

Integrated distributed computing between the cloud and mobile
devices

Ολοκληρωμένοσ κατανεμημένοσ υπολογιςμόσ ανάμεςα ςτο νέφοσ
και τισ κινητέσ ςυςκευέσ

Department of Electrical and Computer Engineering

UNIVERSITY OF THESSALY

 FOR GRADUATION OF BACHELOR OF SCIENCE

Diploma Thesis by

Eleftheriadis Alexandros

Supervised by:

Spyros Lalis, Associate Professor

Manolis Vavalis, Professor

 Greece, Volos 2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/132824963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

3

Acknowledgements
I would like to thank my supervisor Dr. Spyros Lalis about his confidence in my abilities as well

as his patient guidance, and Dr. Manolis Vavalis for his constructive comments on my thesis.

I would also like to thank all my teachers and colleagues for their valuable knowledge and

experiences they have given me during my studies.

Finally, I thank all the members of my family for their unconditional support over the years, my

friends, and especially Apostolis, my roommate for five years, for the beautiful moments we

spent together as students.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

4

Περίληψη
Σκοπόσ αυτισ τθσ εργαςίασ είναι θ υποςτιριξθ κατανεμθμζνων εφαρμογϊν μεταξφ του

υπολογιςτικοφ νζφουσ και πολλϊν κινθτϊν ςυςκευϊν. Αυτό επιτυγχάνεται μζςα από ζνα

μεςοςτρωματικό λογιςμικό που εκτελείται τόςο ςτο νζφοσ όςο και πάνω ςτθν κινθτι ςυςκευι,

και παρζχει ζνα ενιαίο περιβάλλον εκτζλεςθσ κακϊσ και υπθρεςίεσ επικοινωνίασ υψθλοφ

επιπζδου για τθν αποςτολι και παραλαβι/χειριςμό αςφγχρονων γεγονότων τθσ εφαρμογισ,

αντιμετωπίηοντασ με διαφανι τρόπο τθν διακοπτόμενθ επικοινωνία και αποςυνδεδεμζνθ

λειτουργία ςε πιο χαμθλό επίπεδο, λόγω μετακίνθςθσ. Η υλοποίθςθ βαςίηεται ςτισ τεχνολογίεσ

Node.js και WebSockets, ενϊ θ εφαρμογι γράφεται ςε Javascipt χρθςιμοποιϊντασ μια απλι

διαςφνδεςθ προγραμματιςμοφ.

Λζξεισ κλειδιά

Κατανεμθμζνοσ υπολογιςμόσ; Υπολογιςτικό Νζφοσ; Node.js; WebSockets; Socket.io; Apache

Cordova; Javascript; Android

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

5

Abstract
The objective of this work is to support distributed applications between the Cloud and several

mobile devices. This is achieved through middleware that runs on both the Cloud and the

mobile device, and which provides a uniform runtime environment as well as high-level

communication services for sending and receiving/handling asynchronous application-level

events, dealing in a transparent way with the intermittent connectivity and disconnected

operation at the lower level, due to mobility. The implementation is based on Node.js and

WebSockets technology, while the application is written in Javascript using a simple API.

Keywords

Distributed computing; Cloud; Node.js; WebSockets; Socket.io; Apache Cordova; Javascript;

Android

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

6

Contents
Acknowledgements ... 3

Περίλθψθ .. 4

Abstract ... 5

List of figures ... 7

List of table .. 8

Chapter 1 Introduction .. 9

Chapter 2 Related work ... 11

Chapter 3 System Overview ... 13

Charter 4 Communication & runtime support .. 15

4.1 Overview of the protocol stack ... 15

4.2 Server-side API .. 16

4.3 Mobile-side API ... 18

4.4 Server-side and mobile-side runtime .. 19

4.5 Proof-of-concept prototype .. 20

Chapter 5 Application example ... 21

Chapter 6 Conclusions ... 24

References .. 25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

7

List of figures

Figure 1: Application structure …………………………………………………………………………………………… 13

Figure 2: High-level interaction between the server and mobile parts of the application ……. 14

Figure 3: Layers of the protocol stack …………………………………………………………………………………. 15

Figure 4: Server-side and mobile-side runtime environment ………………………………………………. 19

Figure 5: Display of the data/positions collected from different smartphones on a map …….. 21

Figure 6: GUI of the main application ………………………………………………………………………………….. 22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

8

List of table

Table 1: Primitives of the server-side API ………………………………………………………………………………………… 17

Table 2: Primitives of the mobile-side API ……………………………………………………………………………………….. 18

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

9

Chapter 1 Introduction

Due to their ubiquitous presence, their powerful computing, sensing and wireless

communication capabilities, smartphones enable new distributed computing scenarios, where

they can play the role of mobile sense-and-compute nodes. For instance, smartphones can be

used to perform trivially parallel computations, or to monitor different environmental

conditions such as air pollution.

At the same time, the cloud is gradually becoming the next desktop computer, offering

unprecedented flexibility and capacity as a function of the required processing and connectivity

requirements of the application. Moreover, the cloud allows one to collect, maintain and

update huge amounts of data, without being limited by the storage constraints of privately

owned computing infrastructure.

These two trends, pave the way to a new class/type of distributed computing applications,

where some parts of the application run on the cloud and some other on smartphones. In fact,

the number of smartphones can be very large. As an example, a crowdsensing application could

be composed of one part that is deployed on hundreds or thousands of smartphones to collect

data based on their onboard sensors as well as input that is provided by user, and another part

which runs in the cloud and collects this data for further processing and visualization.

However, even though it is already possible to develop such applications, this development is

still far from trivial, as one has to deal with a variety of issues. Firstly, smartphones feature

completely different operating systems, such as Apple iOS or Google Android, come with quite

different programming languages and environments, e.g., Objective-C vs. Java. Secondly, the

system-level APIs of these platforms are again different than the ones offered by the more

conventional operating systems used for running cloud-based applications. Thirdly, the

connectivity between the smartphones and the cloud is typically sporadic and intermittent due

to the mobility of the smartphone, but also provider-specific policies on connection

management. Finally, smartphones have energy constraints since they are running on batteries,

which requires special care in terms of the amount of processing and communication that is to

be performed. As a result, very good know-how on completely different programming

environments together with a considerable amount of effort is required in order to write a

distributed application that can span across all these platforms.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

10

The objective of this thesis is to make a first step in simplifying the development of such

applications. This is achieved through middleware that runs on both the Cloud and the mobile

device, and which provides a uniform and cross-platform runtime environment as well as high-

level communication services for sending and receiving/handling asynchronous application-

level events, dealing in a transparent way with the intermittent connectivity and disconnected

operation at the lower level, due to mobility. The implementation is based on Node.js and

WebSockets technology, while the application is written in Javascript using a simple API.

The rest of this paper is structured as follows. Chapter 2 discusses related work. Chapter 3 gives

an overview of the system architecture of the distributed applications we wish to support.

Chapter 4 describes the communication support provided by our middleware, and the

respective APIs offered to the application developer. Chapter 5 describes the server-side and

mobile-side runtime environments. Chapter 6 shows an application example that runs on top

of our middleware. Finally, Chapter 7 concludes the thesis and identifies directions for future

work.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

11

Chapter 2 Related work

MagnetOS [1] is a distributed operating system which simplifies the programming of ad hoc

networks and extends system lifetime. MagnetOS presents an alternative programming model

where a thin distributed operating system layer makes the entire network appear to

applications as an extended Java virtual machine. MagnetOS applications are comprised of a set

of mobile event (static) handlers, specified by programmers. The MagnetOS runtime is in

charge of application partitioning and dynamic migration, to distribute the event handlers to

nodes in the ad hoc network.

Coign [2] is a distributed partitioning system that significantly eases the development of

distributed applications. Coign is restricted to applications built with components conforming to

Microsoft’s Component Object Model (COM), which the system software automatically

partitions and distributes the components of application to nodes within a local-area network.

Jessica [3] is a middleware that support parallel execution of multithreaded Java applications in

a cluster of computers. Jessica combines the parallel execution capability of clusters and the

simple thread model of Java for concurrent programming. It is based on preemptive thread

migration, which allows a thread to freely move between machines during its execution. Each

computer can only access data that are stored in its local memory by following a shared-

memory model, non-local data are obtained as messages being sent from remote nodes.

cJVM [4] is a cluster-enabled implementation of a Java Virtual Machine. It distributes an

application’s threads and objects across the nodes of the cluster, creating the illusion that the

cluster is a single computing resource. Building a Java Virtual Machine upon a cluster-enabled

infrastructure, cJVM enables exploiting optimizations based upon Java’s semantics which

includes caching individual fields and also, migrating a Java thread between nodes to improve

locality. As a consequence, cJVM completely hides the cluster from the application trying to

manage the application’s threads and objects to achieve a performance benefit for a large class

of real applications.

MagnetOS and Coign reduce the application execution delay due to network communication.

They both treat the network as a system of autonomous computers and transparently

partitions applications into nodes within the network to reduce energy consumption and to

increase system longevity. Jessica and cJVM make the cluster appear as a single computer to

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

12

applications, where threads are automatically redistributed across the cluster for achieving the

maximal possible parallelism. Also, both target rather tightly-coupled parallel computing

applications.

Our work targets distributed applications that span the cloud and mobile computing/sensing

devices (e.g., smartphones), aiming to relieve the developer from having to deal with different

system platforms and low-level communication issues. The middleware environment we have

developed for this purpose is built on top of Node.js, and provides a high-level API over the

WebSockets protocol, hiding intermittent communication and disconnected operation issues

from the developer.

While our middleware offers a uniform runtime environment, unlike MagnetOS and Coign, it

does not perform any automated decomposition, partitioning and placement of the

applications on different devices/nodes. In our work, the programmer partitions the application

into the server-side part that will run on the cloud and the mobile-side part that will run on the

smartphones, and explicitly declares the events and event handlers that drive the respective

interaction. Also, contrary to Jessica and cJVM, we do not target traditional parallel computing

applications, but focus on distributed applications that work according to 1<->N scheme, and

which can involve a very large number of mobile devices that communicate with the cloud over

unstable wireless links.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

13

Chapter 3 System Overview

Our work focuses on distributed applications that span the Cloud and powerful wireless mobile

devices (like smartphones), and which follow a 1<->N distribution scheme, as illustrated in

Figure 1, where one part of the application resides in the cloud and the other part resides on a

potentially large number of devices.

Figure 1: Application structure.

The interaction between these two application parts follows a client-server pattern, with the

part that resides in the cloud acting as a server, and the part that resides on the mobile devices

acting as a client. Henceforth we will refer to these parts as the “server” and respectively the

“mobile” parts of the application. Typically, the mobile part performs some form of sensing and

light data pre-processing on the mobile device, while the server part collects the data produced

from all mobile parts and performs more heavyweight processing and visualization tasks.

It is important to stress that the server part does not necessarily know the number of mobile

parts that exist or that will attempt to interact with it. Not only can this number be very large,

but it can also vary dynamically during the application’s lifetime. For this reason, the interaction

between the server and the mobile part must be supported in a flexible way, also letting the

server part address all mobile parts as a whole, without having to deal with each and every one

of them independently (unless this is actually required/desired by the application).

. . .

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

14

To support such applications, we provide a uniform runtime environment for both the server

and the mobile part, and allow these two parts of the application to interact in an asynchronous

and event-oriented manner via a corresponding API, as shown in Figure 2.

Figure 2: High-level interaction between the server and mobile parts of the application.

At the level of the middleware, the interaction between the server and mobile parts is based on

three types of messages. Initially, the mobile part registers with the server part, via a

“RegisterMsg” message. Then, the two parts can issue application-level events to each other,

which are sent to the other side as part of an “EventMsg” message. Finally, the mobile part can

explicitly unregister itself from the server at any point in time, via an “UnregisterMsg” message.

The middleware transparently maintains the list of mobile parts that are registered with the

server part. It also automatically unregisters a mobile part that does not show any sign of

activity for a longer period of time. Furthermore, the middleware performs the event exchange

between the server and mobile part with tolerance to intermittent connectivity and

disconnections, buffering events locally until they are successfully sent to their destination, or

their lifetime expires. The timeouts for automatic unregistration and event garbage collection

on the server side, and the reconnection retry intervals and maximum number of attempts on

the mobile side, are specified by the application according to its requirements.

Given this support, the application programmer merely has to define the application-level
events and write the server and mobile code that should be invoked in order to handle them.
Everything else is done by the middleware behind the scenes.

 server part A
P

I

 mobile part

A
P

I

Runtime Runtime

RegisterMsg

EventMsg

EventMsg

UnregisterMsg

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

15

Charter 4 Communication & runtime support

4.1 Overview of the protocol stack
We have developed our communication support for the Node.js environment, which can be

used to run Javascript programs in a platform-neutral way. Our implementation is based on the

Socket.io library, an open source project distributed under the MIT license. Socket.io is written

in Javascript and provides a real-time transport service on top of the WebSocket protocol. The

resulting protocol stack is illustrated in Figure 3.

Figure 3: Layers of the protocol stack.

The WebSockets protocol provides a full-duplex communication channel over a single TCP

connection, which is kept open and is used to transport messages in both directions over a

longer period of time. To establish a WebSocket connection, the client sends a WebSocket

handshake request as a special type of HTTP request, which is interpreted by the server as an

Upgrade request in order to switch to the corresponding protocol mode. The ability of the

server to support the WebSockets protocol is verified via a special HTTP reply. Although

WebSockets was designed to be implemented in web servers and web browsers, it can be used

by any client or server application.

Socket.io is a Javascript implementation of the WebSockets protocol. It also provides more

features, such as broadcasting to multiple sockets, storing data associated with each client, and

asynchronous I/O. Another feature is the ability to establish private channels that can be used

for client-to-client communication.

TCP

Socket.io

Server-side API

TCP

WebSocket

Socket.io

Mobile-side API

WebSocket

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

16

Finally, on top of Sockets.io, our implementation provides the following services to the

application programmer:

 Abstraction of the underlying communication protocol.

 Support for open-ended application-specific event-driven programming.

 Event broadcasting to all registered mobile parts of the application.

 Event buffering and retransmission upon reconnection.

 Tolerance to disconnections and the intermittent connectivity.

In a nutshell, the developer defines the events for the interaction between the server and the

mobile part of the application, and provides the handlers for them in the form of callback

functions. The runtime flow of the program is then determined at runtime, depending on the

order of event arrivals, and the actions that are taken by the corresponding event handlers.

The middleware keeps an internal list of all application-level events types and handlers, which

have to be properly declared by the developer. When the application issues an event, the

middleware sends an “EventMsg” message to the other side together with the application-level

event type and payload. At the other end, the middleware intercepts “EventMsg” messages,

looks-up the list of application-level events for the event in question, and invokes the

corresponding handler. Data serialization and deserialization is performed by the middleware.

The next subsections discuss the concrete server-side and mobile-side APIs in more detail.

4.2 Server-side API
The server-side API provides the primitives for listening on a specific port for incoming

registration requests, sending events to one or more registered mobile parts of the application,

and receiving/handling events that were issued by them. The primitives are summarized in

Table 1.

Method createServer () creates and sets up a new server WebSocket, either on an HTTP server

or on a plain TCP port. It accepts one argument which is a HTTP server or a common port

number.

Method closeServer() closes the server socket. However, all application-level state remains

intact, in case the applications wish to resume operation at a later point in time. This method

does not have any parameters.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

17

Primitive Description

createServer(
 int port / HTTP (server) port
)

Create a new server which listens on an arbitrary port or an
HTTP server, for connection requests of the mobile part of
the application

closeServer() Close the server.

newEventListener(
 String event,
 Function handler
)

Define a new application event, and its handler for the server
part of the application.

sendEvent(
 String event,
 (Any) data,
 Array IDs,
 Boolean buffer,
 int lifetime
)

Send an event to one or more mobile parts of the
application.

sendEventToAll(
 String event,
 (Any) data,
 Boolean buffer,
 int lifetime
)

Send an event to all mobile parts of the application.

Table 1: Primitives of the server-side API

Method newEventListener() updates the internal list of application-level events types and

handlers. The first parameter is the name of event and the second parameter is the callback

function for it.

Method sendEvent() sends an application-level event to one or more specific mobile parts of

the application. It has five parameters. The first parameter is the name of event, which should

correspond to an event which can be handled at the other side. The second parameter is event

payload/data, which can be of any type – of course, the other side must be prepared to

properly receive/interpret it. The third parameter is an array with the identifiers of the mobile

parts to which the event should be sent. The fourth parameter indicates whether it is desirable

to issue the event towards mobile parts that are (still registered but) currently disconnected. If

so, the fifth parameter can be used to set the lifetime of the event in seconds; upon expiration

of its lifetime, an event is automatically collected by the middleware.

Method sendEventToAll() is similar to the one above, but sends the event to all registered

mobile parts of the application.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

18

4.3 Mobile-side API
The mobile-side API provides the primitives for connecting to the server-part of the application,

sending events to it, and receiving/handling events that were issued by it. The primitives are

summarized in Table 2.

Primitive Description

newSession(
 String url,
 Boolean persistent,
 int attempts,
 int interval
)

Establish new session with the server part of the application.

closeSession () Close the session to the server part of the application.

newEventListener(
 String event,
 Function handler
)

Define a new application event, and its handler for the
mobile part of the application.

sendEvent(
 String event,
 (Any) data,
 Boolean buffer,
 int lifetime
)

Send an event to the server part of the application.

setIdentifier(
 String id
)

Set the identifier for this mobile part of the application.

Table 2: Primitives of the mobile-side API

Method newSession() establishes a new session with the server. The first parameter is the URL

of server. The second parameter indicates whether an automatic re-connection is desirable in

case of a disconnection. If so, the third parameter specifies the number of re-connection

attempts, and the fourth parameter is the time in seconds that should elapse between two

attempts.

Method closeSession() terminates the session. However, all registered events and event

handlers remain valid, in case a new session is established at a later point in time.

Method newEventListener() works in the same way as in the server-side API. It updates the

internal list of application-level events types and handlers. The first parameter is the name of

event and the second parameter is the callback function for it.

Method sendEvent() works in a similar way as in the server-side API, but in this case there is no

need to specify the destination – the mobile part of the application always sends events to the

server part. The first parameter is the name of event, which should correspond to an event

which can be handled at the other side. The second parameter is event payload/data, which

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

19

can be of any type – of course, the other side must be prepared to properly receive/interpret it.

The third parameter indicates whether it is desirable to buffer the event in case the mobile part

is currently disconnected. If so, the fourth parameter can be used to set the lifetime of the

event in seconds; upon expiration of its lifetime, an event is automatically collected by the

middleware.

Finally, as the name suggests, setIdentifier() is used to set the identifier of the mobile part. The

application should do this before attempting the first session with the server part. On the

server side, this identifier is used to refer to individual mobile parts, if desired, e.g., so that the

server part can send events to a subset of the registered mobile parts via sendEvent().

4.4 Server-side and mobile-side runtime
The above communication support is provided on top of Node.js, a Javascript platform that is

designed to support scalable networking applications. Besides the inherent portability of the

Javascript language, Node.js actively targets server-side functionality by adopting an event-

driven architecture and supporting non-blocking communication, thereby enabling the creation

of data-intensive real-time applications that involve a large number of devices. We employ

Node.js for both the server and mobile part of the application, as illustrated in Figure 4.

Figure 4: Server-side and mobile-side runtime environment.

As a consequence, with the exception of the different APIs for the server and mobile part of the

application, the programmer sees a uniform runtime environment, and does not have to

become familiar with different languages, protocols and runtime systems for the cloud and the

mobile devices that will be used to run the application.

Node.js platform

Socket.io library

Server-side API

server_app.js

Node.js platform

Socket.io library

Mobile-side API

mobile_app.js

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

20

4.5 Proof-of-concept prototype
We have prepared a server-side runtime image for the Cloud using the Cloud9 Integrated

Development Environment (IDE). Cloud9 IDE provides a variety of pre-setup workspaces and

supports different programming languages, including Node.js and Javascript, and allows

developers to write and run code in the cloud in a straightforward way. To start the server part

of the application, one simply logs into our Cloud9 account, uploads the server-side Javascript

program, and runs it.

For the mobile side, we have prepared a runtime image for Android smartphones, which can be

used via the Apache Cordova framework. Cordova allows us to build native mobile applications

using standard web technologies such as HTML5, CSS3, and JavaScript, without being tied to

each mobile platform's native development language (such as Java or Objective-C) and runtime

environment. It also offers APIs for accessing native device functions, such as the camera or the

GPS.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

21

Chapter 5 Application example

To test our middleware, we have developed an application that collects user positions,

recorded via the GPS of the smartphone. The server and mobile parts of the applications are

written in Javascript, based on the API that was described previously. The server part, which

runs on Cloud9, also creates an HTTP server used (a) to push the mobile part of the application

on the user’s smartphone, and (b) to serve a page where the data that is collected from the

mobile parts is displayed on a map (as shown in Figure 5).

Figure 5: Display of the data/positions collected from different smartphones on a map.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

22

On the smartphone, we have implemented an application that downloads the mobile part from

the Cloud, and then starts running it locally (as shown in Figure 6). This makes it possible to

change the mobile side code of the application without having to update/re-install the main

application that runs on the smartphone, which was particularly useful for testing purposes.

Figure 6: GUI of the main application, prompting the user to download the mobile part, and GUI

of the mobile part before establishing the session with the server and during normal operation.

Indicative code snippets from the server part of the application, illustrating the usage of our

middleware, are given below:

var http = require('http'); // “HTTP” node.js module
var serverAPI = require("./serverAPI"); // The server-side API of the middleware
var sever = new serverAPI(); // Create a new server side instance

var httpSrv = http.createServer(function(request, response) { // HTTP server initialization
 …
}).listen(….);

var updatePos = function(position) { // Function for handling new position data
 … // draw position on the map
 } };

server.newEventListener('newPosition', updatePos); // 'newPosition' event and its handler

server.createServer (httpSrv); // server side part listens on the HTTP server

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

23

As can be seen, one of the events introduced by the application is the newPosition event, which

is handled via the updatePos() function in order to display the position received on the map.

The corresponding code snippets from the mobile part of the application are shown below:

$("#start").click(function() { // On click event, (Button) starts Geolocation functions
 var client = new mobileAPI(); // Create a new mobile side instance
 client.setIdentifier(ID); // Define client’s ID
 client.newSession('https://mynodejs-alexanderuser.c9.io', true,15,60); // start new session

 function showPosition(position) { // Receive new positions (Geolocation API)
 data : {clientID: ID, langitude : position.coords.latitude ,
 longitude : position.coords.longitude,
 time : position.timestamp }};
 client.sendEvent('newPosition', data, true, 60); // Send new coordinates to server side
 …. // print data on the phone’s screen
 }
 ….
} });

When the user presses the start button, a new mobile app instance is created, which is then

used to send position updates of the mobile device to the server via the newPosition event.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

24

Chapter 6 Conclusions

Our middleware greatly simplifies the development of distributed applications with a 1<->N

communication pattern, where one part of the application resides on the Cloud and the other

part of the application resides on a potentially very large number of mobile devices. The

programmer is provided with a uniform event-oriented programming model, for both parts of

the application, and can structure the application in a flexible, event-oriented way, without

having to deal with intermittent connectivity and disconnections.

Possible next steps could be the extension of our middleware to allow for mobile-to-mobile

interactions. It would also be interesting to provide language-level support, so that the entire

application is written as a single program which is then automatically split into the server and

mobile parts, with the latter being automatically instantiated on the smartphones that connect

to the server.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

25

References

[1] H. Liu, T. Roeder, K.Walsh, R. Barr, E. G. Sirer. Design and Implementation of a single
System Image Operating System for Ad Hoc Networks, 2005.

[2] G. C. Hunt and M. L. Scott. The Coign Automatic Distributed Partitioning System. In Proc. of

OSDI, New Orleans, LA, February 1999.

[3] M. J. M. Ma, C.-L.Wang, F. C. M. Lau, and Z. Xu. JESSICA: Java-Enabled Single System Image
 Computing Architecture. In Proc. of PDPTA, Las Vegas, NV, June 1999.

[4] Y. Aridor, M. Factor, and A. Teperman. cJVM: A Single System Image of a JVM on a Cluster.

In Proc. of ICPP,Wakamatsu, Japan, September 1999.

[5] Node.js platform https://en.wikipedia.org/wiki/Node.js.

[6] Socket.io library https://en.wikipedia.org/wiki/Socket.IO.

[7] Apache Cordova platform https://cordova.apache.org/.

[8] WebSockets protocol https://en.wikipedia.org/wiki/WebSocket.

[9] Cloud9 IDE https://c9.io/.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:34:58 EET - 137.108.70.7

https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Socket.IO
https://cordova.apache.org/
https://en.wikipedia.org/wiki/WebSocket
https://c9.io/

