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ABSTRACT  

 

 

We live in an era of mobile data revolution. Users demand services and applications from 

mobile communication systems that go far beyond mere voice and telephony, leading to a high 

growth in the wireless electronic device market (i.e. smart-phones and laptops). The growth in 

data use by mobile services and applications, such as audio and video streaming has become a 

driving force for the development of the next generation of wireless standards. As a result, new 

standards are being developed to provide the data rates and network capacity necessary to 

support worldwide delivery of these types of rich multimedia application. 

 The modern wireless standards are predominantly based on OFDM communication 

systems, a method of encoding digital data on multiple carrier frequency. Various wireless 

devices in recent times support multiple wireless standards and demand efficient transceivers. In 

an OFDM based transceiver, the baseband hardware needs to meet stringent design parameters, 

such as high speed, low power, low area, low cost, flexibility and scalability, to be efficient 

across multiple standards. To design an efficient OFDM baseband hardware, it is necessary to 

efficiently design its performance critical component. FFT computation is one of the most 

computationally intensive operations which influence the performance of the system in an 

OFDM system.    

The baseband hardware requires a scalable FFT module which meets the performance 

constraints required by multiple wireless standards. The scope of this thesis work was the 

implementation of scalable FFT processor in which an existing scalable radix-2 N-point FFT 

processor architecture was adopted. The FFT processor was designed and implemented in 

Verilog, (an HDL) and functionality verified through RTL simulation according, to the 

specifications of the proposed architecture.  
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1. INTRODUCTION 

 

 

The growing demand in the multimedia services has increased the need for faster services 

in the wireless communication systems but some of the high-bit rate services are limited due to 

various performances constrains. Therefore, providing services over wireless channels is a 

challenging task due to the fact that the mobile radio channels are more demanding compared to 

wired channels.  

A broadband multimedia wireless communication system requires fast transmission and 

the designing of wireless transceivers to support high data rates with compact and inexpensive 

hardware; this forms challenging task. The standards specify strict performance requirements in 

terms of high speed, low power, low cost, flexibility and scalability. In order to avoid the 

multipath-fading environment and to achieve high data rates at the same time, the Orthogonal 

Frequency Division Multiplexing (OFDM) transmission scheme is being used. 

OFDM is a parallel data transmission technique which minimizes the influence of 

multipath fading through simpler equalization technique. This technique is being widely used in 

the wireless communication systems since it predominates in terms of spectral utilization and 

performance, compared with other techniques like recovering original signal from received 

signal. One of the major performance critical modules of OFDM transceiver is Fast Fourier 

Transform (FFT) computation, an efficient OFDM transceiver which is being characterized by 

an efficient FFT module. In OFDM baseband hardware, FFT computation is one of the most 

computationally intensive operations which influence the performance of the system. The 

baseband hardware has to be capable enough to compute FFT within the time constraints 

necessary to support multiple wireless standards and also be scalable. In addition, it has to meet 

the criteria of high speed, low area and low power consumption. 

 In order to support digital communication standards, integrated circuits are commonly 

based on FFT of some length. Flexible length makes the design more usable for configurable 

circuits. As the transform length increase, the amount of arithmetic involved becomes excessive. 

This makes FFT one of today’s most important tools in digital signal processing, as it enables the 

efficient transformation between time and frequency domain. Since, FFT is an integral 

component of OFDM transceiver, research on FFT algorithm and its hardware implementation is 

focused extensively.  

The focus of related researches is to optimize the FFT algorithm and to find efficient 

hardware solutions.  Some of the researches work is based on specific FFT size, targeting 

specific standard and optimized for specific design parameter. Fixed length FFT processors can 

support only specific wireless standard and they will not be scalable across multiple standards, 

but they are optimized in terms of power, area, high speed and low cost. On the other hand, 

variable length FFT processors supporting multiple standards have to compromise in terms of 

high speed, low power and low area. In search for a reasonable balance between scalability and 

achieving performance constraints, a scalable FFT processor architecture was presented by D. 

Revana et-al. in [1].    

Scalable FFT processor architecture is based on radix-2 FFT algorithm, while the size of 

FFT can only be a number to the power of two. The architecture is configurable at design time to 

support a maximum FFT size and scalable at runtime while it can support any radix-2 FFT size 
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from 16 to maximum size. The proposed architecture was implemented as part of the thesis 

work. 

FFT operation is computationally intensive and is required to be performed within the 

time constraints specified by various wireless standards. Therefore, FFT is studied in more detail 

before its implementation in hardware. 

 

2. FAST FOURIER TRANSFORM (FFT) 

 

 

The FFT algorithm was presented by Cooley and Tukey in [2] with an aim to compute 

Discrete Fourier Transform (DFT), with significant reduction in number of computations. DFT 

computation of a time domain digital signal x(n) results in its conversion into a frequency 

domain signal. Analysis and processing of a discrete signal in frequency domain is more efficient 

than an analysis in time domain.  In fact, reduced computations due to FFT algorithm helped to 

decrease power consumption, area and increase require system throughput. Direct computation 

of N-point DFT would require       complex additions and     complex multiplication 

operations according to equation given by: 

 

              
    
 

                                                              

   

   

 

where              

However, using FFT algorithm total number of additions and multiplications reduces to   

         and  
 

 
          respectively. An N-point FFT equation is given by: 

 

            
   

    
 
 

 

 
 
  

   

    
          

   
    
 
 

 

 
 
  

   

                             

 

where   
       

   

 
               

FFT is computed in two different ways. Decimation In Time (DIT) and Decimation In 

Frequency (DIF). DIT FFT algorithm is found to provide better signal-to-noise ratio in 

comparison with DIF FFT for a finite word length according to Tran-Thon et al. in [3].  

Based on the number of FFT inputs, the algorithm can be radix-2, radix-4, radix-8 or split 

–radix type. In radix-2 algorithm FFT size is a power of two, radix-4 FFT size is a power of four 

while radix-8 FFT size is a power of eight. Split-radix type involves mixing of any of the 

specified radix combinations. A radix-2 DIT FFT algorithm can be depicted as a butterfly 

diagram as shown in figure 2.1. 
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Figure 2.1: Radix-2 DIT FFT butterfly diagram 

 

The figure 2.1 describes 16-point FFT butterfly diagram where            are 16-point 

complex inputs and outputs respectively. Since, it is a DIT algorithm, the inputs      are in bit 

reversed order and outputs      are in natural order. The butterfly computation with upper half 

data samples is symmetric with the lower half till the last stage. In the last stage, butterfly 

computation merges data samples from lower half and upper half. Such a property of DIT FFT is 

the basis for address generation scheme and input data storage in data memory of FFT processor. 

Considering an N-point FFT, there are          number of stages and each stage contains  
 

 
 

butterfly operations.  
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3. SCALABLE FFT PROCESSOR 

 

 

Scalable FFT processor architecture was adopted from [1] which was presented by D. 

Revana et-al. in. It was designed to support N-point complex value radix-2 fixed point FFT 

computation. The architecture of processor is configurable at design time for required maximum 

FFT size Nmax. Once the processor is configured for Nmax, at runtime it supports any radix-2 

FFT size from 16 to Nmax.  

An external interface communicates with the FFT processor in order to specify the size of 

FFT computation and then sends the data samples for computation. After FFT computation the 

external interface receives the results. This is achieved by defining a configuration channel, a 

write channel and a read channel respectively. Each channel produces suitable availability and 

validly signals, depending on the state of processor. Figure 3.1 shows input/output ports of the 

FFT processor.  

 

 
Figure 3.1: FFT processor core port details 

 

 

Ports marked with thin lines represent single bit pins while ports marked with thick lines 

represent multi-bit bins. Ports named in capital letters are parameters which allow design time 

configuration of modules. The port NMAX is the maximum FFT size Nmax, which is 

configurable at design time.  The processor has a clock port clk and an active high reset signal 

async_rst which is synchronized and supplied to components of the processor via rst signal. 

Furthermore it has an error signal error which becomes activated when the given runtime FFT 

size and the number of given data sample do not match a prerequisite for the FFT processor to 

start.  Each channel contains two ports. Ready signal indicates when it can accept the data and 
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valid signal indicates when the data are valid.  Write channel and read channel also include last 

signal to indicate the transfer of the final item in transaction. 

The FFT processor was required to be a fixed point processor. Fixed point is a simple, yet 

very powerful way to represent fractional numbers in computer. By reusing all integer arithmetic 

circuits of a computer, fixed point arithmetic is orders of magnitude faster than floating point 

arithmetic which was used to represent floating point values. Since, data path of the processor is 

16-bit, it used Q-14 fixed point format in which the lower fourteen bits were used to represent 

fraction part and the upper two bits were used for integer part and sing. This representation 

supports any fractional number between -2 to 2.  

The major components of FFT processor and its block diagram representation are shown 

in the following figure 3.2. 

 

 Butterfly unit 

 Data memory (RAM) 

 Twiddle factor memory (ROM) 

 Interconnect 

 Address generation unit 

 Control unit 

 

 
Figure 3.2: Scalable FFT processor block diagram 
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Two butterfly units are used, which operate in parallel and compute two outputs per clock 

cycle. Data memory storing data samples includes two sets called SetA and SetB, with each set 

containing four RAM banks for simultaneous access of four samples. Twiddle factors are stored 

in a ROM. During design time, data memory and twiddle factor memory are suitable chosen to 

store a 32-bit word and to support Nmax-point FFT computation. Two interconnects called 

interconnectA and interconnectB are used to connect butterfly units and address generation unit 

with data memory set SetA and setB respectively. The Address generation unit is used to 

generate addresses required to read input samples and twiddle factor for butterfly units. The 

Control unit is required to co-ordinate and synchronizes activities of the rest of the components.  

When FFT processor is in operation, the overall dataflow through the processor is 

pipelined and follows ping-pong logic. The internal pipelined architecture of FFT processor is 

shown in Fig. 3.3. 

 

 
Figure 3.3: FFT processor pipelined internal architecture 

 

   

According to pipelined architecture, there are nine pipeline stages. These stages are 

address generation stage, memory read stage, two stages before butterfly units (pre-

computation), two stages inside butterfly units (computation), two stages after butterfly units 

(post-computation) and memory write stage. Each pipeline stage is a registered activity which 

consumes one clock cycle. At the beginning of each stage, one additional clock cycle is required 

and thereafte ten clock cycles are needed to fill up pipeline. Therefore, ten clock cycles are 
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required to compute initial output samples in each stage, after which two outputs are computed 

every clock cycle. The number of clock cycles required by each stage in a pipelined architecture 

for an N-point FFT is given by: 
 

cycles_per_stage = 10 + 
 

 
                                                   (3.1) 

 

The total number of clock cycles required to compute FFT for an N-point is given by: 

 

cycles_FFT = (cycles_per_stage   (        ) + 2                            (3.2) 

  

The FFT processor architecture is described in detail in terms of its components in the 

following sections. 

  

 

3.1 BUTTERFLY UNIT 

 

 

The butterfly unit was adopted from [4] which was implemented by J.Takala et al. It was 

designed to support radix-2 DIT butterfly operation. Butterfly operation is the basic entity of a 

butterfly diagram and it is pictorially described as shown in Figure 3.4. 

 

 
Figure 3.4: Single radix-2 DIT butterfly operation [4] 

 
 

Butterfly operation can be illustrated in equation as,  

 

X = P + WQ  and  Y = P – WQ                                               (3.3) 

 

where P and Q are complex input values, W is an input twiddle factor and X and Y are complex 

output values. The output X is the result of addition while Y is the result of subtraction. The 

multiplication (W*Q) is based on bit-parallel multipliers method which is explained in more 

detail below. The multiplication of two complex numbers W and Q is given by: 

 

 

WQ = (WR + jWI)(QR + jQI) = (WRQR  WIQI) + j(WRQI +WIQR)                  (3.4) 

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 06:37:32 EET - 137.108.70.7



8 

 

 

where indexes “R” and “I” represent the real and imaginary part of complex numbers 

respectively. Implementing the equation (3.3), four multipliers and two adders are required. After 

the optimization of the complex multiplication, it requires three multipliers instead of four 

according by following equation (3.4). 

 

WQ = WI(QR   QI) + QR(WR   WI) + j[WI(QR    QI) + QI(WR +WI )]             (3.5) 

 

The area and power consumption can be reduced if two clock cycles are used for 

complex multiplication. The reduction in number of multipliers through pipeline operation is a 

reasonable compromise between high throughput, area and power efficiency. Hence, the internal 

architecture of butterfly unit where was implemented is shown in Figure 3.5.  

 

 
Figure 3.5: Pipelined butterfly unit  

 

This approach uses only two multipliers and two adders. The complex multiplication is 

pipelined by using two clock cycles for computation. The pipelined multiplication is given by: 

 

A1 = QRWR;   B1 = QIWR   (cycle#1) 

 

A2 = QRWI;   B2 = QIWI   (cycle#2) 

 

WQ = (A1   B2) + j(B1 + A2)                                        (3.6) 
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Hence, the butterfly unit was implemented by sharing two out of three input ports for 

both input samples QR, QI and PR, PI respectively while the third input port is shared to read WR 

and WI of twiddle factor. Since FFT processor is required to be a fixed point computation, inputs 

ports are 16-bit values. When butterfly unit is in operation, complex values Q and P are read 

every alternate clock cycle and same is the case with WR and WI. Furthermore, a complex 

multiplier (two bit parallel real multipliers) and two adders were implemented as computation 

units and were integrated in the butterfly unit. The outputs of real valued multipliers are 

registered, thereby reducing the critical path of complex multiplier and thereafter the critical path 

of butterfly unit. The outputs of adders of complex multiplier are registered as well. The butterfly 

unit is implemented by pairing up complex multiplier along with adders required for butterfly 

operation. Inputs of the butterfly unit are registered and it needs two sets of input registers for 

operand P since, next P is read while current W*Q is computed. The butterfly unit was 

implemented to support Q-14 fixed point computation. Inputs and outputs are 16-bit fixed point 

values. Two output ports are shared between XR, XI and YR, YI respectively, being packed into 

32-bit complex value X and Y. 

Butterfly unit operation is controlled by control unit which issues register loads and 

multiplexers signals at appropriate time intervals. Two butterfly units operate in parallel in the 

FFT processor to compute two output samples per clock cycles, increasing the throughput of the 

processor. Figure 3.6 shows input/output ports of butterfly unit. 

 

 
Figure 3.6: Butterfly unit port details 

 

 

Butterfly unit has a clock port clk and an active high reset signal rst. Real parts of inputs 

P and Q are multiplexed into an input port pq_r while imaginary parts of P and Q are 

multiplexed into port pq_i. Real and imaginary parts of twiddle factor W are multiplexed into 

port w_ri. Control signals are driven into an input port ctrl_signals which is an 8-bit value and 
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contains the signals load_q, load_p1, load_p2, load_w, load_mul, load_add_sub, sub_enable 

and sel. The order at which signals are mentioned above is from lower bit to upper bit of 

ctrl_signals value.  Load_q and load_w are load signals for Q and W input registers. load_p1 

and load_p2 are load signals for P inputs registers.  load_mul and load_add_sub are load signals 

for multiplier output registers and complex multiplier adder output register respectively. 

Multiplexers are controlled via sel control signal. Addition or subtraction operations which are 

part of butterfly unit are controlled using sub_enable signal, which if being active high, the 

output has a result of subtraction. The output ports real_out and imag_out are the real and 

imaginary parts of output data respectively. 

Figure 3.7 shows waveforms of butterfly unit ports for 16-point FFT.  

 

 

 
   

Figure 3.7: Butterfly unit waveform for 16-point FFT 

 
 

As shown in figure 3.7, there are four stages in a 16-point FFT and timing of pipelined 

butterfly unit control signals follow a similar pattern in every stage. fft_idle and palse signals are 

part of the understanding of the waveforms. fft_idle signal indicates the beginning of FFT 

computation when it becomes low and the end of computation when it becomes high. palse 

signal indicates the 1
st
 clock cycle in each stage. The input data latency is four clock cycles and 

the output data latency is seven clock cycles with respect to the beginning of stage. Initially, the 

butterfly units compute the addition result and at the next clock cycle they compute the 

subtraction result for each stage of computation. The results of addition and subtraction are 

routed every alternate clock cycle.  Two butterfly units have the same timing of control signals.  
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3.2 DATA MEMORY (RAM) 

 

 

The input samples, intermediate samples and the output samples of FFT computation are 

stored in data memory. Data memory is RAM based and it consists of two sets called SetA and 

SetB. Butterfly operation is performed by reading input samples from one set of memory and by 

writing output samples to a different set of memory. Since, two butterfly units require four input 

samples per clock cycle, each set has to include four memory banks to concurrent access to four 

samples at any given time. Hence, SetA memory includes four memory banks RAM0, RAM1, 

RAM2 and RAM3 while SetB memory includes four memory banks RAM4, RAM5, RAM6 and 

RAM7. The maximum size of each memory bank is decided by the maximum size of FFT 

computation Nmax selected during design time. The maximum size of a memory bank is given 

by: 

 

ram_bank_size =  
    

 
                                                   (3.7) 

 

where the size is measured in terms of 32-bit words. The size of a memory bank defines its 

address bus width which is given by: 

 

address_ram_width=                                                         (3.8) 

 

In memory, complex data samples are stored as a 32-bit word, higher 16 bits constitute 

the real part while 16 lower-bits constitute the imaginary part. Data format stored in memory is 

pictorially described as shown in Figure 3.8. 

  

 
Figure 3.8: Data format stored in memory 

 

In the beginning of FFT computation, input samples are always stored in SetA. The input 

samples are bit reversed according to DIT FFT and split equally among four memory banks. 

Figure 3.9 describes the order of input samples stored in memory at the beginning of FFT 

computation.  
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Figure 3.9: Order of input sample at the beginning and the order of final output of 16-point FFT computation 

 

The bit reversed input samples are equally split into two halves, the upper half inputs 

stored in RAMO, RAM1 and the lower half inputs in RAM2, RAM3. The order of input samples 

is such that it provides conflict free access for butterfly operation. 

Final output of an N-point FFT computation might be available in SetA or SetB 

depending on the number of stages. If the number of stages is even, final outputs are stored in 

SetA otherwise if number of stages is odd, final outputs are stored in SetB. Since for a 16-point 

FFT, the number of stages is even, final outputs would be available in SetA and the order of 

outputs would be as shown in Figure 3.9. 

Eight suitable RAM memory banks were chosen to support Nmax-point FFT 

computation and were integrated into the FFT processor. Each RAM memory bank is clocked 

dual port memory, enabling access from within the FFT processor for computations as well from 

an axi unit which is used to form a link between external interface and memories. Memory 

access (read/write) latency is one clock cycle. Figure 3.10 shows input/output ports of a memory 

bank. 
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Figure 3.10: RAM memory bank port details 

 
 

RAM_WIDTH port is a local parameter into FFT processor, which is computed by 

equation (3.8) based on given NMAX and it is used to specify the address width during design 

time. RAM bank has a clock port clk and an active high reset signal rst. It consists of input data 

ports data_inA and data_inB, address ports addr_A and addr_B, write enable signals wren_A 

and wren_B and output data ports data_outA and data_outB. Ports with suffix ‘A’ are axi unit 

ports and ports with suffix ‘B’ are FFT processor ports.    

Waveforms of memory sets SetA and SetB for FFT processor ports are shown in Figure 

3.11 (a) and (b) respectively for 16-point FFT.  

 

(a)  
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(b)  
Figure 3.11: (a) Memory set SetA waveforms (b) Memory set SetA waveforms 

 

Figure 3.11(a) and (b) illustrates the FFT processor operation. As shown in the first stage, 

data are read from SetA memory and the results are written to SetB.  In the next stage, data are 

read from SetB and the results are written to SetA.  Read/write operations are switched between 

SetA and SetB memory in alternate stages. Write operation takes place when wren signal is high 

and read operation takes place when signa is low. Memory read/write access latency is single 

clock cycle. 

 

  

3.3 TWIDDLE FACTOR MEMORY (ROM) 

 

 

The twiddle factor memory is used to store twiddle factors required by butterfly unit0 and 

butterfly unit1 during FFT computation, as shown in Figure 3.3. The maximum number of 

twiddle factors required for an N-point FFT computation is 
 

 
. Hence, the maximum size of ROM 

unit to support up to Nmax-point FFT computation is given by: 

 

rom_size = 
    

 
                                                      (3.9) 

 

where size is measured in terms of 32-bit words.  The size of ROM defines its address bus width, 

is given by: 
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address_rom_width=                                                    (3.10) 

 

Twiddle factors stored in ROM are in natural order, before a FFT processor initiates the 

computations. Twiddle factor is a complex value in which 16-bit real and imaginary parts are 

packed into a 32-bit word, as shown in Figure 3.8. It is illustrated for a 16-point FFT in Figure 

3.12. 

 
Figure 3.12: Order of twiddle factors stored in ROM 

 

Twiddle factor memory was chosen to support Nmax-point FFT computation and was 

integrated into the FFT processor. Twiddle factor memory is a clocked dual port ROM which 

allows reading two twiddle factors per clock cycle for the butterfly units. It grants access within 

the FFT processor for computations as well as to an axi unit for initialization of the twiddle 

factor memory, depending on the given FFT size. Memory access (read/write) latency is one 

clock cycle. Figure 3.13 shows input/output ports of a ROM memory. 
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Figure 3.13: ROM memory port details 

 

ROM_WIDTH port is a local parameter which is computed by equation (3.10) based on 

the given NMAX and it is used to specify rom address width during design time. ROM is a dual 

port memory which supplies twiddle factors for butterfly units. It has a clock port clk and an 

active high reset signal rst. It consists of address ports addr_A and addr_B and output data ports 

data_outA and data_outB which are used by the FFT processor. Ports with suffix ‘A’ are meant 

for butterfly unit0 (twiddle factor0) while ports with suffix ‘B’ are meant for butterfly unit1 

(twiddle factor1). Axi unit uses a write enable signal wren_A, input data port data_inA  and 

address port addr_A to initialize the twiddle factor memory. Address values from axi unit and 

FFT processor are multiplexed into port addr_A. addr_A port is set to drive address value from 

axi unit while a FFT processor is idle. Twiddle factor memory consists of input data ports 

data_inA and data_inB, address ports addr_A and addr_B, write enable signals wren_A and 

wren_B and output data ports data_outA and data_outB. Ports with suffix ‘A’ are axi unit ports 

and ports with suffix ‘B’ are FFT processor ports.    

Waveforms of twiddle factor memory for FFT processor ports are shown in Figure 3.14 

for 16-point FFT.  

 

 
Figure 3.14: ROM memory waveforms 
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Figure 3.14 illustrates the FFT processor operation which is reading two twiddle factors 

per clock cycle for the butterfly units at different stages of FFT. Memory read/write access 

latency is single clock cycle.  

 

3.4  INTERCONECT  

 

 

Interconnect is the link between butterfly units and address generation with data memory. 

Two interconnects are used in FFT processor architecture and they are interconnectA and 

interconnectB as illustrated in Figure 3.4.  The interconnectA forms a connection between 

butterfly units and memory SetA while interconnectB forms a connection between butterfly 

units and memory SetB. The internal architecture of interconnect is described in Figure 3.15.  

 

 
Figure 3.15: Interconnect internal architecture and the external interface 

 

Interconnect consists of a number of multiplexers whose outputs are registered. The 

multiplexers act like switches, linking inputs to appropriate outputs based on selected signals 

from the control unit.  

The interconnect unit was implemented in order to perform a reading/writing operation to 

the memory set at which a connection is established. The interconnect unit receives read and 

store addresses from the address generation unit. When it performs a reading operation, the read 

address is selected by the multiplexer and becomes registered. Thereafter, the read address is 
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routed to data memory set for reading. The four read data from memory set are registered in the 

interconnect unit which then routes read data to butterfly units for computation. If interconnect 

performs a writing operation, data is received as results from butterfly units and the write address 

is selected via multiplexer. Data and address are registered and then routed to memory for 

storage.  

When FFT processor is in operation, in even numbered stages, the inputs are read from 

memory SetA and they are routed to butterfly units via interconnectA. After butterfly operation, 

the outputs are routed via interconnectB and stored in memory set SetB. In odd numbered 

stages, the inputs are read from memory SetB and they are routed to butterfly units via 

interconnectB. After butterfly operation, the outputs are routed via interconnectA and stored in 

SetA memory.   The four read data from memory set are separated and in some occasions flip 

before being supplied into butterfly units. The interconnect unit specifies the flow of data based 

on dataflow algorithm, which is described in detail in the relevant section (section 4).  

Figure 3.16 shows input/output ports of an interconnect unit. 

 

 
Figure 3.16: Interconnect port details 

 

The interconnect unit uses the local parameter port RAM_WIDTH to specify ram address 

width. It has a clock port clk and an active high reset signal rst. Control signals are driven into an 

input port ctrl_signals which is a 4-bit value and contains RW signal, last_stage signal, flip 

signal and add_sub signal. The order at which signals are mentioned above is from lower bit to 

upper bit of ctrl_signals value. RW signal specifies if the interconnect performs a reading or 

writing operation. last_stage signal indicates the last stage of FFT computation and  flip signal 

indicates whether the read data from memory is to be flipped or not. The last control signal is 

add_sub, which indicates whether the outputs from butterfly units are results of addition or 

subtraction.  Memory read address is received through input port read_data and memory store 
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addresses are received through input ports store_add and store_sub. store_add and store sub 

ports indicate the store addresses of addition and subtraction results respectively. The address is 

selected to be registered depending on the current operation of interconnect and it is routed via 

output port addr. addr port is an input port to the memory set in which a connection is 

established. Four data inputs from memory set are received through ports data0, data1, data2 

and data3.  When interconnect performs a reading operation, last_stage and flip signals specify, 

via multiplexers, the flow of the read data before being registered into interconnect. The four 

read data which were registered are routed to butterfly units via output ports bfly0_q, bfly0_p, 

blfy1_q and bfly1_p.  bfly0_result and bfly1_result are input ports of interconnect, which contain 

the results of butterfly units. The results are registered and routed to memory set via output ports 

store_data0 and store_data1 respectively. When interconnect performs a writing operation, 

add_sub signal specifies, via a multiplexer the write address which will be registered and routed 

to memory set. 

Figure 3.17 (a) and (b) shows waveforms of interconnectA ports and interconnectB ports 

respectively for 16-point FFT.  

 

(a)   
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(b)   
Figure 3.17: (a) InterconnectA waveforms (b) InterconnectB waveforms 

 

As shown in a figure 3.17 (a) and (b), interconnectA performs a reading operation in 

every even numbered stage and a writing operation in every odd numbered stage. InterconnectB 

performs a writing operation in every even numbered stage and a reading operation in every odd 

numbered stage.  last_stage and flip signals specify the flow of the read data before being 

registered and supplied to butterfly units. When last_stage signal is high, it indicates that it is the 

last stage. When flip signal is high, it indicates that the current read data from memory have to 

flip. The results of addition and subtraction are driven every alternate clock cycle by butterfly 

units. When add_sub signal is high, it indicates that the current data  received by butterfly units 

are subtraction results. Otherwise, when add_sub signal is low, it indicates that the current data 

received by butterfly units are addition results.    

 

 

3.5  ADDRESS GENERATION UNIT  

 

 

Address generation unit generates addresses in each stage of FFT computation for 

reading input data samples, twiddle factors and storing outputs data samples. The address 

generation unit that was implemented is based on an address generation scheme which was 

developed to support N-point FFT computation.  

The address generation algorithm provides conflict free access of data samples during 

computation. It requires two m-bit counters, where m = log2(N/4), according to equation 3.8. The 

algorithm is described in detail below.  
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1) Address to read inputs from memory: 

A simple m-bit counter is used to generate read address. 

 

read_data = [am-1am-2.......a1a0]                                    (3.11) 

       

2) Address to store outputs to memory: 

Another simple m-bit counter is used to generate store address. 

 

                                 store _ add = [bm-1bm-2….…b1b0]                                 (3.12)  

 

                                store _ sub = [b΄m-1b΄m-2…….b΄1b΄0]                            (3.13) 

 

3) Address to read twiddle factors from ROM: 

For an N-point FFT there are log2N number of stages, we assume stage index as s 

which is incremented at the end of each stage. Hence, s can take values s = 0, 1, ... 

log2(N) - 1.  

 

 Twiddle factor addresses for stages except last stage  (s = 0, 1, … log2(N)-2):   

 

(i)  [dm-1..d0] = [am-1…a0] XOR [0am-1…a1] 

(ii)  count_gray = [0dm-1dm-2…..d1d0] 

                               = [emem-1..e1e0] 

(iii)  coef x = [em….em-s0m-s-s…0100] 

                                     = [fm+1fm…f1f0] 

(iv)  Coef0Addr = [fmfm-1…f1f0] 

(v)  Coef1Addr = Coef0Addr 

 

 Twiddle factor addresses for last stage (s = log2(N)-1): 

Note: coefy = [0m+10m…011] at the beginning of the stage. 

 

(i)  coefy = [fm+1fm…f1f0] 

(ii)  sum = [am-1am-2..a1a0] + [fmfm-1..f2f1] 

                               = [gm-1gm-2…g1go] 

(iii)  coefy = [0gm-1gm-2…g1gof΄0] 

                                            = [fm+1fm…f0] 

 

fm = ‘0’ for first  
 

 
 butterfly computations. 

fm = ‘1’ for next  
 

 
 butterfly computations. 

 

(iv)  Coef0Addr = [fmfm-1…f1f0] 
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(v)  Coef1Addr = [fmfmm-1…f1f΄0] 

 

The address read_data (step 1) is used to read inputs from either SetA or SetB memory, 

depending on FFT stage. There are two outputs to butterfly operation; one is a result of addition 

and the other is a result of subtraction. Hence, in step 2 there are two store addresses generated. 

Two outputs from butterfly unit have to be stored in different memory banks and in different 

address locations to avoid access conflicts. Therefore, the address store_add stores the result of 

addition and store_sub stores the result of subtraction. Step 3 presents twiddle factor address 

generation logic where Coef0Addr corresponds to butterfly unit0 and Coef1Addr corresponds to 

butterfly unit1. The steps  described are executed in the specified order in order generate 

addresses Coef0Addr and Coef1Addr. The internal logic of address generation unit is shown in 

figure 3.18. 

 

 
 

Figure 3.18: Address generation unit internal logic 
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Address generation unit was implemented based on the description of algorithm, as 

mention above. Figure 3.19 shows input/output ports of address generation unit. 

 

 
Figure 3.19: Address generation unit port details 

 

The address generation unit uses the local parameter ports RAM_WIDTH and 

ROM_WIDTH to specify ram and rom address width respectively. Furthermore, F_WIDTH port 

is used as a local parameter to support the variables width for the maximum FFT. F_WIDTH 

value is computed by equation log2(NMAX)+1. The unit has a clock port clk and an active high 

reset signal rst. Control signals are driven into an input port ctrl_signals which is 

(2*F_WIDTH+2)-bit value. ctrl_signals port contains fft_idle signal, last_stage signal, curr_size 

value and  c_counter value. The order at which signals are mentioned above is from lower bit to 

upper bit of ctrl_signals value. fft_idle signal indicates whether the FFT processor is idle. It is 

used by address generation unit to start generating addresses for given FFT size when FFT 

processor is set into operation. last_stage signal indicates the last stage of FFT computation. 

curr_size consists the value of the given FFT size and c_counter consists the value of current 

clock cycle in the stage. c_counter is used to define the values of addresses at proper time. Read 

address port is read_data and store address ports are store_add and store_sub. The addresses 

read_data and store_add are m-bit counters whereas store_sub is one’s complement version of 

store_add. The twiddle factor address ports are Coef0Addr and Coef1Addr.  

Figure 3.20 shows waveforms of address generation unit for 16-point FFT 
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Figure 3.20: Address generation unit waveforms 

 

As shown in a figure 3.20, address generation unit starts immediately after fft_idle signal 

is set to ‘0’ by the control unit. For every two clock cycles, a new read address is generated and 

at the 8
th

 clock cycle and for every four clock cycles, new store addresses are generated. The two 

multiplexer signals half_stage and last_stage enable coefficient address selection depending on 

the state of butterfly computations in a given stage. The last_stage signal is set to ‘1’ for the last 

stage and to ‘0’ for the rest of the stages, differentiating the last stage of FFT from the rest of the 

stages. The half_stage signal is computed into address generation unit based on c_counter. In 

the last stage of FFT computation, the half_stage signal is set to ‘0’ for the first  
 

 
 butterfly 

computations and to “1” for the next 
 

 
 butterfly computations. The twiddle factor addresses 

Coef0Addr and Coef1Addr are delayed by two clock cycles at the time that they were calculated. 

The reason is that the twiddle factor addresses are routed directly to ROM and they require two 

clock cycles of delay in order to synchronize with the read data from RAM before supplying 

them to butterfly units.  

It is important to show the delay of twiddle factor addresses and store addresses 

generation, as is necessary for the proper flow of data. Figure 3.21 is a pictorial description of 

timeline for the nine pipeline stages.  

 
Figure 3.21: Timeline of nine pipeline stages. 
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3.6  CONTROL UNIT 

 

 

The control unit is the most important unit of FFT processor. It generates control signals 

at proper timing to control and coordinate the activities of all other units in the processor as 

shown in Figure 3.3. Control unit is implemented using Moore state machine, as shown in figure 

3.22. 

  

 
Figure 3.22: Control unit state diagram 

 

At the beginning, control unit starts with state S0 in which the FFT processor is idle. In 

state S0, all the signals and variables are initialized depending on required N-point computation. 

After being initialized, when it receives the suitable signal to start computing, it moves to state 

S1. In state S1, it generates control signals for the following activities: address generation from 

address generation unit, read input samples from SetA memory, route inputs to butterfly units via 

interconnectA, butterfly units operation, route outputs to SetB memory via interconnectB and 

write butterfly outputs to SetB memory. If the last stage of FFT computation is completed, it 
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moves from state S1 to state S0. Otherwise, after completing an FFT computation stage in S1 it 

moves to transition state S2 where it prepares itself before generating control signals for next 

stage. 

From transition state S2 it moves to state S3. In state S3 it generates control signals for 

the following activities: address generation from address generation unit, read input samples 

from SetB memory, route inputs to butterfly via interconnectB, butterfly units operation, route 

the outputs to SetA memory via interconnectA and write butterfly outputs to SetA memory. If 

the last stage of FFT computation is completing an FFT computation stage in S3 it moves to state 

S0. Otherwise, after completing a FFT computation stage in S3 it moves to transition state S2, 

where it prepares itself before generating control signals for next stage. The process of state 

transitions S1 → S2 → S3 and S3 → S2 → S1 are repeated in every alternate stage until it 

returns to state S0 at the end of FFT computation.  

It is important to note that in order to generate suitable control signals, it was required to 

define a clock cycle counter. The counter is used to count the clock cycles that are needed in 

each stage.  The number of clock cycles required by each stage is given by equation 3.2. This 

achieves the generation of control signals at proper time. Figure 3.23 shows input/output ports of 

control unit. 

 

 

 
Figure 3.23: Control unit port details 

 

 

The control unit uses the local parameter port F_WIDTH to specify the variables for the 

maximum FFT size. The unit has a clock port clk and an active high reset signal rst. curr_size 

port has the value of the given FFT size and start port indicates the start of FFT computation. 

idle signal indicates whether the FFT processor is idle and setA_setB signal indicates which set 

of memory has stored the result at the end of FFT computation.  wr_setA port and wr_setB port 

are 2-bit value for read-write signaling to memory sets SetA and SetB respectively. 

bfly_ctrl_signals port and agu_ctrl_signals port are corresponding to control signals of butterfly 
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units and address generation unit respectively. intA_ctrl_signals port and intB_ctrl_signals port 

correspond control signals of interconnectA and interconnectB respectively.  

Registers and multiplexers were included in pipeline architecture of FFT between 

interconnects and butterfly units. Multiplexer signals specify the flow of data pre-computation of 

butterfly units. sel_AorB multiplexer signal specifies the  interconnect unit from which, the read 

data will be registered before being supply them into butterfly units. sel_QorP multiplexer signal  

specifies the complex value (Q or P) which will be routed into butterfly units and sel_WRorWI 

multiplexer signal specifies the value (WR or WI) which  will be routed into butterfly units.  

load_in and load_out  are load signals for input registers in butterfly units and output registers of 

butterfly units respectively.       

Figure 3.24 shows waveforms of control unit for 16-point FFT. 

 

 
Figure 3.24: Control unit waveforms 
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3.7  AXI UNIT 

 

 

Axi unit was implemented in order to manage the configuration, write and read channels 

of FFT processor. It is based on rules of communication protocol which were defined by the 

external interface. The properties of transmission that the protocol defines are the packet size, 

handshaking and error type.   

The three transaction channels use the same valid/ready handshake process to transfer 

data. This two-way flow control mechanism means that both the master and slave can control the 

rate at which the information moves between them. The source generates the valid signal to 

indicate when data information is available and the destination generates the ready signal to 

indicate whether it can accept the information. Transfer occurs only when both the valid and 

ready signals are high. All channels transfer 64-bit value of data. Write channel and read channel 

also include last signal to indicate the transfer of the final item in transaction. 

The external interface specifies the size of FFT computation via the configuration 

channel and axi unit enables the receipt of samples data via the write channel. For each sample 

data received, a writing operation is performed in order to store the input samples data in 

memory set SetA. The 64-bit samples data are segregated into higher 32 bits which constitute the 

real part in floating point and into lower 32 bits which constitute the imaginary part in floating 

point. The 32-bit data are routed into toFixed units which convert them to 16-bit values in fixed 

point. They are then packed into 32-bit complex value and are stored in memory in bit reversed 

order, as described above in figure 3.9. The write latency for each data received is one clock 

cycle and the number of clock cycles required for writing input samples data for an N-point FFT 

is N clock cycles in continuous transmission flow.  

When Axi unit receives the first sample data via the write channel, it starts to fill the 

twiddle factor memory if the given size differs from the previous FFT computation. Cordic 

generation unit, which supports fixed point computation, was integrated into axi unit in order to 

compute twiddle factors according to the equation,       

 

  
       

   

 
               

 

 
                                            (3.14) 

 

where is expressed as, 

  
       

   

 
        

   

 
                                               (3.15) 

 

The cos and sin are the real and imaginary part of twiddle factor respectively and are 

computed by the cordic generation unit. The results are merged into 32-bit complex value and 

are stored in rom memory. It takes a new input angle every clock cycle and gives results 15 clock 

cycles later.  The total number of clock cycles required to initialize the twiddle factor memory 

for N-point FFT is 15 + 
 

 
 clock cycles.  
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The axi unit informs the control unit to start the FFT computations when the samples data 

inputs are stored in memory set SetA and twiddle factor memory is filled with data which is 

required to support the given FFT size.  On the other hand, when the given FFT size and the 

number of given samples data do not match, axi unit informs the external interface for error. 

After completing a FFT computation, the control unit informs the axi unit memory set in which 

the final results are stored. Then, as shown in figure 3.9 the results have to be sorted in physical 

order before being supply to external interface via the read channel. The axi unit reads the final 

results from memory set and stores them in physical order to the other memory set. 
 

 
 clock 

cycles are required to sort the results. Thereafter, when the read channel is enabled for transfer, 

the sorted data are segregated into higher 16-bits and lower 16-bits which are converted to 32-

bits floating point by toFloat unit and are supplied in 64-bit value to external interface. The 

number of clock cycles required to transfer the final sorted data for an N-point FFT is N clock 

cycles in continuous transmission flow.  

Figure 3.25 shows input/output ports of axi unit. 

 

 
Figure 3.25: Axi unit port details 

 

The axi unit uses the local parameter ports RAM_WIDTH, ROM_WIDTH and 

F_WIDTH to specify ram address width, rom address width and the variables with the 
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maximum FFT size respectively. The unit has a clock port clk and an active high reset signal rst.  

error signal indicates whether the given FFT size and the number of given data sample do not 

match a prerequisite for the FFT processor to start.  Each channel contains three ports. ready 

signal indicates when it can accept the data, valid signal indicates when the data are valid and 

data port which has 64-bit value for transfer. Write channel and read channel also include last 

signal to indicate the transfer of the final item in transaction. All channel signals and ports are 

driven via the FFT processor. curr_size port has the value of the given FFT size and start signal 

indicates the start of FFT computation. idle signal indicates whether the FFT processor is idle 

and setA_setB signal indicates which set of memory was stored by the final results. Write enable 

signal rom_wren, address port rom_addr and input data port rom_data_in are used to initialize 

the twiddle factor memory. Write enable port wren is 4-bit value for write signaling to RAM 

banks of the memory sets SetA and SetB.  addrA0 and addrA1 ports have the values of 

addresses of RAM banks of the memory sets SetA. addrB0 and addrB1 ports have the values of 

addresses of RAM banks of the memory sets SetB.  Data in ports data_in0, data_in1, data_in3 

and data_in4 are driven to four RAM banks in each memory set. Data out ports for memory set 

SetA are data_out0,..data_out3 and for memory set SetB are data_out4,..data_out7.  

Figure 3.26 (a) and (b) shows waveforms of axi unit operations for 16-point FFT. 

 

(a)   
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(b)  
Figure 3.26: Axi unit waveforms (a) writing of the initial values to memory SetA and twiddle factor memory (b) result 

sorting and reading operation 

 

 

4. DATAFLOW ALGORITHM 

 

 

The flow of data across various components of processor is the basis of FFT processor 

architecture. The dataflow algorithm describes reading of inputs from memory, routing of inputs 

to butterfly units and routing outputs of butterfly units to memory. The units of FFT processor 

were implemented to succeed the proper flow of data based on the algorithm which described as 

follows. 

In even numbered stages, the inputs are read from SetA memory and they are routed to 

butterfly units via interconnectA. The twiddle factors are read from ROM and supplied to 

butterfly units. After butterfly computations the outputs are routed via interconnectB and stored 

in SetB memory.  

In odd numbered stages, the inputs are read from SetB memory and they are routed to 

butterfly units via interconnectB. The twiddle factors are read from ROM and supplied to 

butterfly units. After butterfly computations the outputs are routed via interconnectA and stored 

in SetA memory. 

 

Dataflow involving butterfly unit0: 

Even numbered stages: 

 During all stages except last stage: 
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Read inputs from RAM0, RAM1. After butterfly computation, the result of 

addition and subtraction are stored in RAM4, RAM5. 

 During last stage: 

Read inputs from RAM0, RAM2. After butterfly computation, the result of 

addition and subtraction are stored in RAM4, RAM5. 

 

Odd numbered stages: 

 During all stages except last stage: 

Read inputs from RAM4, RAM5. After butterfly computation, the result of 

addition and subtraction are stored in RAM0, RAM1. 

 During last stage: 

Read inputs from RAM4, RAM6. After butterfly computation, the result of 

addition and subtraction are stored in RAM0, RAM1. 

 

Dataflow involving butterfly unit1: 

Even numbered stages: 

 During all stages except last stage: 

Read inputs from RAM2, RAM3. After butterfly computation, the result of 

addition and subtraction are stored in RAM6, RAM7. 

 During last stage: 

Read inputs from RAM1, RAM3. After butterfly computation, the result of 

addition and subtraction are stored in RAM6, RAM7. 

 

Odd numbered stages: 

 During all stages except last stage: 

Read inputs from RAM6, RAM7. After butterfly computation, the result of 

addition and subtraction are stored in RAM2, RAM3. 

 During last stage: 

Read inputs from RAM5, RAM7. After butterfly computation, the result of 

addition and subtraction are stored in RAM2, RAM3. 

 

  

The flow of data for 16-point FFT is pictorially described in datagram of figure 4.1. 

Continues line butterfly belongs to butterfly unit0 and dotted line butterfly belongs to butterfly 

unit1.   
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Figure 4.1: 16-point dataflow butterfly diagram for FFT processor architecture 

 

Figure 4.1 shows the order of reading inputs from memory, storing outputs to memory, 

routing inputs to butterfly units, order of twiddle factor access and routing butterfly outputs to 

memory.  

5. RESULTS  

 

The FFT processor was implemented in Verilog, a Hardware Design Language (HDL) 

using the simulation tools ModelSim and Vivado. Initially, FFT processor components were 

implemented separately and were verified by running test benches. After individual modules 

were functionally verified, they were integrated to form the complete system. The FFT processor 

as a complete system was functionally verified by simulating operations of an external interface 

in a test bench. During simulation, the processor was configured for different radix-2 sizes from 

16 to 2048 as maximum FFT size Nmax. FFT computation time in clock cycles for different FFT 

sizes was verified by equation (3.2) and is given in Table 5.1.  

 

N Clock Cycles 

16 74 

32 132 

64 254 

128 520 

256 1106 

512 2396 

1024 5222 

2048 11376 
Table 5.1: FFT Computation Time 
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As shown in table, increase in FFT size results in almost linear increase in computation 

time till 256 points. But after 256 points, there is exponential increase in computation time. 

 

6. CONCLUSION 

 

 

The FFT processor was implemented and functionally verified through RTL simulation 

according to the scalable FFT processor architecture which was proposed. According to [1], the 

architecture outperforms the existing fixed and variable length FFT processor in terms of speed, 

power, area, flexibility and scalability, attributes required by a wide range of multiple wireless 

standards. Furthermore, the architecture can be extended to radix-4/8 computations in order to 

achieve higher performance. In addition, the FFT processor can be used in non-OFDM systems 

where scalability is required. 
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