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Chapter 1 

 

1.1 Static Timing Analysis Method 

 

Static timing analysis (STA) is a simulation method of computing the expected timing of a digital circuit 
without requiring a simulation of the full circuit. 

High-performance integrated circuits have traditionally been characterized by the clock frequency at 
which they operate. Gauging the ability of a circuit to operate at the specified speed requires an ability to 
measure, during the design process, its delay at numerous steps. Moreover, delay calculation must be 
incorporated into the inner loop of timing optimizers at various phases of design, such as logic synthesis, 
layout (placement and routing), and in in-place optimizations performed late in the design cycle. While 
such timing measurements can theoretically be performed using a rigorous circuit simulation, such an 
approach is liable to be too slow to be practical. Static timing analysis plays a vital role in facilitating the 
fast and reasonably accurate measurement of circuit timing. The speedup comes from the use of 
simplified timing models and by mostly ignoring logical interactions in circuits. It has become a mainstay 
of design over the last few decades. 

One of the earliest descriptions of a static timing approach was based on the Program Evaluation and 
Review Technique (PERT), in 1966[1]. More modern versions and algorithms appeared in the early 1980s. 

 

1.2 Purpose and Definitions 

 

In a synchronous digital system, data is supposed to move in lockstep, advancing one stage on each tick of 
the clock signal. This is enforced by synchronizing elements such as flip-flops or latches, which copy their 
input to their output when instructed to do so by the clock. Only two kinds of timing errors are possible in 
such a system: 

 A setup time violation, when a signal arrives too late, and misses the time when it should advance; 

 A hold time violation, when an input signal changes too soon after the clock's active transition. 

The time when a signal arrives can vary due to many reasons - the input data may vary, the circuit may 
perform different operations, the temperature and voltage may change, and there are manufacturing 
differences in the exact construction of each part. The main goal of static timing analysis is to verify that 
despite these possible variations, all signals will arrive neither too early nor too late, and hence proper 
circuit operation can be assured. 

Since STA is capable of verifying every path, it can detect other problems like glitches, slow paths 
and clock skew. 
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 The critical path is defined as the path between an input and an output with the maximum delay. 
Once the circuit timing has been computed by one of the techniques below, the critical path can 
easily be found by using a traceback method. 

 The arrival time of a signal is the time elapsed for a signal to arrive at a certain point. The reference, 
or time 0.0, is often taken as the arrival time of a clock signal. To calculate the arrival time, delay 
calculation of all the components in the path will be required. Arrival times, and indeed almost all 
times in timing analysis, are normally kept as a pair of values - the earliest possible time at which a 
signal can change, and the latest. 

 Another useful concept is required time. This is the latest time at which a signal can arrive without 
making the clock cycle longer than desired. The computation of the required time proceeds as 
follows: at each primary output, the required times for rise/fall are set according to the specifications 
provided to the circuit. Next, a backward topological traversal is carried out, processing each gate 
when the required times at all of its fanouts are known. 

 The slack associated with each connection is the difference between the required time and the arrival 
time. A positive slack s at some node implies that the arrival time at that node may be increased by s, 
without affecting the overall delay of the circuit. Conversely, negative slack implies that a path is too 
slow, and the path must sped up (or the reference signal delayed) if the whole circuit is to work at the 
desired speed[2]. 

 

1.3 Method Analysis 

 

Timing analysis computes the amount of time signals propagate in a circuit from its p r i mary inputs (PIs) to 

its primary outputs (POs) through various circuit elements and interconnect. Signals arriving at an input of an 

element will be available at its output(s) at some later time; each element therefore introduces a delay 

during signal propagation. Further-more, assume that signal transitions are characterized by their input slew 

and their output slew, which is defined as the amount of time required for a signal to transition from high-to-

low or low-to-high. 

 

 

 

 

 

 

Figure 1 - Slews and delays in a circuit element. 
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In the figure, the delay across the circuit element from input A to output Y is designated by dA→Y , the input 

slew at A by SiA, and the output slew at Y by SoY . Here, both the delay and the output slew are functions of 

input slew. 

 

1.4 Timing Propagation 

 

Starting from the primary input(s), we quantify the instant that a signal reaches an input or output of a 

circuit element as the arrival time (at). Similarly, starting from the primary output(s), we quantify the limits 

imposed for each arrival time to ensure proper circuit operation as the required arrival time (rat). Given an 

arrival time and a required arrival time, we define the slack at a circuit node as a measurement of how well 

timing constraints are met. That is, a positive slack means the required time is satisfied, and a negative slack 

means the required time is in violation. 

To account for multiple sources of within-chip variation, such as manufacturing variations, temperature 

fluctuation, voltage drops, and electromigration, timing analysis is typically done using an early/late split, 

where each circuit node has an early (lower) bound and a late (upper) bound on its time. By convention, if the 

early or late mode is not explicitly stated, both modes will be need to be considered. For example, a generic 

output slew so that is a function of input slew si implies that the early mode so
early     is a function of early 

mode si
early  , and the late mode so

late     is a function of late mode si
late.    

Actual arrival time. Starting from the primary inputs, arrival times (at) are computed by adding delays 

across a path, and performing the minimum (in early mode) or maximum (in late mode) of such 

accumulated times at a convergence point. That is, in early mode, we are concerned with computing the 

earliest time instant that a signal transition can reach any given circuit node. For example, let atA
early and 

atB
early  to be the early arrival times at pins A and B in Figure(). Then the early mode arrival time at the 

output pin Y will be  

 

atY
early = min(atA

early + dearly
A→Y,  atB

early  + dearly
B→Y )                                      

 

Conversely, in late mode, we are concerned with computing the latest time instant that a signal 

transition can reach any given circuit node. Following the same example in Figure 1 (right), the late mode 

arrival time at Y will be 

         atY
late = max(atA

late + dlate
A→Y, atB

late  + dlate
B→Y )                                       
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Required arrival time. Starting from the primary outputs, required arrival times (rat) are computed by 

subtracting the delays across a path, and performing the maximum (in early mode) or minimum (in late 

mode) of such accumulated times at a convergence point. That is, in early mode, we are concerned with 

computing the earliest time instant that a signal transition must reach any circuit node. For example, in 

Figure 2 (left), the early mode required arrival time at the input pin Z will be 

                  ratz
early

  = max(ratT1
early  - dearly

Z→T1, ratT2
early

 - dearly
Z→T2  )                       

Conversely, in late mode, we are concerned with computing the latest time instant that a signal transition 

must reach any given circuit node. Following the same example in Figure 2 (left), the late mode required 

arrival time at the input pin Z will be 

 

ratz
late

  = min(ratT1
late  - dlate

Z→T1, ratT2
late

 –  dlate
Z→T2 )     

 

Slacks. For proper circuit operation, the following conditions must hold: 

 atearly ≥ ratearly 

atlate ≤ ratlate  
 

To quantify how well timing constraints are met at each circuit node, slacks (slack) can be computed based 

on equations for at and rat . That is, slacks are positive when the required times are met, and negative 

otherwise. 

Slackearly = atear ly - ratearly  

Slacklate = ratlate -at la te   

Slew propagation. As circuit element delays and interconnect delays are a function of the input slew (si), the 

subsequent output slew (so) must be propagated. In this contest, we will assume worst-slew propagation, 

where we propagate the smallest (largest) slew in early (late) mode. Following the example in Figure 1 (right), 

the early mode and late output slew at output pin Y are, respectively: 

soY
early  = min ( soAY

early (siA
early), soBY

early (siB
early) )   

soY
late  = max ( soAY

late (siA
late), soBY

late (siB
late) ) 

Transitions. For each timing arc, delay and output slew values will propagate only for transitions that exist. 

For example, suppose there two timing arcs in serial, where the first timing arc propagates rise-to-rise (R→R) 

and fall-to-fall (F→F), and the second timing arc propagates fall-to-rise (F→R). After timing analysis, the only 

valid output transition at the second timing arc will be rise (R). The delay through both the timing arcs is the 
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sum of the delay for the F→F transition in first arc plus the delay for the second arc for the F→R transition in 

the second arc. Note that the delay for the R→R delay from the first arc is not used, and the fall arrival time 

for the second arc is undefined. For this contest, an undefined early (late) arrival time is set as 987654 (-

987654), and an undefined early (late) required arrival time is set as (-987654) (987654). 

 

 

 

 

 

 

Figure 2 : Generic interconnect (left), its timing model (center) and RC network (right). 

 

 

1 . 5  I n t e r c o n n e c t  M o d e l i n g  

 

The basic instance of interconnect (wire) is a net, which is assumed to have an input pin (Port) and one or 

more output pins (Taps), as illustrated in Figure 2 (left). Parasitic RC trees only contain grounded capacitors 

and floating resistors (we will not include the discussion of coupling capacitors or grounded resistors). 

Delay. The computation of port-to-tap delays can be accurately performed through electrical simulation. 

However, and for the sake of simplicity (and speed), we will assume the simpler Elmore delay model [3], 

where the delay is approximated by the symmetric of the value of the first moment of the impulse response. To 

compute the delay of RC tree networks, we summarize the topological method [4]. 

In an RC network, consider any two nodes e and k. Let Ck be the lumped capacitance at node k, and let 

Rk->e be the total resistance of the common path between the paths from Port to e and Port to k. For 

example, in Figure 2 (right), the resistance between nodes 1 and T2 (R1->T2) is RA, as that is the only 

common resistor between the paths Z to 1 and Z to T2. The 

Elmore delay at node e is  
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de =  ∑ Rk→e

k ∈N

 Ck 

 

where N is the set of all nodes in the RC network. For the example net illustrated in Figure  (right), the delay at 

node T2 (tap) is (visiting in order nodes 1, T1, 3, 2, T2): 

 

dT2  =  RAC1 + RAC3 + RAC4 + (RA+RB)C2 + (RA+ R B+RE)C5  = RA(C1 + C3 + C4) + ( R A + R B)C2 + (RA + RB + RE)C5  

 

Output slew. The value of the output slew (so) on any given tap node T can be approximated by a two-step 

process. First, compute the output slew of the impulse response on T, which was observed  to be well-

approximated by 

 

�̂�𝑜𝑇 ≈ √2𝛽𝛵 −  𝑑𝑇
2 

 

where βT is the second moment of the input response at node T, and dT is the corresponding Elmore delay 

from Equation . Second, compute the slew of the response to the input ramp by the expression given :  

 

�̂�𝑜𝑇 ≈ √𝑠𝑖
2 −  �̂�𝑜𝑇

2 

where si is the input slew. 

 

 

 

 

Figure 3 . RC tree 
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Modified RC network for output slew calculation 

 

The value of βT can be computed through the efficient path-tracing algorithm for moment 

computation proposed in [5], which is a generalization of the algorithm proposed in [1]. To 

calculate βT, first replace all capacitance values Ck in the RC network by Ckdk, where dk is the 

Elmore delay. Second, follow the same procedure as before for finding βT 

𝛽T =  ∑ Rk→Τ

k ∈N

 Ckdk 

At node T2  we have : 

βΤ2 = RA (C1d1 + C3d3 + C4d4 ) + (RA + RB)C2d2 + (RA + RB + RE)C5d5 

 

1 . 6  C i r c u i t  E l e m e n t  M o d e l i n g  

For delay and output slew calculations between two pins, the information will be given in the .lib file as two-

dimensional tables. To find the corresponding timing information, extrapolation or interpolation will be 

necessary. 

If the table contains a single value, i.e., a 1x1 table (Figure 4 left), no interpolation is necessary. That is, 

regardless of input x and y, the corresponding value is constant. If the table is one-dimensional, i.e., a 1xn 

table or a mx1 table (Figure 4 center), then the value will depend only on the non-scalar dimension. For 

example, consider the 1x4 table in Figure 4. If y <y1, then the corresponding output z value will be the linear 

extrapolation between z1 and z2. If y2 ≤ y ≤ y3, then z will be the linear interpolation between z2 and z3.  

 

 

 

Table 1.Illustration of different tables: scalar, one-dimensional, and two-dimensional. 
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If y4 <y, then z will be the linear extrapolation between z3 and z4. 

 

 

 

 

 

 

 

If the table is two-dimensional, perform linear interpolation on the x values first, then perform linear 

interpolation on the y values. For example, consider the 3x4 table in Figure 4. If x2 < x  < x3 and y2 <y <y3, 

then (i) determine zfirst by linear interpolation on z22 and z32, (ii) determine zsecond  by linear interpolation on 

z23 and z33, and then ( i i i)  determine z by linear interpolation using zfirst and zsecond . 

Combinational elements. For a given combinational cell, e.g., OR gate, let the delay d and output slew so  for 

a input/output pin-pair (see Figure ) be calculated by non-linear delay model interpolation/extrapolation. 

These delay and output slew tables are stored in the .lib, and are referenced by the input slew (x) and driving 

load (y). CL  denotes the equivalent downstream capacitance seen from the output pin of the cell. Several 

sophisticated models have been proposed for computing CL . For simplicity, the application of such models is 

considered to be out of the scope of the present contest, and a simple model is adopted. CL  is assumed to be 

the sum of all the capacitances in the parasitic RC tree, including the cell pin capacitances at the taps of the 

interconnect network. 

 

 

 

 

 

Figure 4: Combinational OR gate (left), its timing model (center) and capacitances (right). 

 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:51 EET - 137.108.70.7



 
14 

 

Sequential elements. Sequential circuits consist of combinational blocks interleaved by registers, usually 

implemented with flip-flops (FFs). Typically, sequential circuits are composed of several stages, where a register 

captures data from the outputs of a combinational block from a previous stage, and injects it into the inputs 

of the combinational block in the next stage. Register operation is synchronized by clock signals generated by 

one or multiple clock sources. Clock signals that reach distinct flip-flops, e.g., sinks in the clock tree, are 

delayed from the clock source by a clock latency l. 

A (D) flip-flop is a storage element that captures a given logic value at its input data pin D, when a given clock 
edge is detected at its clock pin CK, and subsequently presents the captured value and its complement at the 
output pins Q and �̅�. The flip-flop also enables asynchronous preset (set) and clear (reset) of the output pins 
through the respective S and R input pins. 

 

 

 

 

 

 

 

Figure 5:Generic D flip-flop and its timing model (left), and two FFs in series and their timing models (right). 

Setup and hold constraints. Proper operation of a flip-flop requires the logic value of the input data pin to be 

stable for a specific period of time before the capturing clock edge. This period of time is designated by the 

setup time tsetup . Additionally, the logic value of the input data pin must also be stable for a specific period of 

time after the capturing clock edge. This period of time is designated by the hold time thold. The flip-flop 

timing models are depicted in 

 

 

The complement, preset and clear signals are stated here for completeness. For the purposes of the contest, their 

behavior wi l l  be ignored. 
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Figure 5 (left). The test time are given in the . l ib  as two-dimensional tables, and are referenced by the clock-

side input slew (x) and the data-side input slew (y). 

Signal propagation. Consider the standard signal transition between two flip-flops as illustrated in Figure 5 

(right). Assuming that the clock edge is generated at the source at time 0, it will reach the injecting 

(launching) flip-flop F F 1 at time li, making the data available at the input of the combinational block dCK→Q  

time later. If the propagation delay in the combinational block is dcomb , then the data will be available at the 

input of the capturing flip-flop F F 2 at time li + dC K →Q + dcomb. Let the clock period to be a constant T. Then 

the next clock edge will reach FF 2 at time T + lo. For correct operation, the data must be be available at the 

input pin D of FF2 tsetup  time before the next clock edge. Therefore, at the data input pin D of FF2, we have the 

following : 

 

𝑎𝑡𝐷
𝑙𝑎𝑡𝑒 =  𝑙𝑖

𝑙𝑎𝑡𝑒 +  𝑑𝐶𝐾→𝑄 +  𝑑𝑐𝑜𝑚𝑏
𝑙𝑎𝑡𝑒  

𝑟𝑎𝑡𝑠𝑒𝑡𝑢𝑝 =  𝑟𝑎𝑡𝐷
𝑙𝑎𝑡𝑒 = 𝑇 + 𝑙𝑜

𝑒𝑎𝑟𝑙𝑦
−  𝑡𝑠𝑒𝑡𝑢𝑝 

 

A similar condition can be derived for ensuring that the hold time is respected. The data input pin D of FF2 

must remain stable for at least thold  time after the clock edge reaches the corresponding CK pin. Therefore, at 

the data input pin D of FF2, we have the following: 

 

𝑎𝑡𝐷
𝑒𝑎𝑟𝑙𝑦

=  𝑙𝑖
𝑒𝑎𝑟𝑙𝑦

+ 𝑑𝐶𝐾→𝑄 + 𝑑𝑐𝑜𝑚𝑏
𝑒𝑎𝑟𝑙𝑦

 

𝑟𝑎𝑡ℎ𝑜𝑙𝑑 =  𝑟𝑎𝑡𝐷
𝑒𝑎𝑟𝑙𝑦

= 𝑙𝑜
𝑙𝑎𝑡𝑒 −  𝑡ℎ𝑜𝑙𝑑 

 

Note that when computing the required arrival times in Equations 27 and 29, the value lo is specific to 

Figure 6. In the general case, lo should be replaced with atC. The previous arrival times and required arrival 

times induce setup and hold slacks, which can be computed from Equations 7 and 8. For the clock pins of the 

flip-flop, the required arrival time is derived from the test slack. For early mode, the slack at the clock pin is 

the setup or late test slack, and for late mode, the slack at the clock pin is the hold or early test slack. From 

the corresponding test slack and arrival time, the clock required arrival time can be derived, and 

appropriately propagated. 
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Chapter 2 

2.1 Logical Effort 

2.1.1 Introduction 

Timing modeling and optimization are two of the primary issues in high complexity circuit design. The 

method of Logical Effort (LE) [6], a term invented by I. Sutherland and B. Sproull in 1991, is a straightforward 

technique for fast evaluation and optimization of delay in logic paths (see Figure 6). The technique has since 

been adopted as a basis for numerous CAD tools, for the sake of its simplicity. 

 

 

 

 

 

Figure 6 - Logical effort optimization for gates without wires is based on equal stage efforts, 

g1h1=g2h2 etc. 

 

2.1.2 Delay in a Logic Gate 

The LE method is founded on a simple model of delay [4] through a single MOS logic gate. The model 

describes delays caused by the capacitive load that the logic gate drives and by the topology of the logic 

gate. Clearly, as the load increases, the delay increases, but delay also depends on the logic function of the 

gate. Inverters, the simplest logic gates, drive loads best and are often used as amplifiers to drive large 

capacitances. Logic gates that compute other functions require more transistors, some of which are 
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connected in series, making them poorer than inverters at driving current. Thus a NAND gate has more delay 

than an inverter with similar transistor sizes that drives the same load. The method of logical effort 

quantifies these effects to simplify delay analysis for individual logic gates and multistage logic networks. 

As a first step, delay is expressed in terms of a basic delay unit τ which is the delay of an inverter driving an 

identical inverter with no parasitic capacitance. The unit-less number associated with this is known as the 

normalized delay. The absolute delay is then simply defined as the product of the normalized delay of the 

gate d and τ: 

𝑑𝑎𝑏𝑠 = 𝑑 ×  𝜏 

The delay incurred by a logic gate is comprised of two components, a fixed part called the parasitic delay p 

and a part that is proportional to the load on the gate’s output, called the effort delay or stage effort f. The 

total delay, measured in units of τ, is the sum of the effort and parasitic delays: 

d  = f + p 

The effort delay depends on the load and on properties of the logic gate driving the load. We introduce two 

related terms for these effects: the logical effort g captures properties of the logic gate, while the electrical 

effort h characterizes the load. The effort delay of the logic gate is the product of these two factors: 

 

     𝑓 = 𝑔 × ℎ 

The logical effort g captures the effect of the logic gate’s topology on its ability to produc e 

output current. It is independent of the size of the transistors in the circuit. The electrical 

effort h describes how the electrical environment of the logic gate affects performance and 

how the size of the transistors in the gate determines its load-driving capability. The electrical 

effort is defined by 

ℎ =
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
 

where 𝐶𝑜𝑢𝑡 is the capacitance that loads the output of the logic gate and 𝐶𝑖𝑛 is the capacitance presented 

by the input terminal of the logic gate. Electrical effort is also called fanout by many CMOS designers. 
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Combining the last two equations, we obtain the basic equation that models the delay through a single 

logic gate, in units of 𝜏: 

     𝑑 = 𝑔 × ℎ + 𝑝  
 

This equation shows that logical effort g and electrical effort h both contribute to delay in the same way. 

This formulation separates 𝜏,  ,  ℎ, and 𝑝 , the four contributions to delay. The process parameter 𝜏 

represents the speed of the basic transistors. The parasitic delay p expresses the intrinsic delay of the gate 

due to its own internal capacitance, which is largely independent of the size of the transistors in the logic 

gate. The electrical effort, ℎ, combines the effects of external load, which establishes 𝐶𝑜𝑢𝑡, with the sizes 

of the transistors in the logic gate, which establish 𝐶𝑖𝑛. The logical effort 𝑔 expresses the effects of circuit 

topology on the delay free of considerations of loading or transistor size. Logical effort is useful because it 

depends only on circuit topology. 

 

Table 2 - Logical effort for inputs of static CMOS gates, assuming γ=2. γ is the ratio of an inverter's pull-up 

transistor width to pull-down transistor width. 

 

Logical effort values for a few CMOS logic gates are shown in Table 2. Logical effort is defined so that an 

inverter has a logical effort of 1. An inverter driving an exact copy of itself experiences an electrical effort 

of 1. Therefore, an inverter driving an exact copy of itself will have an effort delay of 1, according to third 

equation.  

The logical effort of a logic gate tells how much worse it is at producing output current than is an inverter, 

given that each of its inputs may present only the same input capacitance as the inverter.  

 

 

 

3 In a typical 600-nm process τ is about 50 ps. For a 250-nm process, τ is about 20 ps. In modern 45 nm processes the delay is 

approximately 4 to 5 ps.   
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Reduced output current means slower operation, and thus the logical effort number for a logic gate tells 

how much more slowly it will drive a load than would an inverter. Equivalently, logical effort is how much 

more input capacitance a gate must present in order to deliver the same output current as an inverter.  

 

It is interesting but not surprising to note from Table 2 that more complex logic functions have larger 

logical effort. Moreover, the logical effort of most logic gates grows with the number of inputs to the gate. 

Larger or more complex logic gates will thus exhibit greater delay. These properties make it worthwhile to 

contrast different choices of logical structure. 

 

2.1.3 Multistage Logic Networks 

 

The method of logical effort reveals the best number of stages in a multistage network and how to obtain 

the least overall delay by balancing the delay among the stages. The notions of logical and electrical effort 

generalize easily from individual gates to multistage paths. 

 

The logical effort along a path compounds by multiplying the logical efforts of all the logic gates along the 

path. We use the uppercase symbol G to denote the path logical effort, so that it is distinguished from g, 

the logical effort of a single gate in the path. The subscript 𝑖 indexes the logic stages along the path. 

𝐺=Π𝑔𝑖  

 

𝐺 =  ∏ 𝑔𝑖 

The electrical effort along a path through a network is simply the ratio of the capacitance that loads the 

last logic gate in the path to the input capacitance of the first gate in the path. We use an uppercase 

symbol H to indicate the electrical effort along a path. 𝐻= 𝐶𝑜𝑢𝑡/𝐶𝑖𝑛  

𝐻 =  
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
 

In this case, 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 refer to the input and output capacitances of the path as a whole, as may be 

inferred from context. We need to introduce a new kind of effort, named branching effort, to account for 

fanout within a network. So far we have treated fanout as a form of electrical effort: when a logic gate 

drives several loads, we sum their capacitances, to obtain an electrical effort. Treating fanout as a form of 

electrical effort is easy when the fanout occurs at the final output of a network. This method is less 
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suitable when the fanout occurs within a logic network because we know that the electrical effort for the 

network depends only on the ratio of its output capacitance to its input capacitance. When fanout occurs 

within a logic network, some of the available drive current is directed along the path we are analyzing, and 

some is directed off that path. We define the branching effort b at the output of a logic gate to be 

𝑏 =  
𝐶𝑜𝑛−𝑝𝑎𝑡ℎ + 𝐶𝑜𝑓𝑓−𝑝𝑎𝑡ℎ

𝐶𝑜𝑛−𝑝𝑎𝑡ℎ
=

𝐶𝑡𝑜𝑡𝑎𝑙

𝐶𝑢𝑠𝑒𝑓𝑢𝑙
 

where 𝐶𝑜𝑛−𝑝𝑎𝑡ℎ is the load capacitance along the path we are analyzing and 𝐶𝑜𝑓𝑓−𝑝𝑎𝑡ℎ is the 

capacitance of connections that lead off the path. Note that if the path does not branch, the branching 

effort is one. The branching effort along an entire path B is the product of the branching effort at each of 

the stages along the path. 

 

𝐵 =  ∏ 𝑏𝑖 

Armed with definitions of logical, electrical, and branching effort along a path, we can define the path 

effort 𝐹. Again, we use an uppercase symbol to distinguish the path effort from the stage effort 𝑓 

associated with a single logic stage. The equation that defines path effort is reminiscent of the third 

equation, which defines the effort for a single logic gate: 

𝐹 = 𝐺 × 𝐵 × 𝐻 

Note that the path branching and electrical efforts are related to the electrical effort of each stage: 

𝐵 × 𝐻 =  
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
∏ 𝑏𝑖 = ∏ ℎ𝑖 

Although it is not a direct measure of delay along the path, the path effort holds the key to minimizing the 

delay. Observe that the path effort depends only on the circuit topology and loading and not upon the 

sizes of the transistors used in logic gates embedded within the network. Moreover, the effort is 

unchanged if inverters are added to or removed from the path, because the logical effort of an inverter is 

one. The path effort is related to the minimum achievable delay along the path, and permits us to 

calculate that delay easily. Only a little more work yields the best number of stages and the proper 

transistor sizes to realize the minimum delay.  

The path delay 𝐷 is the sum of the delays of each of the stages of logic in the path. As in the expression for 

delay in a single stage , we shall distinguish the path effort delay 𝐷𝐹 and the path parasitic delay 𝑃: 

 

𝐷 =  ∑ 𝑑𝑖 = 𝐷𝐹 +  𝑃 
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The path effort delay is simply: 

𝐷𝐹 = ∑ 𝑔𝑖 × ℎ𝑖 

and the path parasitic delay is: 

𝑃 = ∑ 𝑝𝑖  

Optimizing the design of an N-stage logic network proceeds from a very simple result: The path delay is 

least when each stage in the path bears the same stage effort. This minimum delay is achieved when the 

stage effort is: 

𝑓 = 𝑔𝑖 × ℎ𝑖 = 𝐹
1

𝑁⁄  

We use a hat over a symbol to indicate an expression that achieves minimum delay.  

Combining these equations, we obtain the principal result of the method of logical effort, which is an 

expression for the minimum delay achievable along a path: 

 

�̂� = 𝑁 × 𝐹
1

𝑁⁄ + 𝑃 

To equalize the effort borne by each stage on a path, and therefore achieve the minimum delay along the 

path, we must choose appropriate transistor sizes for each stage of logic along the path. Equation 15 

shows that each logic stage should be designed with electrical effort 

ℎ�̂� =
𝐹

1
𝑁⁄

𝑔𝑖
 

From this relationship, we can determine the transistor sizes of gates along a path. Start at the end of the 

path and work backward, applying the capacitance transformation: 

 

𝐶𝑖𝑛𝑖
=

𝑔𝑖 × 𝐶𝑜𝑢𝑡𝑖

𝑓
 

This determines the input capacitance of each gate, which can then be distributed appropriately among 

the transistors connected to the input. 
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2.2 Unified Logical Effort 

 

2.2.1 Introduction 

 

The LE method benefits from an uncomplicated and intuitive delay model and closed-form optimization 

conditions. The optimization rule of logical effort, however, only addresses logic gates and does not 

consider on-chip wires. As VLSI circuits continue to scale, the contribution of wires to the delay increases 

and cannot be neglected. This characteristic occurs not only with respect to long wires connecting 

separate modules but also to the interconnect within logic modules where the delays introduced by the 

wires connecting closely coupled gates approach and can exceed the gate delays. The useful LE rule that 

the path delay is minimum when the effort of each stage is equal breaks down, because interconnect has 

fixed capacitances which do not correlate with the characteristics of the gates (see Figure 7). This behavior 

is described by the authors of the LE method as “one of the most dissatisfying limitations of logical effort”. 

 

Figure 7 – In the case of gates with wires, the rule of equal effort breaks down because of fixed 

wire parameters.  

 

 

2.2.2 Delay Model of Logic Gates with Wires 

 

The logical effort model is modified to include the interconnect delay [7]. This change is achieved by 

extending the gate logical effort delay by the wire delay, establishing a Unified Logical Effort (ULE) model. 

Thanks to the Elmore delay model the delay of a circuit comprising logic gates and wires (see Figure 8) can 

be easily calculated 
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Figure 8 - Cascaded logic gates with resistive-capacitive interconnect. 

The total combined delay expression is: 

 

 

𝐷𝑖 = 𝑅𝑖 × (𝐶𝑝𝑖 + 𝐶𝑤𝑖 + 𝐶𝑖+1) + 𝑅𝑤𝑖 × (0.5 × 𝐶𝑤𝑖 + 𝐶𝑖+1)  

 

where 𝑅𝑖 is the effective output resistance of the gate 𝑖 , 𝐶𝑝𝑖 is the parasitic output capacitance of gate 𝑖 , 

𝐶𝑤𝑖  and 𝑅𝑤𝑖  are, respectively, the wire capacitance and resistance of segment 𝑖 , and 𝐶𝑖+1 is the input 

capacitance of gate 𝑖+1 .  

This expression can be rewritten similar with the  function of the delay of a minimum sized inverter 𝜏 

=𝑅0𝐶0, where R0 and C0 are the output resistance and input capacitance of a minimum sized inverter: 

 

𝐷𝑖 = 𝜏 × 𝑑𝑖 = 𝜏 × [
𝑅𝑖

𝑅0
×

𝐶𝑤𝑖 + 𝐶𝑖+1 + 𝐶𝑝𝑖

𝐶0
+

𝑅𝑤𝑖

𝑅𝑜 × 𝐶0
× (0.5 × 𝐶𝑤𝑖 + 𝐶𝑖+1)] 

 

The delay 𝑑𝑖 normalized with respect to a minimum sized inverter delay 𝜏 is defined by: 

 

𝑑𝑖 = 𝑔𝑖 × (ℎ𝑖 +
𝐶𝑤𝑖

𝐶𝑖
) +

𝑅𝑤𝑖 × (0.5 × 𝐶𝑤𝑖 + 𝐶𝑖+1)

𝜏
+ 𝑝𝑖 

Where, 

 

𝑔𝑖=(𝑅𝑖×𝐶𝑖)/(𝑅0× 𝐶0)  is the logical effort ,  
ℎ𝑖=𝐶𝑖+1/𝐶𝑖    is the electrical effort,  
𝑝𝑖=(𝑅𝑖×𝐶𝑝𝑖)/(𝑅0× 𝐶0)  is the parasitic delay. 
 
The capacitive interconnect effort ℎ𝑤 and the resistive interconnect effort 𝑝𝑤 are, respectively:   
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ℎ𝑤𝑖 =
𝐶𝑤𝑖

𝐶𝑖
 

 

𝑝𝑤𝑖 =
𝑅𝑤𝑖 × (0.5 × 𝐶𝑤𝑖 + 𝐶𝑖+1)

𝜏
 

 

 

The wire influences the electrical effort of the logic gate with ℎ𝑤 and contributes more delay to the total 

delay with 𝑝𝑤. The final expression of the ULE delay of a single logic gate considering the interconnect is: 

 

𝑑=𝑔×(ℎ+ℎ𝑤)+(𝑝+𝑝𝑤) 

 

For an N stage logic path with interconnect the ULE delay is the sum of each delay of the single stage: 

𝑑 = ∑ 𝑔𝑖 × (ℎ𝑖 + ℎ𝑤𝑖) + (𝑝𝑖 + 𝑝𝑤𝑖)

𝑁

𝑖=1

 

 

Note that in the case of short wires, the resistance 𝑅𝑤 of the wire may be neglected, eliminating 𝑝𝑤 and 

leaving only the capacitive interconnect effort ℎ𝑤 in the expression. When the wire impedance along the 

logic path is negligible, the extended delay expression reduces to the standard LE delay equation. 

 

2.2.3 Delay Minimization using Unified Logical Effort 

 

As a first step in the path delay optimization process, consider a two-stage portion of a logic path with 

wires (as shown in Figure 4). The condition for optimal gate sizing is determined by equating the 

derivative of the delay with respect to the gate size to zero. As proven , the resulting optimum condition 

is: 
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(𝑅𝑖 + 𝑅𝑤𝑖) × 𝐶𝑖+1 = 𝑅𝑖+1 × (𝐶𝑖+2 + 𝐶𝑤𝑖+1
) 

 

 

The meaning of the optimum size of gate 𝑖+1 is achieved when the delay component (𝑹𝒊 + 𝑹𝒘𝒊) × 𝑪𝒊+𝟏 

due to the gate capacitance is equal to the delay component 𝑹𝒊+𝟏 × (𝑪𝒊+𝟐 + 𝑪𝒘𝒊+𝟏
) due to the effective 

resistance of the gate. A schematic model describing the related delay components is shown in Figure 9. 

 

 

After solving the differential equations that occur in the optimization problem , we get the expression for 

the optimum input capacitance of each gate based on the ULE model: 

 

 

 

𝐶𝑖𝑜𝑝𝑡
=

√

𝑔𝑖

𝑔𝑖−1 +
𝑅𝑤𝑖−1

× 𝐶𝑖−1

𝑅0 × 𝐶0

× 𝐶𝑖−1 × (𝐶𝑖+1 + 𝐶𝑤𝑖
) 

 

= √𝐶𝑖−1 × 𝐶𝑖+1 × √(1 +
𝐶𝑤𝑖

𝐶𝑖+1
) ×

√

𝑔𝑖

𝑔𝑖−1 +
𝑅𝑤𝑖−1

× 𝐶𝑖−1

𝑅0 × 𝐶0

 

 

 

The first part of the resulting expression is similar to the condition described by the LE model for a path of 

identical gates. The second component expresses the influence of the interconnect capacitance. The last 

component is related to the resistance of the wire and the difference among the individual logical efforts 

(types of logic gates) along the path. This expression illustrates the quadratic relationship between the 

sizes of the neighboring gates. The gate size based on ULE can be determined by solving a set of N 

polynomial expressions for the N gates along the path. 
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Figure 9 : Delay components in characterizing ULE for long wires. 

 

Later in this thesis we will show how this expression can be further extended in order to include fixed side 

branches and multiple fan-outs. In order to simplify the solution, a relaxation method has been used. The 

technique is based on an iterative calculation along the path while applying the optimum conditions. Each 

capacitance along the path is iteratively replaced by the capacitance determined from applying the 

optimum expression of the capacitance to two neighboring logic gates. 

 

 

 

 

 

2.2.4 ULE Optimization in Paths with Branches 

 

As we mentioned earlier, the expression of the optimum input capacitance of each gate based on the 

ULE model can be further extended to address the general design case where the logic path may 

include branches or gates with multiple fanout. For instance, consider the circuit shown in Figure 6. 

The circuit shows the general structure containing a side branch with RC interconnect and/or a fanout 
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load with arbitrary capacitance where 𝑅𝑏 and 𝐶𝑏 are the resistance and capacitance of branch wires, 

respectively, and 𝐶𝑓 is the fanout load capacitance.  

 

The ULE expression of the total delay of stages 𝑖 and 𝑖 + 1 containing branches and fanout can be 

written as: 

 

𝑑 = 𝑔𝑖 × [ℎ𝑖 + ℎ𝑤𝑖 +
𝐶𝑏1𝑖

+ 𝐶𝑓1𝑖

𝐶𝑖
+

𝐶𝑏2𝑖
+ 𝐶𝑓2𝑖

𝐶𝑖
] +

𝑅𝑤𝑖

𝜏
× [0.5 × 𝐶𝑤𝑖

+ ℎ𝑖 × 𝐶𝑖 + 𝐶𝑏2𝑖
+ 𝐶𝑓2𝑖

] + 𝑔𝑖+1

× [
𝐶𝑤𝑖+1

+ 𝐶𝑖+2 + 𝐶𝑏1𝑖+1
+ 𝐶𝑓1𝑖+1

+ 𝐶𝑏2𝑖+1
+ 𝐶𝑓2𝑖+1

ℎ𝑖 × 𝐶𝑖
] +

𝑅𝑤𝑖+1

𝜏
× [0.5 × 𝐶𝑤𝑖+1

+ 𝐶𝑖+2

+ 𝐶𝑏2𝑖+1
+ 𝐶𝑓2𝑖+1

] 

 

   

where 𝜏 = 𝑅0 × 𝐶0 is the minimum inverter delay. Following the same procedure as in the case with no 

branches and fan-outs, we equate the derivative of the delay with respect to the gate size to zero, and the 

optimum expression for the input capacitance of each gate can be written as: 

 

𝐶𝑖 = √
𝑔𝑖 × 𝐶𝑖−1 × (𝐶𝑤𝑖

+ 𝐶𝑖+1 + 𝐶𝑏1𝑖
+ 𝐶𝑓1𝑖

+ 𝐶𝑏2𝑖
+ 𝐶𝑓2𝑖

)

𝑔𝑖−1 +
𝑅𝑤𝑖−1

× 𝐶𝑖−1

𝜏

= √𝐶𝑖−1 × 𝐶𝑖+1 × √1 +
𝐶𝑤𝑖

𝐶𝑖+1
+

(𝐶𝑏1𝑖
+ 𝐶𝑓1𝑖

+ 𝐶𝑏2𝑖
+ 𝐶𝑓2𝑖

)

𝐶𝑖+1
×

√

𝑔𝑖

𝑔𝑖−1 +
𝑅𝑤𝑖−1

× 𝐶𝑖−1

𝜏

 

 

This ULE optimum expression can be generalized for any combination of side branch wires and fanout 

gates by determining the total effective capacitance of the fanout branches for each stage of the path: 

 

𝐶𝐵𝐹 = ∑ 𝐶𝑏𝑛
+ ∑ 𝐶𝑓𝑚

𝑚

1

𝑛

1
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where 𝑛 and 𝑚 are the number of branch wires and fanout gates in a path, respectively. Taking into 

consideration the last equation, the general ULE optimum expression for the input capacitance is 

determined : 

 

 

𝐶𝑖 = √𝐶𝑖−1 × 𝐶𝑖+1 × √1 +
𝐶𝑤𝑖

𝐶𝑖+1
+

𝐶𝐵𝐹𝑖

𝐶𝑖+1
×

√

𝑔𝑖

𝑔𝑖−1 +
𝑅𝑤𝑖−1

× 𝐶𝑖−1

𝜏

 

 

 

 

Figure 10 : A logic path segment including RC interconnect and two branches. 

 

 

 

In the case of a more complex parasitic tree (see Figure 11), the resistance of a wire, between two 

adjacent cells, is defined as the sum of all the resistances in the path between the adjacent cells, 

 

𝑅𝑤𝑖 = ∑ 𝑅𝑖→𝑖+1 
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Figure 11 - 𝑅𝑤𝑖 = 𝑅1 + 𝑅2 + 𝑅3. 

 

 

 

In order to simplify the solution, a relaxation method is proposed in [8]. The technique is based on an 

iterative calculation along the path while applying the optimum conditions. Each capacitance along the 

path is iteratively replaced by the capacitance determined from applying the optimum expressions to two 

neighboring logic gates. The technique consists of the following steps: 

 

 

 

a) (Initialization) Set the gate capacitances along the path to arbitrary values (only the first and last values 

are given).  

b) (Iteration) Replace each capacitance by the value determined from applying the optimum expressions 

on two neighboring logic gates  
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c) (Stop check) If any of the new values differ by more than a given precision from the previous value, 

reiterate step b  

 

 

 

The application of the algorithm generally produces the optimal size, converging to 5% accuracy after 

three iterations. The gates in the last few stages of the path are the first to converge, since the accuracy 

increases while propagating along the path from the leaf to the root of the path. Consequently, fewer 

calculations are performed in each successive iteration. 

 

 

2.2.5 Conclusion 

 

Delay minimization in logic paths with wires is an important issue in the high complexity IC design process. 

The interconnect is a dominant factor in performance-driven circuits and must be explicitly considered 

throughout the design process. The characteristics of the wires are not correlated with those of the gates, 

thereby not permitting the use of the standard logical effort model. In fact, gate sizing in the presence of 

interconnect does not correspond to equal effort of all of the stages along a path. The ULE method is 

proposed for delay evaluation and minimization of logic paths with general gates and RC wires. The ULE 

method provides conditions to achieve minimum delay. Optimal gate sizing in logic paths with wires is 

achieved when the delay component due to the gate capacitance is equal to the delay component due to 

the effective resistance of the gate. The ULE method converges to the standard Logical Effort when wire 

resistance and capacitance are negligible. Gate sizing determined by the proposed ULE method makes ULE 

suitable for both manual calculations and integration into existing EDA tools. 

 

The following chapter introduce the input files that needed for the resizing tools in order to perform the 

implementation of the static timing analysis and resizing methods.  
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Chapter 3 

 

3.1 Input Files 

 

The Verilog file specifies the top level hierarchy of the design. For this thesis, we will be using a small set 

of keywords with the Verilog language. Our Verilog parser supports the set of keywords found within the 

simple.v file (reproduced below for clarity). It also supports comments that start with ‘//’. The expected 

syntax is: 

 

 

module <circuit name> ( 

<input 1>, 

..., 

<input n>, 

<output 1>, 

... 

<output m> ); 

input <input 1>; 

... 

input <input n>; 

output <output 1>; 

... 

output <output m>; 

 

// begin wire definitions 

wire <wire 1> ; 
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//  end  wire definitions 

// begin cell definitions 

<cell type> <cell instance name> ( .<pin name> (<net name) ); 

//  end  cell definitions 

 

endmodule 

 

 

 

The expected structure of the Verilog file is to start with a module declaration, defining the interface with 

of the module with name <circuit name>. The inputs and output pins are explicitly declared; the internal 

wires are optionally declared with the keyword wire. For each cell definition, every <cell type> (.<pin 

name>) should be a specified cell type (pin) in the library file and every <cell instance name> and <net 

name> should be found in the design specification. Each field is considered a string. The following 

example is from c17.v; its corresponding implementation is shown in Figure 12 . 

 

 

 

01. module c17 ( 

02.         N1, N2, N3, N6, N7, 

03.         N22, N23 

04.          ); 

05. 

06.   // Start PIs 

07.  input Ν1, Ν2, Ν3, Ν6, Ν7; 

08. 

09.  // Start Pos 
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10.  output N22, N23; 

11. 

12.  // Start wires 

13.  wire Ν0, Ν4, Ν5, Ν8, Ν9, Ν12, Ν10, Ν11, Ν16, Ν19; 

14. 

15.  // Start cells 

16          ΙΝV_Χ2 Ι_5 ( .Α(Ν12), .ΖΝ(Ν23) );  

17.         AND2_X2 NAND2_6 ( .A1(N16), .A2(N19), .ZN(N12) ); 

18.         ΙΝV_Χ2 Ι_4 ( .Α(Ν9), .ΖΝ(Ν22) ); 

19.         AND2_X2 NAND2_5 ( .A1(N10), .A2(N16), .ZN(N9) ); 

20.         ΙΝV_Χ2 Ι_3 ( .Α(Ν8), .ΖΝ(Ν19) ); 

21.         AND2_X2 NAND2_4 ( .A1(N11), .A2(N7), .ZN(N8) ); 

22.         ΙΝV_Χ2 Ι_2 ( .Α(Ν5), .ΖΝ(Ν16) ); 

23.  AND2_X2 NAND2_3 ( .A1(N2), .A2(N11), .ZN(N5) ); 

24.  ΙΝV_Χ2 Ι_1 ( .Α(Ν4), .ΖΝ(Ν11) ); 

25.  AND2_X2 NAND2_2 ( .A1(N3), .A2(N6), .ZN(N4) ); 

26.  ΙΝV_Χ2 Ι_0 ( .Α(Ν0), .ΖΝ(Ν10) ); 

27.  AND2_X2 NAND2_1 ( .A1(N1), .A2(N3), .ZN(N0) ); 

28. 

29.  endmodule 
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Lines 01 and 29 define the start and end of the specified design with the keywords module and 

endmodule. Lines 01-04 specify the input and output connection names of the module (note that the 

direction is not specified here). Line 07 specifies the primary inputs (PIs) of the module with the keyword 

input. These names must match the ones started with module (lines 01-04). Line 10 specifies the primary 

output (PO) of the module with the keyword output. This name must match the one stated with the 

module (lines 01-04). Line 13 specifies the connections or 22 nets within the module with the keyword 

wire. These connections specify both the external PIs and POs as well as the internal connections between 

gates (explained further after lines 16-27). Lines 17-27 specify the cells used in the design, as well as how 

the cells are connected. For example, on line 16, an INV_X2-type cell instance of I_5 is specified, it’s A pin 

is fed by primary input N12, and its ZN pin feeds the primary output N23. On line 27, N1 feeds the A1 pin 

of the AND2_X2-type cell instance NAND2_1. Line 29 terminates the module definition. 

 

 

 

Figure 12 - Implementation of c17.v.   
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01. module dff_d(clk, q, d);  
02.  input clk, d;  
03.  output q;  
04.  wire clk, d;  
05.  wire q;  
06.  DFF_X1 q_reg(.CK (clk), .D (d), .Q (q), .QN ());  
07. endmodule  
08.  
09. module dff_d_4(clk, q, d);  
10.  input clk, d;  
11.  output q;  
12.  wire clk, d;  
13.  wire ; 
14. DFF_X1 q_reg(.CK (clk), .D (d), .Q (q), .QN ())q; 
15. endmodule  
16. 

17. module dff_d_3(clk, q, d);  
18.  input clk, d;  
19. output q;  
20.  wire clk, d;  
21.  wire q;  
22.  DFF_X1 q_reg(.CK(clk), .D (d), .Q (q), .QN ());  
23. endmodule  
24.  
25. module s27(CK, G0, G1, G17, G2, G3);  
26.  input CK, G0, G1, G2, G3;  
27.  output G17;  
28.  
29.  wire CK, G0, G1, G2, G3;  
30.  wire G17;  
31.  wire G5, G6, G7, G10, G11, G13, n_0, n_1;  
32.  wire n_2;  
33.  
34.  dff_d DFF_0(.d (G10), .clk (CK), .q (G5));  
35.  dff_d_4 DFF_1(CK, G6, G11);  
36.  dff_d_3 DFF_2(CK, G7, G13);  
37.  
38.  INV_X32 p1579A(.A (G11), .ZN (G17));  
39.  NOR2_X1 p5988A(.A1 (G11), .A2 (n_0), .ZN (G10));  
40.  NOR2_X1 p2151D(.A1 (n_2), .A2 (G5), .ZN (G11));  
41.  AOI22_X1 p2104A(.A1 (n_1), .A2 (G3), .B1 (n_0), .B2 (G6), .ZN (n_2));  
42.  NOR2_X1 p6096A(.A1 (n_1), .A2 (G2), .ZN (G13));  
43.  NOR2_X1 p2096A(.A1 (G1), .A2 (G7), .ZN (n_1));  
44.  INV_X1 Fp2096A(.A (G0), .ZN (n_0));  
45.endmodule
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Line 34 instantiates the module dff_d, and the arguments are passed in explicit format, where in 

line 35 the module dff_d_4 is instantiated in implicit format.  

The keyword assign can also be handled along the constants 1’b0, 1’b1, where the later can be 

used as wires. 

assign <wire_name_a> = <wire_name_b> 

Designs containing busses only in the top level module can also be partial handled (bus 

operations are not supported). 

 

 

 

3.2 Input Standard Parasitic Exchange Format (.spef) 

 

This file contains the parasitics of a set of nets as a resistive-capacitive (RC) network. If a (e.g. gate-

to-gate) connection does not have parasitics, then that connection has 0 delay and the output slew 

is equivalent to the input slew. Our SPEF parser supports the format specified in s imple.spef (see 

Appendix A) (portions reproduced for clarity). It also supports comments beginning with ‘//’. The 

format is: 

/ /  begin header 

*SPEF <string> 

* DESIGN <string> 

* DATE <string> 

*VENDOR <string> 

*PROGRAM <string> 

*VERSION <string> 

* DESIGN_FLOW <string> 

* DIVIDER <string> 
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* DELIMITER <string> 

* BUS_DELIMITER <string> 

*T_UNIT <int> <string> 

*C_UNIT <int> <string> 

*R_UNIT <int> <string> 

*L_UNIT <int> <string>   

// end header 

 

 

// begin nets 

// … 

// end nets 

 

 

The header describes the general set of units for the file. In this thesis, the DELIMITER field will be 

set to ‘:’ , the C_UNIT field will be set to one picoFarad (1 PF), and the R_UNIT field will be set  to one 

Ohm (1 OHM). All other fields in the header will not be used. Below shows an example header. 

 

1. *SPEF "IEEE 1481-1998" 

2. *DESIGN "c17" 

3. *DATE "Thu Sep 25 17:47:29 2014" 

4. *VENDOR "Cadence Design Systems, Inc." 

5. *PROGRAM "Encounter" 
6. *VERSION "13.13-s017_1" 

7. *DESIGN_FLOW "PIN_CAP NONE" "NAME_SCOPE LOCAL" 

8. *DIVIDER / 

9. *DELIMITER : 

10. *BUS_DELIMITER [] 

11. *T_UNIT 1 NS 

12. *C_UNIT 1 PF 

13. *R_UNIT 1 OHM 
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14. *L_UNIT 1 HENRY 

 

 

Line 01 specifies the SPEF format date. Line 02 specifies the design name. Line 03 specifies the 

date at which the file was generated. Line 04 specifies the consumer of this file. Line 05 specifies 

the tool used to generate the file. Line 06 specifies the version of this file. Line 07 specifies the 

format in which this file is used. Line 08 specifies the hierarchy divider character. Line 09 

specifies the pin divider character. Line 10 specifies the bus delimiter characters. Line 11 specifies 

the time units for the design. Line 12 specifies the capacitance units for the design. Line  13 

specifies the resistance units for the design. Line 14 specifies the inducta nce units for the design. 

To reduce file size, SPEF allows long names to be mapped (optional) to shorter numbers preceded 

by a *. This mapping is defined in the name map section. For example:  

1. / /  MMMC spef file for corner 'typ' 

2.  

3. *NAME_MAP 

4. * 1  N1 

5. *2 N2 

6. *3 N3 

7. *4 N6 

8. *5 N7 

9. *6 N22 

10. *7 N23 

11. *8 N0 

12. *9 N4 

13. *10 N5 

14. *11  N8 

15. *12 N9 

16. *13 N12 

17. *14 N10 

18. *15 N11 

19. *16 N16 

20. *17 N19 

21. *18 I_5 

22. *19 NAND2_6 
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23. *20 I_4 

24. *21 NAND2_5 

25. *22 I_3 

26. *23 NAND2_4 

27. *24 I_2 

28. *25 NAND2_3 

29. *26 I_1 

30. *27 NAND2_2 

31. *28 I_0 
32. *29 NAND2_1 

Later in the file, N1 can be referred to by its name or by *1. Name mapping in SPEF is not 

required. Also, mapped and non-mapped names can appear in the same file. Typically, short 

names such as a pin named A will not be mapped as mapping would not reduce file size. One can 

write a script that will map the numbers back into names. This will make SPEF easier to read, but  

greatly increase file size. 

After the name map section, each net’s parasitics will be defined by the following format:  

 

*D_NET <net name> <total net capacitance> 

* CO N N 

<pin type> <pin name> <pin direction> 

/ /  more pin definitions 

*CAP 

<integer label> <pin or node name> <pin or node capacitance>  

/ /  more capacitor definitions 

* R ES 

<integer label> <pin or node name> <pin or node name> <pin or node resistance> 

/ /  more resistor definitions 

*END 
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Each net’s definition begins with the keyword *D NET followed by its name and the sum of all 

the capacitors of the net. The <net name> will be unique for each net. The <total net 

capacitance> will be a decimal value, and is the sum of all the capacitors defined in the *CAP 

section. The *CONN keyword describes the set of pins attached to the net. The <pin type> field 

will either be of type port (*P), which is a primary input or output pin, or internal (*I), which is 

an internal pin in the design. In this section, only design pins will be referenced – no 

intermediate SPEF-specific node will be listed. The <pin name> field will be either a primary 

input, a primary output, have the syntax <cell name>:<cell pin name>, e.g., NAND2_1:A1, or have 

the syntax <net name>:<int>, e.g., N1:1. The <pin direction> field refers to the pin directional 

type (not the net), and will be either input (I) or output (O).  

The *CAP keyword describes the set of grounded capacitors that are in the net. Namely, each 

capacitor will be connected to a specified node and GND. For each capacitor, the <integer label>  

is a unique integer that identifies the capacitor for this net. The <pin or node name> is a string, 

and can be a primary input, primary output, a design pin with the syntax <cell name>:<cell pin 

name>, or an intermediate SPEF-specific node with the syntax <net name>:<integer>. The <pin  
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or node capacitance> will be a decimal value specifying the capacitance 

attached to the node. The actual capacitance will be this value multiplied by 

the C_UNIT value specified in the header. For example, if C_UNIT is 1 PF and 

<pin or node capacitance> is 1.2, the capacitance is 1.2 pF. 

The *RES keyword describes the set of resistors in the net. Each resistor 

connects two pins or nodes (whose format is identical to the *CAP field), 

and similarly has a unique <integer label>. The <pin or node resistance> is a 

decimal value; the actual resistance value is this field multiplied by the 

R_UNIT value specified in the header. For example, if R_UNIT is 1 OHM and 

<pin or node resistance> is 3.4, then the resistance is 3.4 Ω. The *END 

keyword indicates the end of the net parasitics. An example net definition 

is shown below: 

 

01. *D_NET *15 0.000332396 

02. * CO N N 

03. *I *23:A1 I *C 4 3 *L 0.00166 *D AND2_X2 

04. *I *26:ZN O *C 4 3 *L 0 *D INV_X2 

05. *I *25:A2 I *C 4 6 *L 0.00173 *D AND2_X2 

06. *CAP 

07. 1 * 15:0 0.000117155 

08. 2 *15:1 0.000134821 

09. 3 * 15:2 1.83593e-05 

10. 4 *15:3 3.06835e-05 

11. 5 *23:A1 9.17966e-06 

12. 6 *26:ZN 9.17966e-06 

13. 7 * 15:6 1.30172e-05 

14. * R ES 

15. 1 *15:6 *25:A2 4 

16. 2 *15:3 *15:6 1 

17. 3 *15:2 *26:ZN 1.03143 

18. 4 *15:2 *23:A1 1.03143 

19. 5 *15:1 *15:3 1.35714 

20. 6 *15:0 *15:2 4 

21. 7 *15:0 *15:1 9 

22. *END 
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Let *R_UNIT and *C_UNIT be the same values as in the header above, i.e., *R_UNIT is 1 OHM 

and *C_UNIT is 1 PF. Line 01 defines the net *15 (or N11 before name mapping) with a total 

lumped capacitance of 0.000332396 pF. Lines 02-05 define the connectivity of the net *15. Line 

03 specifies the internal design pin *23:A1 is an input type. Line 04 specifies the internal design 

pin *26:ZN in an output type. Line 05 specifies the internal design pin *25:A2 is an input type. 

Lines 06-13 define the set of capacitors for the net *15. Line 07 specifies capacitor 1 between 

the SPEF-specific intermediate node *15:0 and GND with a value 0.000117155 pF. Line 08 

specifies capacitor 2 between the SPEF-specific intermediate node *15:1 and GND with a value 

0.000134821 pF. Line 09 specifies capacitor 3 between the SPEF-specific intermediate node *15:2 

and GND with a value 1.83593e-05 pF. Line 10 specifies capacitor 4 between the SPEF-specific 

intermediate node *15:3 and GND with a value 3.06835e-05 pF. Line 11 specifies capacitor 5 

between the SPEF-specific intermediate node *23:A1 and GND with a value 9.17966e-06 pF. Line 

12 specifies capacitor 6 between the SPEF-specific intermediate node *26:ZN and GND with a 

value 9.17966e-06 pF. Line 13 specifies capacitor 7 between the SPEF-specific intermediate node 

*15:6 and GND with a value 1.30172e-05 pF. Lines 14-21 defines the set of resistors of net *15. 

Line 15 specifies resistor 1 between the SPEF-specific intermediate nodes *15:6 and *25:A2 with 

a value of 4 Ω. Line 15 specifies resistor 1 between the SPEF-specific intermediate nodes *15:6 

and *25:A2 with a value of 4 Ω. Line 16 specifies resistor 2 between the SPEF-specific 

intermediate nodes *15:3 and *15:6 with a value of 1 Ω. Line 17 specifies resistor 3 between the 

SPEF-specific intermediate nodes *15:2 and *26:ZN with a value of 1.03143 Ω. Line 18 specifies 

resistor 4 between the SPEF-specific intermediate nodes *15:2 and *23:A1 with a value of 

1.03143 Ω. Line 19 specifies resistor 5 between the SPEF-specific intermediate nodes *15:1 and 

*15:3 with a value of 4 Ω. Line 20 specifies resistor 6 between the SPEF-specific intermediate 

nodes *15:0 and *15:2 with a value of 4 Ω. Line 21 specifies resistor 7 between the SPEF-specific 

intermediate nodes *15:0 and *15:1 with a value of 9 Ω. Line 22 ends the net definition. Figure 10 

illustrates the parasitics described above for net *15. 
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Figure 13 - Parasitics of net *15 (N11). The R (C) labels refer to resistors (capacitors).  

 

3.3 Input Liberty (.lib) 

 

This file contains the set of all cells or gates that are available to the design. All cell instances 

found in the .v file will have corresponding cell type that is located in this file. Gate -level delay 

and output slew calculations will use the relevant t iming information found for the appropriate 

cell type. For this thesis, we will be using the NanGate 45nm Open Cell Library and the Open 

Source Liberty parser. The parser supports the full logical (.lib) set of constructs including 

Composite Current Source (CCS) Modeling Technology, and noise, plus syntax, and common 

semantic checks. 

The relevant portions of the .lib file are explained below. The library consists of (i) a header, (ii) a  

set of lookup-table definitions, and (iii) a set of cell definitions, where a cell will be a 

combinational element (e.g., NAND2) or a sequential element (e.g., flip -flop DFF). While there 

are many keywords available, this thesis will only use the following set. For readability, each 

syntax set is discussed in separate subsections below. 
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HEADER. The header sets the general information about the library, and is defined in the 

NanGate 45nm Open Cell Library with the following format:  

01. /* Documentation Attributes */  
02. date     : "Thu 10 Feb 2011, 18:11:20";  
03. revision    : "revision 1.0";  
04. comment     : "Copyright (c) 2004-2011 Nangate Inc. All Rights Reserved.";  
05.  
06. /* General Attributes */  
07. technology     (cmos);  
08. delay_model    : table_lookup;  
09. in_place_swap_mode   : match_footprint;  
10. library_features    report_delay_calculation,report_power_calculation);  
11.  
12. /* Units Attributes */  
13. time_unit     : "1ns";  
14. leakage_power_unit   : "1nW";  
15. voltage_unit    : "1V";  
16. current_unit    : "1mA";  
17. pulling_resistance_unit   : "1kohm";  
18. capacitive_load_unit   (1,ff);  
19.  
20. /* Operation Conditions */  
21. nom_process    : 1.00;  

22. nom_temperature    : 25.00; 

23. nom_voltage    : 1.10;  
24.  
25. voltage_map (VDD,1.10);  
26. voltage_map (VSS,0.00);  
27.  
28. define(process_corner, operating_conditions, string);  
29. operating_conditions (typical) {  
30. process_corner    : "TypTyp";  
31. process     : 1.00;  
32. voltage     : 1.10;  
33. temperature    : 25.00;  
34. tree_type     : balanced_tree;  
35. }  

36. default_operating_conditions  : typical; 
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Line 08 specifies the delay model used. Lines 13-18 specify the units in which the values in the 

.lib file are referenced. Lines 21-23 specify the nominal process, temperature, and voltage at 

which the library is characterized at. Lines 29-35 specify a set of operating conditions for the 

“typical” profile. Line 24 sets the default operating conditions of the library. ll other lines are 

being ignored. 

LOOKUP TABLES. Most of the cell libraries include table models to specify the delays and timing 

checks for various timing arcs of the cell. The table models are referred to as NLDM (Non -Linear 

Delay Model) and are used for delay, output slew, or other timing checks. The table models 

capture the delay through the cell for various combinations of input transition time at the cell 

input pin and total output capacitance at the cell output. The lookup table templates are defined  

as follows: 

lu_table_template (<table label>) {  

variable_1 : <variable name> ; 

index_1 (<string of data points for variable_1>); 

variable_2 : <variable name> ; 

index_2 (<string of data points for variable_2>);  

... 

} 

The <table label > and <variable name> fields are considered to be strings, and may or may not be 

enclosed in “‘’ and ‘”’. The string of data points will be a set of integer or double values indicating the 

index values of the table. The variable and index definition lines can be in any order, e.g., all variable 

definitions can come before all index definitions. Each <table label> can be referenced in the cell 

definitions. An example table template looks like: 

1. lu_table_template (delay_template_3x3) { 

2. variable_1 : input_net_transition; 

3. variable_2 : total_output_net_capacitance;  

4. index_1 ("1000,1001,1002"); 

5. index_2 ("1000,1001,1002"); 
6. } 
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Line 01 and 06 define the table template with label “delay_template_3x3”. Line 02 specifies that  

variable_1 is the input transition time. Line 03 specifies that variable_2 is the output capacitance.  

The table values are specified like a nested loop with the first index_1  (line 04) being the outer 

(or least varying) variable and the second index_2 (line 05) being the inner (or most varying) 

variable and so on. There are three entries for each variable and thus it corresponds to a 3 -by-3 

table. In most cases, the entries for the table are also formatted like a table and the first index 

(index_1) can then be treated as a row index and the second index (index_2) becomes 

equivalent to the column index. The index values (for example 1000) are dummy placeholders 

which are overridden by the actual index values in the cell_fall and cell_rise delay tables. An 

alternate way of specifying the index values is to specify the index values in the template 

definition and to not specify them in the cell_rise and cell_fall tables. Such a temp late would look 

like this: 

1. lu_table_template(delay_template_3x3) { 

2. variable_1 : input_net_transition; 

3. va ria ble_2 : total_output_net_capacitance;  

4. index_1 ("0.1, 0.3, 0.7"); 

5. index_2 ("0.16, 0.35, 1.43"); 
6. } 

Based upon the delay tables, an input fall transition time of 0.3ns and an output load of 0.16pf 

will correspond to the rise delay of the inverter of 0.1018ns. Since a falling transition at the input  

results in the inverter output rise, the table lookup fo r the rise delay involves a falling 

transition at the inverter input. This form of representing delays in a table as a function of two 

variables, transition time and capacitance, is called the non-linear delay model (NLDM), since 

non-linear variations of delay with input transition time and load capacitance are expressed in 

such tables. The table models can also be 3-dimensional - an example is a flip-flop with 

complementary outputs, Q and QN. The NLDM models are used not only for the delay but also 

for the transition time at the output of a cell which is characterized by the input transition time 

and the output load. Thus, there are separate two-dimensional tables for computing the output 

rise and fall transition times of a cell.  

CELL DEFINITIONS. A cell specifies a gate that could be used as part of a design, e.g., 

combinational 

gate NAND2 and flip-flop DFF. Its relevant specified syntax in the .lib format is:  
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cell (<cell type>) { 

pin(<pin name>) { 

direction : <direction> ; 

capacitance : <double> ; 

max_capacitance : <double> ; 

min_capacitance : <double> ; timing() {  

related_pin : <pin name> ; 

/* combinational or sequential definitions * /  

} 

/ *  other timing() definitions * /  

} 

/ *  other pin definitions * /  

} 

 

In a cell, multiple pins can be defined, e.g.,  a standard NAND2 will have 3 pins – two inputs and 

one output. For each pin, the direction field indicates the type of pin: (i) input, (ii) output, or (iii)  

internal. The capacitance, max capacitance, and min capacitance fields specify the respective pin  

capacitance, maximum and minimum expected pin loads. A timing() definition creates a timing 

arc (directed pin-to-pin) inside a cell. The specific syntax is different for a combinational and 

sequential connection (discussed below). Combinational timing arcs . Combinational arcs 

propagate delay and output slew from a source pin to a sink pin. They are found in common 

combinational logic gates, e.g., NAND2 or as a clock-trigger segment in flip-flops. A propagate 

segment’s timing() syntax is:  

timing() { 

related_pin : <pin name> ; 

timing_sense : <timing sense> ; 
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timing_type : <timing type> ; 

cell_<transition> (<table label>) {  

<table instance> / *  omitted for space * /  

} 

<transition>_transition(<table label>) { 

<table instance> / *  omitted for space * /  } 

/* other cell transition table definitions * /  

} 

The related pin is the source of the segment, and the pin (from the pin definition) is the sink of 

the segment. The timing sense field specifies the transition mode: (i) positive unate, where the 

source and sink transitions are the same (e.g., rise-to-rise), (ii) negative unate, where the source 

and sink transitions are opposite (e.g., rise-to-fall), and (iii) non unate, where the source 

transition has no relation to the sink transition. The timing  type field specifies if the arc is 

combinational, where the unateness is be defined as either positive unate or negative unate, or 

<timing type edge> edge, where the unateness is defined as non unate and <timing type edge>  is 

either rising or falling, and refers to the source. The cell <transition> table refers to delay; the  

<transition> transition table refers to output slew. In both tables, the <transition> refers to the 

sink of the arc, and is either rise or fall. Note that in the case of (i) positive u nate and (ii) negative 

unate, the direction of the source-to-sink transition is implicitly defined by knowing the 

unateness and the <transition> transition. For instance, if the arc is negative unate and there 

exists a table with fall transition, the arc described is a rise-to-fall transition. In the case of non 

unate, both <timing sense> and <transition> transition must be used, where the former 

describes the source edge, and the latter describes the sink edge. For example, if <timing sense>  

is rising edge and there exists a table with fall transition, the arc described is a rise -to-fall 

transition. The <table label> will be a string that corresponds either (i) to a previously -declared 

lookup-table template or (ii) be the keyword scalar, indicating that the  value stored is a single 

element (i.e., a 1x1 table). A sample gate is shown below 

 

1. cell(OR2_X2) { 

2.  pin ("o") { 

3.  direction : output ; 

4.  capacitance : 2.00 ; 

5.  timing() { 

6.  related_pin : "a"; 

7.  timing_sense : positive_u nate; 
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8.  timing_type : combinational; 

9.  cell_fall (scalar) { 

10.  values ("40.00"); 

11.  } 

12.  fall_transition (delay_slew_load_6x1) { 

13.  index_1 ("1.050, 2.000, 5.000, 5.500, 9.000, 20.00");  

14. index_2 ("1.0000"); 

15.  values ( \ 

16.  "1.050000", \ 

17.  "2.000000", \ 

18.  "5.000000", \ 

19.  "5.500000", \ 

20.  "9.000000", \ 

21.  "20.000000" \ 

22.  ); 

23.  } 

24.  } 

25.     } 

26. } 

 

Lines 01-26 define the cell OR2 X2. Lines 02-25 define the pin o inside cell OR X2. Line 03 

specifies that o is an output pin. Line 04 specifies that the pin capacitance of the cell (for both 

rise and fall) is 2fF. Lines 05-24 specify a timing arc between source pin a (line 06) and sink pin o.  

Line 07 specifies that this timing arc is of type positive unate, which propagates the incoming 

transition to the output transition (i.e., rise-to-rise and fall-to-fall). Lines 09-11 specify that the 

arc contains a fall transition at the output with a fixed (scalar) delay value of 40ps. Due to the cell  

fall definition and the positive unate type, this arc is implicitly a fall -to-fall transition. Lines 12-23 

specify the output slew table using lookup-table template delay slew load 6x1, with lines 13-22 

matching the corresponding table syntax.  
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3.4 Output Files (.v .scf) 

 

 

The produced files comprise of a verilog file, as described in a previous section, containing the 

new cell names, after the resizing has taken place, and a file containing the scale factors of the 

new cells. The output Verilog file will be flatten, which means that if the input Verilog files 

contained a hierarchy of modules, the output file will contain only the top module which wi ll 

include all the instantiated cells and nets of the hierarchical modules.  

The .scf file defines the scale of the new cells compared to the cell sizes contained in the original  

design, and the format is defined as,  

<instance_name_1> <scale_factor_1> 

<instance_name_2>  <scale_factor_2>  

… 

<instance_name_n>  <scale_factor_n> 
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Chapter 4 

4.1 OpenTimer : Timing Analysis Tool 

 

4.1.1 Introduction 

 

OpenTimer is a high-performance academic timing analysis tool developed by Tsung-Wei 

Huang and Prof. Martin D. F. Wong in the University of Illinois at Urbana-Champaign (UIUC), 

IL, USA. Evolving from its previous generation "UI-Timer", OpenTimer works on industry 

formats (.v, .spef, .lib, .sdc, .lef, .def), and supports important features such as block-based 

analysis, path-based analysis, cppr, incremental timing, and multi-threading. OpenTimer is 

extremely fast by its effective data structure and algorithm which can efficiently and 

accurately analyze large-scale designs. To further facilitate seamless integration between 

timing and other electronic design automation (EDA) applications such as timing-driven 

placement and routing, OpenTimer provides user-friendly application programming inteface 

(API) for interactive analysis. Most importantly, OpenTimer is open-source [9].  

Experimental results on industry benchmarks released from TAU 2015 timing analysis 

contest have demonstrated remarkable results achieved by OpenTimer, especially in its 

order-of-magnitude speedup over existing timers. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 Figure 14 : Program flowchart of OpenTimer. 
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In deep submicron era, timing-driven operations are imperative for the success of 

optimization flows. Optimization transforms change the design and therefore have the 

potential to significantly affect timing information. The timer must reflect such changes and 

update timing information incrementally and accurately in order to ensure slack integrity as 

well as reasonable turnaround time and performance. 

However, such process requires extremely high complexity especially when path-based 

analysis is configured. A high-quality incremental timer capable of path-based analysis is 

definitely advantageous in speeding up the timing closure.  

 

 

Figure 15. Performance improvement of incremental timing to full timing 

 

 

The significance of incremental timing is demonstrated in Figure 1. It is observed that the 

runtime improvement keeps growing as the number of optimization transforms increases. 

One obvious reason is that once the critical paths in a design have been reported, the 

optimization tool would optimize the logic (e.g., gate sizing, buffer insertion) so as to 

overcome the timing violations. This subtle change can affect up to the majority of a circuit, 

whereas in reality, depending on the trace of critical paths, the timing update may only 

involve a small portion of the circuit. Since an optimization tool can perform millions of logic 

transformations, it is important that the timing profile is kept up-to-date in an incremental 

fashion. Otherwise, optimization tools cannot support fast turnaround for timing-specific 

improvement, which dramatically degrades the productivity.  
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Three main key features of OpenTimer are:  

• Parallel framework. OpenTimer applies a pipeline task scheduler as the central engine. 

Critical tasks such as timing propagation and endpoint slack calculation are scheduled into 

the pipeline so as to overlap their runtimes.  

• Incremental capability. OpenTimer precisely and minimally captures the features that are 

key to incremental timing. With lazy evaluation, we are able to keep computation as 

minimum as necessary.  

• Path-based analysis. OpenTimer represents the path implicitly using efficient and compact 

data structure, yielding a significant saving in both search space and search time for CPPR.  

 

 

Figure 16. Parallel forward timing propagation using pipeline 

 

The effectiveness and efficiency of our timer have been evaluated on a set of industry 

benchmarks released from TAU 2015 CAD contest. Compared to the top performers in TAU 

2015 CAD contest, OpenTimer confers a high degree of differential in nearly all aspects. The 

source code of OpenTimer has been released to the public domain for promoting further 

research [10]. 
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4.1.2 Purpose 

The purpose of this thesis is to extend the Open Timer timing analysis tool in order to get 

critical paths with positive slacks so we can perform the Unified Logical Effort (ULE) and 

resizing method. For this purpose it is necessary to parse the minimum scale factor 

(min_scf.scf) for every cell, to set a unit inverter and calculate inverter’s values in order to 

proceed to Logical Effort’s parameters extraction for every cell of our .lib file. 

 

4.1.3 Find critical paths with positive slacks 

 

First we declare the (Path*) object critical_path : 

 

Then we iterate the endpoint vector in order to get the nodes of the path. We perform 

backward tracing by checking the unateness of the node that we point every time in order to 

get the correct previous one, until we reach a primary input: 
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4.1.4  Minimum scale factor file parser 
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4.1.5 Setting the unit inverter 

 

In order to proceed, we have to set our unit inverter, which is the inverter “INV_X1”, in 

order to calculate it’s values :  
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Setting the unit inverter which is defined from the .conf file: 
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4.1.6 Unit inverter’s values 

 

Next step is to calculate inverter’s parasitic delay (rise/fall), logical effort (rise/fall) the .C0 

and .tau value. For this function we need the timing look up tables (rise/fall) in order to 

perform the inter-extra polation. 
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In order to calculate the parasitic delay values (rise/fall) and logical effort values (rise/fall) 

we need to call the NLDM_to_LDM_conv function, the Non-Linear-Delay-Model to Linear 

Delay Model conversion. a stands for the parasitic delay, b stands for the logical effort delay 

(ps). 
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4.1.7  Logical Effort values extraction 

 

For the purpose of this function we need to iterate every cell and call the LExtraction : 
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4.2 Conclusion 

 

We have checked and compared our results and values from OpenTimer with the ones that 

resulting from the CCSOpt , a continuous gate-level resizing tool that produce valid and 

credible values for parasitc delay and logical effort. 

For example both tools produce the following values for the input pins of the gate 

NOR4_Y20 : 

 

G_fall : 21.2632   (logical effort) 

G_rise: 21.2632 

P_fall: 0.997727  (parasitic delay) 

P_rise: 0.997727   
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That comparison is verified for all the cells of our .lib file, so we end up that we have settled 

all the  necessary tools and parameters in order to implement the resizing method for the 

critical paths with positive slacks. 
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