
i

University of Thessaly

Department of Electrical and Computer

Engineering

Diploma thesis by Kyriakos Manti

“Design and Implementation of Scalable FFT Processor

Architecture for OFDM Based Communication Systems”

Supervisors:

Stamoulis Georgios

Moondanos Ioannis

Volos 2015

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

ii

 ACKNOWLEDGMENT

Upon completion of my thesis, I would like to thank my supervisor Dr. Stamoulis

Georgios and my co-supervisor Dr. Moondanos Ioannis for their trust and excellent cooperation

we have had during this project and my studies.

I would also like to thank Ph.D. candidate Antoniadis Charalampos for his assistance and

guidance on this work.

Finally, i would like to thank my family and friends for their unconditional support and

encouragement.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

iii

ABSTRACT

We live in an era of mobile data revolution. Users demand services and applications from

mobile communication systems that go far beyond mere voice and telephony, leading to a high

growth in the wireless electronic device market (i.e. smart-phones and laptops). The growth in

data use by mobile services and applications, such as audio and video streaming has become a

driving force for the development of the next generation of wireless standards. As a result, new

standards are being developed to provide the data rates and network capacity necessary to

support worldwide delivery of these types of rich multimedia application.

 The modern wireless standards are predominantly based on OFDM communication

systems, a method of encoding digital data on multiple carrier frequency. Various wireless

devices in recent times support multiple wireless standards and demand efficient transceivers. In

an OFDM based transceiver, the baseband hardware needs to meet stringent design parameters,

such as high speed, low power, low area, low cost, flexibility and scalability, to be efficient

across multiple standards. To design an efficient OFDM baseband hardware, it is necessary to

efficiently design its performance critical component. FFT computation is one of the most

computationally intensive operations which influence the performance of the system in an

OFDM system.

The baseband hardware requires a scalable FFT module which meets the performance

constraints required by multiple wireless standards. The scope of this thesis work was the

implementation of scalable FFT processor in which an existing scalable radix-2 N-point FFT

processor architecture was adopted. The FFT processor was designed and implemented in

Verilog, (an HDL) and functionality verified through RTL simulation according, to the

specifications of the proposed architecture.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

iv

CONTENTS

1. INTRODUCTION .. 1
2. FAST FOURIER TRANSFORM (FFT) ... 2
3. SCALABLE FFT PROCESSOR .. 4

3.1 BUTTERFLY UNIT ... 7

3.2 DATA MEMORY (RAM) .. 11
3.3 TWIDDLE FACTOR MEMORY (ROM) .. 14
3.4 INTERCONECT ... 17
3.5 ADDRESS GENERATION UNIT ... 20
3.6 CONTROL UNIT ... 25

3.7 AXI UNIT ... 28

4. DATAFLOW ALGORITHM ... 31
5. RESULTS ... 33

6. CONCLUSION ... 34

REFERENCE .. 35

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

v

LIST OF FIGURES

Figure 2.1: Radix-2 DIT FFT butterfly diagram ... 3

Figure 3.1: FFT processor core port details .. 4

Figure 3.2: Scalable FFT processor block diagram .. 5

Figure 3.3: FFT processor pipelined internal architecture .. 6

Figure 3.4: Single radix-2 DIT butterfly operation [4] ... 7

Figure 3.5: Pipelined butterfly unit ... 8

Figure 3.6: Butterfly unit port details ... 9

Figure 3.7: Butterfly unit waveform for 16-point FFT ... 10

Figure 3.8: Data format stored in memory.. 11

Figure 3.9: Order of input sample at the beginning and the order of final output of 16-

point FFT computation ... 12

Figure 3.10: RAM memory bank port details ... 13

Figure 3.11: (a) Memory set SetA waveforms (b) Memory set SetA waveforms 14

Figure 3.12: Order of twiddle factors stored in ROM .. 15

Figure 3.13: ROM memory port details .. 16

Figure 3.14: ROM memory waveforms .. 16

Figure 3.15: Interconnect internal architecture and the external interface 17

Figure 3.16: Interconnect port details ... 18

Figure 3.17: (a) InterconnectA waveforms (b) InterconnectB waveforms 20

Figure 3.18: Address generation unit internal logic.. 22

Figure 3.19: Address generation unit port details ... 23

Figure 3.20: Address generation unit waveforms ... 24

Figure 3.21: Timeline of nine pipeline stages. .. 24

Figure 3.22: Control unit state diagram .. 25

Figure 3.23: Control unit port details .. 26

Figure 3.24: Control unit waveforms .. 27

Figure 3.25: Axi unit port details .. 29

Figure 3.26: Axi unit waveforms (a) writing of the initial values to memory SetA and

twiddle factor memory (b) result sorting and reading operation 31

Figure 4.1: 16-point dataflow butterfly diagram for FFT processor architecture 33

LIST OF TABLES

Table 5.1: FFT Computation Time ... 33

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

1

1. INTRODUCTION

The growing demand in the multimedia services has increased the need for faster services

in the wireless communication systems but some of the high-bit rate services are limited due to

various performances constrains. Therefore, providing services over wireless channels is a

challenging task due to the fact that the mobile radio channels are more demanding compared to

wired channels.

A broadband multimedia wireless communication system requires fast transmission and

the designing of wireless transceivers to support high data rates with compact and inexpensive

hardware; this forms challenging task. The standards specify strict performance requirements in

terms of high speed, low power, low cost, flexibility and scalability. In order to avoid the

multipath-fading environment and to achieve high data rates at the same time, the Orthogonal

Frequency Division Multiplexing (OFDM) transmission scheme is being used.

OFDM is a parallel data transmission technique which minimizes the influence of

multipath fading through simpler equalization technique. This technique is being widely used in

the wireless communication systems since it predominates in terms of spectral utilization and

performance, compared with other techniques like recovering original signal from received

signal. One of the major performance critical modules of OFDM transceiver is Fast Fourier

Transform (FFT) computation, an efficient OFDM transceiver which is being characterized by

an efficient FFT module. In OFDM baseband hardware, FFT computation is one of the most

computationally intensive operations which influence the performance of the system. The

baseband hardware has to be capable enough to compute FFT within the time constraints

necessary to support multiple wireless standards and also be scalable. In addition, it has to meet

the criteria of high speed, low area and low power consumption.

 In order to support digital communication standards, integrated circuits are commonly

based on FFT of some length. Flexible length makes the design more usable for configurable

circuits. As the transform length increase, the amount of arithmetic involved becomes excessive.

This makes FFT one of today’s most important tools in digital signal processing, as it enables the

efficient transformation between time and frequency domain. Since, FFT is an integral

component of OFDM transceiver, research on FFT algorithm and its hardware implementation is

focused extensively.

The focus of related researches is to optimize the FFT algorithm and to find efficient

hardware solutions. Some of the researches work is based on specific FFT size, targeting

specific standard and optimized for specific design parameter. Fixed length FFT processors can

support only specific wireless standard and they will not be scalable across multiple standards,

but they are optimized in terms of power, area, high speed and low cost. On the other hand,

variable length FFT processors supporting multiple standards have to compromise in terms of

high speed, low power and low area. In search for a reasonable balance between scalability and

achieving performance constraints, a scalable FFT processor architecture was presented by D.

Revana et-al. in [1].

Scalable FFT processor architecture is based on radix-2 FFT algorithm, while the size of

FFT can only be a number to the power of two. The architecture is configurable at design time to

support a maximum FFT size and scalable at runtime while it can support any radix-2 FFT size

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

2

from 16 to maximum size. The proposed architecture was implemented as part of the thesis

work.

FFT operation is computationally intensive and is required to be performed within the

time constraints specified by various wireless standards. Therefore, FFT is studied in more detail

before its implementation in hardware.

2. FAST FOURIER TRANSFORM (FFT)

The FFT algorithm was presented by Cooley and Tukey in [2] with an aim to compute

Discrete Fourier Transform (DFT), with significant reduction in number of computations. DFT

computation of a time domain digital signal x(n) results in its conversion into a frequency

domain signal. Analysis and processing of a discrete signal in frequency domain is more efficient

than an analysis in time domain. In fact, reduced computations due to FFT algorithm helped to

decrease power consumption, area and increase require system throughput. Direct computation

of N-point DFT would require complex additions and complex multiplication

operations according to equation given by:

where

However, using FFT algorithm total number of additions and multiplications reduces to

 and

 respectively. An N-point FFT equation is given by:

where

FFT is computed in two different ways. Decimation In Time (DIT) and Decimation In

Frequency (DIF). DIT FFT algorithm is found to provide better signal-to-noise ratio in

comparison with DIF FFT for a finite word length according to Tran-Thon et al. in [3].

Based on the number of FFT inputs, the algorithm can be radix-2, radix-4, radix-8 or split

–radix type. In radix-2 algorithm FFT size is a power of two, radix-4 FFT size is a power of four

while radix-8 FFT size is a power of eight. Split-radix type involves mixing of any of the

specified radix combinations. A radix-2 DIT FFT algorithm can be depicted as a butterfly

diagram as shown in figure 2.1.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

3

Figure 2.1: Radix-2 DIT FFT butterfly diagram

The figure 2.1 describes 16-point FFT butterfly diagram where are 16-point

complex inputs and outputs respectively. Since, it is a DIT algorithm, the inputs are in bit

reversed order and outputs are in natural order. The butterfly computation with upper half

data samples is symmetric with the lower half till the last stage. In the last stage, butterfly

computation merges data samples from lower half and upper half. Such a property of DIT FFT is

the basis for address generation scheme and input data storage in data memory of FFT processor.

Considering an N-point FFT, there are number of stages and each stage contains

butterfly operations.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

4

3. SCALABLE FFT PROCESSOR

Scalable FFT processor architecture was adopted from [1] which was presented by D.

Revana et-al. in. It was designed to support N-point complex value radix-2 fixed point FFT

computation. The architecture of processor is configurable at design time for required maximum

FFT size Nmax. Once the processor is configured for Nmax, at runtime it supports any radix-2

FFT size from 16 to Nmax.

An external interface communicates with the FFT processor in order to specify the size of

FFT computation and then sends the data samples for computation. After FFT computation the

external interface receives the results. This is achieved by defining a configuration channel, a

write channel and a read channel respectively. Each channel produces suitable availability and

validly signals, depending on the state of processor. Figure 3.1 shows input/output ports of the

FFT processor.

Figure 3.1: FFT processor core port details

Ports marked with thin lines represent single bit pins while ports marked with thick lines

represent multi-bit bins. Ports named in capital letters are parameters which allow design time

configuration of modules. The port NMAX is the maximum FFT size Nmax, which is

configurable at design time. The processor has a clock port clk and an active high reset signal

async_rst which is synchronized and supplied to components of the processor via rst signal.

Furthermore it has an error signal error which becomes activated when the given runtime FFT

size and the number of given data sample do not match a prerequisite for the FFT processor to

start. Each channel contains two ports. Ready signal indicates when it can accept the data and

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

5

valid signal indicates when the data are valid. Write channel and read channel also include last

signal to indicate the transfer of the final item in transaction.

The FFT processor was required to be a fixed point processor. Fixed point is a simple, yet

very powerful way to represent fractional numbers in computer. By reusing all integer arithmetic

circuits of a computer, fixed point arithmetic is orders of magnitude faster than floating point

arithmetic which was used to represent floating point values. Since, data path of the processor is

16-bit, it used Q-14 fixed point format in which the lower fourteen bits were used to represent

fraction part and the upper two bits were used for integer part and sing. This representation

supports any fractional number between -2 to 2.

The major components of FFT processor and its block diagram representation are shown

in the following figure 3.2.

 Butterfly unit

 Data memory (RAM)

 Twiddle factor memory (ROM)

 Interconnect

 Address generation unit

 Control unit

Figure 3.2: Scalable FFT processor block diagram

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

6

Two butterfly units are used, which operate in parallel and compute two outputs per clock

cycle. Data memory storing data samples includes two sets called SetA and SetB, with each set

containing four RAM banks for simultaneous access of four samples. Twiddle factors are stored

in a ROM. During design time, data memory and twiddle factor memory are suitable chosen to

store a 32-bit word and to support Nmax-point FFT computation. Two interconnects called

interconnectA and interconnectB are used to connect butterfly units and address generation unit

with data memory set SetA and setB respectively. The Address generation unit is used to

generate addresses required to read input samples and twiddle factor for butterfly units. The

Control unit is required to co-ordinate and synchronizes activities of the rest of the components.

When FFT processor is in operation, the overall dataflow through the processor is

pipelined and follows ping-pong logic. The internal pipelined architecture of FFT processor is

shown in Fig. 3.3.

Figure 3.3: FFT processor pipelined internal architecture

According to pipelined architecture, there are nine pipeline stages. These stages are

address generation stage, memory read stage, two stages before butterfly units (pre-

computation), two stages inside butterfly units (computation), two stages after butterfly units

(post-computation) and memory write stage. Each pipeline stage is a registered activity which

consumes one clock cycle. At the beginning of each stage, one additional clock cycle is required

and thereafte ten clock cycles are needed to fill up pipeline. Therefore, ten clock cycles are

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

7

required to compute initial output samples in each stage, after which two outputs are computed

every clock cycle. The number of clock cycles required by each stage in a pipelined architecture

for an N-point FFT is given by:

cycles_per_stage = 10 +

 (3.1)

The total number of clock cycles required to compute FFT for an N-point is given by:

cycles_FFT = (cycles_per_stage () + 2 (3.2)

The FFT processor architecture is described in detail in terms of its components in the

following sections.

3.1 BUTTERFLY UNIT

The butterfly unit was adopted from [4] which was implemented by J.Takala et al. It was

designed to support radix-2 DIT butterfly operation. Butterfly operation is the basic entity of a

butterfly diagram and it is pictorially described as shown in Figure 3.4.

Figure 3.4: Single radix-2 DIT butterfly operation [4]

Butterfly operation can be illustrated in equation as,

X = P + WQ and Y = P – WQ (3.3)

where P and Q are complex input values, W is an input twiddle factor and X and Y are complex

output values. The output X is the result of addition while Y is the result of subtraction. The

multiplication (W*Q) is based on bit-parallel multipliers method which is explained in more

detail below. The multiplication of two complex numbers W and Q is given by:

WQ = (WR + jWI)(QR + jQI) = (WRQR WIQI) + j(WRQI +WIQR) (3.4)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

8

where indexes “R” and “I” represent the real and imaginary part of complex numbers

respectively. Implementing the equation (3.3), four multipliers and two adders are required. After

the optimization of the complex multiplication, it requires three multipliers instead of four

according by following equation (3.4).

WQ = WI(QR QI) + QR(WR WI) + j[WI(QR QI) + QI(WR +WI)] (3.5)

The area and power consumption can be reduced if two clock cycles are used for

complex multiplication. The reduction in number of multipliers through pipeline operation is a

reasonable compromise between high throughput, area and power efficiency. Hence, the internal

architecture of butterfly unit where was implemented is shown in Figure 3.5.

Figure 3.5: Pipelined butterfly unit

This approach uses only two multipliers and two adders. The complex multiplication is

pipelined by using two clock cycles for computation. The pipelined multiplication is given by:

A1 = QRWR; B1 = QIWR (cycle#1)

A2 = QRWI; B2 = QIWI (cycle#2)

WQ = (A1 B2) + j(B1 + A2) (3.6)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

9

Hence, the butterfly unit was implemented by sharing two out of three input ports for

both input samples QR, QI and PR, PI respectively while the third input port is shared to read WR

and WI of twiddle factor. Since FFT processor is required to be a fixed point computation, inputs

ports are 16-bit values. When butterfly unit is in operation, complex values Q and P are read

every alternate clock cycle and same is the case with WR and WI. Furthermore, a complex

multiplier (two bit parallel real multipliers) and two adders were implemented as computation

units and were integrated in the butterfly unit. The outputs of real valued multipliers are

registered, thereby reducing the critical path of complex multiplier and thereafter the critical path

of butterfly unit. The outputs of adders of complex multiplier are registered as well. The butterfly

unit is implemented by pairing up complex multiplier along with adders required for butterfly

operation. Inputs of the butterfly unit are registered and it needs two sets of input registers for

operand P since, next P is read while current W*Q is computed. The butterfly unit was

implemented to support Q-14 fixed point computation. Inputs and outputs are 16-bit fixed point

values. Two output ports are shared between XR, XI and YR, YI respectively, being packed into

32-bit complex value X and Y.

Butterfly unit operation is controlled by control unit which issues register loads and

multiplexers signals at appropriate time intervals. Two butterfly units operate in parallel in the

FFT processor to compute two output samples per clock cycles, increasing the throughput of the

processor. Figure 3.6 shows input/output ports of butterfly unit.

Figure 3.6: Butterfly unit port details

Butterfly unit has a clock port clk and an active high reset signal rst. Real parts of inputs

P and Q are multiplexed into an input port pq_r while imaginary parts of P and Q are

multiplexed into port pq_i. Real and imaginary parts of twiddle factor W are multiplexed into

port w_ri. Control signals are driven into an input port ctrl_signals which is an 8-bit value and

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

10

contains the signals load_q, load_p1, load_p2, load_w, load_mul, load_add_sub, sub_enable

and sel. The order at which signals are mentioned above is from lower bit to upper bit of

ctrl_signals value. Load_q and load_w are load signals for Q and W input registers. load_p1

and load_p2 are load signals for P inputs registers. load_mul and load_add_sub are load signals

for multiplier output registers and complex multiplier adder output register respectively.

Multiplexers are controlled via sel control signal. Addition or subtraction operations which are

part of butterfly unit are controlled using sub_enable signal, which if being active high, the

output has a result of subtraction. The output ports real_out and imag_out are the real and

imaginary parts of output data respectively.

Figure 3.7 shows waveforms of butterfly unit ports for 16-point FFT.

Figure 3.7: Butterfly unit waveform for 16-point FFT

As shown in figure 3.7, there are four stages in a 16-point FFT and timing of pipelined

butterfly unit control signals follow a similar pattern in every stage. fft_idle and palse signals are

part of the understanding of the waveforms. fft_idle signal indicates the beginning of FFT

computation when it becomes low and the end of computation when it becomes high. palse

signal indicates the 1
st
 clock cycle in each stage. The input data latency is four clock cycles and

the output data latency is seven clock cycles with respect to the beginning of stage. Initially, the

butterfly units compute the addition result and at the next clock cycle they compute the

subtraction result for each stage of computation. The results of addition and subtraction are

routed every alternate clock cycle. Two butterfly units have the same timing of control signals.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

11

3.2 DATA MEMORY (RAM)

The input samples, intermediate samples and the output samples of FFT computation are

stored in data memory. Data memory is RAM based and it consists of two sets called SetA and

SetB. Butterfly operation is performed by reading input samples from one set of memory and by

writing output samples to a different set of memory. Since, two butterfly units require four input

samples per clock cycle, each set has to include four memory banks to concurrent access to four

samples at any given time. Hence, SetA memory includes four memory banks RAM0, RAM1,

RAM2 and RAM3 while SetB memory includes four memory banks RAM4, RAM5, RAM6 and

RAM7. The maximum size of each memory bank is decided by the maximum size of FFT

computation Nmax selected during design time. The maximum size of a memory bank is given

by:

ram_bank_size =

 (3.7)

where the size is measured in terms of 32-bit words. The size of a memory bank defines its

address bus width which is given by:

address_ram_width= (3.8)

In memory, complex data samples are stored as a 32-bit word, higher 16 bits constitute

the real part while 16 lower-bits constitute the imaginary part. Data format stored in memory is

pictorially described as shown in Figure 3.8.

Figure 3.8: Data format stored in memory

In the beginning of FFT computation, input samples are always stored in SetA. The input

samples are bit reversed according to DIT FFT and split equally among four memory banks.

Figure 3.9 describes the order of input samples stored in memory at the beginning of FFT

computation.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

12

Figure 3.9: Order of input sample at the beginning and the order of final output of 16-point FFT computation

The bit reversed input samples are equally split into two halves, the upper half inputs

stored in RAMO, RAM1 and the lower half inputs in RAM2, RAM3. The order of input samples

is such that it provides conflict free access for butterfly operation.

Final output of an N-point FFT computation might be available in SetA or SetB

depending on the number of stages. If the number of stages is even, final outputs are stored in

SetA otherwise if number of stages is odd, final outputs are stored in SetB. Since for a 16-point

FFT, the number of stages is even, final outputs would be available in SetA and the order of

outputs would be as shown in Figure 3.9.

Eight suitable RAM memory banks were chosen to support Nmax-point FFT

computation and were integrated into the FFT processor. Each RAM memory bank is clocked

dual port memory, enabling access from within the FFT processor for computations as well from

an axi unit which is used to form a link between external interface and memories. Memory

access (read/write) latency is one clock cycle. Figure 3.10 shows input/output ports of a memory

bank.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

13

Figure 3.10: RAM memory bank port details

RAM_WIDTH port is a local parameter into FFT processor, which is computed by

equation (3.8) based on given NMAX and it is used to specify the address width during design

time. RAM bank has a clock port clk and an active high reset signal rst. It consists of input data

ports data_inA and data_inB, address ports addr_A and addr_B, write enable signals wren_A

and wren_B and output data ports data_outA and data_outB. Ports with suffix ‘A’ are axi unit

ports and ports with suffix ‘B’ are FFT processor ports.

Waveforms of memory sets SetA and SetB for FFT processor ports are shown in Figure

3.11 (a) and (b) respectively for 16-point FFT.

(a)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

14

(b)
Figure 3.11: (a) Memory set SetA waveforms (b) Memory set SetA waveforms

Figure 3.11(a) and (b) illustrates the FFT processor operation. As shown in the first stage,

data are read from SetA memory and the results are written to SetB. In the next stage, data are

read from SetB and the results are written to SetA. Read/write operations are switched between

SetA and SetB memory in alternate stages. Write operation takes place when wren signal is high

and read operation takes place when signa is low. Memory read/write access latency is single

clock cycle.

3.3 TWIDDLE FACTOR MEMORY (ROM)

The twiddle factor memory is used to store twiddle factors required by butterfly unit0 and

butterfly unit1 during FFT computation, as shown in Figure 3.3. The maximum number of

twiddle factors required for an N-point FFT computation is

. Hence, the maximum size of ROM

unit to support up to Nmax-point FFT computation is given by:

rom_size =

 (3.9)

where size is measured in terms of 32-bit words. The size of ROM defines its address bus width,

is given by:

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

15

address_rom_width= (3.10)

Twiddle factors stored in ROM are in natural order, before a FFT processor initiates the

computations. Twiddle factor is a complex value in which 16-bit real and imaginary parts are

packed into a 32-bit word, as shown in Figure 3.8. It is illustrated for a 16-point FFT in Figure

3.12.

Figure 3.12: Order of twiddle factors stored in ROM

Twiddle factor memory was chosen to support Nmax-point FFT computation and was

integrated into the FFT processor. Twiddle factor memory is a clocked dual port ROM which

allows reading two twiddle factors per clock cycle for the butterfly units. It grants access within

the FFT processor for computations as well as to an axi unit for initialization of the twiddle

factor memory, depending on the given FFT size. Memory access (read/write) latency is one

clock cycle. Figure 3.13 shows input/output ports of a ROM memory.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

16

Figure 3.13: ROM memory port details

ROM_WIDTH port is a local parameter which is computed by equation (3.10) based on

the given NMAX and it is used to specify rom address width during design time. ROM is a dual

port memory which supplies twiddle factors for butterfly units. It has a clock port clk and an

active high reset signal rst. It consists of address ports addr_A and addr_B and output data ports

data_outA and data_outB which are used by the FFT processor. Ports with suffix ‘A’ are meant

for butterfly unit0 (twiddle factor0) while ports with suffix ‘B’ are meant for butterfly unit1

(twiddle factor1). Axi unit uses a write enable signal wren_A, input data port data_inA and

address port addr_A to initialize the twiddle factor memory. Address values from axi unit and

FFT processor are multiplexed into port addr_A. addr_A port is set to drive address value from

axi unit while a FFT processor is idle. Twiddle factor memory consists of input data ports

data_inA and data_inB, address ports addr_A and addr_B, write enable signals wren_A and

wren_B and output data ports data_outA and data_outB. Ports with suffix ‘A’ are axi unit ports

and ports with suffix ‘B’ are FFT processor ports.

Waveforms of twiddle factor memory for FFT processor ports are shown in Figure 3.14

for 16-point FFT.

Figure 3.14: ROM memory waveforms

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

17

Figure 3.14 illustrates the FFT processor operation which is reading two twiddle factors

per clock cycle for the butterfly units at different stages of FFT. Memory read/write access

latency is single clock cycle.

3.4 INTERCONECT

Interconnect is the link between butterfly units and address generation with data memory.

Two interconnects are used in FFT processor architecture and they are interconnectA and

interconnectB as illustrated in Figure 3.4. The interconnectA forms a connection between

butterfly units and memory SetA while interconnectB forms a connection between butterfly

units and memory SetB. The internal architecture of interconnect is described in Figure 3.15.

Figure 3.15: Interconnect internal architecture and the external interface

Interconnect consists of a number of multiplexers whose outputs are registered. The

multiplexers act like switches, linking inputs to appropriate outputs based on selected signals

from the control unit.

The interconnect unit was implemented in order to perform a reading/writing operation to

the memory set at which a connection is established. The interconnect unit receives read and

store addresses from the address generation unit. When it performs a reading operation, the read

address is selected by the multiplexer and becomes registered. Thereafter, the read address is

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

18

routed to data memory set for reading. The four read data from memory set are registered in the

interconnect unit which then routes read data to butterfly units for computation. If interconnect

performs a writing operation, data is received as results from butterfly units and the write address

is selected via multiplexer. Data and address are registered and then routed to memory for

storage.

When FFT processor is in operation, in even numbered stages, the inputs are read from

memory SetA and they are routed to butterfly units via interconnectA. After butterfly operation,

the outputs are routed via interconnectB and stored in memory set SetB. In odd numbered

stages, the inputs are read from memory SetB and they are routed to butterfly units via

interconnectB. After butterfly operation, the outputs are routed via interconnectA and stored in

SetA memory. The four read data from memory set are separated and in some occasions flip

before being supplied into butterfly units. The interconnect unit specifies the flow of data based

on dataflow algorithm, which is described in detail in the relevant section (section 4).

Figure 3.16 shows input/output ports of an interconnect unit.

Figure 3.16: Interconnect port details

The interconnect unit uses the local parameter port RAM_WIDTH to specify ram address

width. It has a clock port clk and an active high reset signal rst. Control signals are driven into an

input port ctrl_signals which is a 4-bit value and contains RW signal, last_stage signal, flip

signal and add_sub signal. The order at which signals are mentioned above is from lower bit to

upper bit of ctrl_signals value. RW signal specifies if the interconnect performs a reading or

writing operation. last_stage signal indicates the last stage of FFT computation and flip signal

indicates whether the read data from memory is to be flipped or not. The last control signal is

add_sub, which indicates whether the outputs from butterfly units are results of addition or

subtraction. Memory read address is received through input port read_data and memory store

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

19

addresses are received through input ports store_add and store_sub. store_add and store sub

ports indicate the store addresses of addition and subtraction results respectively. The address is

selected to be registered depending on the current operation of interconnect and it is routed via

output port addr. addr port is an input port to the memory set in which a connection is

established. Four data inputs from memory set are received through ports data0, data1, data2

and data3. When interconnect performs a reading operation, last_stage and flip signals specify,

via multiplexers, the flow of the read data before being registered into interconnect. The four

read data which were registered are routed to butterfly units via output ports bfly0_q, bfly0_p,

blfy1_q and bfly1_p. bfly0_result and bfly1_result are input ports of interconnect, which contain

the results of butterfly units. The results are registered and routed to memory set via output ports

store_data0 and store_data1 respectively. When interconnect performs a writing operation,

add_sub signal specifies, via a multiplexer the write address which will be registered and routed

to memory set.

Figure 3.17 (a) and (b) shows waveforms of interconnectA ports and interconnectB ports

respectively for 16-point FFT.

(a)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

20

(b)
Figure 3.17: (a) InterconnectA waveforms (b) InterconnectB waveforms

As shown in a figure 3.17 (a) and (b), interconnectA performs a reading operation in

every even numbered stage and a writing operation in every odd numbered stage. InterconnectB

performs a writing operation in every even numbered stage and a reading operation in every odd

numbered stage. last_stage and flip signals specify the flow of the read data before being

registered and supplied to butterfly units. When last_stage signal is high, it indicates that it is the

last stage. When flip signal is high, it indicates that the current read data from memory have to

flip. The results of addition and subtraction are driven every alternate clock cycle by butterfly

units. When add_sub signal is high, it indicates that the current data received by butterfly units

are subtraction results. Otherwise, when add_sub signal is low, it indicates that the current data

received by butterfly units are addition results.

3.5 ADDRESS GENERATION UNIT

Address generation unit generates addresses in each stage of FFT computation for

reading input data samples, twiddle factors and storing outputs data samples. The address

generation unit that was implemented is based on an address generation scheme which was

developed to support N-point FFT computation.

The address generation algorithm provides conflict free access of data samples during

computation. It requires two m-bit counters, where m = log2(N/4), according to equation 3.8. The

algorithm is described in detail below.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

21

1) Address to read inputs from memory:

A simple m-bit counter is used to generate read address.

read_data = [am-1am-2.......a1a0] (3.11)

2) Address to store outputs to memory:

Another simple m-bit counter is used to generate store address.

 store _ add = [bm-1bm-2….…b1b0] (3.12)

 store _ sub = [b΄m-1b΄m-2…….b΄1b΄0] (3.13)

3) Address to read twiddle factors from ROM:

For an N-point FFT there are log2N number of stages, we assume stage index as s

which is incremented at the end of each stage. Hence, s can take values s = 0, 1, ...

log2(N) - 1.

 Twiddle factor addresses for stages except last stage (s = 0, 1, … log2(N)-2):

(i) [dm-1..d0] = [am-1…a0] XOR [0am-1…a1]

(ii) count_gray = [0dm-1dm-2…..d1d0]

 = [emem-1..e1e0]

(iii) coef x = [em….em-s0m-s-s…0100]

 = [fm+1fm…f1f0]

(iv) Coef0Addr = [fmfm-1…f1f0]

(v) Coef1Addr = Coef0Addr

 Twiddle factor addresses for last stage (s = log2(N)-1):

Note: coefy = [0m+10m…011] at the beginning of the stage.

(i) coefy = [fm+1fm…f1f0]

(ii) sum = [am-1am-2..a1a0] + [fmfm-1..f2f1]

 = [gm-1gm-2…g1go]

(iii) coefy = [0gm-1gm-2…g1gof΄0]

 = [fm+1fm…f0]

fm = ‘0’ for first

 butterfly computations.

fm = ‘1’ for next

 butterfly computations.

(iv) Coef0Addr = [fmfm-1…f1f0]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

22

(v) Coef1Addr = [fmfmm-1…f1f΄0]

The address read_data (step 1) is used to read inputs from either SetA or SetB memory,

depending on FFT stage. There are two outputs to butterfly operation; one is a result of addition

and the other is a result of subtraction. Hence, in step 2 there are two store addresses generated.

Two outputs from butterfly unit have to be stored in different memory banks and in different

address locations to avoid access conflicts. Therefore, the address store_add stores the result of

addition and store_sub stores the result of subtraction. Step 3 presents twiddle factor address

generation logic where Coef0Addr corresponds to butterfly unit0 and Coef1Addr corresponds to

butterfly unit1. The steps described are executed in the specified order in order generate

addresses Coef0Addr and Coef1Addr. The internal logic of address generation unit is shown in

figure 3.18.

Figure 3.18: Address generation unit internal logic

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

23

Address generation unit was implemented based on the description of algorithm, as

mention above. Figure 3.19 shows input/output ports of address generation unit.

Figure 3.19: Address generation unit port details

The address generation unit uses the local parameter ports RAM_WIDTH and

ROM_WIDTH to specify ram and rom address width respectively. Furthermore, F_WIDTH port

is used as a local parameter to support the variables width for the maximum FFT. F_WIDTH

value is computed by equation log2(NMAX)+1. The unit has a clock port clk and an active high

reset signal rst. Control signals are driven into an input port ctrl_signals which is

(2*F_WIDTH+2)-bit value. ctrl_signals port contains fft_idle signal, last_stage signal, curr_size

value and c_counter value. The order at which signals are mentioned above is from lower bit to

upper bit of ctrl_signals value. fft_idle signal indicates whether the FFT processor is idle. It is

used by address generation unit to start generating addresses for given FFT size when FFT

processor is set into operation. last_stage signal indicates the last stage of FFT computation.

curr_size consists the value of the given FFT size and c_counter consists the value of current

clock cycle in the stage. c_counter is used to define the values of addresses at proper time. Read

address port is read_data and store address ports are store_add and store_sub. The addresses

read_data and store_add are m-bit counters whereas store_sub is one’s complement version of

store_add. The twiddle factor address ports are Coef0Addr and Coef1Addr.

Figure 3.20 shows waveforms of address generation unit for 16-point FFT

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

24

Figure 3.20: Address generation unit waveforms

As shown in a figure 3.20, address generation unit starts immediately after fft_idle signal

is set to ‘0’ by the control unit. For every two clock cycles, a new read address is generated and

at the 8
th

 clock cycle and for every four clock cycles, new store addresses are generated. The two

multiplexer signals half_stage and last_stage enable coefficient address selection depending on

the state of butterfly computations in a given stage. The last_stage signal is set to ‘1’ for the last

stage and to ‘0’ for the rest of the stages, differentiating the last stage of FFT from the rest of the

stages. The half_stage signal is computed into address generation unit based on c_counter. In

the last stage of FFT computation, the half_stage signal is set to ‘0’ for the first

 butterfly

computations and to “1” for the next

 butterfly computations. The twiddle factor addresses

Coef0Addr and Coef1Addr are delayed by two clock cycles at the time that they were calculated.

The reason is that the twiddle factor addresses are routed directly to ROM and they require two

clock cycles of delay in order to synchronize with the read data from RAM before supplying

them to butterfly units.

It is important to show the delay of twiddle factor addresses and store addresses

generation, as is necessary for the proper flow of data. Figure 3.21 is a pictorial description of

timeline for the nine pipeline stages.

Figure 3.21: Timeline of nine pipeline stages.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

25

3.6 CONTROL UNIT

The control unit is the most important unit of FFT processor. It generates control signals

at proper timing to control and coordinate the activities of all other units in the processor as

shown in Figure 3.3. Control unit is implemented using Moore state machine, as shown in figure

3.22.

Figure 3.22: Control unit state diagram

At the beginning, control unit starts with state S0 in which the FFT processor is idle. In

state S0, all the signals and variables are initialized depending on required N-point computation.

After being initialized, when it receives the suitable signal to start computing, it moves to state

S1. In state S1, it generates control signals for the following activities: address generation from

address generation unit, read input samples from SetA memory, route inputs to butterfly units via

interconnectA, butterfly units operation, route outputs to SetB memory via interconnectB and

write butterfly outputs to SetB memory. If the last stage of FFT computation is completed, it

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

26

moves from state S1 to state S0. Otherwise, after completing an FFT computation stage in S1 it

moves to transition state S2 where it prepares itself before generating control signals for next

stage.

From transition state S2 it moves to state S3. In state S3 it generates control signals for

the following activities: address generation from address generation unit, read input samples

from SetB memory, route inputs to butterfly via interconnectB, butterfly units operation, route

the outputs to SetA memory via interconnectA and write butterfly outputs to SetA memory. If

the last stage of FFT computation is completing an FFT computation stage in S3 it moves to state

S0. Otherwise, after completing a FFT computation stage in S3 it moves to transition state S2,

where it prepares itself before generating control signals for next stage. The process of state

transitions S1 → S2 → S3 and S3 → S2 → S1 are repeated in every alternate stage until it

returns to state S0 at the end of FFT computation.

It is important to note that in order to generate suitable control signals, it was required to

define a clock cycle counter. The counter is used to count the clock cycles that are needed in

each stage. The number of clock cycles required by each stage is given by equation 3.2. This

achieves the generation of control signals at proper time. Figure 3.23 shows input/output ports of

control unit.

Figure 3.23: Control unit port details

The control unit uses the local parameter port F_WIDTH to specify the variables for the

maximum FFT size. The unit has a clock port clk and an active high reset signal rst. curr_size

port has the value of the given FFT size and start port indicates the start of FFT computation.

idle signal indicates whether the FFT processor is idle and setA_setB signal indicates which set

of memory has stored the result at the end of FFT computation. wr_setA port and wr_setB port

are 2-bit value for read-write signaling to memory sets SetA and SetB respectively.

bfly_ctrl_signals port and agu_ctrl_signals port are corresponding to control signals of butterfly

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

27

units and address generation unit respectively. intA_ctrl_signals port and intB_ctrl_signals port

correspond control signals of interconnectA and interconnectB respectively.

Registers and multiplexers were included in pipeline architecture of FFT between

interconnects and butterfly units. Multiplexer signals specify the flow of data pre-computation of

butterfly units. sel_AorB multiplexer signal specifies the interconnect unit from which, the read

data will be registered before being supply them into butterfly units. sel_QorP multiplexer signal

specifies the complex value (Q or P) which will be routed into butterfly units and sel_WRorWI

multiplexer signal specifies the value (WR or WI) which will be routed into butterfly units.

load_in and load_out are load signals for input registers in butterfly units and output registers of

butterfly units respectively.

Figure 3.24 shows waveforms of control unit for 16-point FFT.

Figure 3.24: Control unit waveforms

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

28

3.7 AXI UNIT

Axi unit was implemented in order to manage the configuration, write and read channels

of FFT processor. It is based on rules of communication protocol which were defined by the

external interface. The properties of transmission that the protocol defines are the packet size,

handshaking and error type.

The three transaction channels use the same valid/ready handshake process to transfer

data. This two-way flow control mechanism means that both the master and slave can control the

rate at which the information moves between them. The source generates the valid signal to

indicate when data information is available and the destination generates the ready signal to

indicate whether it can accept the information. Transfer occurs only when both the valid and

ready signals are high. All channels transfer 64-bit value of data. Write channel and read channel

also include last signal to indicate the transfer of the final item in transaction.

The external interface specifies the size of FFT computation via the configuration

channel and axi unit enables the receipt of samples data via the write channel. For each sample

data received, a writing operation is performed in order to store the input samples data in

memory set SetA. The 64-bit samples data are segregated into higher 32 bits which constitute the

real part in floating point and into lower 32 bits which constitute the imaginary part in floating

point. The 32-bit data are routed into toFixed units which convert them to 16-bit values in fixed

point. They are then packed into 32-bit complex value and are stored in memory in bit reversed

order, as described above in figure 3.9. The write latency for each data received is one clock

cycle and the number of clock cycles required for writing input samples data for an N-point FFT

is N clock cycles in continuous transmission flow.

When Axi unit receives the first sample data via the write channel, it starts to fill the

twiddle factor memory if the given size differs from the previous FFT computation. Cordic

generation unit, which supports fixed point computation, was integrated into axi unit in order to

compute twiddle factors according to the equation,

 (3.14)

where is expressed as,

 (3.15)

The cos and sin are the real and imaginary part of twiddle factor respectively and are

computed by the cordic generation unit. The results are merged into 32-bit complex value and

are stored in rom memory. It takes a new input angle every clock cycle and gives results 15 clock

cycles later. The total number of clock cycles required to initialize the twiddle factor memory

for N-point FFT is 15 +

 clock cycles.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

29

The axi unit informs the control unit to start the FFT computations when the samples data

inputs are stored in memory set SetA and twiddle factor memory is filled with data which is

required to support the given FFT size. On the other hand, when the given FFT size and the

number of given samples data do not match, axi unit informs the external interface for error.

After completing a FFT computation, the control unit informs the axi unit memory set in which

the final results are stored. Then, as shown in figure 3.9 the results have to be sorted in physical

order before being supply to external interface via the read channel. The axi unit reads the final

results from memory set and stores them in physical order to the other memory set.

 clock

cycles are required to sort the results. Thereafter, when the read channel is enabled for transfer,

the sorted data are segregated into higher 16-bits and lower 16-bits which are converted to 32-

bits floating point by toFloat unit and are supplied in 64-bit value to external interface. The

number of clock cycles required to transfer the final sorted data for an N-point FFT is N clock

cycles in continuous transmission flow.

Figure 3.25 shows input/output ports of axi unit.

Figure 3.25: Axi unit port details

The axi unit uses the local parameter ports RAM_WIDTH, ROM_WIDTH and

F_WIDTH to specify ram address width, rom address width and the variables with the

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

30

maximum FFT size respectively. The unit has a clock port clk and an active high reset signal rst.

error signal indicates whether the given FFT size and the number of given data sample do not

match a prerequisite for the FFT processor to start. Each channel contains three ports. ready

signal indicates when it can accept the data, valid signal indicates when the data are valid and

data port which has 64-bit value for transfer. Write channel and read channel also include last

signal to indicate the transfer of the final item in transaction. All channel signals and ports are

driven via the FFT processor. curr_size port has the value of the given FFT size and start signal

indicates the start of FFT computation. idle signal indicates whether the FFT processor is idle

and setA_setB signal indicates which set of memory was stored by the final results. Write enable

signal rom_wren, address port rom_addr and input data port rom_data_in are used to initialize

the twiddle factor memory. Write enable port wren is 4-bit value for write signaling to RAM

banks of the memory sets SetA and SetB. addrA0 and addrA1 ports have the values of

addresses of RAM banks of the memory sets SetA. addrB0 and addrB1 ports have the values of

addresses of RAM banks of the memory sets SetB. Data in ports data_in0, data_in1, data_in3

and data_in4 are driven to four RAM banks in each memory set. Data out ports for memory set

SetA are data_out0,..data_out3 and for memory set SetB are data_out4,..data_out7.

Figure 3.26 (a) and (b) shows waveforms of axi unit operations for 16-point FFT.

(a)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

31

(b)
Figure 3.26: Axi unit waveforms (a) writing of the initial values to memory SetA and twiddle factor memory (b) result

sorting and reading operation

4. DATAFLOW ALGORITHM

The flow of data across various components of processor is the basis of FFT processor

architecture. The dataflow algorithm describes reading of inputs from memory, routing of inputs

to butterfly units and routing outputs of butterfly units to memory. The units of FFT processor

were implemented to succeed the proper flow of data based on the algorithm which described as

follows.

In even numbered stages, the inputs are read from SetA memory and they are routed to

butterfly units via interconnectA. The twiddle factors are read from ROM and supplied to

butterfly units. After butterfly computations the outputs are routed via interconnectB and stored

in SetB memory.

In odd numbered stages, the inputs are read from SetB memory and they are routed to

butterfly units via interconnectB. The twiddle factors are read from ROM and supplied to

butterfly units. After butterfly computations the outputs are routed via interconnectA and stored

in SetA memory.

Dataflow involving butterfly unit0:

Even numbered stages:

 During all stages except last stage:

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

32

Read inputs from RAM0, RAM1. After butterfly computation, the result of

addition and subtraction are stored in RAM4, RAM5.

 During last stage:

Read inputs from RAM0, RAM2. After butterfly computation, the result of

addition and subtraction are stored in RAM4, RAM5.

Odd numbered stages:

 During all stages except last stage:

Read inputs from RAM4, RAM5. After butterfly computation, the result of

addition and subtraction are stored in RAM0, RAM1.

 During last stage:

Read inputs from RAM4, RAM6. After butterfly computation, the result of

addition and subtraction are stored in RAM0, RAM1.

Dataflow involving butterfly unit1:

Even numbered stages:

 During all stages except last stage:

Read inputs from RAM2, RAM3. After butterfly computation, the result of

addition and subtraction are stored in RAM6, RAM7.

 During last stage:

Read inputs from RAM1, RAM3. After butterfly computation, the result of

addition and subtraction are stored in RAM6, RAM7.

Odd numbered stages:

 During all stages except last stage:

Read inputs from RAM6, RAM7. After butterfly computation, the result of

addition and subtraction are stored in RAM2, RAM3.

 During last stage:

Read inputs from RAM5, RAM7. After butterfly computation, the result of

addition and subtraction are stored in RAM2, RAM3.

The flow of data for 16-point FFT is pictorially described in datagram of figure 4.1.

Continues line butterfly belongs to butterfly unit0 and dotted line butterfly belongs to butterfly

unit1.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

33

Figure 4.1: 16-point dataflow butterfly diagram for FFT processor architecture

Figure 4.1 shows the order of reading inputs from memory, storing outputs to memory,

routing inputs to butterfly units, order of twiddle factor access and routing butterfly outputs to

memory.

5. RESULTS

The FFT processor was implemented in Verilog, a Hardware Design Language (HDL)

using the simulation tools ModelSim and Vivado. Initially, FFT processor components were

implemented separately and were verified by running test benches. After individual modules

were functionally verified, they were integrated to form the complete system. The FFT processor

as a complete system was functionally verified by simulating operations of an external interface

in a test bench. During simulation, the processor was configured for different radix-2 sizes from

16 to 2048 as maximum FFT size Nmax. FFT computation time in clock cycles for different FFT

sizes was verified by equation (3.2) and is given in Table 5.1.

N Clock Cycles

16 74

32 132

64 254

128 520

256 1106

512 2396

1024 5222

2048 11376
Table 5.1: FFT Computation Time

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

34

As shown in table, increase in FFT size results in almost linear increase in computation

time till 256 points. But after 256 points, there is exponential increase in computation time.

6. CONCLUSION

The FFT processor was implemented and functionally verified through RTL simulation

according to the scalable FFT processor architecture which was proposed. According to [1], the

architecture outperforms the existing fixed and variable length FFT processor in terms of speed,

power, area, flexibility and scalability, attributes required by a wide range of multiple wireless

standards. Furthermore, the architecture can be extended to radix-4/8 computations in order to

achieve higher performance. In addition, the FFT processor can be used in non-OFDM systems

where scalability is required.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

35

REFERENCE

[1] D. Revanna, O. Anjum, M. Cucchi, R. Airoldi and J. Nurmi, “A Scalable FFT

Processor Architecture for OFDM Based Communication Systems”

[2] J.W.Cooley and J.W.Tukey, “An algorithm for the machine calculation of the

complex Fourier series,” Mathematics of Computation, vol. 19, no. 90, pp. 297–301,

 1965.

[3] Tran-Thong and B. Liu, “Fixed-point fast Fourier transform error analysis,” IEEE

Transactions on Acoustics, Speech and Signal Processing, vol. 24, no. 6, pp. 563–

573, dec 1976.

[4] J. Takala and K. Punkka, “Butterfly unit supporting radix-4 and radix-2 FFT,” in

Proc. Int. Workshop Spectral Methods and Multi rate Signal Process., Riga, Latvia,

June 20-22 2005, pp. 47–53.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7

