
MapReduce-based
Distributed

/^shell Decomposition
for

Online Social Networks

Katerina S. Pechlivanidou
Dept. Electrical and Com puter Engineering

University o f Thessaly
Volos, Greece

June 2014
katpechliv@gmail.com

Advisor: Dimitrios Katsaros, Lecturer
co-Advisors: Antonios Argyriou, Lecturer

Athanasios Korakis, Lecturer
Dept. Electrical and Computer Engineering

University of Thessaly

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

mailto:katpechliv@gmail.com

Αποσύνθεση
Online Κοινωνικών Δικτύων
σε k-κελύφη βασισμένη στο

προγραμματιστικό
μοντέλο MapReduce

Κατερίνα Σ. Πεχλιβανίδου
Τμ. Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Πανεπιστήμιο Θεσσαλίας
Βόλος, 2014

Επιβλέπων: Δημήτριος Κατσαρός
Συνεπιβλέποντες: Αντώνιος Αργυρίου

Αθανάσιος Κοράκης

1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

2

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Words of Thanks

My special gratitude goes to my supervisor Mr. Katsaros Dimitrios who provided me
guidance throughout this work. I specially thank him for his confidence in my work and his
willingness to help me anytime.

I wish to thank the members of CERTH (CEnter for Research and Technology, Hellas) for
their overall support. Many thanks to the Technical Support team of the Department of
Electrical and Computer Engineering of the University of Thessaly for their kind cooperation.

I heartily thank all of my dear friends for their continuous support during every academic
and personal challenge.

I especially thank my family for their unconditional support, motivation and
encouragement. Thanks to them I had the opportunity complete this Thesis.

K a t e r i n a S . P e c h l v a n i d O

3

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

© Katerina S. Pechlivanidou

Department of Electrical and Computer Engineering
University of Thessaly

Volos, Greece
June, 2014

Part o f this work is presented in the IEEE 10th World Congress on Services in proceedings o f
the 2nd International Workshop on Personalized Web Tasking (PWT) 2014 under the title:
“MapReduce based Distributed K-shell Decomposition for Online Social Networks ”, authors
Katerina Pechlivanidou, Dimitrios Katsaros, Leandros Tassiulas[1].

4

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Περίληψη
Η ανάλυση των κοινωνικών δικτύων περιλαμβάνει μια ομάδα
εργαλείων για την ανάλυση μεγάλων online κοινωνικών δικτύων.
Ανάμεσα σε αυτά τα εργαλεία, η αποσύνθεση σε k-κελύφη ενός
γραφήματος είναι μια τεχνική που έχει χρησιμοποιηθεί για την
ανάλυση κεντρικότητας των κόμβων (centrality analysis), για
την ανακάλυψη κοινοτήτων (communities discovery), για τον
εντοπισμό κόμβων σημαίνουσας επιρροής, κλπ. Παρόλο που ο
υπολογισμός της είναι σχετικά απλός, ο μεγάλος όγκος των
γραφημάτων εισόδου και τα περιβάλλοντα στα οποία ο
αλγόριθμος πρέπει να εκτελεστεί, δηλαδή στα μεγάλα κέντρα
δεδομένων (datacenters) των κολοσσών του Διαδικτύου,
καθιστούν όλους τους ήδη υπάρχοντες αλγορίθμους για την
αποσύνθεση των δικτύων σε k-κελύφη ακατάλληλους. Σε αυτή
την εργασία, αναπτύσσουμε για πρώτη φορά στη βιβλιογραφία
έναν κατανεμημένο αλγόριθμο βασισμένο στο MapReduce για
την αποσύνθεση ενός δικτύου σε k-κελύφη. Επιπλέον, παρέχουμε
μια εφαρμογή και αξιολόγηση του αλγορίθμου χρησιμοποιώντας
πραγματικά δεδομένα κοινωνικών δικτύων. Αναλύουμε τους
συμβιβασμούς και την επιτάχυνση του προτεινόμενου αλγορίθμου
και συνοψίζουμε τις αρετές και τις αδυναμίες του.

Τμήμα της παρούσας εργασίας παρουσιάζεται στην παρακάτω εργασία συνεδρίου:
K. Pechlivanidou, D. Katsaros, L. Tassiulas, “MapReduce-based Distributed K-shell Decomposition
for Online Social Networks ”, In Proceedings o f the 2nd International Workshop on Personalized Web
Tasking (PWT), In the context o f the IEEE 10th World Congress on Services, Anchorage, Alaska, USA,
June 27 - July 2, 2014[1].

5

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Abstract
Social network analysis comprises a popular set o f tools for the
analysis o f large online social networks. Among these tools,
k-shell decomposition o f a graph is a technique that has been
used for centrality analysis o f nodes, fo r communities
discovery, fo r the detection o f influential spreaders, and so on.
Even though its computation is relatively simple, the huge
volume o f input graphs and the environments where the
algorithm needs to run, i.e., large datacenters o f Internet
giants, makes none o f the existing algorithms appropriate for
the decomposition o f graphs into shells. In this article, we
develop for the first time in the literature, a distributed
algorithm based on MapReduce for the k-shell decomposition o f
a graph. We furthermore, provide an implementation and
assessment o f the algorithm using real social network datasets.
We analyze the tradeoffs and speedup o f the proposed
algorithm and conclude for its virtues and shortcomings.

6

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Contents
1 Introduction...9

1.1 Motivation.. 10

1.2 Contributions.. 11

2 Related W ork .. 12

3 The Proposed Distributed A lgorithm ... 13

3.1 Background.. 13

3.1.1 Definition of k-shell Decomposition... 13

3.1.2 A bit of Map Reduce...15

3.1.3 The Hadoop middleware.. 16

3.2 The MR-SD algorithm... 17

4 Experimental Evaluation.. 24

4.1 The evaluation platform.. 24

4.2 The experimental setting...24

4.2.1 The Datasets...25

4.2.2 The Performance Measures.. 25

4.3 The obtained results... 26

4.3.1 Average execution time and memory footprint.. 26

4.3.2 Impact of the number of V M s..28

4.3.3 Impact of network density.. 29

4.3.4 Impact of the machine load.. 29

5 Conclusions & Future W o rk ...33

6 References..34

7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Figure List
Figure 1 Deficiencies of the existing approaches..10
Figure 2 k-shell decomposition sample application scenarios..14
Figure 3 k-shell decomposition of a sample graph..14
Figure 4 Illustration of Scores retrieved from sample graph.. 15
Figure 5 The MapReduce concept.. 15
Figure 6 Hadoop's architecture... 16
Figure 7 The Workflow of the MR-SD Algorithm..18
Figure 8 Flowchart of Progress and Termination..22
Figure 9 An example network graph..22
Figure 10 An example running of the proposed algorithm...23
Figure 11 Average CPU time vs. number of nodes...27
Figure 12 Average CPU time vs. number of edges...27
Figure 13 Map tasks during experiments 4 and 5 .. 28
Figure 14 Map tasks during experiments 1, 2, 3, 6 and 8 ... 28
Figure 15 Heap vs. CPU Usage Distribution... 30
Figure 16 Map and Reduce task execution time..31
Figure 17 Virtual Memory vs. Physical Memory (MB)...32

List of Algorithms
Algorithm 1 computation of one-hop neighborhood...19
Algorithm 2 Driver routine of the MR-SD Algorithm, auxiliary algorithm.......................... 19
Algorithm 3 The MR-SD Algorithm.. 20

List of Tables
Table 1 Real Online Social Networks used for the evaluation...25
Table 2 The Average resource consumption... 26

8

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Chapter 1

Introduction

The tremendous advances in information technology com bined with the omnipresent
connectivity v ia wired or wireless networks have created a huge developm ent and popularity
o f Online Social Networks (O SN). Facebook, Twitter, Instagram and LinkedIn are some o f
the m ost popular O SN s nowadays. The number o f registered Facebook users recently
exceeded one billion1 and Twitter celebrated its seventh birthday with more than 500 m illion2
users. Despite its short life, SnapChat’s number o f registered users is estimated to be several
tens o f m illions. A ll such online social networks store and process tremendous amount o f data
m ostly in form o f pair w ise interactions. Those pair w ise information basically refer to a
person’s interactions and thus form networks (i.e., graphs). A social network is a theoretical
construct that is useful in order to study almost any relationship such as the relationships
between individuals, groups and organizations, and som etim es betw een entire societies [32].

The operational and business advantages o f analysis and m ining o f these graphs are
significant to the O SN owner. For exam ple, the discovery and/or prediction o f com plex
associations among interacting entities allow more efficient handling (storing, query
processing) o f the generated data. A lso, the discovery o f romantic relationships among

persons in an O SN [6], permits the O SN owner to design marketing policies (e.g., product

recommendations which generate revenue for the OSN).

The term “Social Network A nalysis” (SN A) refers to the process and analysis o f the
properties o f a social network and has its roots in the late ‘60s. The famous Milgram
experiment, by Y ale University psychologist Stanley Milgram, w hich quantified the “degree
o f separation”, has been the cradle o f SNA. In SNA, social relations are treated as units o f
network theory, meaning that individuals are represented as nodes and their relationship as
edges. Since Milgram, the initial set o f tools and algorithms for SN A has been extended so
much that apart from the basic centrality metrics (like degree, closeness and shortest path
betweenness) w e have now spectral centrality and flow betweenness centrality measures,
intelligent community discovery techniques based on modularity or other graph-theoretic
concepts, algorithms for detecting influential spreaders or m axim izing the spread o f influence
in a social network, m ethodologies for network sparsification to reduce its size, and so on.

Am ong all encountered concepts in SNA, £-shell decom position o f a graph seem s to be
appealing since it highlights the internal core structure o f a network graph and reveals its
hidden hierarchies. ^ -sh ell decom position is a simple algorithm, originating from statistical
m echanics for investigating graph properties, and in particular for discovering cohesive
subgroups within a network. ^ -sh ell has been used in many intelligent and diverse concepts
varying from detecting influential spreaders [6] and discovering com m unities [3] to Internet’s
structure analysis at the autonomous level [4], visualization purposes, and so on.

1http://news.yahoo.com/number-active-users-facebook-over-230449748.html
2http://www.telegraph.co.uk/technology/twitter/9945505/Twitter-in-numbers.html

9

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

http://news.yahoo.com/number-active-users-facebook-over-230449748.html
http://www.telegraph.co.uk/technology/twitter/9945505/Twitter-in-numbers.html

Due to the significance of £-shell as a measure in SNA, many algorithms have been
proposed for the computation of the ^-shells in several different computational environments.
More specifically, these environments range from single machine’s main memory [5] and
secondary storage [6] to small clusters that consist of few nodes [7]. ^-shell decomposition
algorithms have also been proposed for network graphs that are unweighted or weighted [8]
and for static networks whose topology changes over time and is acquired in a streaming
mode [9]. The most encountered and appealing in the majority of today’s online social
network algorithms are those referring to static or almost static network graphs, meaning
those whose topology is changing very slowly compared to the time required to run analytics
over the internet. Thus, we focus on networks that are static and unweighted and we propose
an efficient implementation of £-shell decomposition of such network graphs.

1.1 Motivation

In this subsection the details of this work’s motivation are presented. As mentioned
earlier, modern online social networks consist of several millions of nodes and therefore any
of the existing centralized £-shell decomposition algorithms that rely on single machine,
exploiting solely the machine’s main memory , is doomed to fail eventually due to lack of
computational resources.

Social Networks

Static Networks Dynamic Networks

Nets that Nets that
change are aquired

NOT fit slowly in streaming
modeinto a single machine over time

Net is
Net fits _ NevadistributedNo msNet fits
into a Present subgraphover a veryinto single into single

fts intosmallmachine's machines FtAMcluster ofclusterdiskΚ Λ Μ
machines

Figure 1 Deficiencies of the existing approaches

Distributed solutions have also been proposed in order to overcome the aforementioned
limitations. However, the computation of the £-shell decomposition that is implemented in a
straightforward way includes a highly sequential process, deleting one node after another
along with the incident edges. The latter indicates that developing a distributed version of the
initially proposed £-shell decomposition algorithm may be a challenging task. Some of the

10

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

solutions that are presented in [10] and [7] are well initiatives, but are still insufficient since
they are able to run only on a small number of clustered machines. Considering the latter
shortcoming, it is obvious that it is impossible for those algorithms to run on clusters of
modern infrastructures which are maintained by Internet giants such as Google, LinkedIn and
Facebook who operate huge datacenters and several thousands of machines. Clusters like
these, are usually programmed by a high-performance middleware of MapReduce type [11].
Therefore, the £-shell decomposition of a network graph in a MapReduce format is necessary.
The present work is exactly filling this gap. Figure 1 presents the categorization of the
existing works that address the problem of £-shell decomposition of a graph highlighting the
work’s position in this ecosystem.

1.2 Contributions

Summarizing the above sections, the present work falls into the area of social network
analysis and is dealing with the computation of the £-shell decomposition of a given network
graph. The contributions that this work makes are the following:

• It develops a distributed algorithm for the computation of the ^-shells of a given
network graph.

• For the first time in the literature it presents a parallel and distributed algorithm for
the £-shell decomposition based on Hadoop’s MapReduce programming paradigm. It
is therefore suitable for huge datacenter environments owned by modern Internet
giants.

• It assesses the performance of the proposed algorithm proven with experimental
results. For this purpose, real datasets where used. This work also analyzes various
tradeoffs in its operation.

The rest of this work is organized as follows: In chapter 2 the related work is described;
chapter 3 describes the necessary background and provides the description of the proposed
algorithm along with an example of a network decomposed into its shells. In chapter 4, we
present evaluation of the algorithm and finally chapter 5 concludes this work.

11

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Chapter 2

Related Work

The present work tackles two very large areas: The first one is the data processing area
that is based on MapReduce’s programming model and the second one is the area of
social/complex network analysis, especially referring to the k-core decomposition of a graph.
It is imperative to briefly name some important works of the aforementioned areas and then
analyze those who are the most relevant to the k-core decomposition of a network.

The MapReduce framework, since its debut in [11], along with its open source
implementation in Hadoop3, have been widely used in many fields concerning mostly huge or
colossal data processing. MapReduce has contributed fundamental ideas in Information
Retrieval and has been used for inverted index creation and Web page ranking [12]. It has
also been used for document similarity discovery [13], for max-cover calculation [4], for data
mining in [14] and [15], recently for bioinformatics data processing [16] and so on. Other
directions of MapReduce enhancements include ways to extend it with database capabilities
[17], to improve parallelization [18], energy consumption [19], and many others. Some of the
major enhancements suggested to Hadoop that are described in [20] are related to data
storage, processing and placement.

The roots of the literature focusing on the analysis of social networks are quite old [21]
and very rich. Hundreds of articles have been in the light of publication during the last decade
and several new topics, besides classic problems concerning the calculation of various
centrality measures or detection of communities in social networks, have emerged. Such
topics are falling into areas like databases, ad hoc networking [22], detection of influential
nodes, evolution of social networks [23], and so on.

One of the major enhancements is that of detecting the most “central” or “influential”
nodes in a social network. Among other more classic centrality measures, like degree,
closeness and shortest-path betweenness, k-shell is appealing. ^-shell was first proposed in
[24] and afterwards it attracted the attention of data and network scientists. Some of the most
successful application areas of k-shell are the Internet Topology modeling [25], the detection
of influential spreaders [6] and the discovery of communities [3].

In a straightforward implementation of the k-core decomposition algorithm, we need to
perform recursive deletions of all vertices and edges incident with them. Some efficient
versions of the initial algorithm exist for various settings involving the type of network and
the available computational resources. There are two main categories of algorithms; first there
are the ones dealing with dynamic graphs (slowly or fast changing) and the other group of
algorithms handles static networks (known in advance and not changing). The literature on
k-shell decomposition for dynamic graphs is very limited and is able to handle only slowly
changing graphs with the type of distributed algorithms described in [10] and those whose
topology is acquired in a streaming mode [9].

3 http://hadoop.apache.org

12

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

http://hadoop.apache.org

When dealing with static networks that fit entirely into the main memory, then the k-core
decomposition is performed in O(number_of_edges) due to [5]. When moving to larger
graphs that cannot be stored in the main memory but need additionally a secondary memory
other proposed solutions like the one described in [6] can be used. For progressively larger
network graphs that do not fit in the memory of a single machine the exploitation of a very
small cluster can be used to decompose the network to its shells [6]. Figure 1 depicts both the
most relevant work and the position of the present work in this ecosystem.

It is oblivious that none of the aforementioned solutions is suitable for the type of
infrastructures that Internet giants like Google, Facebook, Yahoo!, LinkedIn and Twitter use.
These internet companies own huge clusters that comprise of thousands of commodity
machines and are usually programmed by MapReduce frameworks; therefore the need for a
new solution has emerged. Hence, this work focuses on filling this gap.

Chapter 3

The Proposed Distributed Algorithm

In the following subsections we describe the necessary background, we provide the
proposed algorithm for the k-shell decomposition suitable for enormously large networks and
finally we discuss the obtained results from the experimental evaluation.

3.1 Background

In this section the background of MapReduce, the k-shell decomposition and all relevant
areas are presented in details. For those who are not familiar with cloud computing, reading of
subsections 3.1.2 and 3.1.3 are strongly recommended.

3.1.1 Definition of k-shell Decomposition

We begin describing a procedure for the decomposition of a graph into shells. The k-shell
decomposition of a network graph is performed iteratively. The initial round of the
decomposition involves removing all nodes that have degree equal to one, along with the
unique incident link, and indexing these as k=1. As a next step we consider all nodes of the
resulting graph of degree 1 also to have k=1 and are again pruned. The process is repeated
until there are no nodes of degree 1. The same procedure is applied in next pruning rounds
and therefore all nodes with i or fewer connections are iteratively removed. The group of the
letter nodes is indexed as k=i. The final output of the k-shell decomposition is a single number
for each node: its core assignment. Generally, if from a given graph we recursively delete all

13

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Figure 2 (Left) Visualisation of the social network of active users, based on k-core decomposition
and components analysis [33], (Middle) shows the case when hub nodes of a network may not be
good influential spreaders [34], (Right) depicts an application of k-shell for France’s Internet
domain [35]

vertices, and lines incident with them, of degree less than k, the remaining graph is the
k-core4.

To grasp the concept of k-shell decomposition let us decompose the sample graph shown
in Figure 3a. Initially, k is set to 1. We now delete all nodes of degree 1; those can be seen in
Figure 3b. As a next step we proceed with deleting all nodes arising with degree equal to 1 in
the remaining graph (Figure 3c); the same is followed in case of Figure 3d until no node with
degree 1 remains (Figure 3e). The next pruning round requires that k is increased. Therefore,
k=2 in the next round (Figure 3e); k is then again increased (k=3) and all nodes with degree 3
are deleted. We can see that the maximum shell is 3 (3-coreness). The final result is presented
in Figure 4.

Figure 3 k-shell decomposition of a sample graph (from Top Left to Bottom Right):
a) the sample graph, b) k=1, c) k=1, d) k=1 e) k=2, f) k=3

4We use the terms k-core and k-shell interchangeably.

14

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

3 -c o r e n e s s

Figure 4 Illustration of A-cores retrieved from sample graph

3.1.2 A bit of Map Reduce

MapReduce is a programming model designed for processing very large datasets with a
parallel and distributed algorithm over a cluster of machines. The cluster comprises of one
master node and several slave nodes. The MapReduce program consists of a sorting and
filtering procedure, namely Map(), and an aggregation operation called Reduce(). The
MapReduce paradigm was initially proposed in [11] and follows the functional programming
model (e.g. Lisp).

For those who are not familiar
with MapReduce we will now
describe the internal procedures that
take place during a MapReduce job.
Initially, the owner of the cluster has
to move all data into the distributed
file system (HDFS when Hadoop is
used). The first thing the master Figure 5 The MapReduce concept
undertakes is to split the input file
into independent chunks and distribute them to the slaves which at this point are called
Mappers. Concurrently, the master assigns Map tasks to some or all slave nodes of the cluster.
During the Map phase each worker reads pair wise (i.e., Key-Value pairs) the chunk he was
handed. Afterwards, the Shuffle and Sort phase that takes place is a default procedure to
ensure that the input for the Reducer is sorted by Key. Once the sorting is performed some
nodes are appointed as Reducers and apply the Reduce method on the lexicographically
sorted input. It is imperative to mention that the Reducers are usually fewer than the Mappers
in a MapReduce job or sometimes do not even exist (i.e., Map-only jobs). Finally,
intermediate results are merged into one final output.

15

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

3.1.3 The Hadoop middleware

Hadoop is a software library, or to be more specific a middleware, that allows parallel and
distributed processing of large datasets over a cluster of low-cost machines. It uses the
MapReduce programming model to process the input files. One of Hadoop’s greatest
advantages is that it was natively designed to detect and handle system failures at the
application layer and that it delivers high-availability without relying on the hardware level.
Therefore, Internet giants like Yahoo!, Google and Facebook have been widely using Hadoop
for Big Data analysis.

The Hadoop system mainly consists of two components: The Hadoop Distributed File
System (HDFS) and the MapReduce framework. Input and output data are written from and
to HDFS. Each node in a Hadoop cluster plays a specific role according to its position. The
components of Hadoop’s architecture seen in Figure 6 are described below in more details.

NameNode | Secon d ary N am eN ode I

Figure 6 Hadoop’s architecture

JobTracker The JobTracker farms out Map and Reduce tasks to specific nodes. Ideally,
nodes that receive the task should have the data or should be at least in the same rack. The
major problem of the JobTracker is that it is a single point of failure in the cluster meaning
that should it not work properly all currently running jobs are stopped [31].

TaskTracker A TaskTracker is a node of the cluster that accepts tasks that cannot exceed a
maximum threshold (i.e., the number of slots) from the JobTracker. A task can be a Map, a
Reduce or a Shuffle operation [30].

DataNode (DN) A DataNode is a node of the cluster that stores data in the HDFS. For the
HDFS to be consistent and functional the cluster should consist of more than one DataNode.
Each DataNode stores data replicas [29].

NameNode (NN) A NameNode is the centerpiece of the HDFS. It stores the directory tree
of all files in the HDFS but does not store the actual data. It also tracks where all files across
the cluster are stored. Unfortunately, like the TaskTracker the NameNode is a single point
failure for the Hadoop cluster [28] . To support the proper functionality of the NameNode the
Secondary NameNode performs periodic checkpoints.

16

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

3.2 The MR-SD algorithm

After providing the necessary background on k-shell decomposition and Hadoop’s
MapReduce we are now ready to describe in this subsection the proposed algorithm, namely
The MR-SD Algorithm, and how it maintains the decomposition of a network into its cores.
Algorithm 2 and Algorithm 3 describe processes running on the server and client side
respectively.

The MR-SD Algorithm, standing for MapReduce-based Shell Decomposition, consists of
chained MapReduce jobs that manage to retrieve the Scores of a given network recursively.
Our Hadoop cluster consists of five nodes, one master and four slaves. At this point let as
denote with nodec a node of our cluster; nodec can either be a slave node or the master. The
intuition behind The MR-SD Algorithm is that each nodec is responsible for pruning the input
graph and retrieving the k-cores, and only a part of the available nodesc makes the final
aggregations.

Based on the above idea, our proposed algorithm is split into two computational parts:

Part 1: The Job’s progress-termination

This part of the MapReduce job is responsible for the job set up; this includes setting input
and output paths, defining the Mapper and Reducer classes and initializing variables as well.
This stage of the algorithm is highly important since it is responsible to increase the coreness
value between the pruning phases and decide if the decomposition reached its primary
endpoint.

Part 2: The pruning part of the Decomposition (MR-SD)

In this phase of the algorithm the graph is distributed over the collection of the nodesc as
the data set is being split into independent chunks and handed out to worker nodes. Each
nodec is entrusted now to perform some of the Map tasks, some of the Reduce tasks or even
some of both aforementioned task types during each job run. The goal for the nodesc at the
Map step is to determine if a node of the network graph has k-coreness and hand out this
information to the Reducers without paying significant additional communication cost. On the
other hand, the Reduce step requires that the Mappers have provided the appropriate
information in order to apply the changes to the network graph.

We formalize the algorithm in pseudo-code and describe our approach. The initial step of
our proposed algorithm is finding out the one-hop neighborhood of each node of the given
network graph. The MR-SD Algorithm achieves this by distributing an independent and
random chunk of the actual graph across the cluster. Algorithm 2 dictates that a Map task is
now forced. At this point, each node is considered as the output Key and each of its neighbors
as a single Value. Each time a Reducer receives a Key-Value pair it groups all sorted pairs by
Key (K) and considers the collection as the one-hop neighborhood of the Key (K). Algorithm
2 can be seen as the preparation stage of the actual decomposition procedure.

17

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Figure 7 The Workflow of the MR-SD Algorithm

18

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

The intuition behind The MR-SD Algorithm algorithm is that each nodec is can only get a
random part of the network graph for processing and that the coreness value k must be
disseminated efficiently. Therefore, the master of the cluster is required to update k between
the pruning rounds. The master node is also in response for the propagation of k so that all
nodesc see the same instance of k in each Job. Thus, he sets k initially to 1, defines the
required configurations of the MapReduce job and announces k to each slave. At this point
computations have to be distributed across the cluster.

In order to control the progress and detect termination of the decomposition the master
node maintains the following:

• k represents the value of the k-coreness we currently examine; k £ Z ,fc > 0.
• Coresk is a variable representing the set of nodes that should be included in the

current k-shell.
• Gremaining is a variable representing the remaining network graph after a pruning round

of The MR-SD Algorithm.
• Gin is a variable that contains the initial network graph provided by the user.

Algorithm 1: computeOneHopNeighborHood(NetworkGraph G) A Map
Reduce pair to compute the one-hop neighborhood for each node in G

Mapper:
on map do

for each K V pair do
K ^ node Id
V «-neighbor;

L collect(K, V);
 ̂end map

Reducer:
on reduce do

for each K V pair do
L collect(K,V);

-end reduce

Algorithm 1 computation of one-hop neighborhood

Algorithm 2: Driver Routine executed to coordinate the job and detect termination
of the k-core decomposition process

on initialization do
configure(Job);
G . . «- computeOneHopNeighborhood(G.):r e m a i n i n g r r ° x i n 7 7
k «- 1;

L end initialization

repeat until each node has k-coreness
configure(Job);

i f Cores, not received then
L i - ir+l;

i f G . . not received then
L r e m a i n m g

k-cores «- mcrgelntcnnediaic(Corcst);
return k-cores;

Algorithm 2 Driver routine, auxiliary algorithm

19

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

The MR-SD algorithm : A Map-Reduce pair that implements the pruning phase
of the k-shell decomposition process

Mapper:
on map do

k«-get(k);
for each K V pair do

degree - ||V||;
if degree < kthcn

node «- mark(node);
for each veV do

Lcollect(v, attachedlnfo);
_ collect(node, k);
else

for each veV do
V*- V + v;

L L L collect(K, V);
L end map

Reducer:
on reduce do

k <- get(fc);
for each KV pair do

if attachedlnfo received from Mapper then

Lfor each attachedlnfo received do
oneHopNeiborhood — {V} - attachedlnfo;

degree*-1| V||;
if degree == 0 then

Lmark(node);
Corest <- collect(K,k);

else
V <- oneHopNeiborhood;

L G . . -collect(K,V);__ — remaining v 7 77
L end reduce

Algorithm 3 The MR-SD Algorithm

Each slave must first retrieve the k value from job’s configurations before starting a Map
task; Hadoop’s MapReduce framework provides the suitable tools to implement this
approach. Since the master is the only nodec responsible for updating k and only at the end of
each MapReduce job, i.e. a Map and a Reduce task have both to terminate first, we guarantee
that the k value a slave receives is always up-to-date and consistent for all nodesc. Right after
the announcement of k, nodec counts the one-hop neighbors (i.e., it finds out its degree) of a
node which are stored in V arriving from previous MapReduce job. Once this information is
available, the slave has to check if the degree of node K under consideration has fallen below
the k threshold or is equal to k. Should this occur, node K is marked so that the Reducer can
include the node in the current k-shell and prune K from the remaining network graph.
Additional information is then attached (attachedlnfo variable in the The MR-SD Algorithm
algorithm) to all nodes that are one-hop neighbors of K so that the Reducer can exclude the
current node from their neighborhood. However, if the latter check indicates that the degree
of node K exceeds the k limit then the node’s id is collected along with its one-hop neighbors;
the node id is the Key and the one-hop neighbors the Value of the KV pair collected and send
to the Reducer.

The Reduce phase of the The MR-SD Algorithm algorithm is now ready to start
computations. At the beginning of each Reduce task, nodec follows the same protocol as the

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Mapper; k value becomes available to the worker node by retrieving it from job’s
configurations using the appropriate tools provided by Hadoop’s MapReduce framework.
Each time a Reduce is performed, a Reducer receives (sorted by Key) data as K V pairs. From
previous phase of The MR-SD Algorithm K represents the node’s id and V stores its one-hop
neighborhood. At this point three possible scenarios can appear and we examine them below:

1. node K was marked in preceding Map task

2. node K was not marked by previous Mapper

3. node K comes coupled with additional information meaning that one or more

neighbors are going to be deleted in this pruning round

Scenario 1

In scenario 1, a Reducer receives a Key K that represents a node that has been marked
during the preceding Map, i.e., the degree of the node has shrunk below k . Beyond any doubt
this node should be included in the current k-shell by the Reducer. In this case, we collect (K ,
k) as the KV pair for this round.

We should clarify now that we have two output files in the Reduce phase. This arises from
the need to have one file (namely the Coresk file) containing the nodes that are deleted in each
round as they built gradually the current k-core (here the marked nodes) and another to store
the remaining network graph (Gremaining). This approach ensures that each node is included
exactly one time in a k-shell and is not further examined after its deletion. Moreover, splitting
the output into two separate files produces obviously a smaller input file for the next round
and that saves both the Mapper and the Reducer from examining the initial enormous data set
constantly.

Scenario 2

In scenario 2, we handle the situation where the node that was examined in the preceding
Map phase of The MR-SD Algorithm does not meet the requirements to be included in the
current k-shell, i.e., its degree is still above the k limit. Even if this seems to be a quite basic
collection of KV pairs, there has actually some further work to be done. The Reducer must
now check for additional information attachment on the KV pair received. Should the received
node come with no additional information attached then the KV pair is simply collected.

Scenario 3

For scenario 3, we designed part of the algorithm that handles the case where there is
additional information attached (attachedinfo) to the KV pair received. The information is
associated with the node that has to be removed from the one-hop neighborhood of node K .
Thus, in scenario 3 we exclude the node from the one-hop neighborhood; the degree is now
reduced by one for each neighbor appearing in the attached info. A possible situation arises at
this point. The node whose neighborhood we previously pruned can now remain with no
neighbor. In this case the node is considered of k-coreness and is therefore collected along
with the k-core value. Should there at least one neighbor after the pruning exist, the node id
and the neighbors ids are collected as KV pair and sent back to the master in the Gremaining
output file.

21

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Progress & Termination

At this point we need to prove how the The MR-SD Algorithm in cooperation with the
auxiliary algorithms, Algorithm 1 and Algorithm 2, manage to force correctly another pruning
round and detect termination when the Scores are formed entirely. Like before we will
examine separately each situation that might appear.

Figure 8 Flowchart of Progress and Termination

Let us assume we have reached the end of a round of The MR-SD Algorithm; this means
that each node of the input has been examined and all KV pairs have been received and
processed. The master who is the only responsible for the progress of k-core decomposition
and the termination detection of the The MR-SD AlgorithmAlgorithm receives now either both
output files or just one of them. To be more specific:

Case 1: Both Cores,- and Gremni„:„0 exist

If one or more nodes were added to the current k-shell during the Map and Reduce tasks,
the master receives at the end of the job the Coresk file which includes all node ids that have
been deleted previously. The master also receives Gremaining file including the remaining
network graph. In this case, k stays the same for another round of MR-SD.

Case 2: Only Gremni„i„0 recieved

If only the output file Gremaining is received, then k value has to be updated because no other
node has been added to the current k-shell. Now, the master must increase k value and force
another pruning round.

Case 3: Only Coresk recieved

Finally, if only the Coresk file is gathered by
the master then termination is detected since no
other nodes are left for examination. All
intermediate files that have been generated during
previous rounds are now merged into one final
output file. Figure 9 An example network graph

22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

In order to grasp the way our proposed algorithm works, we conclude with an example of
a pruning round performed with the The MR-SD AlgorithmAlgorithm and present the network
graph used for this purpose in Figure 9.

The objective of this example is to calculate the Scores of the network in Figure 9. No
cloud is needed for this specific graph since it is small in size and obviously k-cores can be
retrieved visually, but it is suitable for our example in order to understand the concept of
auxiliary Algorithm 2 and The MR-SD Algorithm.

Clearly one can directly realize that the first job run should exclude nodes 6, 7, 8, 10 and 12
from the given network graph and include them in the 7-shell.

Figure 10 depicts the following description of the algorithm: The master sets initially k
value to 1 and the Gremaining is split into independent chunks; assume that the calculation of
one-hop neighborhood preceded the initialization. It is imperative to mention that Gremaining is
in the first round the description of the network graph shown in Figure 9 and the input file the
user provides.

Figure 10 An example running of the proposed algorithm The pink boxes represent the
attached_info and the yellow nodes are the marked nodes

Map Phase

In Map phase, all nodes Mapper 1 reads from his chunk of the input file have degree
greater than 1. Therefore Mapper 1 collects simply the KV pair. Unlike Mapper 1, Mapper 2
and Mapper 3 find nodes with degree equal to one; nodes 8, 10 and 12 and nodes 6 and 7
respectively. Both Mappers mark the nodes so that the forthcoming Reducers include them in
7-shell. Additionally, they attach information to nodes 5, 9 and 11 to let the Reducers know
that they have to delete nodes 6, 7 and 8 from one-hop neighborhood of node 5, node 10 from
one-hop neighborhood of node 9 and node 12 from one-hop neighborhood of node 11. The
attached info is represented in Figure 9 as pink boxes “glued” to the nodes.

23

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Reduce Phase

In reduce phase, when the Reducers receive KV pairs they fist check if the Key, that
represents the node’s id, was marked previously. In case of nodes 1, 2 and 3 and 4 the
Reducers simply collect the KV pairs as they appear since they were not marked. On the other
hand, for nodes 5, 9 and 11, all nodes that are mentioned in the additional attached
information are now deleted from their one-hop neighborhood; here nodes 6, 7 and 8 are
removed from node’s 5, node 10 from node’s 9 and node 12 from node’s 11 one-hop
neighborhood. Reducers now also check if any of the nodes 5, 9 or 11 has degree less or equal
than 1. Reducers collect the (Key,k) as KV pair for nodes 6, 7, 8, 10 and 12.

Now that all nodes have been examined and both the Map and the Reduce have finished
results are sent back to the master. Since some nodes have been deleted during the job, Coresk
containing those nodes is sent to the master and as there is part of the network graph that has
not been examined yet, Gremaining is also sent. Consequently, k is not increased for another
round and the algorithm obviously is not terminating in this round.

Chapter 4

Experimental Evaluation

In this section we provide both the obtained results and their experimental analysis. We
describe the Online Social Networks we used to test and assess the performance of our
proposed algorithm on real-world network graphs. However, it is imperative to first describe
our cluster infrastructure briefly.

4.1 The evaluation platform

Our algorithm allows retrieving the k-cores of a network graph in a distributed and parallel
way over a collection of connected machines that are using commodity hardware. We tested
our proposed algorithm on a cluster which consists of five nodes, one master node and four
slave nodes. Each node is equipped with a disk space of 42GB, a 12GB RAM and is an 8-core
Intel CPU-based blade running CentOS. The network switch which connects our network
storages supports a 10-gigabit Ethernet connection. During each experiment there was no
significant interference from other workloads.

4.2 The experimental setting

As mentioned earlier, the The MR-SD Algorithm is the first algorithm in the literature for
k-shell decomposition that is based on the MapReduce framework. Therefore, there are no
competitors in order to compare any efficiency results. However, it is important to notice that

24

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

we used the algorithms reported in [8] and [26] to decompose our test OSNs, but they run
quickly out of memory (in case of the large ones) and never terminated. Thus, we do not
present results for them in this work.

4.2.1 The Datasets

Data sets
Experiment Social Network name

1 Autonomous systems AS-733

2 DBLP collaboration network

3
Autonomous systems by
Skitter

4
LiveJournal online Social
Network

5 Orkut online social network

6 Amazon product co­
purchasing network

7 Deaseasome

8 Protein Interaction Network
in budding Yeast

Number of nodes Number of edges Number of Jobs

6474 13895 61

317080 1049866 360

1696415 11095298 1305

3997962 34681189 3363

3072441 117185083 5918

334863 925872 87

7533 22052 118

2361 7182 74

Table 1 Real Online Social Networks used for the evaluation

The eight real Online Social Networks we used for the experimentation part of this work
are shown in Table 1. In order to present the size of the networks we also show some of their
characteristics. Stanford University and Gephi [27] provide generously the above datasets;
datasets 1-6 can be found on https://snap.stanford.edu/ and datasets 7 and 8 can be found here:
http://wiki .gephi.org/index.php/Datasets. The networks we used to evaluate the proposed
algorithm are ranging from small sized (a few thousand nodes) to very large sized (a few
millions of nodes); most of them were also used in [3]. We performed separate experiment for
each dataset.

4.2.2 The Performance Measures

In order to assess the MR-SD algorithm we chose three quantities as performance
measures of efficiency and we present them below:

Average CPU time spent (msec) stands for the time spent solely by the CPU to perform the
computations. All results presented in Table 2 are averaged over all MapReduce tasks.

Average Total Execution Time (sec) stands for the total execution time for the £-shell
decomposition of the input network. It is different from the previous metric since it also takes
into account the communication among the master and the slaves, the time required to store
intermediate and final results, and any other additional latency that may occur. The obtained
results are averaged over all MapReduce tasks.

Average Total committed heap usage (Bytes) is the memory footprint of the algorithm. It
shows the amount of heap memory that is required during the experimentation phase.

25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

https://snap.stanford.edu/
http://wiki.gephi.org/index.php/Datasets

4.3 The obtained results

In this subsection we present the obtained results. We also try to capture how our proposed
algorithm behaved during the experimentation part. First, we present the averages of the three
aforementioned measured described in subsection 4.2.2 and then the plots that concern their
precise distribution. For clarity of presentation purposes, we provide the results concerning
each dataset in a different plot. Table 2 depicts the average values of CPU time, total
execution time and memory footprint per Map job, per Reduce job and per dataset.

Average CPU time spent (msec)
Map Reduce Total (Job)

Autonomous systems AS-733 2061.31 2715.74 4777.05
DBLP collaboration network 7696.08 5768.33 13464.42
Autonomous systems by Skitter 61377.72 61982.36 123360.08
LiveJournal online Social Network 79122.92 28758.76 107881.68
Orkut online social network 505243.72 304598.03 809841.74
Amazon product co-purchasing network 9803.56 6339.20 16142.76
Deaseasome 2223.05 2718.64 4941.69
Protein Interaction Network in budding Yeast 1559.32 2256.49 3815.81

Average Total Execution Time (sec)
Map Reduce Total (Job)

Autonomous systems AS-733 99.95 9.13 16.18
DBLP collaboration network 104.79 10.30 19.33
Autonomous systems by Skitter 158.55 71.48 90.83
LiveJournal online Social Network 159.53 33.63 56.77
Orkut online social network 311.50 299.78 339.79
Amazon product co-purchasing network 200.13 10.75 20.06
Deaseasome 175.80 8.87 16.26
Protein Interaction Network in budding Yeast 156.41 8.82 15.00

Average Total committed heap usage (Bytes)
Map Reduce Total (Job)

Autonomous systems AS-733 379584512 189792256 569376768
DBLP collaboration network 381046693 192004460 573051153
Autonomous systems by Skitter 397844599 199193282 597037881
LiveJournal online Social Network 486663048 201195325 687858373
Orkut online social network 1695512575 157003260 1852515835
Amazon product co-purchasing network 376372495 191817092 568189587
Deaseasome 379584512 189792256 569376768
Protein Interaction Network in budding Yeast 379584512 189792256 569376768

Table 2 The Average resource consumption (Top) Average CPU time, (Middle) Average total
execution time, (Bottom) Memory footprint

4.3.1 Average execution time and memory footprint

It is obvious from Figure 11 and Figure 12 that the execution time depends on the number of
edges of the graph under consideration. On the other hand, the number of nodes seems to not
influence the obtained results in a great extend. This is expected since the number of edges is
related to the density of the network graphs; the denser the networks the greater the number of
The MR-SD Algorithmrounds that are required to decompose the graph.

26

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Average CPU time

number of nodes

Figure 11 Average CPU time vs. number of nodes

Figure 11 and Figure 12 confirm that a great number of edges are more related to a large
time and that the number of nodes has only a small effect on the average CPU time. Results
can be seen in Figure 12 (averages) and Figure 15 (per experiment).

Figure 12 Average CPU time vs. number of edges

27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

4.3.2 Impact of the number of VMs

As mentioned previously the cluster we setup in order to evaluate our algorithm consists of
five nodes and in some of our experiments the datasets tested were extremely large. This has
consequences on the performance of each worker node. More specifically, the results showed
that when running heavy jobs, i.e., really large datasets, on a small cluster some of the nodesc
are obliged to run more than one Map task; the decomposition of the social network in
experiment 5 highlights this case. In this experiment the maximum number of the Map tasks
exceeded 30 at the beginning and therefore more than 7 Map tasks where assigned to each
slave during the first rounds of Algorithm 2 and Algorithm 3; this actually resulted a greater
time. For graphs with size ranging from small to medium no significant workload has been
noticed. Generally, the MR-SD approach of k-shell decomposition manages every time, even
with great workload, to retrieve the Scores. A better performance can be achieved when
running MR-SD on a larger cluster since Map and Reduce tasks can be distributed more
efficiently. Results can be seen in Figure 12 (averages), Figure 13, Figure 14 and Figure 16.

Figure 14 Map tasks during experiments 1, 2, 3, 6 and 8. Most of the Map tasks overlap with the
Map tasks of experiment 8.

28

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Finally, in Figure 15, results can be seen per experiment. x-axis in each plot depicts the
total committed heap usage per job (in MBytes), and the y-axis depicts the total CPU time
spent per job (in msecs). In general, the Reduce tasks cost far less in computation time than
the respective Map tasks, which is expected since the Reducers perform mainly aggregation
operations.

4.3.3 Impact of network density

As mentioned earlier, the performance of the MR-SD algorithm depends on the network
density, i.e., the number of network edges. Figure 12 shows that the network density impacts
exponentially the execution time. This is expected since the number of jobs increases with the
number of edges. For example, some millions edges or even more edges, result a significant
greater execution time than the graphs with a small number of edges. Table 2 includes in
details the performance of MR-SD for each network. In particular, the numbers of the
obtained results highlight the impact of the network density when comparing the results of
CPU time of dense networks (e.g., experiment 5) with those of more sparse social networks
(e.g., experiment 8).

4.3.4 Impact of the machine load

Processing a very large sized network is a difficult procedure until a large number of nodes
are pruned. This indicates that during the first pruning rounds of MR-SD, a greater resource
demand is observed. Indeed, both CPU time measured and heap size requirements are
considerably greater. Figure 15 and Figure 17 clearly depict that the workload demands for
large network graphs require an increasing processing power while the heap size remains
actually almost stable during this interval. The same is observed for networks with a size
ranging from small to medium although to a much lesser extent. One especially interesting
outcome is that Reduce tasks tend to be more time consuming in the first 20% to 45% of the
pruning rounds than in the last ones. In fact, the execution time seems to follow a decreasing
exponential trend for very large graphs. However, for networks with a small or medium size
we observe a rather flat execution time during the Reduce phase.

29

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

700000

(fl 400000

5000

0>1OOCOO-

Heap vs. CPU Usage Distribution Heap vs. CPU Usage Distribution
Total Resource Usage Total Resource Usage

Λ 100000

Total commited Heap Usage per Job (MBytes) Total commited Heap Usage per Job (MBytes)

Heap vs. CPU Usage Distribution Heap vs. CPU Usage Distribution
Total Resource Usage Total Resource Usage

£700000·

Total commited Heap Usage per Job (MBytes) Total commited Heap Usage per Job (MBytes)

Heap vs. CPU Usage Distribution Heap vs. CPU Usage Distribution
Total Resource Usage Total Resource Usage

£ 40000

Total commited Heap Usage per Job (MBytes)Total commited Heap Usag per Job (MBytes)

Heap vs. CPU Usage DistributionHeap vs. CPU Usage Distribution
Total Resource Usage Total Resource Usage

·-■
L L 50000

Total commited Heap Usage per Job (MBytes) Total commited Heap Usage per Job (MBytes)

Figure 15 Heap vs. CPU Usage Distribution. The size of the radius of each circle is relative to the
square root of the ratio of CPU and Heap usage multiplied by a constant number c. a)
Experiment 1, c=0.1, b) Experiment 2, c=0.1, c) Experiment 3, c=0.8, d) Experiment 4, c=5, e)
Experiment 5, c=5, f) Experiment 6, c=0.2, g) Experiment 7, c=2, h) Experiment 8, c=2

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Figure 16 Map and Reduce task execution time (red is used for Map tasks and green for Reduce
tasks) a) Experiment 1, b) Experiment 2, c) Experiment 3, d) Experiment 4, e) Experiment 5, f)
Experiment 6, g) Experiment 7, h) Experiment 8

31

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Figure 17 Virtual Memory vs. Physical Memory (MB) Usage a) Experiment 1, b) Experiment 2,
c) Experiment 3, d) Experiment 4, e) Experiment 5, f) Experiment 6, g) Experiment 7, h)
Experiment 8

32

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

Chapter 5

Conclusions & Future Work

The £-shell decomposition of an online social network is a significant task involved in
social network analysis. It has found many application scenarios in many fields. For example,
it can be used for the discovery of influential spreaders, for community detection, for analysis
of the Internet structure, for visualization purposes, and so on. In the past many £-shell
decomposition algorithms have been proposed. However, none of the already existing
algorithms is suitable when the input graph is thought to be BigData, i.e. enormously large, or
when the computations take place in huge Hadoop-based clusters such as those deployed by
current Internet giants (Google, Yahoo, LinkedIn). In this work, motivated by the latter
unsuitability and lack of existing solutions to deal with this, we designed a MapReduce-based
distributed £-shell decomposition algorithm for social networks, namely MR-SD. We
addressed the challenges involved in the design of a parallel and distributed version of a graph
decomposition technique, which is highly sequential in its nature, and provided an effective
and efficient algorithm able to scale to millions of graph nodes and edges. For the
implementation of MR-SD we used the Hadoop middleware, and assessed its performance for
eight real social networks of varying size and density. We investigated the performance of the
algorithm in terms of pure CPU time, of total execution time and memory footprint. We
recognized its virtues and suitability for modern distributed environments.

As a future work, we plan to work on some aspects of the MR-SD algorithm in order to
gain some additional speedup. In this direction we will try to study areas that involve the
communication among slaves so as to optimize it and also to develop a variation of the
algorithm for annotated networks, e.g., weighted. We will also work on how to best distribute
tasks across the cluster. Finally, we plan to perform experimentation of our proposed
algorithm on a MapReduce environment of a major cloud service provider in order to
highlight its scalability and achieve further speedup.

33

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

6 References

[1] K. Pechlivanidou, D. Katsaros, L. Tassiulas, “M apReduce-based Distributed K-shell
D ecom position for Online Social N etw orks”, In Proceedings o f the 2nd International
Workshop on Personalized Web Tasking (PWT), In the context o f the IEEE 10th World
Congress on Services, Anchorage, Alaska, U SA , June 27 - July 2, 2014

[2] P. Basaras, D. Katsaros, L. Tassiulas, “D etecting influential spreaders in com plex,
dynamic networks”, IEEE Computer magazine, vol. 46, no. 4, pp. 26-31, 2013

[3] H. Aksu, M. Canim, Y .-C . Chang, I. Korpeoglu, O. U lusoy, “M ulti-resolution social
network community identification and maintenance on big data platform”, Proceedings o f
the IEEE International Congress on Big Data (BigData), pp. 102-109, 2013.

[4] S. Carmi, S. Havlin, S. Kirkpatrick, Y . Shavitt, E. Shir, “A m odel o f Internet topology
using k-shell decom position”, Proceedings o f the National Academy o f Sciences, vol. 104,
no. 27, pp. 11150-11154, 2007.

[5] V . Batagelj and M. Zaversnik, “An O(m) Algorithm for Cores Decom position o f
N etw orks”, University o f Ljubljana, Department o f Theoretical Computer Science,
Ljubljana, Slovenia, Preprint series, vol. 40, 2002. Available at
http://arxiv.org/abs/cs.DS/0310049

[6] J. Cheng, Y . Ke, S. Chu, M.T. Ozsu, “Efficient core decom position in m assive networks”,
Proceedings o f the IEEE International Conference on Data Engineering (ICDE), pp. 51 ­
6 2 ,2011

[7] A. M ontesor, F. de Pellegrini, D. Miorandi, “Distributed k-core decom position”, IEEE
Transactions on Parallel and Distributed Systems, vol. 24, no. 2, pp. 288-300, 2012

[8] A. Garas, F. Schweitzer, S. Havlin, “A k-shell decom position method for weighted
networks”, New Journal o f Physics, vol. 14, 2012

[9] A .E. Sariyuce, B. Gedik, G. Jacques-Silva, K.-L. W u, U .V . Catalyurek, “Streaming
algorithms for k-core decom position”, Proceedings o f the VLDB Endowment, vol. 6, no.
6, pp. 433-444, 2013

[10] D. Miorandi and F. de Pellegrini, “K -shell decom position for dynamic com plex
networks”, Proceedings o f the Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), pp. 488-496, 2010

[11] J. Dean and S. Ghemawat, “MapReduce: Sim plified data processing on large clusters”,
Proceedings o f USENIX Symposium on Operating System Design and Implementation
(OSDI), pp. 137-150, 2004.

[12] J. Lin and C. Dyer, “Data-Intensive Text Processing with M apReduce”, Synthesis
Lectures on Human Language Technologies, Morgan & Claypool Publishers, 2010.

[13] P. Pantel, E. Crestan, A. Borkovsky, A .-M . Popescu , V . V yas, “W eb-scale distributional
similarity and entity set expansion”, Proceedings o f Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 938-947, 2009.

[14] S. Papadimitriou and J. Sun, “DisCo: Distributed co-clustering with Map-Reduce: A case
study towards petabyte-scale end-to-end m ining”, Proceedings o f the IEEE Interational
Conference on Data Mining (ICDM), pp. 512-521, 2008.

[15] W . Zhao, H. Ma, Q. He, “Parallel k-means clustering based on M apReduce”, Proceedings
o f the International Conference on Cloud Computing (CloudCom), LNCS, vol. 5931, pp.
674-679, 2010.

[16] G. Sudha-Sadasivam and G. Baktavatchalam, “A novel approach to multiple sequence
alignment using Hadoop data grids”, Proceedings o f the Workshop on Massive Data
Analytics on the Cloud (MDAC), 2010.

34

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

http://arxiv.org/abs/cs.DS/0310049

[17] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, A. Rasin, “HadoopDB:
An architectural hybrid o f Map/Reduce and DBM S technologies for analytical
workloads,” Proceedings o f the VLDB Endowment, vol. 2, no. 1, pp.922-933, 2009.

[18] Y . Tao, W . Lin, X . X iao, “M inimal M apReduce algorithms”, Proceedings o f the 2013
ACM International Conference on Management o f Data (SIGMOD), pp. 529-540, 2013.

[19] P. Paraskevopoulos and A. Gounaris, “Optimal tradeoff between energy consumption and
response time in large-scale M apReduce clusters”. Proceedings o f the Panhellenic
Conference on Informatics (PCI), pp. 144-148, 2011.

[20] A. Kala Karun and K. Chitharanjan, “A review on Hadoop — HDFS infrastructure
extensions”, Proceedings o f the IEEE Conference on Information & Communication
Technologies (ICT), pp. 132-137, 2013.

[21] S. W asserman and K. Faust, “Social Network Analysis: Methods and Applications”,
Cambridge University Press, 1994.

[22] D. Katsaros, N . Dimokas, L. Tassiulas. “Social network analysis concepts in the design o f
wireless ad hoc network protocols”, IEEE Network magazine, vol. 24, no. 6, pp. 23-29,
2010.

[23] M. Giatsoglou and A. Vakali, “Capturing social data evolution using graph clustering”,
IEEE Internet Computing vol. 17, no. 1, pp. 74-79, 2013.

[24] S.B. Seidman, “Network structure and minimum degree”, Social Networks, vol. 5, no. 3,
p p .2 6 9 -2 8 7 , 1983.

[25] S. Carmi, S. Havlin, S. Kirkpatrick, Y . Shavitt, E. Shir, “A m odel o f Internet topology
using k-shell decom position”, Proceedings o f the National Academy o f Sciences, vol. 104,
no. 27, pp. 11150-11154, 2007.

[26] R.-H. Li, J.X. Yu, R. Mao, — Efficient core maintenance in large dynamic graphs!, IEEE
Transactions on Knowledge and Data Engineering, to appear, 2014. Available at
http://arxiv.org/abs/1207.4567

[27] Bastian M., Heymann S., Jacomy M. (2009). Gephi: an open source software for
exploring and manipulating networks. International A A A I Conference on W eblogs and
Social Media.

[28] http://wiki.apache.org/hadoop/NameNode

[29] http://wiki.apache.org/hadoop/DataNode

[30] http://wiki.apache.org/hadoop/T askT racker

[31] http://wiki .apache.org/hadoop/J obT racker

[32] http://en.wikipedia.org/wiki/Social network

[33] http://www.nature.com /srep/2013/131018/srep02980/im ages article/srep02980-f6.jpg

[34] http://www.nature.com /nphvs/iournal/v6/n11/carousel/nphvs1746-f1.ipg

[35] http://4.bp.blogspot.com /- B uuV u4M TA o/ToG w M H lc15I/A A A A A A A A sW o/X O bA uT

35

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:11 EET - 137.108.70.7

http://arxiv.org/abs/1207.4567
http://wiki.apache.org/hadoop/NameNode
http://wiki.apache.org/hadoop/DataNode
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/JobTracker
http://en.wikipedia.org/wiki/Social_network
http://www.nature.com/srep/2013/131018/srep02980/images_article/srep02980-f6.jpg
http://www.nature.com/nphys/journal/v6/n11/carousel/nphys1746-f1.jpg
http://4.bp.blogspot.com/-_BuuVu4MTAo/ToGwMHlc15I/AAAAAAAAsWo/XObAuT

