02E+08 | 1.86E+07 41:13
edit_dist_1 6.08E+07 | 8.73E+06 71:44 8.66E+07 | 1.50E+07 48:00 8.80E+07 | 1.70E+07 48:02
matrix_mult 6.82E+07 | 1.02E+07 99:11 9.57E+07 | 1.36E+07 67:21 9.26E+07 | 1.46E+07 64:34
bl9 2.68E+08 | 3.24E+07 284:05 3.16E+08 | 4.12E+07 261:20 3.27E+08 | 4.61E+07 259:01

Table 4.6: MRHC Up-scaling Results

Moreover, the charts in Figures 4.9, 4.10 and 4.11, present the compared percentages
between the three cases (i) where only single-row height cells, i .e. x1 up-scale height factor,
is used, (ii) where up-scale factor x2 is used and (iii) where up-scale factor x3 is used. The
results of x1 up-scale height factor are used as a reference. Figures 4.9 and 4.10 depict the
TWL and TD % comparison between the three up-scaling factors. The former, shows that
TWL is increasing approximately 29% and 38%, when the flops’ height is doubled and tripled
respectively. The latter, presents the increment of TD. The cells displacement is increased due
to the reasons that have previously been described. Figure 4.11 shows that execution time
is decreased when MRHC are used. Execution time reduction occurs because the number of
cells that are moved in each iteration become less and less, as MRHC are fixed.

Finally, Figures 4.12, shows the GP and the legal placement of des_perf_1 benchmark,
when 3 upscale-factor is used. Figures ¢, d, e and f depict different stage of Figure b
magnification. As we can see in Figures c and d, illustrate the legal placement of MRHC, as
a bubble. The cells’ overlapping density is great so many cells overlap and as a consequence
MRHCs are packed in neighbouring positions. Figure f shows some MRHC with height three

55

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.4. Multi-Row Height Cells

80,00
1 1 1 1 1 1 1 1 1
70,25 | 1 1 1 1 1 1 1 1
70,00 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
S 000 1 1 1 1 1 1 1 1 1
3 0, : : 1 | 1 1 : 1 1
E 1 1 | 1 1 1
©
a 49,74 1 1 1 1 1
£ 50,00 47,94 1 1 1 1
8 1 1 1 1 1 1 5 4344,66 1 1 1
2 : : | | I e : 4031 | H
® 40,00 1 1 36,90 1 3580 580 1 '
o 1 33,75 1 32,89 1 1 1 1 1 e | 1
= 1 1 1 1 1 29,91 1 1 1 1]29,8
= 30,00 1 1 1 1 1 1 1 1 1
= ! 1 2235 1 1 1 ! ! ! 22,06 |
o 1 1 1 | 19,37 1 1 1 1 1
< 20,00 1 | | 16,78 | . | | | |
1 1 1 1297 1 " 1 1 1 1
1 1 1 1 1 1 1 1 1
10,00
1 1 1 1 1 1 1 1 1 x1
1 1 1 1 1 1 1 1 1 (Reference)
0,00 1 1 1 ' ' 1 1 1 .
ind1 ind2 bridge32_1 fft cordic_l4 des_perf_1 edit_dist_1 matrix_mult b19 Average
Benchmarks
Hx2 Ex3
Figure 4.9: MRHC TWL Comparison
200,00 188,00 | I | I I I I I I
1 1 1 1 1 1 1 1 1
180,00 1 17234 | 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
160,00 1 1 1 1 1 1 1 1
c 146,59 1
2 1 1 143,86 1 1 1 1 1 1
g 140,00 1 1 1 1 1 1 1 1 1
£ 1123,94 1 1 1 1 1 1 1 1
8 120,00 1 1 1 1 1 116,04 1 1 1 _8I
b 1 1102,67 1 1 1 1 1 1 1 103,3
g 100,00 1 1 1 1 1 1 94,27 1 1 1
g | | 1 | 1 845 | | | |
© 1 1 1 77,73 1 1 | | | 1{76,23
g 8ooo | | | | | 1 7163 | | |
a 1 1 159,18 1 1 1 1 1 1
& 60,00 1 1 | 1 5261 1 1 1 1
5 43,22 42,34
= 1 1 1 1 1 1 1 122 34)
< 36,34
X 40,00 1 1 | 1 1 1 1 3423 1 1
1 1 1 1 1 1 1 1 1
20,00 1 1 | 1 1 1 1 1 1 x1
1 1 1 1 ! 1 1 1 1 (Reference)
0,00 1 1 1 1 1 1 1 1
indl ind2 bridge32_1 fft cordic_l4 des_perf_1 edit_dist_1 matrix_mult b19 Average
Benchmarks
Ex2 Emx3

Figure 4.10: MRHC TD Comparison

times greater than the placement row height. Moreover, we can see that cells have been
legalized in the gaps (white-spaces) between the MRHC.

56

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.4. Multi-Row Height Cells

0,00 T T] T T T T T T
0,00 0,00, 1 1 1 1 1 1 1 I. 1 x1
1 1 1 1 1 1 1 1 1 R
B eference
10,00 1 1 | 1 | | | 1 810 | ()
1 1 1 1 1 1 1 1 -8,80 |
< 20,00 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
& 1 1 1 1 1 1 1 1 1
£ -30,00 1 1 | 126,39 1 1 1 1 1
8 1 1 1 1 1-30,07 1 1 1 1
o 1 1 1 1 2604 | o7 1 -32,39 1 -32,53 1 11-33,27
E -40,00 1 1 1 1 P 32391 35,55 | o 3417
- 1 1 1 1 1 1 1 1 1
S 1 1 ; 1 1 1 1 1
£ 5000 I 4444 1
3 1 1 1 1 1 1 1 1 1
£ 1 1 " 46,86 1 1 1 1 1
R 60,00 1 Uoon! | 1 1 1 1 1 1
1 177 g0 1 1 1 1 1 1 1
1 1 T 1 1 1 1 1 1
-70,00 1 1 1 1 1 1 1 1 1
168,57 1 " 1 1 1 1 1 1
1 72,38 1 1 1 1 1 1 1
-80,00 ' ' . ' ' ' ' ' '
ind1 ind2 bridge32_1 fft cordic_l4 des_perf_1 edit_dist_1 matrix_mult b19 Average
Benchmarks
Ex2 Ex3

Figure 4.11: MRHC Execution Time Comparison

57

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

4.4. Multi-Row Height Cells

@) (b) ()

@ (e) ()

Figure 4.12: des_per f_1 Benchmark MRHC Legalization Example

58

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

CHAPTER 5

Conclusions and Future Work

In this work, we propose an evolution of the well-known Abacus placement legalization
algorithm, which is called Abacus2 and it’s aim is to achieve minimum cells’ displacement.

Legalization is one of the three tasks of standard cell placement. The first task is global
placement, which aims to generate a "rough" placement solution that violates some design
constrains, such as cells’ overlapping and cells’ not aligning to the chip grid. The second
placement task, legalization, is covered in this work. The last task, detailed placement,
further improves the legalization placement solution.

Legalization must have as little impact as possible, between the first and the last tasks of
placement. For this reason, Abacus2 legalizer aims to minimise the total displacement of the
cells. Abacus2 has a supperior set of features than the fundamental Abacus legalizer, which
lead to better legal results. Abacus2 supports three displacement cost functions and three
cell sorting orders. Multi-cell mean displacement cost function is artifact free, and produces
an average of 9% in reduction and a 5% increase on average, in TWL, for designs with and
without blockages respectively. Moreover, Abacus2 handles placement blockages, based on
Sub-Row Assign (SRA) and Sub-Row Re-assign (SRR) approaches. In SRA, a cell may only be
moved within its assigned sub-row, in contrast to SRR, which allows cells to be re-assigned
to other sub-rows, recursively. The SRR approach maintains the initial cells order, exhibiting
an average 8% reduction, in both TWL and TD, compared to the SRA approach. Abacus2, is
also capable of handling standard cells with heights integral multiple of the placement row
height.

Our future goals include using Abacus2 as a look-ahead legaliser in a global placement
flow, so as to exploit it’s good behaviour in overlapping dense designs, and to modify its
greedy approach to legalise multiple cells simultaneously.

59

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

Bibliography

[1] Charles J Alpert, Dinesh P Mehta, and Sachin S Sapatnekar. Handbook of algorithms
JSor physical design automation. CRC press, 2008.

[2] Ulrich Brenner. Vlsi legalization with minimum perturbation by iterative augmentation.
In 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1385-1390. IEEE, 2012.

[3] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen
Chang. Ntuplace3: An analytical placer for large-scale mixed-size designs with pre-
placed blocks and density constraints. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(7):1228-1240, 2008.

[4] Konrad Doll, Frank M Johannes, and Kurt J Antreich. Iterative placement improvement
by network flow methods. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(10):1189-1200, 1994.

[6] Dwight Hill. Method and system for high speed detailed placement of cells within an
integrated circuit design, April 9 2002. US Patent 6,370,673.

[6] Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. VLSI physical design: from
graph partitioning to timing closure. Springer Science & Business Media, 2011.

[7] Sung Kyu Lim. Practical problems in VLSI physical design automation. Springer Science
& Business Media, 2008.

[8] Igor L Markov, Jin Hu, and Myung-Chul Kim. Progress and challenges in vlsi placement
research. Proceedings of the IEEE, 103(11):1985-2003, 2015.

[9] Majid Sarrafzadeh, Maogang Wang, and Xiaojian Yang. Modern placement techniques.
Springer Science & Business Media, 2013.

[10] Peter Spindler, Ulf Schlichtmann, and Frank M Johannes. Abacus: fast legalization of
standard cell circuits with minimal movement. In Proceedings of the 2008 international
symposium on Physical design, pages 47-53. ACM, 2008.

60

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:29:44 EET - 137.108.70.7

	 Introduction to EDA
	Placement
	Global Placement
	Legalization
	Detailed Placement

	 Background
	Global Legalization Approaches
	Local Legalization Approaches
	Tetris Legalizer
	Abacus Legalizer
	Quadratic Program
	Displacement Cost Function
	Row Search Bounding
	Cells Selection Order
	Abacus Algorithm

	Our Motivation

	 Our Work
	Cell Selection Order
	Displacement Cost Functions
	Row Search Bounding
	Legalization Artifacts
	Blockage Handling Strategies
	Multi-Row Height Cells Handling Approach
	Abacus2 Algorithm
	Extra Features

	 Results
	Cell Selection Order Comparison
	Displacement Functions Comparison
	SRA vs SRR Comparison
	Multi-Row Height Cells

	 Conclusions and Future Work
	Bibliography

