
Java implementation of the
graphical user interface of
the Octopus distributed

operating system

Submitted by
Aram Sadogidis

Advisor
Prof. Spyros Lalis

University of Thessaly
Volos, Greece

October 2012

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Acknowledgements

I am sincerely grateful for all the people that supported me during my Uni-
versity studies. Special thanks to professor Spyros Lalis, my mentor, who
had decisive influence in shaping my character as an engineer. Also many
thanks to my family and friends, whose support all these years, encouraged
me to keep moving forward.

1

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Contents

1 Introduction 4

2 System software technologies 6
2.1 Inferno OS . 6
2.2 JavaSE and Android framework 8
2.3 Synthetic file systems . 10

2.3.1 Styx . 10
2.3.2 Op . 12

3 Octopus OS 14
3.1 UpperWare architecture . 14
3.2 Omero, a filesystem based window system 16
3.3 Olive, the Omero viewer . 19
3.4 Ox, the Octopus shell . 21

4 Java Octopus Terminal 23
4.1 JOlive . 24
4.2 Desktop version . 25

4.2.1 Omero package . 26
4.2.2 ui package . 27

4.3 Android version . 28
4.3.1 com.jolive.Omero . 28
4.3.2 com.jolive.ui . 29
4.3.3 Pull application’s UI 30

5 Future perspective 33
5.1 GPS resources . 33
5.2 JOp . 34
5.3 Authentication device . 34
5.4 Remote Voice commander . 34
5.5 Conclusion . 35

6 Thesis preview in Greek 38

2

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

List of Figures

2.1 An application operates on a synthetic file as if it is a disk file,
effectively communicating with a synthetic file system server. 11

2.2 Oxport and Ofs are combined together in order to speak with
a Styx client with Op . 13

3.1 Various terminals connected to the central PC 15
3.2 An Octopus terminal that wraps, a filesystem interface, around

a resource of the Host system and exports it to the Octopus
global namespace and to the underlying Os through the Web-
DAV protocol. 16

3.3 A screenshot of the Octopus UI 17
3.4 Octopus’s windowing system design diagram 18
3.5 Mapping of a filesystem tree to graphical components. 20
3.6 A popup menu . 21

4.1 The three terminal variants with their respective UI screenshots 25
4.2 The class dependency of the implementation 26
4.3 The Red arrow indicates the finger’s path in order to issue

the Write command . 29
4.4 The pull effect on the Omero tree 31
4.5 Step by Step Pull App example 32

3

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Chapter 1

Introduction

With the expansion of the Internet and the widespread usage of a variety
of computing devices that are constantly evolving, emerges the need to estab-
lish a pervasive computing environment to satisfy the ever evolving modern
user’s demands. That need arises from the fact that the users face de-
centralized, uncoordinated, heterogeneous, and highly dynamic, practically
uncontrolled environments. Octopus [1,2] is a system that aims to provide a
single, homogeneous, ubiquitous computing environment by centralizing ev-
erything to a single personal computer. Other devices and services connect
over the network, as terminal resource providers, to the central system. The
aggregation of distributed resources in a unified, homogeneous environment,
creates the illusion of a ubiquitous virtual computer which a major step into
making pervasive computing a reality..

The resources that can be added to the Octopus pervasive environment
have to conform to a number of restrictions which are imposed mainly by
the software technologies upon which the system is built. The goal of this
project is to expand the set of candidate system software technologies, by
bringing into play the Java platform. To achieve that goal, we have to
implement an Octopus terminal in Java, in order to be able to expose Java
supported devices into the Octopus “ecosystem”.

We developed a prototype Java implementation of the front-end of Octo-
pus’s graphical user interface, named JOlive. This is the biggest component
of a full-fledged Octopus terminal, since it provides full control over the ap-
plications running on the Octopus environment. The functionality that it
lacks, is to expose other resources than the display, to the system. We suc-
ceed to port JOlive to the Android platform which enables Android devices
to display the user interface of an Octopus system. Additionally, for the
Android version, we developed a functionality to manage the UI for mobile
devices by flexibly pulling a selected subset of the complete GUI.

4

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

The outline of the document is:

2. System software technologies A brief description of the underlying
technologies supporting the Octopus system. This knowledge is a pre-
requisite in order to understand the concepts presented later, because
these are the building blocks of the system. These technologies both
impose restrictions and offer opportunities for the development of the
system.

3. Octopus OS This chapter describes the Octopus OS, covering a number
of aspects like the UpperWare architecture and the windowing system.
In order to appreciate the purpose of this project, one has to first
understand how the Octopus system works.

4. Java Octopus terminal The JOlive implementation is described which
encapsulates the software development effort made during this project.
Also it contains some of the technical challenges faced during the de-
velopment and the experience gained from that endeavour.

5. Future Perspective Few interesting opportunities arise from a Java
terminal implementation. A couple of promising extensions are de-
scribed, planned for implementation in the future.

5

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Chapter 2

System software technologies

Octopus system is built out of UpperWare [3, 4], a design paradigm that
wraps computing resources with a file system interface and aggregate’s them
to a single file system tree. This approach inevitably imposes the require-
ment to use a synthetic filesystem [5] protocol. If we combine this fact
with the qualities that the system should satisfy, namely to be able to run
on a variety of hardware and operating system configurations, Inferno OS
becomes a strong candidate as a supporting platform. Indeed, Octopus is
built on Inferno since it offers a built in synthetic filesystem protocol and
it can run on a big number of platforms, both hosted on popular OSes and
stand-alone on bare metal.

2.1 Inferno OS

Inferno OS [6, 7] is a distributed operating system implemented at Bell
Labs 1 based on the experience gained with Plan 9 from Bell Labs. It
can operate stand-alone (running directly on a hardware) or in a hosted
environment. It defines a virtual machine, called Dis, which is implemented
for all modern operating systems 2. It has three design principles.

1. All resources are named and accessed like files in hierarchical file sys-
tems.

2. Disjoint resource hierarchies can be joined together into a single, pri-
vate hierarchical namespace.

3. A single communication protocol, Styx, is used to access all resources,
whether local or remote.

1Now it is developed and maintained by Vita Nuova Holdings as free software.
2linux, windows, macosx, plan9, solaris, BSD.

6

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Inferno is intended to be used in a variety of network environments, for
example those supporting advanced telephones, hand-held devices, TV set
boxes attached to cable or satellite systems, and inexpensive Internet com-
puters, but also in conjunction with traditional computing systems [8]. The
qualities that enable this kind of versatility are:

Portability across processors: It currently runs on Intel, Sparc, MIPS,
ARM, HP-PA, and PowerPC architectures and is readily portable to
others.

Portability across environments: It runs as a stand-alone operating sys-
tem on small terminals, and also as a user application under Windows
NT, Windows 95, Unix (Irix, Solaris, FreeBSD, Linux, AIX, HP/UX)
and Plan 9. In all of these environments, Inferno applications see an
identical interface.

Distributed design: The identical environment is established at the user’s
terminal and at the server, and each may import the resources (for
example, the attached I/O devices or networks) of the other. Aided
by the communications facilities of the run-time system, applications
may be split easily (and even dynamically) between client and server.

Minimal hardware requirements: It runs useful applications stand-alone
on machines with as little as 1 MB of memory, and does not require
memory-mapping hardware.

Portable applications: Inferno applications are written in the type-safe
language Limbo [9], whose binary representation is identical over all
platforms.

Dynamic adaptability: Applications may, depending on the hardware or
other resources available, load different program modules to perform
a specific function. For example, a video player application might use
any of several different decoder modules.

Inferno applications can be written in C or in a new programming lan-
guage introduced with the system, Limbo [6, 9]. The later is a type-safe
language that is compiled to portable byte code and it is used for writing
distributed systems. Octopus itself is developed in Limbo. It is syntactically
similar to C, it has several features that make it simpler, safer and yet more
powerful and better suited to the development of concurrent, distributed
systems. The Limbo compiler generates architecture independent object
code which is then interpreted by the Inferno Virtual Machine, named Dis,
or compiled just before runtime to improve performance. This ensures that
Limbo applications are completely portable across all Inferno platforms.

7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

The Octopus system benefits from the capabilities of the Inferno OS in
many ways. For one it satisfies the major requirement of a synthetic filesys-
tem support. Also, every possible device that can host Inferno, is a prospec-
tive resource for Octopus. As it will explained later on, once you are able
to run an Octopus terminal on a device, it is easy the expose underlying
resources to the rest of the system.

2.2 JavaSE and Android framework

Java Standard Edition [10], is a programming platform which enables the
deployment of portable applications for general usage purposes. It consists
of a virtual machine (JavaRE) and a set of libraries. All popular operat-
ing systems have a JRE implementation which makes Java programs cross-
-platform. Even the web browsers are able to host Java programs, called
applets. There are many Java-enabled platforms. This is a brief list of
systems that have a JRE implementation.

• Solaris-OpenIndiana

• All Windows variants

• GNU \Linux distributions

• FreeBSD/NetBSD/OpenBSD

• Mac Os X

• Popular Web Browsers (Firefox, Chrome, Safari)

As a result, applications developed in the Java language, can execute on
a vast number of computing platforms.

Along with the Java virtual machine, a collection of libraries is supplied
too. The Standard Edition, which is used in this project, offers the following
packages.

java.lang Contains fundamental classes and interfaces closely tied to the
language and runtime system. This includes the root classes that
form the class hierarchy, types tied to the language definition, basic
exceptions, math functions, threading, security functions, as well as
some information on the underlying native system.

java.io Contains classes that support input and output.

java.math The java.math package supports multiprecision arithmetic (in-
cluding modular arithmetic operations) and provides multiprecision
prime number generators used for cryptographic key generation.

8

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

java.net The java.net package provides special IO routines for networks,
allowing HTTP requests, as well as other common transactions.

java.text The java.text package implements parsing routines for strings
and supports various human–readable languages and locale-specific
parsing.

java.util Data structures that aggregate objects are the focus of this pack-
age.

java.applet This package allows applications to be downloaded over a net-
work and run within a guarded sandbox.

java.beans A package with various classes for developing and manipulating
beans, reusable components defined by the JavaBeans architecture 3

java.awt and javax.swing These two, provide access to a basic set of GUI
widgets and a collection of routines to implement GUI interfaces.

java.rmi The java.rmi package provides Java remote method invocation to
support remote procedure calls between two java applications running
in different JVMs.

java.security Support for security, including the message digest algorithm.

java.sql For database implementations.

This is the programming environment that is supplied to a JavaSE de-
veloper, which directly affects the flexibility offered to the Java Octopus
terminal developer.

In many ways, Inferno OS aims to solve the same problems as Java. In a
more abstract sense, both define a virtual machine upon which portable ap-
plications can be deployed. But Inferno is a full-blown operating system with
its own protocol stack and graphical user interface, whereas Java is just the
virtual machine along with an API. To make the matter more complicated,
there is an implementation of Java on the Inferno operating system which
enables development and execution of Java applications within Inferno [11].
For the intents and purposes of the project described in this document, the
portable nature of Java is what matters. If we combine it with a synthetic
filesystem implementation we have a suitable platform for the development
of an Octopus terminal.

3http://en.wikipedia.org/wiki/JavaBeans

9

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

One other benefit of a Java terminal implementation is that we gain the
opportunity to take advantage of the popular Android OS4 since the pro-
gramming language of choice for that platform, is Java. Indeed, we’ve imple-
mented an Android version of the Octopus UI viewer. These kind of devices
are ubiquitous and have many interesting capabilities (GPS, touchscreen,
accelerometer). The inclusion of Android supported devices to a distributed
operating system, such as Octopus OS, seems promising.

Some notable differencies between the Android programming environment
and JavaSE are: [12]

API The class library of the Android platform is a subset of the Apache
Harmony Java implementation, which is different from the JavaSE.

Virtual Machine There is no JavaRE version for the Android OS. Davlik
is a register-based5 java virtual machine, specialized specifically for
the platform. The Android SDK offers the tools to compile the Java
code to Dalvik executables.

Graphics API Android does not use the Abstract Window Toolkit nor
the Swing library. User Interface is built using View objects. Android
uses a framework similar to Swing based around Views rather than
JComponents.

2.3 Synthetic file systems

A synthetic file system [5] is a hierarchical interface to non-file objects
that appear as if they were regular files in the tree of the disk-based filesys-
tem. These non-file objects may be accessed with the same system calls or
utility programs, as regular files and directories. The advantage of synthetic
file systems is that, well known file system semantics can be reused for a
universal and easily implementable approach to interprocess communica-
tion. Clients can use such file systems to perform simple file operations on
its nodes, and do not bother with complex message encoding and passing
methods and other aspects of protocol engineering. For most operations,
common file utilities can be used, so even scripting is quite easy. The figure
2.1 clarifies further the idea behind the synthetic file systems.

2.3.1 Styx

Styx [13] is a synthetic filesystem protocol implementation developed by
the Bell Labs for the Inferno OS, which is a clone of the 9P protocol de-

4Android is a Linux-based operating system designed primarily for touchscreen mobile
devices such as smartphones and tablet computers.

5As opposed to the stack-based JRE

10

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 2.1: An application operates on a synthetic file as if it is a disk file,
effectively communicating with a synthetic file system server.

disk
file

synth-
etic
file

file server
implemen-
tation

userland
application

read
write

Possible
sideffects

11

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

veloped for the Plan9 OS. The central idea behind the Styx protocol is to
encode file operations invoked by a client upon a file system, into messages.
These messages can be passed from one process to another or transmitted
over the network, which enables transparent access to remote file systems.
The representation of computing resources as a form of file system solves
many difficulties of making that resource available across the network, be-
cause it allows uniform and transparent access.

Styx provides a view of a hierarchical, tree-shaped file system namespace,
together with access information about the files (permissions, sizes, dates)
and the means to read and write the files. Its users, that is, the people
who write application programs, don’t see the protocol itself, instead they
see files that they read and write, and that provide information or change
information.

A Styx communication involves two entities. A server, who provides a
functionality through a synthetic file tree interface, and a client that exploits
that functionality by invoking file operations to the nodes of the tree. The
server implementation can be within the system’s kernel or implemented as
a userland application. The protocol defines 13 types of messages which are
used for

• Starting communication (attaching to a file system)

• Navigating the file system (that is, specifying and gaining a handle for
a named file)

• Reading and writing a file

• Performing file status inquiries and changes

One of the protocols employed by the Octopus system is Styx and luckily
there is a Java implementation of the protocol too. JStyx, as it is named,
is used by the implementation of this project in order to be able to commu-
nicate with the Octopus PC.

2.3.2 Op

In the Octopus system, everything exported by the terminal is mounted as
a file system through the network. The responsiveness of the system heavily
depends from the file system protocol’s performance. The Styx protocol,
requires many message transmissions even for simple tasks. As a result, it
does not behave well when high latency links occur because of the RPC
round-trip time accumulation [14]. On the other hand Op [15], the Octopus
file system protocol, is optimized for high latency communication links by
batching multiple RPCs.

12

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 2.2: Oxport and Ofs are combined together in order to speak with a
Styx client with Op

Client Ofs cache Oxport Octopus
Name Space

Styx Op Sys
Calls

The protocol is accompanied by a number of tools that can be used to
interconnect different Styx islands in a transparent way, keeping all other
software unaware of the new protocol. These tools are, oxport that speaks
Op as a server to export the namespace where it runs and ofs that speaks
Styx as a server and Op as a client. The figure 2.2 illustrates how these
tools are combined together to achieve the described functionality.

13

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Chapter 3

Octopus OS

Nowadays a common user owns a number of computing devices which are
possibly interconnected. The user is expected to manage a decentralized,
uncoordinated, heterogeneous and highly dynamic environment. The net
effect of trying to utilize all this devices is that the user acts as a controller
who indicates explicitly at every use case scenario which computer they
want to use for each thing done. This fact emerges from the assumption
that all computers are equal. However if the centralization principle [2] is
applied to the distributed environment, i.e by declaring a specific computer
as the central computer, the management issues can be handled by that
central computer freeing the user from that burden. The figures 3.1 and
3.2 illustrates the Octopus OS architecture.

The Octopus is a system, designed based on the centralization principle,
which aims to provide a supporting platform to build distributed smart
spaces and to provide pervasive applications that could be reached from
anywhere. In the Octopus, there is a single dedicated computer per user,
the computer, that executes all user programs independently of the user’s
location. A variety of software and hardware resources can be attached
and exploited from applications running at the computer. Such devices can
be highly heterogeneous, distributed, mobile and can be switched on and
off at any time. On the other hand, the computer is a single, central,
homogeneous system where all the applications run. This means that the
interfaces between resources and the central part of the Octopus must be of
a high-level of abstraction.

3.1 UpperWare architecture

UpperWare [3, 4] is a system architecture that permits to abstract and
export the computing resources and ultimately to provide a synthetic file
system interface for managing them. Such resources can be hardware de-

14

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 3.1: Various terminals connected to the central PC

+++++¡ ! " £ $ % ^ & * () - +

¡ ! " £ $ % ^ & * () - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

The computer

vices, applications, raw data and in general anything meaningful that can
be wrapped reasonably by a file system interface. The UpperWare approach
promotes the notion of a virtual computer composed by a variety of comput-
ing resources which is a crucial step towards making pervasive computing a
reality. Octopus is build entirely out of UpperWare [16]. The relationship
between the two is depicted in the figure 3.2

A piece of UpperWare providing a particular resource is called “Upper-
Ware driver”. There are two types of resource drivers.

• Passive UpperWare resource drivers process or generate data without
any user interaction. They simply act as data sources or data sinks.
The printer resource is an example of data sink because we provide
to it data for printing and nothing else. The camera is an example of
data source, i.e it provides a photo when prompted and aside from the
initial configuration there is no other action required.

• Active UpperWare resource drivers are more complicated to develop
because they have to support some sort of interactive control mecha-
nism (e.g. popup dialog session). The user has to respond to inquiries
according to the desired outcome. In practice, such interfaces have to
be tailored for each particular resource because there are a number of
ways of abstracting this kind of resources. An example of active re-
source could be a text editor which requires the constant intervention

15

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 3.2: An Octopus terminal that wraps, a filesystem interface, around a
resource of the Host system and exports it to the Octopus global namespace
and to the underlying Os through the WebDAV protocol.

PC

+++++¡ ! " £ $ % ^ & * () - +

¡ ! " £ $ % ^ & * () - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

Terminals

Network

Host OS

Inferno OS

Resource

Octopus
NamespaceUpperWare

Server

App

WebDAV

Oxport

Ofs

Op protocol

of the user while opening files, editing and copying them to disk.

In the Octopus system every machine with resources of interest runs some
UpperWare and exports its resources to the PC through an appropriately
designed synthetic file system. The PC provides a per-user global namespace
that is shared by all machines of interest for the user. The namespace
aggregates all resources and keeps them organized as hierarchy of files. Of
course they are not files: they may be printers, applications, tools, data, etc.
This makes application programming for Octopus very easy since they rely
on UpperWare, that is, the only requirement is to be able to manipulate
files.

3.2 Omero, a filesystem based window system

Omero [17] is the window system of the Octopus OS. The figure 3.3
presents a screenshot of the GUI of the system. Surprisingly, it does not draw
and does not interact with the user, as this functionality is delegated to the
viewer component of the system, named Olive. Omero implements a file tree
that represents a hierarchy of graphical components, known as panels. This
design approach offers many subtle advantages compared to the traditional
GUI systems. For one, it’s simple enough to not require a sophisticated
programming interface (since it’s based on file operations only). The added

16

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 3.3: A screenshot of the Octopus UI

value though is the seamless UI distribution and replication. The figure 3.4
presents a basic diagram of the windowing system architecture.

At the root of the Omero hierarchy, there are directories representing
virtual screens, a directory named appl that contains application related
panels and a file, named olive, used for delivering UI update events. There
are three general categories of panels: rows, columns, and atoms. Rows
and columns are components employed for layout purposes, whereas atoms
are graphical components such as text, images, buttons etc. Every Panel
has it’s corresponding directory, which is served by Omero. Each directory
contains a file named ctl and optionally additional files describing further a
particular panel.

An Omero Panel can be on of the following types [18]:

row A container panel arranging children in a row.

col A container panel arranging children in a table.

image An image in Plan 9 format.

text An editable text panel.

tbl An editable text panel that insists on tabulating the words contained.

label A single line (small) read–only text panel.

17

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 3.4: Octopus’s windowing system design diagram

/**
 * Simple HelloButton() method.
 * @version 1.0
 * @author john doe <doe.j@example.com>
 */
HelloButton()
{
 JButton hello = new JButton("Hello, wor
 hello.addActionListener(new HelloBtnList

 // use the JFrame type until support for t
 // new component is finished
 JFrame frame = new JFrame("Hello Button"
 Container pane = frame.getContentPane();
 pane.add(hello);
 frame.pack();
 frame.show(); // display the fra
}

/main

row:stats row:wins

ctlctl

ctlctl ctlctl

row:cmds ctlctl

button:New data

ctlctl

edits

col:1 col:2ctlctl ctlctl

col:ox col:treectlctl ctlctl

tag:file tbl:bodydata

ctlctl

edits

data

ctlctl

edits

label:cmds tag:treedata

ctlctl

edits

data

ctlctl

edits

User commands

Omero

Olive

Network

+++++¡ ! " £ $ % ^ & * () - +

¡ ! " £ $ % ^ & * () - +

ctrl Q

ctrl

W E R T Y U I O P { }

A S D F G H J K L : @ ~

| Z X C V B N M < > ? ^

fnctrl

end

pgdn

pgup

home

PC

Terminal

button A single line (small) read–only text panel customized to behave as
a button.

tag A single line editable text panel. Usually to inform the user of sibling
panels and to provide a place to type some text.

gauge A meter to show a value between 0 and 100.

slider An editable meter to show a value between 0 and 100 and let the
user adjust it.

page An image in Plan 9 format supporting paning. To view large images.

draw A vector graphics device. Used to draw geometrical figures.

The type of a given panel element is denoted by prepending the name
of the respective directory with the type. It has to be clarified, sooner
rather than later, that Panels that have the tag attribute contain a small
rectangular area to the upper left corner that is used to move panels with
mouse and issue other commands. This one should not be confused with
the tag Panel which is entirely different thing.

The filesystem based architecture employed by Omero, offers a number of
interesting functionalities.

distribution The user can move any part of an application’s interface to the
terminal of his choice simply by moving its corresponding filesystem

18

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

hierarchy branch to the directory responsible for the (virtual) screen
assigned to that device. For example you may simply move the “next
slide” button to your mobile phone and use it like a remote control
without bothering the application. The UI can merge too by moving
the panel directories under the same screen file system hierarchy.

replication One can just copy a number of Panel directories, to multiple
screen hierarchies, effectively replicating the corresponding UI to mul-
tiple displays. Omero takes care of synchronizing the editions between
replicas. This functionality is extremely useful for creating collabora-
tives applications without bothering with complex and tedious tasks
like synchronization over the network.

general purpose tools Legacy tools like find, grep, tar, cron, etc are
reusable in the Omero environment. One can just save the whole
screen in a package with tar and load it afterwords by unpacking it in
a screen directory. When traditional window systems have to imple-
ment a “search window by title” functionality, an Octopus user can
just use the find tool written a couple of decades ago. A crontab
job with less than 10 lines of code can be assigned to hide windows
that are idle for considerable time whereas developing the same func-
tionality for a traditional window system would require non-negligible
programming effort.

simple API In order to develop a graphical application for Octopus, the
programmer has to use a filesystem interface which is well supported
from programming languages and well understood by programmers.
Compared to the traditional GUI application development where the
programmer has to learn and use sophisticated libraries, the filesystem
based API much more simpler and cleaner. Although it should be
noted that some flexibility is sacrificed due to the fact that, one cannot
create custom panels.

3.3 Olive, the Omero viewer

Olive [17] is a viewer that permits the user to interact with Omero. It
generates graphical components on the monitor to display panels accord-
ing to the filesystem hierarchy supplied by Omero. It accepts mouse and
keyboard input to operate on the panels by mapping the user’s actions to
filesystem operations. O/live is the only program that knows how to draw,
how to interact with the mouse and the keyboard, and how to implement
graphically a particular panel type. The interaction that occurs is based on
high level file-based operations. In essence Olive is a client application for
the Omero file-server. The figure 3.5 presents the mapping between the
filesystem and the visual components that Olive generates.

19

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 3.5: Mapping of a filesystem tree to graphical components.

col:2 ctlctl

col:ox col:treectlctl ctlctl

tag:file tbl:bodydata

ctlctl

edits

data

ctlctl

edits

label:cmds tag:treedata

ctlctl

edits

data

ctlctl

edits

20

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 3.6: A popup menu

While on a tag or margin, the mouse can be used as follows:

Button 1 A drag on a tag moves the tagged panel. On rows and columns
a small vertical or horizontal drag makes the container behave like a
column or a row. A single click resizes the panel according to the
following mouse actions: Another single click (i.e., a double click)
adjusts the size automatically and a drag changes the size of the panel
in proportion to the destination of the drag. recomputes the layout
for the tagged panel.

Button 2 A single click on a tag maximizes the panel, by hiding its siblings
on the outer row or column containing it. If the panel is already
maximized, a single click shows all siblings, undoing the effect.

Button 3 A click raises a menu with panel operations. The menu items are
selected by moving the mouse the direction of the name. The menu
with its items is illustrated in the figure 3.6 . A drag can be used to
adjust the size of the panel.

The keyboard, aside from typing texts into the panels, function keys 1,
2 and 3 act as the respective mouse buttons for the cases that the mouse
has not 3 buttons.

3.4 Ox, the Octopus shell

Ox [18] is an octopus application that implements a shell to browse the
file system, edit, and execute commands. Ox can be used in an implicit and
an explicit manner. By invoking tag and panel operations which are offered
by the window systems viewer directly, the user implicitly handles Ox since
these operations are mapped by the underlaying system to o/x operations.
This kind of usage scenario is the common case, however o/x supports its
own command language consisting of builtin commands, Sam 1 commands,
host 2 commands, and inferno commands. The user is able to invoke these
commands by typing them explicitly.

1A text editor for programmers developed by Rob Pike
2the OS hosting the inferno instance

21

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Host commands are commands executed to the system, hosting the In-
ferno (e.g Linux).

Inferno commands are commands executed by the Inferno system under-
lying Octopus.

Sam commands editor commands similar to the Sam editor command
language.

Builtin commands refer to the respective manual page ox(1).

As an example [18], consider the use case scenario in which the user desires
to save the state of the GUI permanently to the disk with the intention to
recover the session in the future. With Ox he can simply

Save the session:
% cd /mnt/ui/appl

% tar c col:ox.* >/tmp/oxui.tar

Load the session: % cd /mnt/ui/appl

% tar x </tmp/oxui.tar

% ox -l /mnt/ui/appl/col:ox.*

In order to achieve the same effect in a traditional windowing system, it
would require non-negligible number of lines of code which will further com-
plicate the system.

22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Chapter 4

Java Octopus Terminal

In a sense, Octopus is an aggregation of UpperWares, i.e. resources
wrapped with a filesystem interface and exported to a global namespace
managed by the PC. By employing this design, we abstract the details of
heterogeneous components with the intention to import them to a homo-
geneous, centralized system. The key software system technologies used to
achieve this effect are Inferno and Styx/Op. The former for abstracting the
operating systems that Inferno supports, and the later to serve the role of
the synthetic filesystem protocol. A great number of resources can be in-
corporating in the Octopus pervasive environment but not too many and
since the system’s effectiveness increases proportionally to the number of
compatible resources, it is reasonable to try to build more UpperWares in
order to enhance the system’s usefulness.

In order to broaden the spectrum of candidate Octopus resources we
started to build a Java Octopus terminal. Practically we traded Dis with
JavaRE and Styx/OP with JStyx. The rationale behind this decision is that
there are many Java-based devices that can’t host an Inferno instance hence
can’t be included in the Octopus environment. Also there are platforms that
can host Inferno but it is not practical from the user’s point of view (e.g
Android). The ultimate goal is to incorporate Java-based terminals along
with the traditional Inferno-based, gracefully .

There are a number of advantages of a Java-based approach compared to
the original Inferno-based.

• JavaRE is more ubiquitous compared to Dis.

• Installation and execution is easy.

• Homogeneous access to resources across platforms.

23

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

• To be able to exploit the native GUI support and look&feel of the
platform.

The development of a Java terminal’s goal is to enrich the Octopopus
“ecosystem”, not to replace the Inferno terminal. Whenever the user has to
choose between the two, the original terminal is the way to go. Having said
that, the number of mobile platforms supporting Java is an ”audience” that
should not be easily ignored.

4.1 JOlive

JOlive1s Olive’s Java counterpart which implements the viewer compo-
nent of the window system. The figure 4.1 provides an overview of the
two JOlive implementations compared to the original viewer. In essence,
it is a terminal that offers a display resource to an Octopus system. In an
abstract sense JOlive by utilizing file operations, “reads” the state of the
UI, “writes” modifications based on the interaction with it’s user, and again
“reads” updates of the UI state. At low level the communication between
JOlive and Omero is based solely on Styx messages. The remote synthetic
filesystem served by Omero is exported from the PC to the client that runs
JOlive and based on this communication the visual part of the UI is shaped
in order to map, the file operations, to graphical interface actions.

There is a bidirectional communication between Omero and JOlive. There
is the user action notification and UI update notification. The first occurs
whenever the user interacts with the graphical user interface and the second
whenever a change occurs to the UI remote file system, by an application
or interaction through another viewer. These two data flow paths complete
the action-effect feedback loop.

User action notification Every visible widget has its corresponding di-
rectory to the remote file system. So when a user invokes an action
(e.g button click event) that is mapped to a certain file operation ac-
cording to Omero’s protocol. In this manner the file-server is notified
for the user’s actions which in turn updates the corresponding appli-
cation.

UI update notification When the filesystem is updated, either by an ap-
plication or viewer, Omero generates event messages which mirror that
changes. The viewer retrieves these event messages by reading the
ui/olive file and update their graphical structure.

1i

24

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 4.1: The three terminal variants with their respective UI screenshots

Host OS

Inferno Dis

Olive

JavaRE

JOlive

Host OS

Dalvik

Android OS

JOlive

Host OS

Inferno Dis

PC

Both Android and JavaSE are implemented according to this design.
The two datapaths are independent with each other and can be refined
separately.

4.2 Desktop version

The Desktop version is implemented in Java Standard Edition version 5
based on JStyx [19] library. The graphical part is implemented based on
Java/Swing API which is a certified package, guaranteed to be available on
all feature Java updates. The implementation consists two packages, omero
and ui. The former contains the back-end implementation, responsible for
communicating with Omero, the later implements the visual and user control
components. The relationship between them, is depicted in the figure 4.2.
The coupling between the two components is is kept as minimal as possible
which allows the modification of each component in a modular fashion, as
well as to selectively reuse those components in other implementations. For
example we can keep the UI package intact, and modify the back-end to
communicate with JOp (a prospective Op Java implementation) instead
with JStyx. Perhaps more likely, we can reuse the back-end and change the
visual part of the implementation. Actually this is the case of the Android
implementation, as it will be clarified in the respective section.

25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 4.2: The class dependency of the implementation

omero package

ui package

JOPanel

Referenced
Inherited

OPanel

JDrawPanel

OAttrs

OOlive

JOlive

Merop

MeropCtlMeropUpdate

4.2.1 Omero package

This part of the implementation is the back-end of JOlive and contains the
synthetic filesystem dependent parts. The package consists of the following
classes.

OPanel This is the most important class of the package which encapsulates
the filesystem details of an Octopus panel. The means of communi-
cating with Omero is implemented within this class, along with some
attribute details. The back-end of the user action notification is im-
plemented here. After initializing an OPanel object, it can be utilized
to invoke ctl commands, get or set data and read the Panel specific
attributes. The most part of the communication with Omero is imple-
mented here and any future extensions on that respect probably will
occur in this class.

OOlive This is the second most important class of the package because it
encapsulates functionality offered by the olive file served by Omero. It
is delegated to implement the back-end of the UI update notification
by listening for update events and demultiplexing them in based on
the “Panel” objects contained in JOlive. At first, it decodes the event
messages and it passes them to the update function of the respective
JOPanel object. In order to do so, a global hash table is maintained

26

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

which maps Panel paths to JOPanel objects. Since every event mes-
sage contains the path of the respective Panel, said demultiplexing is
possible. Additionally, every event message is self contained and fully
describes the required changes to be applied, so there is no need for
further actions.

Merop, MeropCtl, MeropUpdate These three classes encapsulate the
information related to the event messages generated by Omero. Merop
is the parent class of the other two, which refine’s further the objects
based on the message type. These three classes implement the message
decoding, encoding and storage functions. Such objects are passed by
OOlive to the respective JOPanel update functions.

OAttrs, OUtils OAttrs encapsulates the attributes that a Panel may have
and OUtils contains debugging functions.

4.2.2 ui package

This package implements the front-end of JOlive and contains the UI
toolkit dependent parts. The package consists of the following classes.

JOPanel This class is a direct descendant of OPanel and additionally con-
tains the graphical implementation of the Panels. Specifically, it has a
reference to a Swing component which is initialized based on the type
of the Panel and the means to update and control that component.
Every JOPanel, upon initialization, register themselves to the OOlive’s
hashtable and create a swing component based on the Panel type that
they represent. This is the most complex class of the implementation
since it is the “glue” component that combines the back-end with the
front-end. Every JOPanel object has the means to display itself to the
screen, to invoke Omero commands and to update itself based on the
event messages supplied to its update method.

JDrawPanel Is a customized JPanel widget, employed to represent the
Omero’s draw panel. It contains draw instructions and is able to
transform them to accommodate to the Swing specific instructions.
This class of objects are generated by JOPanel objects that represent
a draw Panel.

JOlive Is the main class that initializes the window and initiates a connec-
tion with the Octopus PC.

You can get the source code from the github location at
https://github.com/sohesado/JOlive

. If you want to clone the repository, use
https://github.com/sohesado/JOlive.git

git address.

27

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

4.3 Android version

Given the popularity of Android devices, and the fact that there is no
practical2 way to run an Octopus terminal on such devices, is a valuable
addition to the Octopus “ecosystem”. By setting up JOlive on an Android
device, the user is able to interact with an Octopus installation through net-
work. One other important benefit is the fact that the UI is implemented
with the native Android graphical widgets which offers an integrated look
& feel experience. In a more general sense it enhances the versatile, loosely
coupled nature of Octopus’s UI, meaning that one is able to accommodate
the front-end to his liking. More importantly he is able to adapt to the
terminal device’s capabilities, nicely exploiting the support of Android on
many different platforms (thus being relieved from having to deal with nu-
merous low-level UI issues). As it is stressed out already, the fact that
Omero offers the flexibility to implement graphical viewers separately, is a
major advantage since there is the opportunity to provide “native” GUI for
a given terminal device.

The first requirement that has to be satisfied is the synthetic filesys-
tem based communication capability. With some tinkering, JStyx has been
ported successfully to the Android OS, which enabled the development of
JOlive. Luckily, the Desktop version was implemented based on JStyx too
so the Omero package was reused almost unchanged. Unfortunately the
Android API does not support AWT/Swing so the UI package had to be
reimplemented based on the Android graphical toolkit.

4.3.1 com.jolive.Omero

As it was stated above, the Omero package required only some minor
changes while ported to Android. This change was based on a certain techni-
cal restriction that the Android framework imposes. Specifically it demands
that every View object is allowed to be updated from the same thread that
created it. Because the OOlive component has to run on a dedicated thread
since it blocks for events generated by Omero, it cannot invoke graphical
updates because the GUI initialization occurs in the main thread. In order
to work around this restriction the OOlive update mechanism had to be
modified.

The update problem was solved by utilizing a handler object generated
by the main activity thread. Specifically when the application is initiated,
a message handler is created that asynchronously passes the event messages
to the respective JOPanel objects. The reference of this handler is passed

2Although John Floren did an amazing work on porting inferno to the Android OS,
many users may not be willing to abandon the Java stack [20]

28

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 4.3: The Red arrow indicates the finger’s path in order to issue the
Write command

OpenClose

Exec Find

Write Paste

to the OOlive component when it is initialized, which now is able to pass
any event message it receives to that handler. Because that handler is part
of the main thread, it can legitimately update the UI components.

4.3.2 com.jolive.ui

The com.jolive.ui package contains the following classes. verbatim list of
classes.

JOliveActivity, JOPanel, JDrawPanel These classes implement the equiv-
alent functionality of their counterparts for the Desktop version. Aside
the refactoring required to accommodate the differences between the
Swing API and the android API there isn’t a notable difference.

ActionSwipeListener, TextLongClickListener Because it isn’t elegant
to use long dropdown menus for small touchscreen devices, we had to
implement a more efficient method of invoking commands. Fortu-
nately, the original Olive support such an elegant method 3.6 So we
created a similar one that work by substituting the mouse with touch-
screen. Practically the user has to put the finger on the center of the
widget and swipe it in the direction of the command he wants to issue.
Figure 4.3 shows the widget. Technically, this widget is implemented
by a PopupWindow overlaid with a customized ImageView that tracks
finger swipe actions. The widget is generated when a LongClick occurs
and destroyed when the chosen command is issued.

PullAppListener This class implement the application pull functionality
explained in the next subsection.

ConfigureLog4j This class initializes the event logging mechanism built
in JStyx. It was a technical requirement in order for the JStyx port
to succeed and it is not used from JOlive.

You can get the source code from the github location at
https://github.com/sohesado/android-JOlive.

29

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

If you want to clone the repository, use
https://github.com/sohesado/android-JOlive.git

git address.

4.3.3 Pull application’s UI

The user may have numerous, many tens of open apps. But the user may
wish to use the terminal to interact with just a few or perhaps even just
one app at a time, which makes sense especially when using small screens.
From this observation emerges the need of a functionality to easily isolate
a small number of application UIs. We’ve implemented the Pull option for
the Android version which helps the user to select a subset of the system’s
GUI.

Consider the following motivating examples. I want to use my mobile
phone to browse and add an appointment in my calendar that is displayed
on the main screen, along with my other apps. Instead of scrolling through
the numerous running application panels, I pull the calendar related panels
to the mobile phone’s screen. One other group of use case scenarios where
the pull functionality would be useful is the opportunity to use the android
mobile phone as a remote controller. For example, the user makes a presen-
tation with a projector and desires to control the slides remotely. He can
pull the next/previous buttons to his Android device and use it as remote
control. The same thing applies to the case of a multimedia player applica-
tion or anything that has some sort of graphical control interface and makes
sense the remote interaction with that app.

The approach that we adopted in order to implement the pull function-
ality, is based on a popup dialog the help the user to easily select panels,
rendering the small screen usable, without bloating it with numerous Panels.
The procedure can be break down to the following steps.

1. Push the menu button.

2. Select the Pull function. Pops up a checkbox list with the apps running
at the PC.

3. Check the desired panels

4. Touch the Pull button. As a result you get on your screen only the
selected panels.

In Figure 4.5 is illustrated the process of “pulling” the clock application.

30

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 4.4: The pull effect on the Omero tree

/

appl

main

android

olive

col:
clock

ctl

/

appl

main

olive

col:
clock

ctlcol:
clock

row:
wins

col:
clock

ctl
col:
clock

replication

col:
clock

col:
clock

ctl

data

1. openOrCreate("android")

2. write("copyto /android/row:wins")

col:
clock

ctl

data

virtual screen

default panels

Under the Hood, JOlive initializes a new virtual screen by creating a
directory at the Omero’s root and consecutively issues copyto commands to
the selected panels. Omero copies the file descriptors to the supplied path
and generates the corresponding update events. Once JOlive receives that
event messages, it presents the newly initialized virtual screen. The figure
4.4 shows the effect of the pull function has on the Omero UI tree. After
the pull is invoked successfully, it will receive updates only for the panels
present to that virtual screen, which makes it more efficient.

This effect can be achieved by issuing the appropriate Ox commands.
However the extra 30 lines of code or so required to implement this function
via a proper dedicated UI element are justifiable in order to avoid the tedious
task of typing with a mobile phone. With this option, the user with a
couple of clicks achieves the result of textual commands that had to be
passed manually to Ox, which isn’t practical for a small screen device with
a virtual (touchscreen) keyboard.

31

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Figure 4.5: Step by Step Pull App example
Step 1: Select Pull Apps
 from Options menu

Step 2: Select the apps you
 want to pull from
 list of running apps

Step 3: Press the Pull button
 and you get on your
 screen only the
 selected Apps

32

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Chapter 5

Future perspective

JOlive is an Omero viewer which is the most important component of a
terminal, since it provides the means to interact with an Octopus system.
The functionality that it lacks, in order to be considered a complete terminal,
is to expose various resources provided by the underlying system, to the PC.
The following sections describe briefly some interesting resources and other
terminal related extensions.

5.1 GPS resources

Modern mobile phones have GPS capabilities. It seems promising, from a
pervasive computing environment point of view, to expose the GPS tracking
service to the system. For example if the Android terminal is able to export
its GPS coordinates through a passive UpperWare resource driver the global
Octopus namespace, it will enhance the smart space characteristics of the
system. The user can easily “calibrate” his working environment e.g. by
registering indirectly the coordinates of a number Desktop computers (he
puts his phone close to the Desktop, and copies the file representing the
coordinates of the phone to a permanent registry). The system can exploit
this information and offer event triggering API based on GPS coordinates.

As an example, consider a system administration use case scenario in
which the admin desires to physically inspect a number of terminals. He
can script a hook procedure that generates information related to a certain
terminal when its GPS coordinates match with phones (assuming the admin
will carry his mobile device with him). For his convenience he can project
that info to his mobile device too (e.g. tablet PC).

33

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

5.2 JOp

A Java implementation of the Octopus protocol seams interesting. Op is
preferred instead of Styx when high latency communication links are encoun-
tered. Certainly, it would be interesting to create a Java implementation
of Op, at least the client part, which a useful tool on its own. This being
said, the Java terminal can be really benefit from an Op implementation
especially the Android version when it will communicate over the cellular
network (e.g. 3G data transfer network).

5.3 Authentication device

We can exploit the habit of keeping the cell phone within our reach and
create an authentication mechanism resource for the Octopus system. We
can device a simple and secure mechanism for generating uniquely iden-
tifiable tokens that are hard to replicate without possessing the hardware
device. One possible way to to this is to combine a user defined touch-
screen gesture with the hardware ID of the device and generate a hash value
that authenticates the user’s credentials. The hash value does not give
away neither the gesture nor the hardware ID and can be stored to the PC.
Even if the secret gesture is “leaked”, the token can’t be generated without
the hardware ID. This resource can be wrapped with a passive UpperWare
driver and exploited by other system resources that require a more secure
authentication mechanism.

5.4 Remote Voice commander

The Octopus implementation experiments with the notion of integrating
voice support to the system. If it succeeds in providing a novel voice com-
mand/feedback control loop in an integrated fashion, it will be an undis-
puted advantage compared other pervasive environment implementations.
The smartphones have decent voice recording capabilities. A possible inter-
esting extension of the Android terminal would be to implement the func-
tionality to take advantage of that capability. If we are able to export the
voice recording resource of our phone the octopus system, assuming there
will be a decent audio command server implementation, then the Android
terminal would offer many practical applications. In a “smart” space envi-
ronment it is usefull to communicate easily (i.e. voice commande) with the
system while the user is on the move.

34

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

5.5 Conclusion

During this projects I encountered many interesting technologies like In-
ferno OS and of course the Octopus system. Also I familiarized myself with
abstract notions like the UpperWare architecture and the concept of central-
izing everything, with the goal to solve a number of distributed environment
problems. The development effort presented its challenges too. At first I
had to understand the system in great depth, sometimes I was forced to
read the Octopus implementation’s source code too, but in the end with
my professor’s valuable support we managed to implement a Java Octopus
terminal prototype.

35

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Bibliography

[1] Francisco J. Ballesteros, Spyros Lalis, and Enrique Soriano. Building
the Octopus. GSyC Tech. Rep, 2006-06.

[2] Francisco J. Ballesteros, Pedro de las Heras, Enrique Soriano, and Spy-
ros Lalis. The Octopus: Towards building distributed smart spaces by
centralizing everything. UCAMI, 2007.

[3] Gorka Guardiola, Francisco J. Ballesteros, and Enrique Soriano. Up-
perware: Pushing the applications back into the system. IWP9, 2008.

[4] IEEE Middleware Support for Pervasive Computing Workshop (Per-
Ware). Upperware: Bringing Resources Back to the System, 2010. in
proceedings of the PerCom 2010 Workshops.

[5] Synthetic file systems, wikipedia article.
http://en.wikipedia.org/wiki/Synthetic_file_system.

[6] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie,
Howard Trickey, and Phil Winterbottom. The inferno operating system.
Bell Labs Technical Journal, pages 5–18, 1997.

[7] Inferno OS, wikipedia article. http://en.wikipedia.org/wiki/Inferno_os.

[8] Inferno OS, vita nuova homepage.
http://www.vitanuova.com/inferno.

[9] Limbo, vita nuova homepage. http://www.vitanuova.com/inferno/limbo.html.

[10] JavaSE, wikipedia article. http://en.wikipedia.org/wiki/JavaSE.

[11] C. F. Yurkoski, L. R. Rau, and B. K. Ellis. Using inferno:::tm::: to exe-
cute java:::tm::: on small devices. In Frank Mueller and Azer Bestavros,
editors, Languages, Compilers, and Tools for Embedded Systems, ACM
SIGPLAN Workshop LCTES 98, Montreal, Canada, June 1998, Pro-
ceedings, volume 1474 of Lecture Notes in Computer Science, pages
108–118. Springer, 1998.

36

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

[12] Android compared to javaSE, wikipedia article.
http://en.wikipedia.org/wiki/Comparison_of_Java_and_Android_API.

[13] Rob Pike and Dennis M. Ritchie. The styx architecture for distributed
systems. Bell Labs Technical Journal, 4(2):146–152, April-June 1999.

[14] Francisco J. Ballesteros, Enrique Soriano, Spyros Lalis, and Gorka
Guardiola. Improving the performance of styx based services over high
latency links. Rosac, Laboratorio de Sistemas, 2 2011.

[15] Francisco J. Ballesteros, Gorka Guardiola, Enrique Soriano, and Spyros
Lalis. Op: Styx batching for high latency links. IWP9, 2007.

[16] Francisco Ballesteros, Gorka Guardiola, and Enrique Soriano. Octo-
pus: An upperware based system for building personal pervasive en-
vironments. Journal of Systems and Software, 85(7):1637–1649, July
2012.

[17] Francisco J Ballesteros, Enrique Soriano, and Gorka Guardiola. To-
wards persistent, distributed, and replicated user interfaces in the oc-
topus. IWP9, 2007.

[18] Laboratorio de Sistemas. Octopus 2nd. edition User’s Manual, 1 2008.
RoSAC.

[19] Jstyx is a pure-java implementation of the styx protocol.
http://www.resc.rdg.ac.uk/jstyx/.

[20] Inferno for android phones. https://bitbucket.org/floren/inferno/wiki/Home.

37

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Chapter 6

Thesis preview in Greek

38

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Υποστήριξη σε java της γραφικής διεπαφής χρήστη του
κατανεμημένου λειτουργικού συστήματος Octopus

Εισαγωγή

O σύγχρονος χρήστης υπολογιστών στην εποχή μας έχει στην κατοχή του έναν αριθμό από
υπολογιστές (desktop, laptop, tablet, smartphone), οι οποίοι είναι εν δυνάμει συνδεδεμένοι
μεταξύ τους μέσω του διαδικτύου. Ο χρήστης για να καλύψει τις ανάγκες του,
αντιμετωπίζει ένα αποκεντρωμένο, ασυντόνιστο και ετερογενές υπολογιστικό περιβάλλον.
Είναι αναγκασμένος κάθε φορά να επιλέγει ρητά ποιόν υπολογιστή θέλει να
χρησιμοποιήσει, και όταν επιθυμεί να πετύχει κάποια συνεργατική λειτουργικότητα θα
πρέπει να διαχειριστεί τον συντονισμό μεταξύ των συσκευών, ο ίδιος. Πολλά απ'αυτά τα
προβλήματα προκύπτουν απ'το γεγονός ότι αντιμετωπίζουμε όλους τους υπολογιστές ως
ισάξιους.

Το σύστημα Οctopus αποσκοπεί στο να λύσει αυτά το προβλήματα προσφέροντας ένα
ομοιογενές, απανταχού παρών προσωπικό διάχυτο υπολογιστικό περιβάλλον, με το να
κεντρικοποιήσει όλους τους πόρους σε έναν υπολογιστή. Επομένως ανακηρύσσουμε έναν
υπολογιστή ως το κεντρικό PC, και συγκεντρώνουμε όλους του πόρους σε αυτό.

Αυτή η προσέγγιση έχει κάποια σημαντικά πλεονεκτήματα:

• Ο συντονισμός είναι εύκολος, αφού όλοι οι πόροι έχουν συγκεντρωθεί σε έναν
υπολογιστή.

• Παρέχετε η δυνατότητα ομοιογενούς πρόσβασης σε εν γένει ετερογενείς πόρους.
• Πρόσβαση μέσω Internet σε όλους τους πόρους του συστήματος με διαφανές τρόπο.

Υποστηρικτικές τεχνολογίες λογισμικού

Τα πρωτόκολλα συνθετικών συστημάτων αρχείων είναι μια ιεραρχική διεπαφή
αντικειμένων, που φαίνονται σαν αρχεία, αλλά δεν είναι. Το κοινό στοιχείο που υπάρχει
μεταξύ τους είναι η διεπαφή χρήσης τους. Το octopus χρησιμοποιεί δύο τέτοια πρωτόκολλα,
το Styx, και το Op (Octopus protocol). To πρώτο χρησιμοποιείτε κυρίως σε περιβάλλον
τοπικού δικτύου ενώ το δεύτερο σε περιπτώσεις που υπάρχει μεγάλη καθυστέρηση
διαδικτυακής επικοινωνίας.

Το λειτουργικό σύστημα Inferno OS προσφέρει ένα crossplatform περιβάλλον ανάπτυξης
κατανεμημένων εφαρμογών με την χρήση του πρωτοκόλλου Styx, στην γλώσσα
προγραμματισμού Limbo. Το σύστημα Octopus έχει αναπτυχθεί αξιοποιώντας τα
χαρακτηριστικά που προσφέρονται απ'αυτήν την πλατφόρμα, με στόχο να παρέχει στους
χρήστες του ένα προσωπικό διάχυτο υπολογιστικό περιβάλλον.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

Η αρχιτεκτονική του Octopus OS

To Octopus βασίζεται στην UpperWare αρχιτεκτονική. To κεντρικό νόημα αυτής της
προσέγγισης είναι να κωδικοποιηθούν οι διάφοροι υπολογιστικοί πόροι των συστημάτων
που ανήκουν στο περιβάλλον του, με διεπαφή συνθετικών αρχείων συστήματος. Κατ' αυτόν
τον τρόπο όλοι οι πόροι αποκτούν ομοιογενείς διεπαφή χρήσης και συγκεντρώνονται σε ένα
ενιαίο ιεραρχικό σύνολο.

Το παραθυρικό περιβάλλον

Το σύστημα παραθύρων, όπως και οι υπόλοιποι πόροι του συστήματος, είναι
κωδικοποιημένο με ένα συνθετικό δέντρο αρχείων. Αυτό εξυπηρετείτε απ'το Οmero το
οποίο παρέχει την βάση για την δημιουργία γραφικών διεπαφών χρήσης εφαρμογών που
εκτελούνται στο Octopus. Η ιεραρχία των αρχείων αυτών αντιστοιχείται σε γραφική
αναπαράσταση από ένα άλλο κομμάτι λογισμικού το οποίο ονομάζεται Olive. Αυτό
εκτελείτε (κατα κανόνα) στα τερματικά στοιχεία του συστήματος ενώ το Omero εκτελείτε
στο κεντρικό PC.

Οctopus τερματικό σε Java

Στα πλαίσια αυτής της εργασίας έχει αναπτυχθεί το JOlive το οποίο είναι ένα Omero viewer
υλοποιημένο σε Java. Κατ' αντιστοιχία με το Olive, απεικονίζει τον κάθε φάκελο (μαζί με
τα αρχεία του) με το γραφικό στοιχείο που του αντιστοιχεί. Για παράδειγμα ένας φάκελος
με τίτλο button:someapp αντιστοιχίζετε σε ένα κουμπί το οποίο ανήκει στην εφαρμογή
someapp.

Ως επέκταση της παραπάνω υλοποίησης μεταφέραμε το JOlive στην πλατφόρμα Android,
με τις όποιες απαιτούμενες αλλαγές για να επιτευχθεί αυτό. Το τελικό αποτέλεσμα είναι να
ενσωματωθούν οι συσκευές Android στο "οικοσύστημα" των εν δυνάμει πόρων του
συστήματος Octopus.

Επεκτείναμε την έκδοση του Android με κάποιες επιπλέον λειτουργίες οι οποίες
διευκολύνουν την χρήση συσκευών με περιορισμένες δυνατότητες προβολής και έλεγχου.
Όσον αφορά τον έλεγχο υλοποιήσαμε ένα γραφικό εργαλείο που μας δίνει την δυνατότητα
να επιλέξουμε μια εντολή από σύνολο επιλογών, μια απλή κίνηση στο touchscreen. Όσον
αφορά τις δυνατότητες προβολής η λειτουργία Pull App που υλοποιήσαμε, δίνει την
δυνατότητα επιλογής ενός υποσυνόλου του
συνολικού γραφικού περιβάλλοντος, αφού αυτές οι συσκευές συνήθως έχουν οθόνες
περιορισμένων διαστάσεων.

Γενικά, η συνεισφορά μας στο σύστημα Octopus ήταν να επεκτείνουμε το εύρος των εν
δυνάμει πόρων, με την προσθήκη της Java πλατφόρμας στις υποψήφιες υποστηρικτές
τεχνολογίες.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 07:16:33 EET - 137.108.70.7

	Υποστήριξη σε java της γραφικής διεπαφής χρήστη του κατανεμημένου λειτουργικού συστήματος Octopus
	
	Εισαγωγή
	Υποστηρικτικές τεχνολογίες λογισμικού
	Η αρχιτεκτονική του Octopus OS
	Το παραθυρικό περιβάλλον
	Οctopus τερματικό σε Java

