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UNIVERSITY OF THESSALY

Abstract

Department of Electrical and Computer Engineering

Doctor of Philosophy

Low Complexity Hand Gesture Recognition

by Stergios Poularakis

Gesture recognition is an expressive, alternative means for Human Computer Interaction

(HCI), which recently drew significant attention after the release of mass consumer ap-

plications and devices, including gesture–controlled interactive TV systems (iDTV) and

advanced video–game environments. In this work, we propose a complete gesture recog-

nition framework for continuous streams of static postures and dynamic trajectories of

digits and letters, targeting both high recognition accuracy and increased computational

efficiency. Special emphasis is given on four fundamental gesture recognition problems,

i.e. hand detection and feature extraction, isolated recognition, gesture verification, and

gesture spotting on continuous data streams.

Specifically, we propose a novel finger detection method, based on geometrical hand

contour features (apex detection) and show its importance in hand posture recognition.

We then present our approach for isolated recognition, which is based on Maximum

Cosine Similarity (MCS) and a tree–based fast Nearest Neighbor (fastNN) technique,

showing its high recognition accuracy and computational efficiency. Additionally, we

relate the computational time required by fastNN for the classification of an unknown

query vector to its Mahalanobis distance and maximum cosine similarity with respect

to the set of training examples. This property allows us to perform gesture verification,

while it significantly reduces the search time.

Finally, we design a complete framework for gesture spotting on continuous streams of

hand data, solving the joint problem of both gesture detection and recognition. Specifi-

cally, we model subgesture relationships in a probabilistic way, using both the categories

and the relative time positions of overlapping gesture candidates. Additionally, we in-

troduce a novel metric of ranking conflicting gesture candidates, based on their time

duration and cosine similarity score, which offers high conflict resolution results for

sequences of digits and letters.

In all cases, we support our arguments through thorough experiments on real and syn-

thetic gesture datasets, as well as with real–time gesture spotting applications.
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PANEPISTHMIO JESSALIAS

PerÈlhyh

Tm�ma Hlektrolägwn Mhqanik°n kai Mhqanik°n Upologi�°n

Didaktorikä DÈplwma

SÌ�hma Anagn°ri�s Qeironomi°n Qamhl�s Upologi�ik�s Poluplokäthtas

Stàrgios Poular�khs

H anagn°ri� qeironomi°n apoteleÈ àna ekfra�ikätero enallaktikä mà� Epikoin-

wnÈas Anjr°pou Mhqan�s (Human Computer Interaction), to opoÈo àlabe idiaÈterh

�maËa met� thn emf�ni� mazik°n efarmog°n kai ��eu°n, äpws ��hm�twn allh-

lepidra�ik�s thleära�s (iDTV) kai prohgmànwn ��eu°n hlektronikoÌ paiqnidioÌ.

Sthn paroÌ� ergaËa proteÈnoume àna pl�res Ï�hma anagn°ri�s qeironomi°n ari-

jmhtik°n yhfÈwn kai gramm�twn, �oqeÌontas tä� � uyhl� po��� epituqoÌs anag-

n°ri�s ä� kai � qamhl� upologi�ik� poluplokäthta. Xeqwri�� àmfa� dÈnetai �

tà�era �mantik� probl�mata: 1) anÈqneu� qerioÌ kai exagwg� qarakthri�ik°n, 2)

anagn°ri� apomonwmànwn qeironomi°n, 3) epibebaÈw� qeironomi°n kai 4) anÈqneu�

kai anagn°ri� qeironomi°n � �neqeÈs roàs dedomànwn.

Eidikätera, proteÈnoume mia nàa màjodo anÈqneu�s twn daktÌlwn tou qerioÌ, ba	zämenoi

� gewmetrik� qarakthri�ik� ths perifàreias (anÈqneu� gwni°n) kai deÈqnoume thn

�maËa ths �hn anagn°ri� �atik°n qeiromorf°n.

`Epeita, parou	�zoume thn proãggi� mas gia anagn°ri� apomonwmànwn qeironomi°n

arijmhtik°n yhfÈwn kai gramm�twn, h opoÈa baËzetai �hn Màgi�h Omoiäthta SunhmÈtonou

(Maximum Cosine Similarity) kai � mia gr�gorh dendrik� teqnik� anaz�th�s dianus-

m�twn (fast Nearest Neighbor – fastNN), h opoÈa parou	�zei tä� uyhl� po���

anagn°ri�s ä� kai auxhmành upologi�ik� apodotikäthta. Epiprä
eta, ��etÈzoume

thn upologi�ik� poluplokäthta anagn°ri�s enäs dianÌ
atos er°th�s me thn Ma-

halanobis apä�a� tou apä to Ïnolo twn dedomànwn ekpaÈdeu�s kai thn omoiäthta

�nhmitänou. H idiäthta aut� mas epitràpei na petÌqoume epibebaÈw� qeironomi°n, en°

par�llhla mei°nei ton upologi�ikä qräno kathgoriopoÈh�s.

Tàlos, proteÈnoume àna pl�res Ï�hma anagn°ri�s qeironomi°n � �neqeÈs roàs de-

domànwn, lÌnontas to diplä präblhma tou entopi
oÌ kai anagn°ri�s qeironomi°n.

Sugkekrimàna, montelopoioÌme pijanotik� tis �à�is metaxÌ allhlo�gkrouämenwn up-

oy�fiwn qeironomi°n, qrh	mopoi°ntas tä� tis kathgorÈes tous ä� kai tis metaxÌ

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 09:38:51 EET - 137.108.70.7



tous qronikàs emfanÈ�is. Epiprä
eta, ei�goume mia nàa màjodo kat�taxhs allhlo-

�gkrouämenwn upoy�fiwn qeironomi°n, proteÈnontas mia metrik� pou �ndu�zei tä�

thn omoiäthta �nhmÈtonou tous ä� kai thn qronik� tous di�rkeia, odhg°ntas � uyhl�

po��� epituqoÌs anagn°ri�s � akoloujÈes arijmhhtik°n yhfÈwn kai gramm�twn.

Se äles tis peript°�is, upo�hrÈzoume ta epiqeir�mat� mas mà� ektetamànwn peiram�twn

� pragmatikàs kai �njetikàs b��is dedomànwn qeironomi°n, kaj°s kai mà� an�ptuxhs

efarmog°n pragmatikoÌ qränou.
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Gesture recognition is an expressive, alternative means for Human Computer Interac-

tion (HCI). The recent release of mass consumer applications and devices, including

gesture–controlled interactive TV systems (iDTV) and advanced video–game environ-

ments, increased significantly the interest in gesture recognition technology. In this

chapter, we introduce the basic terminology, along with some appropriate definitions,

which will be used throughout the rest of this work.

1.1 Definition and types of gestures

Gestures are expressive, meaningful body motions involving physical movements of the

fingers, hands, arms, head, face or body, with the intent of conveying meaningful in-

formation or interacting with the environment [1]. Intention for interaction is the key

feature that discriminates gestures from general human motion or human activities, such

as walking and running. Moreover, human activities typically contain many repetitions

of a basic pattern, known as action cycle, such as a step in walking or a jump in jumping.

On the contrary, gestures usually last for a shorter amount of time and typically one

repetition is performed.

2
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Chapter 1. Introduction 3

In this work, we mainly focus on hand gestures, i.e. gestures performed by arms, palms

and fingers, and commonly refer to them as “gestures”. Gestures can be static postures,

when the hand does not move and most of the information lies in finger configuration,

or dynamic trajectories, when information lies on hand’s motion. Some gestures may

have both static and dynamic elements, such as some signs of sign languages.

1.2 Gesture recognition

Gesture recognition refers to automatic detection and classification of gestures, using

computational power. Typically, user’s behaviour is continuously recorded by some

capturing device, such as standard 2D cameras, depth or infra–red (IR) cameras, touch

screens and body sensors. This raw input signal is subsequently processed to isolate

hand(s) and any other meaningful information from the rest of the scene. Typically,

background subtraction techniques, combined with face and skin detectors, may be

involved in this low–level processing step.

Mid–level processing involves feature extraction, i.e. extraction of discriminating fea-

tures which uniquely characterize a gesture class. Such features may describe hand’s

shape, location and trajectory, or fingers’ articulations, and typically result in a multi-

dimensional time series.

Such time series is processed in a continuous and systematic fashion, in order to spot

and recognize meaningful patterns (gesture spotting). A finite vocabulary of predefined

gestures defines all valid gestures and their characteristics, as derived from some training

phase. After a gesture is unambiguously spotted, system’s Artificial Intelligence (AI)

component is responsible for planning and taking some action, which forms system’s

response in the Human–Computer dialogue.

In general, gestures may have more than one possible interpretation, based on environ-

ment conditions or cultural differences [1]. Additionally, different users may be assigned

different gesture–to–interpretations mappings, based on ranking scales, criteria, iden-

tity, etc. Such issues should be taken into account when designing a gesture–based

application.

1.3 Gesture spotting

Gesture spotting refers to gesture recognition on continuous motion streams, which poses

the joint problem of estimating both the category of the performed gesture, as well as its
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Chapter 1. Introduction 4

(a) (b) (c) d)

Figure 1.1: (a) A typical instance of the subgesture problem: recognition of digit “8”
includes recognition of digit “5” too. (b) Confusion after recognition of digit “4” (solid
line). Does the dotted line correspond to digit “1”, “7” or a downwards movement? (c)
Confusing digit “1” to “7” after recognition of digit “0”. (d) Avoiding confusion due

to different “7” shape in Digits6D datastream [3].

duration and time boundaries. Typically, all gesture spotting techniques need to deal

with two fundamental problems [1]: 1) spatio-temporal variability, i.e. a user cannot

reproduce the same gesture at the exact same shape and duration, and 2) segmentation

ambiguity, i.e. problems caused by erroneous time boundary detection.

Specifically, some gestures may be subgestures of other gestures (e.g. the digits “5” and

“8” in Fig. 1.1–a) [2]. Additionally, connectors between two gestures may be incorrectly

perceived as a gesture. For example, the last dotted segment in Fig. 1.1–b can be

mistaken to the digit “1” rather than a downward connecting segment to a subsequent

gesture.

Necessity of spotting is also applicable in the case of static postures. Typically, a person

raises his hand, holds it on the air for a while, and then lowers it down. This relatively

simple scenario produces a lot of video frames (or other sensor data). Intuitively, one

can expect that only a few video frames are critical, when the hand is almost still on

the air (posture locking phase). Once again, the continuous nature of input data makes

recognition a much more challenging task and thus spotting is necessary.

Recognition of isolated gestures (isolated recognition) is a much easier problem and

attracted the interest of many early research works. In this scenario, the input signal

contains only one complete gesture (e.g. a trajectory or a posture) and thus all available

data may be used for recognition. This optimistic scenario occurs in touch screens,

where a pressure signal is generated whenever our fingers touch the screen. However,

when cameras and other capturing devices are used, one may either try to detect the

time boundaries of the performed gestures and then apply standard isolated recognition

techniques (direct approach), or may form joint hypotheses about both boundaries and

categories of gestures (indirect approach).
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Figure 1.2: (a) - (d) Digit “2” from 6DMG dataset [3], after adding Gaussian noise
at various SNRs.

1.4 Gesture verification

Gesture verification refers to verifying whether a spotted gesture is indeed an instance

from a predefined vocabulary or an invalid gesture (false positive). In this work, we

consider three main types of invalid gestures, namely 1) out–of–vocabulary gestures, 2)

noisy gestures and 3) random movements.

As out–of–vocabulary gestures, we consider shapes and symbols that may have some

meaning for humans, but are not included in the system’s vocabulary. For example,

a system designed to recognize the ten Hindu–Arabic digits (0-9) should reject all the

twenty–six Latin letters (A–Z, a–z), mathematical symbols, etc.

Noisy gestures refers to valid gestures with some additive noise. Noise may always appear

in the gesture data due to device flaws (e.g. low thermal noise), user’s inexperience with

the recognition system or user’s temporal or permanent behavioural characteristics, such

as anxiety, trembling hand and movement limitations. As Fig. 1.2 shows, a desirable

property for a recognition system would be to allow some low noise and reject highly

noisy gestures.

Finally, completely random movements can be used to model uncontrolled scenarios

during system’s inactivity periods, i.e. when users don’t intend to interact with it.

For example, considering a gesture–based interactive TV system, users may produce

accidental signals while drinking water or walking in front of the camera.
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Chapter 1. Introduction 6

1.5 Contributions of this thesis

In this thesis, we design a complete gesture recognition system, operating on continu-

ous streams of hand data (hand coordinates, hand shapes) coming from some capturing

device (2D/depth camera, accelerometers), as shown in Fig. 1.3. Data are segmented

into multiple overlapping chunks and go through an isolated recognition module, which

assigns them with a candidate class label. Additionally, a gesture verification module

decides whether the candidate gesture is valid or invalid, using the results of isolated

recognition and gesture characteristics (confidence score of classifier, difficulty of classifi-

cation, gesture time duration, etc.). Successful candidates are added in a list of possible

gestures (conflicting gestures), which are typically overlapping with each other and thus

we need to decide which one is the real gesture signed by the user. This is the re-

sponsibility of the gesture spotting module, which applies conflict resolution techniques,

leading to the final spotting result.

Figure 1.3: General structure of our proposed approach.

In short, the main contributions of this thesis are:

� Proposing a complete framework for hand gesture recognition of digits and letters

based on Maximum Cosine Similarity (MCS) and a tree–based fast Nearest Neigh-

bor technique (fastNN). Our approach is simple, accurate, low–complexity, robust

against noise and limited number of training examples, and can be implemented

very efficiently in embedded platforms. Moreover, it is not bounded to a specific

hand detection technique, since it can be successfully used with data from a regu-

lar video camera, a Microsoft (R) KinectTM device or a hand held sensor device,

such as Nintendo (R) Wii remoteTM .

� Studying analytically all four main gesture recognition problems, i.e. feature ex-

traction, isolated gesture recognition, gesture verification and gesture spotting,

providing links between accuracy and computational efficiency.

� Relating the probability of inlier of a query gesture with the computational time

needed to be classified by fastNN. Moreover, we explore additional parameters,

such as dimensionality and number of training examples.
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� Proposing a novel method to perform conflict resolution, combining both the cosine

similarity score (measuring the quality of recognition) and the time duration of

the candidate gestures.

� Introducing the usage of time boundaries in a probabilistic framework for learning

subgesture relationships.

� Proposing a novel approach for finger detection, showing its usefulness in hand

posture recognition.

� Exploring information–theoretic measures to evaluate gesture recognition and ver-

ification performance.

In all cases, we conduct thorough experiments on real and synthetic gesture datasets.
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In the last twenty years, many research works have investigated gesture recognition

for a variety of applications. Human Computer Interaction (HCI) seems to be the

most common target field, promising efficient interaction to people with visual and

hearing [4] disabilities, as well as increased naturalness in interactivity to typical users.

A lot of works tried to recognize sign language gestures, involving both static alphabet

postures as well as dynamic word gestures and whole sentences [5]. Many other works

investigated recognition of dynamic trajectories, such as command strokes, digits and

letters [2, 6–11], while others worked on recognition of hand shapes, involving digits and

simple mathematical operations [12–17]. Recently, several international challenges were

organized, targeting recognition of generic body gestures, where not only hands, but

also face and body pose are important for recognition [18, 19].

In this chapter, we review some of the most important recent approaches, involving

recognition of dynamic trajectories, static postures, sign languages and body gestures.

We first provide a general overview of sensors, feature extraction methods and classifiers

used by most approaches, after which we review each gesture type separately. Special

emphasis is given on gesture spotting in continuous data streams, which is one of the

most challenging gesture recognition tasks and an important contribution of this work.

8
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Chapter 2. Literature Review 9

2.1 Sensors, features and classification methods

Selecting the gesture capturing device is an important aspect of a gesture recognition

system, affecting the interface of human–computer interaction, power consumption and

recognition accuracy. Standard 2D cameras are probably the most commonly used

devices, mainly due to their simplicity, low cost, integration in modern mobile devices

and development of efficient image processing libraries [20]. Recently, the so called

RGB–D sensors, such as Microsoft (R) KinectTM , offer an additional depth component,

alleviating a lot of classical Computer Vision problems, such as occlusions and varying

lighting conditions [21, 22]. On the other hand, body sensors, such as accelerometers

and gyroscopes in mobile phones [23, 24], or forearm surface electromyogram (sEMG)

[25–27], provide immediate hand detection results, at the cost of reduced interaction

naturalness. For more information regarding sensors for gesture recognition systems,

the reader may refer to the survey provided by Berman and Stern [28].

The choice of sensor also affects the types of gestures that may be recognized, as well

as the appropriate gesture representation methods. Most body sensor–based systems

recognize dynamic trajectories, representing them as time series of hand palm positions

and other motion features [23, 29, 30]. However, a few works attempt recognizing sign

language postures and dynamic gestures, relying on complex electromyographic gloves

[31, 32]. On the other hand, 2D and RGB–D cameras allow for richer vocabularies,

involving static postures, dynamic trajectories, signs and body gestures. However, in-

creased flexibility requires more evolved feature extraction methods in order to describe

complex hand shapes [12], trajectories and body poses [33].

Since gestures form a time–series of observed features, a lot of state–based sequential

models have been applied in the literature, including Hidden Markov Models (HMMs)

[30, 34, 35], Dynamic Time Warping (DTW) [2], Longest Common Subsequence (LCS)

[10, 11], Conditional Random Fields (CRFs) [36–38], Dynamic Bayesian Networks (DBNs)

[39] and Convolutional Neural Networks [40]. Such approaches generally estimate a like-

lihood score for each gesture category, by summing the likelihood of each observation

given the previous observations. The Markov assumption helps reducing the number of

training examples, while preserving most of system’s recognition ability. Additionally,

Viterbi–like [41] dynamic programming techniques deal efficiently with the computation

of some optimal path across all possible state combinations.

Other approaches treat gestures in a global way, extracting holistic features from the

entire time–series, such as downsampled trajectory points [42], bags of visual words [43]

and Activity History Images [44]. These global features can then be used with standard
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classification methods, such as Nearest Neighbor, Support Vector Machines (SVMs) [45]

and Neural Networks [46].

When recognizing static postures, a single video frame containing the final hand shape

is usually discriminative enough for accurate recognition. Typically, global or local

features, such as Fourier descriptors [17, 47] and Histograms of Oriented Gradients

[48, 49] can achieve satisfactory posture recognition results.

Due to the presence of other humans, or skin-like surfaces, standard hand detection

methods prove insufficient for robust gesture recognition. In such cases, multiple hand

position and transition hypotheses may be considered, while recognition is performed

on the path of maximum likelihood [2, 34].

2.2 Gesture spotting

Gesture spotting refers to gesture recognition on continuous motion streams, which poses

the joint problem of estimating both the category of the performed gesture, as well as

its duration and time boundaries. Spotting is quite challenging due to spatio-temporal

variability among different users and gesture instantiations, and segmentation ambiguity

by erroneous time boundary detection and complex subgesture relationships. Gesture

spotting methods may be classified as direct or indirect [2].

Direct approaches first detect the time boundaries of the performed gesture and then

apply standard isolated recognition. Typically, motion cues (e.g. velocity) [50–52] or

specific start and end marks (e.g. an open/closed palm [15] and short pauses between

consecutive gestures [25, 26]) can be employed for time boundary detection.

Zhang et al.[31] used Hidden Markov Models (HMM) with acceleration and surface elec-

tromyographic (SEMG) signals to recognize 72 Chinese Sign language words. Spotting

was based on thresholding the SEMG signal values. In a similar approach, Lu et al.[32]

used Dynamic Time Warping (DTW) and SEMG thresholding to recognize 19 gestures.

Jiang et al.[53] required the gesturing hand to return to a rest position between consec-

utive gestures.

In a multi–modal approach, Wan et al.[54] used audio data for spotting, assuming that

audio returns to silence between consecutive hand and body gestures. Wang and Chuang

[55] used accelerometers on a digital pen and probabilistic neural networks for handwrit-

ten digit and gesture recognition. Gesture time boundaries were signalled by the user,

through pressure of a button in the pen.
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On the other hand, indirect approaches form joint hypotheses about both time bound-

aries and categories of gestures. Some model–based indirect approaches used HMMs

[56, 57], CRFs [36–38] or adaptive Boosting [58] and learned a non–gesture (or garbage)

model, detecting gesture boundaries mainly as zero crossings of differential observation

likelihood.

Alon et al.[2] created lists of candidate gestures, thresholding the DTW distance scores at

continuous time frames. A major novelty of that work was learning and using subgesture

relationships for better conflict resolution during the spotting process. Specifically, when

a subgesture and its supergesture coexisted in the list of candidates, the supergesture

was always favoured and the subgesture removed.

Frolova et al.[10] proposed Most Probable Longest Common Subsequence (MPLCS) for

digit gesture recognition. Spotting and gesture verification were based on an evolved

thresholding scheme on the candidate probability scores. The authors also explored

direct spotting using motion cues for stroke segmentation and a stroke combination

method to receive the final recognition results.

Stern et al.[11] modelled gestures as sequences of most discriminating sub–segments

(MDS), inspired by the concepts of phonemes and strokes in speech and handwriting

recognition, respectively. Their system scans the input stream until a primary MDS

is detected, where a candidate gesture is believed to be present. Then, it looks for

secondary MDS on adjacent time frames. The final verification and spotting result

depends on the appearances of MDS and their Longest Common Subsequence (LCS)

scores.

2.3 Recent gesture recognition approaches

2.3.1 Recognizing dynamic trajectories

Approaches featuring dynamic trajectories typically involve vocabularies with gestures

“written on the air” by user’s hand, such as the 10 Hindu–Arabic digits (0–9), the

26 Latin letters (A–Z, a–z) or various command–like strokes, such as “move to next

page” or “turn left”. Such vocabularies could be valuable for a variety of applications,

including control of entertainment systems by users with finger dysplasia and other hand

impairments. In this section we briefly review some of the most important methods

found in the literature, using 2D cameras [2, 56, 59], KinectTM [10, 60], accelerometers

[29, 42, 61] and touch screens and hand writing electronic pens [6–9].
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In an early computer vision approach, Lee and Kim [56] used Hidden Markov Models

(HMM) and a threshold model to control a PowerPoint TM presentation through 10

command gestures. Their approach achieved highly accurate spotting results and real–

time processing on a low–end computational system.

Alon et al.[2] proposed Dynamic Space-Time Warping (DSTW), an extension of Dynamic

Time Warping (DTW) [62], which considers multiple hand hypotheses in some very chal-

lenging background scenarios. Their system extends Continuous Dynamic Programming

(CDP) [63] and achieves high gesture spotting results on their 10–digit dataset. While

this approach is very effective, it requires much computational time mainly due to the

large number of hand candidates at each frame. For this reason, the same authors applied

some pruning process, while Escalera et al.[59] improved their approach by considering

only the most probable candidates of each frame.

Frolova et al.[10] extended the Longest Common Subsequence (LCS) algorithm [64] and

proposed the Most Probable LCS (MPLCS) method for gesture recognition of digits.

MPLCS resembles DTW but can achieve a better alignment by ignoring some trajectory

parts and maximizing the length of the common subsequence of two time series. MPLCS

achieved high recognition results (98.3%) on a 10–digits dataset obtained from the Kinect

device and proved to perform significantly better than HMMs (89.5%) and slightly worse

than Conditional Random Fields (99.1%).

Stern et al.[11] modelled gestures as sequences of most discriminating sub–segments

(MDS), using LCS to evaluate the intermediate segment results. Their approach per-

formed better than HMMs for 10–digit recognition, achieving 89.6% gesture recognition

accuracy on continuous gesture streams.

Jiang et al.[53] defined 8 minimal effort dynamic gestures for people with upper extrem-

ity physical impairments, using the Borg Scale [65] to rank the physical stress required

to perform each gesture. They first applied skin–color detection and depth thresholding

to detect user’s hands, as well as face, and then tracked them using a 3D particle filter

framework. For spotting, hand was required to return to a rest, i.e. a predetermined,

position, while recognition involved DTW for gesture alignment and the condensation

algorithm [66] for classification.

Many approaches involve electronic pens, touch screens and accelerometers of modern

smart-phones, and have considered gestures as a set of of straight–line strokes on a real or

imaginary surface. The popular classifiers $1 [6], $N [7], Protactor [8] and $N–Protactor

[9] down–sampled the gesture trajectory and used NearestNeighbor (NN) with Euclidean

Distance (ED) or Cosine Similarity (CS) to recognize uni–strokes and multi–strokes on

the screen.
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Kratz and Rohs [29] proposed Protractor3D, which uses accelerometers and achieves

rotation–invariant gesture recognition. Vatavu [42, 67] explored how down–sampling af-

fects the performance of $1 classifier [6] and concluded that it is almost not significant for

ED, Maximum Cosine Similarity (MCS) and DTW. However, DTW presented a linear

relation between the sampling rate and the number of gesture categories (vocabulary).

Very recently, the same author [42] explored the impact of sampling rate and bit depth

on 3D gesture classifiers, targeting devices with limited resources, and concluded that

few bits and samples are enough for NN classification of simple shapes.

Chen et al.[30] defined 20 command gestures, drawn with Nintendo (R) WiiTM remote

(Wiimote). Recognition was based on Hidden Markov Models and a set of 45 features,

involving trajectory coordinates, gesture’s duration, velocity, orientation, acceleration

and other spatial and motion features. Their experiments revealed that simply using

normalized trajectory coordinates results in high recognition accuracy for the user–

independent case, while an increase of 4−8% may arise when velocity and other features

are included. However, using a larger feature set typically compromises computational

efficiency, while it requires more training examples.

Xu et al.[23] adjusted Micro Electro-Mechanical Systems (MEMS) accelerometers on

user’s hand to recognize 7 command gestures (up, down, left, right, tick, circle and

cross). Gesture boundaries were detected based on coordinate and velocity features,

while a gesture were represented as a vector of 8 ternary sign features (+1, 0,−1). Quite

interestingly, Nearest Neighbor classification resulted in 95.8% recognition accuracy ap-

plying this simple representation on 72 testing sequences of 628 gestures in total.

Recently, some approaches studied fusion of different sensor data. Kosmidou et al.[25, 26]

combined acceleration and surface electromyographic (SEMG) signals to recognize 61

Greek Sign Language gestures, separating words with small pauses. Their feature set

involved Sample Entropy [25] and weighted Intrinsic–Mode Entropy (wIMEn) [26], while

recognition was based on Mahalanobis distance. In a similar work, Lu et al.[32] used

DTW with acceleration and SEMG signals to recognize 19 gestures (the 10 digits, 5

command gestures and 4 static postures). Spotting was based on thresholding the SEMG

signal values, reporting 89.6% recognition accuracy. Liu et al.[68] used Kinect and a 9D

body sensor (measuring 3D acceleration, 3D angular velocity and 3D magnetic field

strength) to recognize 5 gestures. Isolated recognition was performed, based on HMMs

and DTW. In all cases, fusion resulted in higher recognition accuracy, while HMMs

greatly outperformed DTW.

Lian et al.[69] designed a complete gesture–based TV control system, consisting of an

ultrasonic distance array and a standard 2D RGB camera. In their work, a specially
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designed module recognizes user’s state (Absent, Other Action, Controlling, and Watch-

ing), and activates the computationally cheaper ultrasonic distance array or the more

expensive 2D camera. Their experiments reported 35− 56% savings in power consump-

tion over straightforward implementations.

Quite recently, user authentication based on dynamic gestures received much attention.

Guerra-Casanova et al.[61] used “in-air signatures” for user authentication on mobile

phones, supporting 50 users and achieving very low error rate in forge attacks (2.8%)

with DTW. In another, Kinect–based approach, Tian et al.[60] used DTW for user

verification, supporting 18 users and proving that their system is quite safe under many

types of attacks.

2.3.2 Recognizing static postures

In static postures the hand remains still in the air and most of the information lies in

finger configuration. While postures are not considered natural enough for some applica-

tions, such as TV control [69], their role is fundamental in sign languages, either in static

alphabets or in dynamic signs, where hand shape and trajectory are equally important

for recognition. In some cases, static postures may be used to signal the beginning or

ending of dynamic gestures [15]. A classic survey on hand posture recognition may be

found in [70].

In a recent work, Kulshreshth et al.[17] used Fourier Descriptors to process data from a

KinectTM system and recognized the number of fingers in the palm with 90% accuracy.

Bagdanov et al.[15] classified a palm as either open or closed, using SURF features [71]

and a non-linear Support Vector Machine, reporting 87.8% accuracy. Kurakin et al.[72]

performed recognition of 12 dynamic American Sign Language (ASL) signs, using both

shape and motion features. Mihail et al.[73] used two Kinect sensors to recognize 10

postures, using the distribution of hand point positions (hand’s point cloud) as features.

Suryanarayan et al.[74] used the ZCam camera [75] and 3D shape descriptors to recognize

6 postures. Lu et al.[32] used DTW with acceleration and surface electromyographic

(SEMG) signals to recognize 19 gestures (the 10 digits, 5 command gestures and 4 static

postures).

Recently, some other approaches based on global features and hand models appeared

as well. Keskin et al.[16, 76] fit a 3D skeleton to hand points, achieving almost perfect

recognition (99.9%) for the 10 ASL digits on synthetic and real datasets. Billiet et al.[77]

learned a hand model with 9 degrees of freedom, describing each finger as stretched

or closed, and recognized 8 postures. Oikonomidis et al.[12] tracked the 3D position,

orientation and full articulation of a human hand, based on Particle Swarm Optimization
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and managed to control computational complexity by utilizing GPUs. Dapogny et al.[78]

applied the human pose estimation method of Shotton et al.[79] to learn hand models

of musical gestures from depth images. Yao et al.[80] learned a 3D contour model and

used prior knowledge of hand structure to improve posture recognition accuracy.

The works of Ren et al.[13] and Doliotis et al.[14] are the most relevant to our work.

Doliotis et al.[14] performed hand–palm separation from Kinect 3D data and then used

the Chamfer distance [81] to match real postures to 82, 560 synthetic hand shapes. In our

approach, we use a slightly modified version of their method for hand–palm separation.

Ren et al.[13] required the user to wear a black bracelet on the gesturing hand’s wrist,

for easier hand–palm separation, and performed finger detection using a distance-based

profile of the palm and shape decomposition. The same authors proposed Finger-Earth

Mover’s Distance (FEMD) to perform posture recognition. In this work we use the same

dataset as in [13], but we avoid the use of a black bracelet, since it might be restrictive

in certain cases, such as “What if the user loses the black bracelet?”.

In general, posture locking is not explicitly discussed in most works. Implicitly, one may

assume that it is based on detecting long time periods where hand positions do not vary

significantly.

2.3.3 Recognizing body gestures

Recently, there is a trend for recognition of complicated gestures, which drift from the

strict definitions of dynamic gestures or static postures and approach sign language signs

or even human activities, such as hand clapping and waving. We refer to these broader

types of gestures as body gestures, since in many cases hand position and configuration

are not sufficient for accurate recognition. Indeed, related literature reveals that a lot

of standard human activity recognition methods have been already successfully applied

to recognize body gestures. Although our work didn’t consider this class of problems,

we briefly review some of the most important approaches of the last two years (2012 -

2014) for completeness.

Kaâniche and Brémond [82] learned Local Motion Signatures [83] of Histograms of Ori-

ented Gradients (HOG) [48], combining advantages of global and local gesture motion

approaches to improve recognition quality. Their experiments were conducted on mixed

datasets, containing both body gestures and generic human activities.

Wu et al.[44] used the Extended Motion-History-Image to represent body gestures and

performed one–shot learning on a challenging dataset. Yang et al.[84] discovered high–

level motion primitives by hierarchical clustering of optical flow in four-dimensional,
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spatial, and motion flow space, achieving high recognition results on both activity and

gesture datasets.

Wan et al.[54] proposed Class–Specific Maximization of Mutual Information (CSMMI),

a dictionary learning technique for sparse representation–based classification, and con-

ducted experiments on several activity and gesture datasets. Although CSMMI provided

high recognition accuracies for all datasets, STIP features [85] performed better for ac-

tivity datasets, while enhanced motion SIFT features [86] and HOJ3D [87] performed

better for gesture datasets.

With the release of KinectTM , a device that allows automatic tracking of human joints

over time, a lot of works used this information for recognition purposes [88]. Hussein

et al.[89] described a sequence of skeleton joint locations using multiple fixed length

covariance descriptors [90] over sub-sequences in a hierarchical fashion. Final classifica-

tion was based on Support Vector Machines (SVM) [45], resulting in 93.6% recognition

accuracy for 12 body gestures.

Zhao et al.[91] used normalized distances of pairwise joints to describe the skeleton

sequence and DTW for online spotting on continuous skeleton streams. Chaaraoui

et al.[92] used an evolutionary algorithm to determine the optimal subset of skeleton

joints, taking into account the topological structure of the skeleton. Negin et al.[93]

discriminatively optimized a random decision forest model to identify the most effective

subset of skeleton joints, and then used SVM for recognition on the selected features.

Ellis et al.[94] explored the trade–off between recognition accuracy and observational

latency, reporting a strong positive correlation between the two quantities. Shen et

al.[33] proposed an exemplar–based method that learns to correct the initially estimated

human pose, reporting significant improvements on both joint-based skeleton correction

and recognition accuracy.

2.4 Discussion

In this chapter, we reviewed the majority of the most important recent gesture recogni-

tion approaches found in literature. In most cases, the type of sensor defines the types of

gestures that can be recognized (dynamic trajectories, hand postures, complex signs), as

well as the feature extraction methods. While most works focus on isolated recognition,

a few recent approaches studied online gesture spotting on continuous data streams,

proving either direct or indirect solutions. Finally, we reviewed some very recent ap-

proaches for recognition of body gestures, which lie in the limits between gesture and

human activity recognition.
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In this chapter, we provide a brief overview of the three data acquisition methods we

use, i.e. body sensors, 2D cameras and depth cameras. We also describe in detail the

datasets we use in our experiments, pointing out their main uses in the various gesture

categories (dynamic trajectories vs static hand postures, digits vs letters). This chapter

serves as a reference for subsequent chapters.

3.1 Data acquisition

3.1.1 Body sensors

Body sensors, such as accelerometers in mobile phones or in the Nintendo (R) WiiTM

remote control, offer an efficient and easy way for hand detection. Their main advantage

is detection accuracy, since the device is typically held by the user’s wrist. However,

forcing the user to wear or hold a device may limit the naturalness of interaction.

18

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 09:38:51 EET - 137.108.70.7



Chapter 3. Data acquisition 19

Some of the datasets used in this work were captured by the Nintendo (R) WiiTM remote

control, which contains an accelerometer to sense acceleration along three axes. It also

contains an optical sensor, to determine the direction of pointing, although we didn’t

exploit this feature in our experiments.

3.1.2 2D cameras

Standard 2D cameras capture the visible spectrum of light and provide color images.

In general, 2D cameras are much cheaper than depth cameras and body sensors, while

they are also included in most devices, such as laptops, smartphones and tablet PCs.

However, they are very sensitive to light variations, while the lack of depth becomes an

important issue when objects occlude each other.

In this work, we use external 2D cameras in two main image resolutions, VGA (640×480)

and QVGA (320× 240), at a frame rate of 25− 30 frames per second (fps).

3.1.3 Depth cameras

Depth cameras offer a disparity image, showing relative distances to the camera. Depth

field may be acquired using two standard 2D cameras (stereo camera) or special devices

which typically operate beyond the visible light spectrum.

In this work, we use Microsoft (R) Kinect TM , which captures both depth and color

information. Color image is acquired using a standard 2D VGA camera (640× 480, 30

fps), while the depth sensor consists of an infrared radiation projector combined with

a monochrome CMOS sensor. VGA resolution is also adopted for depth images, with

depth values having a range of [0, 2047] (11–bit depth). Typically, lower values denote

distances closer to the camera. The device offers a depth range of 1.2− 3.5 m (3.9–11.5

ft) and an angular field of view of 57 ◦ horizontally and 43 ◦ vertically. Finally, Kinect

offers multi-array microphone and voice recognition capabilities, although we don’t use

this feature in this work.

3.2 Gesture datasets

In this section, we describe in detail the gesture databases we used in our experiments.

All datasets are summarized in Table 3.1.
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Table 3.1: Datasets used in our experiments

Dataset Abbreviation Source

1a Graffiti Green Digits GreenDigits
Alon et al.[2]

1b Graffiti Easy Digits EasyDigits

2a Kinect Train Digits KinectR

Frolova et al.[10]
2b Kinect Test Digits KinectT
2c Kinect Non Digits KinectNonDigits
2d Kinect Streamed Input Ordered KinectStreamOrdered
2e Kinect Streamed Input Repeat KinectStreamRepeat

3 6D Digits Digits6D

Chen et al.[3]
4 6D Lower–case Letters Lower6D
5 6D Upper–case Letters Upper6D
6 6D Digits and upper–case Letters Alphanumeric
7 Motion Words Words6D

8 KinectPostures Hand Postures Ren et al.[13]

3.2.1 Datasets with continuous trajectory gestures

For our experiments on trajectory recognition, we used 3 publicly available databases for

our experiments, namely the 2D Graffiti [2], Kinect [10] and 6DMG [3]. These databases

can be split in smaller datasets that test a specific subset of gestures (digits, lower letters

and upper letters).

The 10 Palm Graffiti Digits database [2] contains standard QVGA (320 × 240, 30 fps)

2D videos of 10 users writing “on the air” the 10 Hindu-Arabic numerals, 0 − 9, in a

continuous mode 1. This database is split in three subsets, namely the “GreenDigits”,

“EasyDigits” and “HardDigits” datasets, out of which we used the first two for our

experiments. Each dataset contains 300 gestures in total (10 users × 10 digits × 3

examples/digit/user). GreenDigits is used for training, since users wear a green glove,

while EasyDigits, in which users wear short–sleeves, is used for testing in a standard

user–independent mode. Each video shows the 10 digits in order, i.e. 0, 1, . . . , 9.

The third dataset (“HardDigits”) is intended for evaluation of advanced hand detection

methods under very challenging and uncontrolled scenarios (people moving in the back-

ground, trying to confuse the recognition system). However, such complex environments

tend to appear quite rarely in realistic indoor systems. On the other hand, videos of

“EasyDigits” capture users in a typical office environment, with realistic background

(other people working in their desk). Nevertheless, complex backgrounds may often

appear in outdoor scenes, and thus addressing such issue is included in our goals for the

future.

1Available at http://vlm1.uta.edu/~athitsos/projects/digits
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(a)

(b)

(c)

Figure 3.1: (a) The 10 Palm Graffiti digits, used in [2]. (b) The 10 Palm Graffiti
digits, as used in [10]. (c) Out–of–vocabulary gestures, used in [10].

The Kinect database [10] involves the 10 Palm Graffiti digits as well, as captured by

a Microsoft (R) KinectTM device 2. It consists of rotated (x, y) hand coordinates after

applying Principal Component Analysis to the original (x, y, z) data. The database is

composed of 5 subsets; a training set, “KinectR”, featuring 8 users and 979 isolated

gestures in total, and four testing sets – “KinectT”, featuring 2 additional users and

122 gestures in total, “KinectNonDigits”, containing 50 non-digit gestures (Fig. 3.1-c),

“KinectStreamOrdered”, containing 7 continuous sequences with 70 gestures in total (the

10 digits in order, 0, 1, . . . , 9) and “KinectStreamRepeat” which contains 47 continuous

sequences, each showing one digit repeated several times (387 gestures in total).

The 6DMG database [3] contains trajectories written “on the air” using a Nintendo (R)

WiiTM device, at 60 fps 3. This database is split in many subsets out of which we use

those three that contain letters and digits, namely the “Digits6D” (6 users, 600 gestures

in total), “Lower6D” (5 users, 1300 gestures) and “Upper6D” (13 users, 6500 gestures)

subsets. The last 2 subsets correspond to the lower– and upper–case letters of the English

alphabet, a–z and A–Z, correspondingly. Although the Wii device provides additional

features (such as depth and speed), we keep only the (x, y) coordinates corresponding to

the device position, to allow for a fair comparison among all datasets. To our knowledge,

this is the first work that uses these specific subsets, since prior work concentrated on

individual strokes [42, 95].

We also use the “Motion Words” subset, which contains continuous streams of 40 words,

written on the air by 12 users (40 words, 5 examples/user/word, 2400 sequences in

total). These sequences are split in 4 sets, each containing 10 words with an average of

4 characters per word, corresponding to 4 different scenarios of using gestures to control

2Kindly provided by Professor Sigal Berman and Dr. Darya Frolova, with the Department of Indus-
trial Engineering Management, Ben-–Gurion University of the Negev, Beer–Sheva, Israel.

3Available at http://www.ece.gatech.edu/6DMG/Download.html
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Figure 3.2: The 26 upper–case English letters, used in [3].

an integrated entertainment system, such as selecting TV channels, music genres and

basic internet websites, as shown in Table 3.2.

Table 3.2: The 4 scenarios included in the Motion Words dataset

Set 1 Set 2 Set 3 Set 4

ABC BBC WEATHER GAME
CBS FX NEWS VOICE
CNN HULU MLB CALL

DISCOVERY TNT NFL MAIL
DISNEY MUSIC TRAVEL MSG

ESPN JAZZ POKER FB
FOX ROCK FOOD YOU
HBO DRAMA KID GOOGLE
NBC MOVIE MAP SKYPE
TBS SPORT TV QUIZ

3.2.2 Datasets with postures

For our experiments on hand posture recognition, we used the “KinectPostures” dataset

[13], which contains an alphabet of 10 different postures, with 10 examples from 10

different persons, i.e. 1000 postures in total (Fig. 3.3). In their original work, Ren

et al.[13] required the user to wear a black bracelet on the gesturing hand’s wrist, for

easier hand–palm separation. In our work, we discard the presence of a black bracelet,

since it might be restrictive in certain cases, such as “What if the user loses the black

bracelet?”. Thus, we restrict the use of pixel luminance values to detect face location

during initialization, and we only use depth information for all the other tasks, i.e. hand

detection, segmentation and representation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.3: The 10 different hand postures used in [13] and in our experiments. One
can observe the necessity of using depth under highly correlated background (e.g. in

(b,c)).

3.3 Discussion

This chapter serves as a reference for subsequent chapters, providing a brief overview

of the data acquisition methods (body sensors, 2D cameras and depth cameras) and

datasets we use in our experiments.
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Feature extraction is typically the first step in gesture recognition systems, involving

hand detection and gesture representation. In this chapter, we first present our ap-

proach for hand and palm detection under various data acquisition methods, and pro-

pose a novel technique for finger detection. Finally, we describe our approach for gesture

representation, targeting invariance to translation, rotation, scaling and nature of the

capturing device.

4.1 Hand detection

Gesture capturing devices affect the choice of hand detection method, posing various

limitations on the types of possible gestures and suitable signal processing tools (Sec.

24
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2.1). In the following we discuss hand detection methods we used for the cases of body

sensors, depth cameras and standard 2D cameras.

4.1.1 Hand detection using body sensors

Hand direction can be achieved directly when body sensors are used. Specifically, a

device is attached to the gesturing hand, making coordinates easily available for further

processing. In the cases of mobile phones or the Nintendo (R) WiiTM remote control,

the user simply holds the device while gesturing. Clearly, in such case one implicitly

assumes that the user is capable of holding an object steadily in his hand, which requires

a certain anatomical and functional capacity.

4.1.2 Hand detection using depth cameras

In the case of depth cameras, such as Kinect, hand detection is usually based on the

assumption that the gesturing hand is the closest object to the camera and thus simple

or advanced depth thresholding techniques and tracking methods can be employed with

very accurate results [72], [15], [13]. In the following, we present our hand detection

method for the case of depth camera sensors in detail.

4.1.2.1 Face detection

The first step in our approach performs face detection on the luminance (Y ) compo-

nent of a color image, based on the Viola–Jones AdaBoost cascade classifier [96]. This

technique partitions an image into square blocks (at various scales) and then assigns a

classification label (face/no face) to each of them. The main idea is to discard many

negative blocks at early stages of the cascade, while assigning a positive label (face)

to blocks reaching the final cascade level. For our experiments, we used an efficient

implementation, provided by the OpenCV library [20].

Presence of a face indicates existence of a user and triggers the system for further

processing. We inherently assume that face detection will be successful at a certain time

instance, meaning that the user will not cover his face with his hand when he first appears

on the screen. Based on face position and user’s laterality (e.g. right–handedness),

we can exclude the opposite image plane (e.g. left of the face) from further analysis.

Laterality can be easily inferred by observing the location of hand motion relative to the

user’s head during some first initialization frames. Finally, depending on the application,
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(a) (b) (c)

Figure 4.1: Three of the 10 different hand postures used in [13] and in our experiments.
One can observe the necessity of using depth under highly correlated background (e.g.
in (b,c)). While the users wear a black belt in their wrist for easier hand detection and
separation, we completely avoid using such information, by processing only the depth

image.

we can also eliminate some part of the image plane over the face since gesturing rarely

occurs there.

When a user is eventually detected, we compute the average depth of the face region,

Tf , which is the maximum depth at which the gesturing hand can occur, assuming it is

always closer to the camera compared to the distance of the face, as shown in Fig. 4.1.

While the cascade classifier provides increased efficiency compared to more naive im-

plementations, face detection still remains a computationally heavy process, even for

modern high–end personal computers. Since a person normally does not move his head

wildly during gesturing, face detection can be applied periodically every Ft seconds,

using the most recent face location in some short history for subsequent frames. In our

implementation, Ft varies, being smaller (Ft = 1 second) when there is no prior positive

face detection result, and larger (Ft = 5 seconds) when a user has already been located

on the screen. This technique is computationally efficient, while it also deals with hand–

face occlusions, since face detection will eventually succeed even after some unsuccessful

attempts.

4.1.2.2 Arm detection

This step takes as input a depth image and the average depth of the face region, Tf , and

outputs a binary mask indicating the points of the arm component, as in Fig. 4.2–c.

We first apply depth thresholding, keeping pixels with depth d < Tf − T0, where T0

is a small value that typically represents the minimum distance from the face plane to

the waving hand – we found out that a value of T0 = 100 is suitable for our dataset.

Subsequently, we perform Connected Component Analysis (CCA) and keep the biggest

component as the candidate arm (Fig. 4.2–a).

Although depth thresholding helps dealing efficiently with cluttered background, cer-

tain problems may arise due to periodic applications of face detection (Sec. 4.1.2.1).
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Specifically, while Tf is considered constant for consecutive frames, it usually presents

slight variations, as the user moves his face unconsciously. This leads to less accurate

segmentation, causing problems when the hand is in front of the face, as the thresholded

mask will contain both the hand and some part of the face (Fig. 4.2–a).

This problem can be solved efficiently by inspecting the histogram of depth values (Fig.

4.3) and applying Otsu’s segmentation algorithm [97] to separate it into two components.

Otsu’s algorithm also returns a metric of separation quality to protect against cases where

there exists only one component. As it can be seen in Fig. 4.2-b, the final result is the

desirable one. Our literature review revealed that, in a similar approach, Kurakin et

al.[72] also used Otsu’s algorithm to segment the arm from the whole body.

Finally, similar to [14], we compute the Minimum Enclosing Ellipsoid (MEE) [98, 99] to

find the orientation of the arm (through the axis of elongation) and rotate the arm in

a horizontal position, such that the palm is always at the right side, as shown on Fig.

4.2-c. Such rotation is achievable, based on the assumption that the palm area will have

a lower depth value compared to the rest of the arm, as shown in Fig. 4.4. We call the

result of this transformation standard position 0◦.

(a) (b) (c)

Figure 4.2: (a) Resulting binary mask after depth thresholding. (b) Resulting binary
mask after applying Otsu’s segmentation. One can see that the shape of the hand
is now cleaned from background noise. Minimum Enclosing Ellipsoid indicates arm’s

orientation. (c) Arm rotated at the standard position 0◦.

4.1.2.3 Hand – palm separation

This step takes as input an arm component in the standard position 0◦ (Fig. 4.2-c) and

outputs a cutting band at the wrist (Fig. 4.5-e).

In the following, let’s assume Cartesian coordinate system, with the (0, 0) point in

the lower–left corner of each image. For hand–palm separation, restricting ourselves

in the bounding box of the arm, we scan all x-positions of pixels that belong to the

largest component and track the pixels that have the minimum (low(x)) and maximum
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Figure 4.3: Histogram of depth values for the arm mask (Fig. 4.2-a). Note arm pixels
occur at small depth values, while the noisy part appears at bigger depth values.
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Figure 4.4: Average depth profile of the arm shown in Fig. 4.2-c. Note that fingers
lie at lower depth values, i.e. closer to the camera, as expected.

(upp(x)) y-coordinates. These two sequences form two 1D-signals, as shown in Fig. 4.5-

b. Subtracting these two signals produces the signal of widths widths(x) (Fig. 4.5-d).

We observe that the arm–palm separating point, (x∗), can be located at the local mini-

mum of widths(x) that is closest to the global maximum, xM . At this point, the reasons

for rotation to the standard position 0◦ become clear: searching for a local minimum is

restricted only to the left part of the signal, i.e. to positions x < xM . This way, we avoid

erroneous segmentations due to local minima after the true wrist point. As an example,

in Fig. 4.5-d, xM = 266, x∗ = 210, while a false local minimum lies at x = 311. The

final separation result is a mask M0 containing the palm, as shown in Fig. 4.5-e.

We note that our method is slightly different from [14], which performed some smoothing

on the 2D contour, derived a signal similar to widths(n), choosing as starting point the

global maximum and applied gradient descent towards the end of the hand until the
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algorithm reached a local minimum. While in our experiments we saw that the method

of [14] works fairly well in practice, we still found cases where it fails, because of not

applying enough smoothing or because the global maximum does not always reside at

the palm area.

Hand–palm separation was visually confirmed, with results of similar quality to the

example shown in Fig. 4.5-d. The only exception was one case (out of 1000) where the

resulting mask missed the thumb and placed the hand–palm separation line incorrectly,

in the middle of the palm.
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Figure 4.5: (a): Standard position 0◦ for the hand of Fig. 4.2. (b) The corresponding
signals upp(n) and low(n). (c) The signal of widths, widths(n). (d) The detected

cutting point, shown with a vertical red line. (e) The detected palm mask.

4.1.3 Hand detection using 2D cameras

Hand detection is more complicated when only one 2D camera is used. Difficulties

are mainly due to the projection of 3D objects on a 2D image plane. In this case,

object segmentation depends exclusively on color information and motion. Some early

approaches asked the user to wear a special glove, colored to some distinct color which

rarely appears in most background scenarios (e.g. green). Typically, simple green color

detection leaves only one object present on the image plane, denoting palm of the moving

hand. As this technique limits the naturalness of interaction, it is used only during

training, to ensure recording of clean training data. In this work, we applied green color

detection on the “GreenDigits” dataset (Table 3.1).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: (a) A characteristic RGB frame from the Graffiti “EasyDigits” dataset [2].
(b) Corresponding luminance (Y) component. (c) Result of face detection (blue box )
and the corresponding area where hand detection will be applied (green box ). User’s
laterality is inferred during initialization and is considered known at this step. (d) Skin
mask after skin detection and thresholding. (e) Motion mask after frame differencing of
consecutive frames. (f) Combined skin–motion mask, using the logical AND operation.
(g) Skin–motion mask after applying morphological opening for noise removal and hole
filling. (h) Resulting hand region. Green dots represent the interesting points found
through corner detection, while the red dot in the center represents the estimated palm

centroid.

During testing, the user gestures using bare hands. In such cases, skin–color detection is

a fundamental part of most hand detection systems, combined with some form of motion

detection. In our work, we developed a hand detection method, based on face detection,

skin color detection and corner detection techniques, as follows.

4.1.3.1 Face detection

As in the case of depth cameras (Sec. 4.1.2.1), face detection is performed on the

luminance (Y ) component of a color image, based on the Viola–Jones AdaBoost cascade

classifier [96] and the OpenCV implementation [20]. Once again, presence of a face

indicates existence of a user and triggers hand detection in a restricted area, based on

user’s laterality and face location (Fig. 4.6-c).
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4.1.3.2 Skin detection

Skin color detection is performed using the generic color histogram method of Jones and

Rehg [100], which computes a skin probability image. The skin probability of a pixel

with color (r, g, b) is computed using Bayes theorem:

P (skin|rgb) =
P (rgb|skin) · P (skin)

P (rgb)
(4.1)

while the non–skin probability is:

P (¬skin|rgb) =
P (rgb|¬skin) · P (¬skin)

P (rgb)
(4.2)

where P (rgb|skin), P (rgb|¬skin) denote the conditional probabilities of observing the

triplet (r, g, b) in skin and non–skin images, while P (skin), P (¬skin) denote some prior

probabilities. In their original work [100], Jones and Rehg estimated these quantities

using 80 million skin pixels and 854 million non–skin pixels from natural images. Clas-

sification is performed by comparing:

P (skin|rgb) ≥ θP (¬skin|rgb) (4.3a)

P (rgb|skin) · P (skin) ≥ θP (rgb|¬skin) · P (¬skin) (4.3b)

P (rgb|skin)

P (rgb|¬skin)
≥ θP (¬skin)

P (skin)
(4.3c)

P (rgb|skin)

P (rgb|¬skin)
≥ Θ (4.3d)

where θ is a parameter related to the application–dependent cost of false positives

and false negatives. In general, one can consider only parameter Θ, which controls

the the trade–off between true and false positives. In their original work, Jones and

Rehg reported high quality classification results on their dataset (Equal Error Rate –

EER = 0.88). Finally, to reduce memory requirements, they also used 323 bins for each

histogram (instead of 2563 = total number of 8–bit RGB colors).

For our experiments on the “EasyDigits” dataset, we used the 32–binned histograms

with Θ = 0.45. We also precalculated the final classification results for all bins, reducing

the required memory space to 323 bytes instead of 2 histograms ×323 bins ×2 bytes

per floating–point number. In our experiments, we observed an average computational

speedup of 3×. However, this implementation returns directly a binary skin mask instead

of a skin probability mask, which may be undesirable in some applications.
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Fig. 4.6-d shows the resulting skin mask, Mskin, after applying skin detection on the

frame of Fig. 4.6-a. One can easily notice the appearance of true positives (user’s face

and arm) and false positives (skin–like background due to other humans, lighting and

wooden furniture).

4.1.3.3 Motion detection

The resulting skin mask, Mskin, can be combined with some binary motion mask Mmotion

(Fig. 4.6-e), producing a skin–motion mask, Mskin−motion (Fig. 4.6-f). Typically,

Mmotion results after applying a threshold ThMotion on the luminance difference im-

age of consecutive frames. Determining ThMotion depends on environment conditions

(varying lighting, dynamic background) and can be estimated assuming that the user

will not appear in the first few frames.

For our experiments, we used the fixed value ThMotion = 15, which gave conservative

results, as shown in Fig. 4.6–e. While our principal goal was to keep as many true posi-

tives as possible, we observe that major false positive regions, i.e. face and background,

are almost completely eliminated due to low amount of motion in those regions. In fact,

this is a common condition in most office environments.

The resulting mask can be further improved through morphological operations, which

typically remove small noisy objects, while they also fill holes in bigger objects (Fig. 4.6–

g). Once again, the exact number and order of such operations is application–dependent

and there is no standard procedure to decide an optimal strategy. In our experiments

we applied one opening operation, followed by two dilation operations.

4.1.3.4 Final hand detection

The previous steps typically remove most of the noise, while leaving one large object on

the foreground (Fig. 4.6-g). At this point, we perform Connected Component Analysis

(CCA) [20] and isolate the arm as the largest component within the luminance frame

(Fig. 4.6-h).

Unfortunately, we cannot apply our method developed in Sec. 4.1.2.3 for arm–palm

separation, as the resulting mask is too noisy, due to reduced resolution and imperfect

thresholding operations in the previous steps. For this reason, we apply strong corner

detection, using the method of Harris and Stephens [101] to collect points of interest. We

then calculate their optical flow using the pyramid–based Lucas–Kanade method [102]

and discard all points showing motion vectors of low magnitude – we use a threshold
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Figure 4.7: Histograms of error in x and y palm coordinates, expressed in % (pixel
offset/pixel frame size), for 423 test frames. Fit a Gaussian with mean µ = 0.9%/−1%

(horizontal/vertical errors) and standard deviation σ = 6%.

Tflow = 0.5% of the frame width. Finally, we choose the centroid of the remaining corner

points as the final palm centroid (Fig. 4.6-i).

We can expect this method to find a point closer to the palm center than the rest

of the arm, since palm and fingers present most of the edges and corners. Although

optical flow estimation is computationally expensive, that step is required in order to

avoid confusions with static skin–like image parts, such as face, when the hand is not

moving. While we observed very small differences in our experiments on the Graffiti

EasyDigits dataset (Table 3.1), optical flow estimation proved quite helpful when we

conducted additional experiments with a real–time application. Although the steps

described earlier are not new, to our knowledge, using corner points for hand detection

is novel.

Please note that our method would not work properly in scenes with very complex

backgrounds, i.e. too many skin–colored moving objects [2]. However, such scenarios

are rather unrealistic in typical indoor environments (home/office).

4.1.3.5 Evaluating hand detection

To estimate the noise introduced by our hand detection method, we manually labelled

the optimal hand position in 423 frames (VGA, 320× 240) from the EasyDigits dataset

(Table 3.1). These frames contain the digits “0” – “5” and the connecting lines between

consecutive digits.

Fig. 4.7 shows the estimated probability density function (pdf ) of the noise for hori-

zontal and vertical normalized coordinates (depicted as 100% percentages of the image
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dimensions). It appears that noise can be modelled as additive Gaussian of zero mean.

A standard measure of noise is the Signal–to–Noise–Ratio (SNR), defined as:

SNR = 10 log
σ2
signal

σ2
noise

(4.4)

In our data, the estimated SNRs are 21.5 dB for horizontal and 21 dB for vertical

coordinates. These values are generally considered as moderate–to–low. However, the

shapes of the gestures seem not be severely distorted and remain distinguishable by the

algorithms presented in Chapter 5 (Fig. 4.8).
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Figure 4.8: Ideal and acquired trajectories for digits (a) “0” and (b)“3”. Despite the
low SNR (21.2 dB), the basic shape features of the digits remain distinguishable and

can be recognized by the gesture recognition methods presented in Chapter 5.

4.2 Finger detection

Location, formation and number of fingers offer valuable information during recognition

of hand postures. In this section we propose an automated method for reliable finger

detection, operating on a binary mask of hand’s palm. We note here that our method

does not rely on color or depth information, and thus it can be potentially used with any

type of video camera, provided that hand segmentation is successful. In our experiments,

we observed excellent performance on the “KinectPostures” dataset (Table 3.1), which

was used for posture recognition.

In the following, we describe our approach in detail, while in Chapter 9 we show that

recognition accuracy of standard hand–shape representation methods can be significantly

improved, through search space reduction based on the number of fingers.
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4.2.1 Initialization

Our method assumes that hand detection and hand–palm separation have been success-

fully performed, resulting in a binary palm mask, as shown in Fig. 4.9-a. At first, we

estimate the palm’s radius, Rp, by solving for the Maximum Inscribed Circle [103] (Fig.

4.9-b). We then apply morphological image opening on the mask M0 with a disk of

radius Rdisk = 0.5 · Rp, in order to keep only the palm Mpalm (Fig. 4.9-c). Subtract-

ing Mpalm from M0 keeps mainly the fingers (Fig. 4.9-d). Finally, we remove small,

noise-like components in the mask by additional morphological opening with a smaller

structuring element, which results in the mask Mfingers (Fig. 4.9-e).

(a) (b) (c) (d) (e)

Figure 4.9: (a) Binary hand mask, M0, resulting after hand palm separation in
previous steps. (b) Corresponding maximum inscribed circle. (c) Estimated palm
Mpalm, after morphological opening. (d) Subtraction of the two masks M0 −Mpalm.

(e) Resulting mask Mfingers with candidate finger components.

4.2.2 Dealing with merged fingers

While the above procedure is quite simple and fast, two problems may appear:

1. False Fingers. Some components may survive the preprocessing step because they

are large enough and not because they have a valid finger shape.

2. Merged Fingers. Some fingers may appear as one component due to viewpoint or

to device artifacts.

To alleviate these problems, we propose a novel method for finger detection, which first

detects candidate fingers and then uses the mask Mfingers to confirm the validity of the

results. Similar to [13], we find the contour coordinates {x(n), y(n)} of M0 and then

form the signal of radial distances with respect to the palm center, r(n):

r(n) = ((x(n)− cx)2 + (y(n)− yc)2)/Rp (4.5)

where (cx, cy) denotes the palm centroid coordinates of Mpalm.
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As we see in Fig. 4.10, the signal r(n) presents apex–shaped lobes around finger areas.

This property was also observed by Ren et al.[13], who used near-convex hand decom-

position [104], obtaining accurate finger detection results, but at a high computational

cost. In our work, we propose a much simpler approach, based on a motion analysis

method [105] and a novel method for apex detection.
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Figure 4.10: The signal of radial distances, r(n), for the hand shown in Fig. 4.9-e.
One can easily note the apex–shaped lobes around finger areas.

4.2.2.1 Detection of Full Action Instances

Full Action Instances (FAI ) correspond to periodically appearing cycles in human activ-

ities [105], e.g. a step in the walking activity. Poularakis et al.[105], noticed that FAIs

correspond to apex-shaped parts in a properly–constructed 1D signal (average motion

energy), and proposed a method for FAI detection. In short, our algorithm forms teams

of two minima and one maximum and tries to combine neighbouring teams, using 16

combining rules (Table 3 in [105], Fig. 4.11 below); each FAI is roughly a mountain

peak between two valleys.

(a) (b) (c)

Figure 4.11: Three (out of sixteen) rules of combining neighbouring teams of two
minima and one maximum. In cases (a,b), two smaller teams are combined to make a
larger team. In case (c), no combination is available, which results in a FAI detection

for the previous complete bell–shaped object.

In our approach, we use this algorithm for finger detection, since fingers resemble FAIs.

After the initial FAI detection (Fig. 4.12), we reject small FAIs based on a minimum

apex height, Th, to obtain the final candidate fingers. This process removes false fingers
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from the mask Mfingers, since it keeps only apex-shaped components of the hand. In

our experiments, we used Th = 0.3 ·Rp, i.e. we require a finger’s length to be at least a

third the radius of the palm
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Figure 4.12: The signal of radial distances, r(n) and the detected FAIs (shown as red
squares), using the method of [105]. Note that low-height apexes can be easily rejected.

4.2.2.2 Apex detection

While FAI detection locates the bell–shaped objects quite successfully, it still results in

merged fingers, as its original goal was to produce bells as large as possible. However,

we observe that merged fingers correspond to significant apexes of the signal r(n). For

this reason, we propose a novel algorithm that detects apexes in 1D signals, which we

then apply on each FAI.

Our main observation is that an apex can be approximated by a triangle, with area E,

as shown in Fig 4.13. Our algorithm begins with the left valley point of the FAI and

scans local minima, computing E, the area between the signal (blue curve) and the line

connecting the left valley point to the local minimum under test (red line). Depending

on the relative position of the two curves, some areas have positive sign (signal lies

above the line) while others have a negative sign (signal lies below the line). When

E > Ta, a significant apex is detected at the point of maximum height. When E < 0,

we understand that the signal forms a valley, which signals our algorithm to backtrack

to the last local minimum and restart the whole process from there. Additionally, false

apexes can be rejected based on a minimum length of the two sides around the apex,

as well as a maximum ratio of the longest over the shortest side. In this way, although

originally we assumed one apex per FAI, we can now detect additional apexes and thus

disambiguate merged fingers. In our experiments, we normalized r(n) to 1 and then

used Ta = 0.1.
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Figure 4.13: An example of our method for apex detection and FAI splitting, dealing
with two merged fingers. When area E is larger than a threshold Ta, an apex is detected

in signal r(n).

4.2.3 Finger verification

At the end of the above process, almost all of the false positives have been eliminated.

Accuracy can be further improved, by using the connected components in the mask

Mfingers for final verification. Since each FAI, with its corresponding apex, left and

right sides and valleys, should be restricted to a single mask component, we can choose

the midpoints at each side of the apex and connect them with a line. If the apex

corresponds to a real finger, then most of the points on the line (ideally all of them)

will belong to the same component, without intersecting background pixels or other

components.

4.2.4 Preliminary evaluation

While a thorough evaluation of finger detection would check spatial matching and bound-

aries between neighboring fingers, we didn’t have access to any reference information for

such a task. Moreover, our work differs from Computer Graphics approaches, where the

goal is to recover an accurate hand model. Instead, we target posture recognition, using

basic geometric features for representation and the number of fingers for search space

reduction. Based on the above, we considered as correct cases those where the expected

number of fingers - known a priori by the posture class - was returned, with 996 correct

results out of 1000 postures.

4.3 Gesture representation

Hand detection extracts the hand region or hand coordinates at each time instance

t = 1, . . . , T . The goal of representation is to describe the gesture data in a compact way,
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ensuring existence of desirable properties, such as invariance to translation, rotation,

time duration and scaling. In the following, we discuss our proposed representation

schemes for hand trajectories and postures.

4.3.1 Representing hand trajectories

Hand detection extracts the (x, y) hand coordinates at each frame t = 1, . . . , T , result-

ing in two 1D signals, ~x = [x1, . . . , xT ] and ~y = [y1, . . . , yT ]. To achieve translation

invariance, we subtract the mean values (x̄, ȳ) from the original observations and form

the signal vectors ~xinv = [x1 − x̄, . . . , xT − x̄] and ~yinv = [y1 − ȳ, . . . , yT − ȳ]. Time

duration invariance is achieved by downsampling in time through linear interpolation of

(~xinv, ~yinv) to obtain two signal vectors (~xr, ~yr) of fixed length N , where N is chosen as

a parameter – we used N = 8 in our experiments. Finally, we form a single 1D signal ~v

of length 2N by interleaving (~xr, ~yr), such that

~v = [~xr1, ~yr1, . . . , ~xrN , ~yrN ] (4.6)

and normalize ~v such that its L2-norm equals 1, in order to ensure scale invariance (i.e.

camera pixel resolution, relative distance of gesturing hand to the camera, amount of

motion in gesture formation). Fig. 4.14 shows the corresponding representations for

digits 0–9 in the “GreenDigits” dataset.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.14: Digits 0–9, using our 8–point representation. Although fine shape details
are not present, digit recognition is still possible.

The reason why we use one interleaved signal vector, ~v, instead of two separate vectors,

~x, ~y, is due to scale normalization and can be seen in Fig. 4.15. In some trajectories,

such as the digits “1, 7” and the letters “I, L”, signal values in one dimension – typically

the vertical axis – may spread over a wide range of values, while the other dimension

presents almost zero variance. In such cases, separate normalization of ~x and ~y may

lead to severe shape distortions, which increases the amount of error and may result

in wrong classification. As we observe in Fig. 4.15, small distortions in the original

trajectory of “1” can have a serious (c–d, separate signal normalization) vs. negligible
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Figure 4.15: (a) Original x, y coordinates for digit “1” from Digits6D dataset. (b)
Raw coordinates x, y after separate normalization of x and y. (c) 8–point representation
of (b) after resampling, under separate normalization scenario. (d) Raw coordinates
x, y after common normalization of x and y. (e) 8–point representation of (d) after

resampling, under common normalization scenario.

(e–f, interleaved signal normalization) effect on the final representation, depending on

the type of normalization we choose. We also observe that downsampling works as a

low–pass filter and can thus reduce much of the noise in high frequencies.

While existing works [8] also use downsampling in time, others [6, 7] perform resampling

in the arc–length domain, to secure invariance to different speeds during gesturing.

In this work we use linear resampling in time since it is computationally simple and

performed very well in our experiments.

4.3.2 Representing hand postures

We consider two fundamentally different methods to represent hand postures, a local

method and a global one, as described below.

4.3.2.1 Local representation

Hand detection results in a mask, M0, showing the palm of the gesturing hand. We

find the palm contour coordinates, {x(n), y(n)}, n = 1, . . . ,M and resample each signal,

keeping N values –we chose N = 256. We then form the complex contour signal:

z(n) = x(n) + jy(n) (4.7)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 09:38:51 EET - 137.108.70.7



Chapter 4. Feature extraction 41

and compute its Discrete Fourier Transform (DFT):

Fk =
N−1∑
n=0

z(n)e−j2πkn/N (4.8)

Subsequently, we keep only the 2P coefficients corresponding to k ∈ [−P, P ] − {0}.
Finally, we keep only the magnitudes |Fk|, normalized by |F0|.

This representation, known as Fourier Descriptors (FD), is invariant to translation,

rotation, scaling and choice of initial boundary point [47]. Instead of the contour signal,

z(n), Kulshreshth et al.[17] used the signal of distances, r(n), (Eq. 4.5). Its main

advantage is that it is a real signal, resulting in symmetric DFT and thus half the number

of coefficients. For completeness, we considered and evaluated both approaches in our

experiments, using P = 8. We refer to these Fourier Descriptor–based representations

as FD(z) and FD(r). Please note that resampling to N points is important in both

cases, since it guarantees existence (and comparison) of the same frequencies in the DFT

representation.

It is also possible to use information about fingers for search space reduction, i.e. one

can consider as candidate categories only those postures with the detected number of fin-

gers. We named these approaches FD∗(z) and FD∗(r), corresponding to the previously

mentioned FD(z) and FD(r).

4.3.2.2 Global representation

Global representations use holistic features, mainly based on the fingers. In our work,

we use such information, as derived from our finger detection method (Sec. 4.2). Specif-

ically, we describe a finger using its size characteristics (height, width) and its rela-

tive distance from the leftmost finger. Finally, we concatenate all this information for

multiple fingers into one feature vector. We refer to this finger–characteristics–only

representation as “Fingers”.

4.4 Discussion

In this chapter, we presented our hand detection method and a novel technique for

finger segmentation under various data acquisition methods. Moreover, we presented our

approach for gesture representation, targeting invariance to translation, rotation, scaling

and nature of the capturing device. This chapter serves as a fundamental reference for

the following chapters.
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Isolated recognition assumes known starting and ending time frames of gestures. In the

case of dynamic trajectories, this implies that a sequence of hand coordinates is given

as input to the recognition system (Sec. 4.3.1).

In this chapter, we discuss our approach for isolated gesture recognition, which is based

on Maximum Cosine Similarity (MCS) and a tree–based fast Nearest Neighbor algo-

rithm [106]. We furthermore discuss two other pattern recognition methods, based on
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Dynamic Time Warping–DTW [107] and Support Vector Machines–SVM [45], which are

commonly used for gesture recognition [29, 53, 89, 91, 108].

Using MCS for gesture recognition is not novel, as it is already known from the literature

[42, 67] that MCS can achieve very high recognition results for stroke–based gestures.

Thus, our contribution lies in investigating its usefulness for recognition of digits and

letters, exploring various parameters, such as recognition with a varying number of train-

ing users/examples, performance on noisy data and common recognition of digits and

letters. To this end, we perform extensive results on three publicly available databases

(Sec. 3.2). On the other hand, exploiting the computational efficiency of fast Nearest

Neighbor techniques for gesture recognition is quite novel and has not been explored in

the related literature.

Overall, isolated gesture recognition forms the basis for the two other fundamental op-

erations, i.e. gesture verification (Chapter 6) and continuous gesture spotting (Chapter

7). Hopefully, the results presented in this chapter provide more insight to the details

of the other two problems.

5.1 Gesture recognition

5.1.1 Maximum Cosine Similarity

Given a set of training examples, U = {ui, i = 1, . . . ,M}, we first apply feature extrac-

tion (as described in Sec. 4.3.1) to obtain their corresponding 1D signals ~ui (Eq. 4.6).

Using the same process, we transform an isolated test gesture into its corresponding

query 1D signal, ~q. We then classify ~q by locating the training vector û showing the

Maximum Cosine Similarity (MCS):

û = arg max
~ui∈U

~q · ~ui (5.1)

and assigning its label to ~q.

In our case, vectors ~u and ~q are normalized vectors (Sec. 4.3), representing points on a

unit hypersphere, and thus cosine similarity has the property of being in the range [−1, 1];

negative values place vectors farther away on this sphere, while positive – especially

values near one – correspond to points that are very close.
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5.1.2 Tree–based fast Nearest Neighbor

When vectors ~u and ~q are normalized vectors, the MCS problem is equivalent to a

minimum Euclidean Distance problem, since:

‖~q − ~u‖2 = ‖~q‖2 + ‖~u‖2 − 2~q · ~u = 2 · (1− ~q · ~u)

⇔ ~q · ~u = 1− 0.5‖~q − ~u‖2
(5.2)

This formulation allows us to use fast search methods1, such as the tree-based fast Near-

est Neighbor (NN) method of Katsavounidis et al.[106], which offers an exact solution

in nearly logarithmic time. This method operates much faster than the standard Full

Search algorithm, which needs to scan all training examples and compute their distances

to the query vector.

In more details, the first part (initialization) of this method involves recursive building

of a binary tree. At each iteration, it splits the data, u(i) ∈ R, i = 1, . . . ,m, into

two subsets, C1 and C2, using the K-Means algorithm [109]. It then computes the

hyperplane H(w̃) that maximally separates the two cluster centroids, where w̃ is the

coefficient vector of the hyperplane. By definition of w̃, if a vector q belongs to C1, then

ds[q̃, H(w̃)] < 0, where ds[q̃, H(w̃)] = 〈q̃, w̃〉 denotes the signed distance of vector q from

hyperplane H(w̃) and q̃ is the augmented vector q̃ = [1, q1, . . . , qn]. Thus, query points,

q, can be classified as belonging to the left or right tree node child based on their signed

distance, ds[q̃, H(w̃)], and the algorithm continues recursively for C1 and C2.

During the second part (searching), a query vector, q, is continuously classified based

on its signed distance, until a leaf node is reached (depth–only stage – DOS). Then

the algorithm starts backtracking to the previous nodes and examines the rest of the

vectors, since a global minimum is not guaranteed to lie at the first leaf node reached.

Computational efficiency comes from pruning many vectors out of the search based on

a lower bound, LB, of the Euclidean Distance, d(q, u), since it holds that:

d(q, u) ≥ LB = |ds[q̃, H(w̃)]− ds[ũ, H(w̃)]| (5.3)

One can roughly measure the algorithm’s efficiency by counting the number of backtrack-

ings, B, i.e. the number of vectors with LB < dmin, where dmin denotes the running

minimum distance at each node. Since all signed distances have been precomputed ei-

ther during the depth–only stage or the training stage, computing LB requires only one

subtraction.

1A brief overview of fast Nearest Neighbor algorithms is provided in Appendix A.
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Terminating the search when the first leaf node is reached (Depth–only Search – DOS )

has been found to work very efficiently and accurately on image compression tasks [106].

For such reasons, we also explore its performance as an approximate recognition method,

additionally to exact fastNN.

5.1.3 Tree–based fast K Nearest Neighbor

It is also possible to extend the fastNN algorithm to perform K Nearest Neighbor search

(fastKNN–MCS ), which classifies a query vector through majority voting on the labels of

the K nearest neighbors. This way, KNN is more robust to outliers and generally leads

to higher recognition accuracy. Initialization phase is exactly the same as in standard

fastNN. During the search phase, depth–only–search is performed until the first leaf is

reached and then the algorithm starts backtracking. At each step, the K minimum

distances are kept in a memory struct, while the maximum distance (out of the K) is

used for pruning (Eq. 5.3). Clearly, fastNN becomes a special case of this algorithm,

for K = 1.

In our experiments, we used K = 5, as we didn’t notice significant improvements for

larger values. In Chapter 8, we discuss computational complexity as a function of K.

5.2 Alternative recognition approches

A lot of approaches have been proposed for gesture recognition in the last 30 years. As

described in Chapter 5, most of them are based in Dynamic Time Warping (DTW) [2],

Maximum Cosine Similarity [6–8, 29, 42], Hidden Markov Models (HMMs) [30, 34, 35],

Longest Common Subsequence (LCS) [10, 11], Conditional Random Fields (CRFs) [36–

38], Dynamic Bayesian Networks (DBNs) [39] and Convolutional Neural Networks [40],

presenting some variations and modifications.

In our experiments, we chose to compare to DTW with multi–dimensional observations

(x, y) [2], as it is an exemplar approach, showing state–of–the–art results in a variety of

time–series classification problems, including the special case of trajectory recognition

which we use in this work. We also consider a model–based approach, using Support

Vector Machines (SVM) [45]. In both cases, we put considerable effort in optimizing the

computational efficiency of the classification process.

While DTW is in general expected to outperform MCS in terms of recognition accuracy,

due to its nice warping properties, we are interested to know how much degradation one

can expect when using MCS in the specific case of digits and letters, since it can serve
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as a computationally lighter method. It is already known from the literature [42, 67]

that MCS can achieve very high recognition results for stroke–based gestures.

One can also consider Hidden Markov Models (HMMs) [110] as an alternative approach

but our experiments showed rather poor performance on most datasets with an average

recognition rate of 64% for noiseless gestures, while DTW, SVM and our method per-

formed in the upper 90 percentile range. Thus, we don’t present any HMM results in

the following, but we plan to investigate the usefulness of HMMs in the future, using

standard implementations, such as the HTK toolkit [111].

5.2.1 Dynamic Time Warping

Dynamic Time Warping (DTW) [112] is a method to find the minimum–cost alignment

between sample observations in two time series. Cost is measured as the sum of all local

Euclidean distances between aligned samples [108]. Fig. 5.1 shows an example of DTW

calculation and the optimal alignment, between a model time–series (e.g. a training

example) of length M and a query time–series of length N .

Figure 5.1: A typical example of DTW calcucation. The solid line shows the
minimum–cost alignment.

Standard implementation of DTW is based on Dynamic Programming. Let D(m,n)

denote the DTW distance between the first m and n samples of model and query series

respectively. Then, D(m,n) can be computed recursively as:

D(m,n) = min{D(m− 1, n− 1), D(m− 1, n), D(m,n− 1)}+ d(m,n) (5.4)

where d(m,n) denotes the local distance between m–th and n–th sample, and D(m, 0) =

0, D(0, n) = 0,∀m,n.
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We also use a computationally efficient version of DTW (referred to as DTW8 in this

text), using our N–point representation (Sec. 4.3.1). In this case, we can also use

the Sakoe-Chiba band restriction [113], which restricts the search area during the DTW

calculation and the LBKeogh lower bound [107], which computes a lower bound on the

global minimum distance and uses it to perform partial distance search.

While LBKeogh allows for exact search, it pre–assumes equal–length sequences and a

restriction band, such as the Sakoe-Chiba band. Both techniques are approximations

of the global minimum distance, although they have been shown to work well for a

variety of problems. In Chapter 8, we discuss the computational efficiency provided by

each of these techniques, supporting our arguments with thorough experimental results.

Moreover, we present and evaluate a novel initialization method, which further improves

the efficiency of DTW8, providing an improvement of 33% in execution time.

5.2.1.1 Probabilistic DTW

Alon et al.[2] proposed a probabilistic variant of DTW, which resembles a Hidden Markov

Model (HMM), but uses a fixed transition matrix. Their model consists of Q states

qi, i = 1, . . . , Q, while it is equally likely to remain at the same state or move to the

next state. Each state, qi, is associated with a multivariate Gaussian density function,

(µi,Σi), linking the state to observations (e.g. hand coordinates), with µi and Σi) being

the mean and the covariance matrix of the feature vectors observed in state i. These

density functions are learned using a variant of the Baum–Welch algorithm [114], while

the number of states, Q, is chosen manually.

During testing, a local cost is assigned to each pair of observation vectors and states,

while the Viterbi algorithm is used to find the path of minimum total cost. Specifically,

given a vector x and a state (qi, µi,Σi), the local cost d(x, qi, µi,Σi) is equal to the

Mahalanobis distance:

d(x, qi, µi,Σi) = (x− µi)>Σ−1(x− µi) (5.5)

In our experiments, we refer to this DTW variant as “model–DTW”. Since we didn’t

have any information on the number of states, Q, we manually chose Q = 4 which

provided quite good results.

5.2.1.2 Normalized DTW

For our experiments, we explore five variations of DTW, as explained below:
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� DTW: full DTW with all observations

� DTW–N: full DTW with normalized observations

� DTW8: resampled DTW with N = 8 and normalized observations

� model–DTW: Probabilistic DTW with all observations

� model–DTW–N: Probabilistic DTW with normalized observations

Standard DTW assumes that the trajectory points lie around some point of reference,

which is subtracted (e.g. the face [2, 115]). In our implementation, we used the tra-

jectory’s centroid point, as the face location was not always available (e.g. in the Wii

datasets). This way, the face is assumed to always lie at point (0, 0), which still produces

valid results.

In the cases of DTW–N, DTW8 and model–DTW–N, we further normalize the points,

such that the corresponding vector has L2-norm equal to 1, to ensure scale invariance,

as described in Sec. 4.3.1. In the case of DTW8, such normalization makes sense in all

applications. However, in the case of DTW and model–DTW, normalization may not

be always a choice. Specifically, when used for gesture spotting in continuous streams,

as in [2], model–DTW is built in a recursive fashion, using the results of the previous

time step. Obviously, in such cases, normalization is only partially applicable, through

a predefined global constant (e.g. face height [115]) instead of the locally adapted L2-

norm.

Our reason for exploring normalization is related to the effect of scaling on recognition

accuracy. Specifically, we observed 3% lower recognition accuracy of DTW, compared to

DTW8, in recognition of lower–case letters and severely distorted results in Kinect digit

recognition. We further discuss this issue in sections 5.3.3 – 5.3.4, providing extensive

experimental results.

5.2.2 Support Vector Machines

Support Vector Machines (SVMs) [45] refer to a Machine Learning algorithm which

maximizes the separation margin between two classes, by solving a convex optimization

problem. A query vector, q, is classified as positive or negative based on the sign of f(q):

f(q) =
nSV∑
i=1

αiyiK(si, q) + b (5.6)

where b is a constant, si the so–called support vectors (chosen by the training exam-

ples), yi their corresponding labels and αi the weights of the support vectors. K(si, q)
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denotes the kernel function, which controls feature mapping to high dimensional spaces,

allowing for non–linear separations. The number of support vectors, nSV , depends on

the difficulty of separation, data dimensionality and quality of feature extraction. More

importantly, it is directly linked to computational efficiency, as Eq. 5.6 suggests [116].

In our work, we adopt the simple linear kernel, K(si, q) = si · q, which allows for more

efficient implementations, as:

f(q) = w · q + b (5.7)

where w denotes the maximum–margin separating hyperplane and can be precomputed

as:

w =
∑
i

αiyisi (5.8)

In this case, SVM requires only one computation of the inner product between w and q,

while the number of support vectors does not affect computational efficiency anymore.

While SVMs were originally proposed for binary classification, it is also possible to per-

form multi–class classification by training C binary classifiers in a 1–vs–all fashion. That

is, each SVM hyperplane, wc, c = 1, . . . , C, separates class c from all other C−1 classes.

The final classification result is derived by merging the results in some appropriate way

[117]. Thus, 10 binary classifiers need to be trained for 10-digit recognition, while 26

classifiers are needed to recognize the 26 Latin letters.

In our work, we use a special form of probabilistic SVM [118], which offers a measure,

p, for the quality of classification (p ∈ [0, 1]). Such probabilistic output is of great

importance for rejection of invalid examples, as we will describe in Chapter 6.

For our experiments, we used the software package LIBSVM [119], a standard publicly

available library, which offers efficient and robust implementations of various SVM–

related tasks, including training and testing. We further optimized this library, achieving

a speed–up of 5.8×, as described in Chapter 8.

5.3 Experimental results

5.3.1 Methods and Datasets

We ran thorough experiments, evaluating the performance of Maximum Cosine Sim-

ilarity (MCS), which forms the basis of our gesture recognition system. We also ex-

perimented with Depth-Only-Search MCS (DOS-MCS), fastKNN–MCS Support Vector

Machines (SVM), standard Dynamic Time Warping (DTW) and its low–complexity

variant DTW8. We also explored using normalized observations in DTW, as this was
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shown to improve recognition accuracy in certain cases. For our experiments, we use the

datasets 1–6 (Table 3.1), i.e. the GreenDigits–EasyDigits (VGA video, digits), KinectR–

KinectT (Microsoft Kinect camera, digits), Digits6D (Wii device, digits), Lower6D and

Upper6D (Nintendo Wii device, lower and upper–case letters).

5.3.2 Effect of resampling parameter N

Our method allows for a downsampling parameter, N , denoting the number of trajectory

points that will be used for gesture representation. This way, all feature vectors have

equal length, 2N , and time duration invariance is achieved. Moreover, downsampling

deals with noise at high frequencies and results in higher computational efficiency. It is

obvious that computational complexity scales linearly with N and thus we are interested

to determine the minimum value that has good performance. While any value > 1 is

allowed, it is preferred that 2N is a power of 2, allowing us to fully exploit the capabilities

of modern CPUs for fast vector processing operations (e.g. Intel SSETM and ARM Neon

TM SIMD instructions).

To this end, we varied the value of N and tested its effect on the GreenDigits dataset.

We noticed that perfect recognition results could be obtained even for low values of N ,

e.g. N = 4. While this result is quite encouraging, it seems quite unprobable that only

4 points will suffice for recognition under real–world conditions. While in GreenDigits

users wear a green glove, making hand detection easier and more accurate, in EasyDigits

users sign with bare hands and short–sleeved clothes. Clearly, hand detection produces

more noisy results in the second case, as it was already discussed in Sec. 4.1.3.
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Figure 5.2: Recognition accuracy for noisy gestures (GreenDigits dataset) and various
values of parameter N . For SNR > 30, recognition accuracy was close to 100%.

To resemble real–world conditions, we repeated our experiments on GreenDigits, under

the presence of additive white Gaussian noise in the raw palm coordinate data (x, y).

Fig. 5.2 presents recognition accuracy for different SNR values, showing that N becomes
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more important for lower values of SNR (i.e. larger amount of noise). However, gesture

trajectories become heavily distorted for SNR < 20 (Fig. 1.2) and they should probably

be rejected by a gesture verification module. Thus, we finally choose N = 8, as the

difference between the next value (N = 12) is quite small (< 3%) for SNR > 20 dB.

Moreover, we observed similar results on the digits6D dataset (< 2% drop betweenN = 8

and N = 12). Finally, choosing N = 8 leads to increased computational efficiency, as

shown in Table 5.1.

Table 5.1: Execution time speed–up for MCS–fastNN (digits6D dataset)

N FullSearch–MCS fastNN–MCS

16 1× 21.2×
12 1.3× 26.2×
8 1.9× 34.0×

5.3.3 Performance on noisy data

Noise in gesture data may appear due to device flaws, user inexperience and temporary

or permanent behavioural characteristics, such as anxiety, trembling hand or movement

limitations. For this reason, we measured the accuracy of all methods under the presence

of additive white Gaussian noise in the raw palm coordinate data (x, y). Tables 5.2 – 5.6

present our results for some typical SNR values (Eq. 4.4), for clarity of presentation.

We observe that both MCS and DTW achieve very high recognition accuracies in all

datasets, especially for high SNR values. MCS seems to perform around 1.5% lower

than the best result achieved, on average. Its fast approximation, MCS–DOS, is around

1−3% worse, when compared to MCS. On the other hand, MCS–KNN (K = 5) presents

almost the same results to MCS.

Although DTW seems to be the most accurate method, it is not the most robust.

Specifically, we see that it achieves very low recognition accuracy for the KinectT dataset

(43%). While this issue is not completely explored yet, we can assume it is due to scaling

variations, since the accuracies for the normalized versions (DTW–N and DTW8) are

the best achieved for this dataset. We observe a similar case in the lower6D dataset,

where DTW achieves 95% (similar to MCS), while DTW8 achieves 97% and DTW–N

98.5%. In all other cases, we noticed similar performances between DTW and DTW–N.

Normalized model–based DTW performs around 2% worse than MCS on most datasets,

while lack of normalization leads to severe drops for letters (7%) and mild drops for

digits (1%), with the exception of KinectT, which once again shows severe degradation.

Once again, data normalization proves to be very important for robustness. On Easy-

Digits, model–DTW–N performs 10% worse than MCS, which seems to contradict the
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Table 5.2: Recognition accuracy (%) for noisy gestures (EasyDigits)

Method/SNR 40 30 20 14 10

MCS 97.6 96.8 89.3 67.2 45.2

MCS–DOS 96.0 95.1 86.2 61.2 45.6

MCS–kNN5 97.8 97.4 89.4 67.6 46.9

DTW 97.9 98.3 97.8 91.4 80.7

DTW–N 97.8 98.0 97.5 85.7 65.0

DTW8 98.0 98.0 86.7 60.3 40.7

SVM 97.8 97.8 89.8 64.9 49.0

model–DTW 87.5 79.8 43.7 20.2 13.5

model–DTW–N 87.2 78.8 56.5 32.2 21.8

Table 5.3: Recognition accuracy (%) for noisy gestures (KinectT)

Method/SNR 40 30 20 14 10

MCS 94.9 95.0 93.8 91.0 86.3

MCS–DOS 82.2 81.9 81.0 76.9 73.5

MCS–kNN5 93.9 93.4 92.9 90.5 87.0

DTW 46.5 46.3 45.2 44.0 43.6

DTW–N 97.5 97.5 97.7 97.4 96.2

DTW8 96.7 97.5 97.1 95.4 86.0

SVM 95.0 94.7 92.5 88.9 85.9

model–DTW 32.0 32.0 32.0 31.2 28.1

model–DTW–N 94.0 93.0 91.0 86.5 73.9

MPLCS [10] 97 85 - - -

exceptional spotting performance reported in [2, 108]. However, those works used Dy-

namic Space-Time Warping (DSTW), an extension of Dynamic Time Warping (DTW),

considering multiple hand candidates at each video frame and searching for the optimal

path of hand locations over time. Moreover, [108] also reported that performance drops

when only one hand candidate is used, thus explaining the drop we observed.

It is quite interesting that noise affects more camera data (EasyDigits), compared to

Kinect and sensor based data. However, noise is inherent in most Computer Vision

hand detection methods, while Kinect and Wii provide much cleaner input data. Tables

5.7 – 5.9 show the most severe cases of misclassification for noiseless data (SNR = 40

dB).

Probabilistic SVM performs similar to MCS for digits and around 1% worse for letters.

Regarding the number of support vectors needed for separation of the classes, we ob-

served that 40− 72% of the training examples are selected as support vectors, as shown
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Table 5.4: Recognition accuracy (%) for noisy gestures (digits6D)

Method/SNR 40 30 20 14 10

MCS 98.8 98.7 98.8 98.5 97.3

MCS–DOS 97.2 97.1 96.7 95.9 94.6

MCS–kNN5 98.8 98.8 98.6 98.2 97.3

DTW 99.2 99.2 99.3 99.3 99.3

DTW–N 99.5 99.4 99.4 99.3 99.3

DTW8 99.3 99.3 99.3 99.0 96.8

SVM 98.6 98.7 98.8 98.3 97.5

model–DTW 97.7 97.7 97.6 95.3 90.3

model–DTW–N 98.3 98.3 98.3 96.4 92.4

Table 5.5: Recognition accuracy (%) for noisy gestures (lower6D)

Method/SNR 40 30 20 14 10

MCS 95.6 95.6 95.4 94.5 92.2

MCS–DOS 88.1 88.1 87.6 86.2 83.1

MCS–kNN5 94.8 94.7 94.2 93.4 90.9

DTW 95.2 95.2 95.1 94.8 94.2

DTW–N 98.5 98.8 98.5 98.1 97.5

DTW8 97.2 97.4 97.2 96.2 94.4

SVM 94.5 94.5 94.6 93.4 91.3

model–DTW 84.2 84.5 84.0 81.8 75.0

model–DTW–N 91.3 91.3 91.0 90.0 84.6

Table 5.6: Recognition accuracy (%) for noisy gestures (upper6D)

Method/SNR 40 30 20 14 10

MCS 97.5 97.5 97.4 96.3 93.8

MCS–DOS 94.8 94.8 94.5 92.8 89.9

MCS–kNN5 97.7 97.7 97.6 96.7 94.2

DTW 98.0 97.9 97.9 97.7 96.9

DTW–N 98.8 98.8 98.7 98.5 98.1

DTW8 98.1 98.2 97.8 96.9 94.7

SVM 96.7 96.6 96.6 95.8 93.1

model–DTW 89.0 89.0 88.7 86.7 80.9

model–DTW–N 96.0 95.9 95.5 93.5 88.1

in Table 5.10. We notice that EasyDigits and lower6D require a higher number of sup-

port vectors (close to 70%), while digits6D and upper6D much lower (close to 40%),

implying easier separation and better structured data for the latter. While the number

of support vectors is linked to computational efficiency in the general case [116], it is

much less important in our work, due to the simple nature of the linear kernel used.
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Table 5.7: Worst cases of misclas-
sification (Kinect)

Digit MCS DTW DTW8

0 8 (8.3%) – –

2 4 (16.7%) – 4 (8.3%)

6 0 (8.3%) 0 (8.3%) 0 (8.3%)

7 1 (16.7%) 1 (16.7%) 1 (16.7%)

Table 5.8: Worst cases of misclassification
(lower6D)

Letter MCS DTW8

k h (16%) –

h n (10%) –

t e (28%) –

y – x (6%)

a – d (8%)

Table 5.9: Worst cases of misclassification on the upper6D dataset

Gesture MCS DTW DTW8

D E,H, P (10.8%) P (6.2%) P (8.5%)

O C, U (6.2%) C (2.3%) C, U (4.6%)

P D (6.9%) D (8.5%) D (8.5%)

R K (5.4%) B (0.8%) K (5.4%)

U C,O,V (4.6%) C,O,V (9.2%) C,O,V (3.8%)

Table 5.10: Number of support vectors needed for classification)

Dataset support vectors # training examples Percentage

EasyDigits 175 270 65%

Digits6D 200 500 40%

lower6D 754 1040 72.5%

upper6D 1378 3120 44%

5.3.4 Performance with fewer training examples

Our second group of experiments involves varying the number of training examples, in

a leave–K–users–out cross–validation scheme. In each round, we considered K users for

training set and U −K users for validation, and averaged the results over 10 rounds (U

denotes the total number of users). The two Kinect datasets were not included in this

experiment since we didn’t have access to explicit information about the users.

Tables 5.11 – 5.14 present our experimental results in terms of recognition accuracy

for all datasets. We observe that in all cases, recognition accuracy increases with the

number of users. Quite interestingly, digits are less sensitive to the amount of training

examples, showing around 1 − 3% difference between the two extreme cases (K = 1

and K = U − 1). On the other hand, recognition of lower and upper–case letters is

more severely affected with few training examples (10 − 12% differences), perhaps due

to larger variations caused by the larger number of classes (26 vs 10).

Exemplar DTW variations (DTW, DTW–N and DTW8) provide the best accuracies,

but not high robustness. Once again, data normalization seems to be the key factor,

as DTW8 performs similar to DTW for digits and much better (5 − 10%) for letters,

especially when one or two users are considered in the training set. On the other hand,

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 09:38:51 EET - 137.108.70.7



Chapter 5. Isolated gesture recognition 56

Table 5.11: Recognition accuracy (%) with varying number of training examples
(EasyDigits)

Method/Users 1 3 5 7 9

MCS 95.6 97.1 97.5 97.3 97.3

MCS–DOS 93.6 95.9 96.0 96.4 96.0

MCS–kNN5 90.9 97.2 97.7 97.6 97.7

DTW 96.9 97.9 97.8 97.8 97.7

DTW–N 97.6 98.4 98.1 98.1 98.0

DTW8 96.9 97.6 97.9 98.2 98.0

SVM 65.6 97.2 97.6 97.9 97.9

model–DTW 71.4 85.8 88.8 88.4 88.3

model–DTW–N 72.7 82.5 85.4 85.9 87.0

Table 5.12: Recognition accuracy (%) with varying number of training examples
(digits6D)

Method/Users 1 2 3 4 5

MCS 96.2 97.7 98.3 98.7 98.7

MCS–DOS 90.4 94.2 95.5 96.8 97.4

MCS–kNN5 94.2 97.3 98.4 98.4 98.7

DTW 97.5 99.1 99.3 99.3 99.2

DTW–N 97.9 99.2 99.4 99.5 99.5

DTW8 97.9 98.5 99.1 99.4 99.3

SVM 94.6 97.8 98.2 98.5 98.6

model–DTW 40.0 97.7 97.7 97.7 97.7

model–DTW–N 40.0 98.3 98.3 98.3 98.3

parameter estimation in model–based DTW variants is highly sensitive to the number of

training examples, as depicted in our results for a low number of training users (K < 3).

However, recognition accuracy improves significantly, even for 3 or 4 users. Performance

of SVM is similarly affected by K, as expected by most model–based approaches.

5.3.5 Common recognition of digits and letters

An interesting scenario is to mix both digits and upper letters in the gesture alphabet,

for increased user flexibility. Intuitively, we can expect some recognition errors, since

some trajectories are very similar, such as digit–letter pairs “0 – O” and “1 – I”. Indeed,

we observed that both MCS and DTW highly confuse the above pairs, with accuracies

close to 50%, as expected. Excluding “O” and “I” and keeping only “0” and “1”, DTW

achieved 97.6% and MCS 96.9%.

Table 5.15 shows the most important sources of errors for both MCS and DTW. We

observe that the third most severe error is confusion between “2” and “Z”. Most optical

character recognition (OCR) algorithms face similar problems as well [120].
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Table 5.13: Recognition accuracy (%) with varying number of training examples
(lower6D)

Method/Users 1 2 3 4

MCS 82.7 91.2 93.6 95.5

MCS–DOS 74.9 84.1 86.5 88.0

MCS–kNN5 81.9 90.1 93.0 94.7

DTW 78.7 87.5 91.8 95.2

DTW–N 91.7 95.9 98.0 98.6

DTW8 89.5 94.3 96.1 97.2

SVM 80.9 90.5 93.0 94.4

model–DTW 56.9 72.6 80.9 84.2

model–DTW–N 74.0 87.0 90.2 91.4

Table 5.14: Recognition accuracy (%) with varying number of training examples
(upper6D)

Method/Users 1 2 4 8 12

MCS 87.6 92.7 95.6 97.1 97.6

MCS–DOS 78.1 85.2 90.6 93.7 94.8

MCS–kNN5 83.7 91.2 94.8 97.3 97.9

DTW 82.4 90.5 95.1 97.2 98.1

DTW–N 95.4 97.2 98.2 98.6 98.7

DTW8 91.1 94.8 96.7 97.7 98.1

SVM 82.6 90.4 94.5 96.2 96.7

model–DTW 55.7 72.5 82.1 87.7 89.1

model–DTW–N 71.3 84.7 91.8 94.8 96.0

5.4 Evaluation based on information gain

5.4.1 Definition of information gain

Although average recognition accuracy is the standard evaluation method in most classi-

fication works, we believe it provides a very coarse view of a system’s actual performance,

since it takes into account only the correct predictions. However, the structure of the

confusion matrix may provide valuable information about the severity of misclassifica-

tion errors. Moreover, average recognition accuracy ignores the prior probabilities of

categories, assuming a uniform prior, although this assumption is rarely valid. For ex-

ample, distribution of letters may vary based on the language (e.g. English vs French)

or the nature of a text (e.g. sports vs news). Ignoring the underlying distribution may

lead to biased results: in the extreme case of a class that has very low occurrence rate,

a classifier may (falsely) present very good accuracy by avoiding this low–probability

event. For such reasons, we also explore and evaluate a novel performance measure

based on the information gain between the actual gesture signed by the user and the

predicted gesture interpreted by the recognition system.
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Table 5.15: Worst cases of misclassification for MCS, DTW and DTW8 on the Al-
phanumeric dataset

Gesture MCS DTW DTW8

C L, U (5.4%) L, U (6.2%) L, U (6.1%)

D P (7.7%) P (6.2%) 7, B, P (15.4%)

K R (4.6%) E (4.6%) A, B, E, R (12.2%)

P D, M (8.5%) D (8.5%) D (11.5%)

R K (4.6%) B (0.8%) B, K (7%)

U C, V (3.8%) C (7.7%) C, V (6.2%)

Y T (0.8%) T (4.6%) E, H, T, X (8.6%)

Z 2 (4.6%) 2, F (3.8%) 2, F (13.8%)

0 6 (3.3%) 6, C (3.3%) 6 (3.3%)

2 Z (23.3%) Z (13.3%) Z (26.7%)

4 9, Q (5%) 9 (5%) 9 (3.3%)

6 0, 4, Q, X (8.3%) 0, Q, X (5%) 0, Q, X (5.1%)

7 D (5%) D (5%) D (3.3%)

One way to view a gesture recognition system is as a standard communication system,

where a transmitter (user) wants to send a message X (gesture) derived from a discrete

source alphabet X (gesture classes) to a receiver (computational system) through a

noisy communication channel (capturing device). The channel is characterized by the

transition matrix p(y|x) = Prob{Y = y|X = x}, where random variable Y denotes the

received message. Assuming a discrete probability distribution over the alphabet X ,

with probability mass function (pmf ) p(x), the entropy of random variable X is defined

as:
Hb(X) = −

∑
x∈X

p(x) logb p(x) (5.9)

and expresses the amount of a priori uncertainty on the value of X.

The maximum possible value of Hb(X) is logb |X |, achieved when X follows a uniform

distribution (|X | denotes the cardinality of a set X ). When the base of logarithm, b, is

equal to 2, entropy is expressed in bits, reaching a maximum value of H2(X) = 1 bit for

a binary alphabet (|X| = 2). Unless otherwise stated, we will assume a logarithm base

of 2, measuring H(X) ≡ H2(X) and all other information theoretic quantities in bits.

The conditional entropy of X given Y is defined as:

Hb(X|Y ) = −
∑
x

p(y) ·Hb(X|Y = y) (5.10)

where

H(X|Y = y) ≡ H2(X|Y = y) = −
∑
x

p(x|y) · log2 p(x|y) (5.11)
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Finally, the mutual information (in bits) between random variables X and Y is defined

as:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (5.12)

that measures the decrease in uncertainty of X caused by the knowledge of Y . Addi-

tionally, we define the normalized mutual information, Î(X;Y ) as:

Î(X;Y ) = I(X;Y )/H(X) = 1− H(X|Y )

H(X)
(5.13)

In gesture recognition, Î(X;Y ) expresses the percentage of a priori uncertainty (on the

transmitted gesture X) explained by the knowledge of the recognized gesture, Y . An

optimal system should have Î(X;Y ) = 1 (or 100%).

In fact, Î(X;Y ) is equivalent to Ib(X;Y ) for b = 2H2(X), where b is the cardinality of the

uniformly distributed random variable with the same uncertainty. Therefore, it relates

to the per symbol cardinality of the Asymptotic Equipartition Property (AEP) set. In

that case, Hb(X) = 1 and obviously Ib(X;Y ) ≤ 1.

5.4.2 Experimental results

Evaluation based on the normalized mutual information, Î(X;Y ), requires knowledge

of system’s transition matrix, p(y|x), and the prior distribution of input gestures, p(x).

Learning p(y|x) is achieved by computing a confusion matrix through cross–validation,

as conducted for our experiments in Sec. 5.3.3. Given the different results of Tables

5.2 – 5.6, transition matrix varies based on the type of sensor and the SNR of additive

Gaussian noise (i.e. the channel parameters).

Tables 5.16 – 5.17 show mutual information, I(X;Y ), for MCS and DTW8 classifiers,

respectively, as well as for various SNR values 2. In all cases, a uniform prior distribution

p(x) is assumed for digits (H(X) = log2 10 = 3.3219 bits) and letters (H(X) = log2 26 =

4.7004 bits). As expected, information is higher for higher SNR, i.e. when gesture is

written more accurately.

Tables 5.18 – 5.19 show corresponding normalized mutual information values, Î(X;Y ),

for MCS and DTW8 respectively. Comparing to Tables 5.2 – 5.6, we see that Î(X;Y )

is always lower than average recognition accuracy, providing a more reliable estimate of

system’s future performance, since it takes into account both the correct predictions as

well as the severity of misclassification errors.

2Mutual information values for SNR = 40 were almost the same as for SNR = 30 and are thus not
shown for clarity of presentation.
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Table 5.16: Information gain for
noisy gestures (MCS)

Dataset/SNR 30 20 14 10
EasyDigits 3.15 2.72 1.75 0.97
KinectT 3.10 3.07 2.98 2.69
digits6D 3.24 3.25 3.22 3.15
lower6D 4.47 4.45 4.40 4.25
upper6D 4.55 4.52 4.49 4.39

Table 5.17: Information gain for
noisy gestures (DTW8)

Dataset/SNR 30 20 14 10
EasyDigits 3.21 2.55 1.55 0.84
KinectT 3.16 3.17 3.03 2.83
digits6D 3.27 3.27 3.23 3.15
lower6D 4.56 4.54 4.51 4.37
upper6D 4.58 4.56 4.51 4.38

Table 5.18: Normalized information
gain (%) for noisy gestures (MCS)

Dataset/SNR 30 20 14 10
EasyDigits 94.8 81.9 52.6 29.2
KinectT 93.4 92.4 89.8 81.0
digits6D 97.7 97.7 96.8 95.0
lower6D 95.0 94.7 93.5 90.5
upper6D 96.8 96.2 95.4 93.3

Table 5.19: Normalized information
gain (%) for noisy gestures (DTW8)

Dataset/SNR 30 20 14 10
EasyDigits 96.6 76.9 46.7 25.3
KinectT 95.1 95.5 91.2 85.1
digits6D 98.4 98.4 97.2 94.7
lower6D 97.0 96.5 96.0 93.0
upper6D 97.5 97.0 96.0 93.2

Regarding prior distribution of alphabet X , p(x), it seems natural to assume almost

uniform distribution for digits, unless other prior knowledge is available3.

On the other hand, distribution of letters depends on the language. To this end, we

repeated our experiments using letter frequencies for three widely spoken languages

(English, Spanish and French) and compared to Tables 5.18 – 5.19. Our experiments

revealed that Î(X;Y ) degrades around 2.5% for lower letters and 1% for upper letters,

on average, for all three languages.

5.5 Discussion

In this chapter, we explored isolated recognition for trajectories of digits and letters. Our

approach is based on Maximum Cosine Similarity (MCS) and a tree–based fast Nearest

Neighbor algorithm [106]. In our experiments, conducted on three publicly available

databases, we explored various parameters, such as recognition with a varying number

of training users/examples, performance on noisy data and common recognition of digits

and letters. Moreover, we explored information gain as a new measure to evaluate

recognition accuracy, that we believe depicts a better picture about performance of a

gesture recognition system.

3According to Benford’s law for long lists of numbers, the probability that “the first digit of a number
is a” is equal to log10

a
a+1

. However, the same law predicts that the probability of observing digit a in
position q is approximately 0.1 for q 6= 1.
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Hopefully, the results of this chapter will provide more insight to the results presented

next, regarding rejection of invalid examples (Chapter 6) and continuous gesture spot-

ting (Chapter 7), leading to a more complete understanding of the gesture recognition

problem.
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6.1 Motivation

Gesture verification is the process of establishing whether a gesture is indeed an instance

from a predefined vocabulary or an invalid gesture (false positive). In this work, we

consider three main types of invalid gestures, namely 1) out–of–vocabulary, 2) noisy

gestures and 3) random movements (Sec. 1.4). In short, out–of–vocabulary gestures

refer to shapes and symbols that have a meaning in the proper context, but are not
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included in system’s vocabulary (e.g. letters instead of digits). Noisy gestures refer

to valid gestures with some additive Gaussian noise, where the goal is to reject highly

noisy gestures (Fig. 1.2). Finally, completely random hand coordinates are examples

of signals that may be fed to a gesture recognition system in a variety of uncontrolled

scenarios during system’s inactivity periods (e.g. walking, drinking water, etc.).

While rejection of invalid examples is obviously important to establish any system’s re-

liable (or robust) performance, it is also important for computational efficiency. Specifi-

cally, random or out–of–vocabulary inputs typically compromise the effectiveness of fast

Nearest Neighbor search (fastNN ), causing too many backtrackings [121]. To deal with

this problem, we propose setting a threshold on the maximum number of backtrackings

allowed for classification of a query gesture. By doing so, query gestures that cause too

many backtrackings will be rejected as invalid.

Fig. 6.1 shows the average number of backtrackings, B̄, on a system trained on digits. We

observe that noisless digits present B̄ ≈ 17. Similarly, digits with low noise (15−40 dB)

require comparable backtrackings (B̄ ≈ 20), although B̄ increases with noise. Finally,

upper–case and lower–case letters (i.e. out–of–vocabulary gestures) cause a significantly

higher number of backtrackings (B̄ ≈ 100).
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Figure 6.1: Average number of backtrackings, B̄, on a system trained on digits, for
various categories of input gestures. Error bars show standard deviation. Digits with
higher noise (i.e. lower SNR) require more – but comparable – backtrackings, B̄. Out–
of–vocabulary inputs (upper/lower letters) require significantly higher B̄, even without

noise.

In the rest of this chapter, we present our approach in detail and explore its performance,

compared to other standard methods for gesture verification. Moreover, we explore in

depth the relationship between the performance of fastNN algorithm and the resulting

number of backtrackings. In all cases, we conduct thorough experiments on synthetic

and real datasets.
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In short, the major contributions of this chapter are:

� Proposing a novel method for gesture verification, based on cosine similarity and

the number of fastNN backtrackings required to classify an unknown gesture input.

� Introducing a new information–theoretic metric to evaluate gesture verification

methods.

� Exploring the relationship between the number of fastNN backtrackings and the

probability of inlier. This property leads to high computational efficiency, as one

may constrain the search time up to a certain number of backtrackings, rejecting

inputs that exceed a predetermined threshold as invalid.

� Exploring and proving a weak relationship between computational efficiency and

recognition accuracy, through the Minimum Backtrackings classifier.

� Exploring various aspects of gesture verification, such as effect of noise and dis-

crimination between digits and letters.

Algorithm 1 Isolated gesture recognition with rejection of invalid examples

Input: hand coordinates x, y
resampling parameter N
thresholds TB, TP

Output: Label C of the gesture

1: Resample x, y and form 1D vector v as described in Sec. 4.3.1
2: (B,P, c)← fastNNsearch(x, y,N) . B: # backtrackings, P: similarity score, c:

predicted class label
3: C ← CheckRule3(B,P, TB, TP , c) . Alternatively one can use Rule1 or Rule2
4: return C . C is the final recognition result

Rule definitions
CheckRule1: Gesture is valid if P > TP
CheckRule2: Gesture is valid if B < TB
CheckRule3: Gesture is valid if B < TB AND P > TP

6.2 Our approach

6.2.1 Rejection of invalid gestures

Typically, we can expect an out–of–vocabulary gesture to present a very low similarity

score, P , and thus it can be rejected based on an appropriate threshold, TP [29] (Rule1 in

Algorithm 1). However, since random or out–of–vocabulary inputs typically compromise
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Figure 6.2: Distribution of backtrackings on a system trained on digits, for various
categories of input gestures. While some overlap typically exists, it is still possible to

keep most of the noisless digits, together with few lower and upper–case letters.

the effectiveness of fastNN, causing too many backtrackings [121], we propose setting a

threshold, TB, on the maximum number of backtrackings, B, allowed for classification

of a query gesture. If B > TB, the gesture should be rejected as invalid (Rule2 in

Algorithm 1). As Fig. 6.2 shows, it is possible to choose TB through cross validation,

achieving a satisfactory trade–off between percentage of accepted valid gestures (True

Positive Rate - TPR) and accepted invalid gestures (False Positive Rate - FPR). Finally,

we can expect that using both similarity score and number of backtrackings can result

in better results (Rule3 in Algorithm 1). In practice, using the number of backtrackings

as an “early rejection” criterion serves dual purpose: we improve system’s reliability,

while limiting computational complexity.

Table 6.1: Confusion matrix

Prediction:Positive Prediction:Negative

Reality:Positive True Positives Type I errors (False Negatives)

Reality:Negative Type II errors (False Positives) True Negatives

6.2.2 Measuring performance

Given a set of query positive and negative gestures and a fixed threshold, T , any rule

will predict a label for each gesture. That label can be either positive (i.e. the gesture is

valid) or negative (i.e. the gesture is invalid). A comparison to the ground truth labels

can result in the confusion matrix (Table. 6.1), which shows the distribution of correct

and wrong decisions. In such analysis, four cases can appear:

� True Positive (TP): a truly valid gesture is classified as valid

� True Negative (TN): a truly invalid gesture is classified as invalid
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� False Negative (FN): a truly valid gesture is classified as invalid (Type I error)

� False Positive (FP): a truly invalid gesture is classified as valid (Type II error)

6.2.2.1 Precision and Recall

Some typical measures for performance evaluation of decision systems include Precision

and Recall. Precision depicts the probability that a classified positive gesture is truly

positive:

Precision =
TP

TP + FP
(6.1)

while Recall depicts the probability that a truly positive gesture will be classified as

positive:

Recall =
TP

TP + FN
(6.2)

Typically, there is a trade-off between Precision and Recall, depicted by the Receiver

Operating Characteristic (ROC curve), produced through varying T for a wide range of

values. A combining measure is the F1 score, computed as:

F1 = 2 · Precision ·Recall
Precision+Recall

(6.3)

F1 score provides a more compact overview, being equal to 1 for a perfect system and

equal to 0 in the worst case. A standard way of comparing two ROC curves is the point

of Equal Error Rate – EER, where Precision = Recall.

6.2.2.2 Evaluation based on the information gain

We also evaluate the performance of a verification rule R based on the information gain

provided by R over the naive rule of always selecting the class of maximum a priori

probability1. Specifically, we measure the information gain, I(X;Y ) (Eq. 5.12) and the

normalized mutual information, Î(X;Y ), (Eq. 5.13), as in Sec. 5.4.

1This evaluation method was inspired by the clever rain man problem, given as homework in the In-
formation Theory class (EE565a) taught by Prof. Zheng Zhang at the University of Southern California,
1992.
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6.2.3 Alternative methods

6.2.3.1 Dynamic Time Warping

As an alternative, we consider Dynamic Time Warping (DTW), which provided optimal

recognition results for trajectory recognition, but on a high computational cost (Sec.

5.3). Based on Sec. 5.2.1.2, we explore two variations of data preprocessing before using

DTW, as explained below:

� DTW: standard DTW with all observations (not resampled, not normalized)

� DTW8: resampled DTW with N = 8 and normalized observations

In both cases, the mean was subtracted from hand coordinates, centering them around

(0, 0). In the general case, coordinates are centered around a fixed point of reference,

such as the user’s face [108].

Please note that DTW (standard DTW with all observations) is the version we used

in chapter 5, where it showed excellent behaviour in most datasets, but faced some

problems when used on the Kinect dataset (mainly due to scaling). However, we choose

to use it here since it is the main algorithm used in previous gesture spotting works

[2, 108].

6.2.3.2 Probabilistic Support Vector Machines

Given a query vector q, probabilistic Support Vector Machines (SVMs) [45] (Sec. 5.2.2)

estimate the probability p(c) = Prob[Class = c|q], c = 1, . . . , C for all C classes. We then

use p(c) to filter out invalid examples of very low probability. Although one–class SVMs

[122] might be more suitable for verification tasks, we opted to test probabilistic SVMs

due to their good performance in isolated recognition (Sec. 5.3.3 – 5.3.4). Additionally,

one–class SVMs require training a different model exclusively for verification.

6.2.3.3 Mahalanobis distance and probability of inlier

A standard generic approach of testing for outliers is based on statistical hypothesis

testing. Such tests check the likelihood of the Null Hypothesis, H0, i.e. the probability

that an observed sample is an inlier, based on some measured quantity (known as test

statistic). In this work, our test statistic is based on the Mahalanabis distance, which is

a generalization of the standard Euclidean distance.
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Given a set of positive examples, X = {xi}, xi ∈ RN , i = 1, . . . ,M , with estimated mean

µ and covariance matrix S−1, the squared Mahalanabis distance, D2(X, q), of a query

vector q ∈ RN to set X is defined as:

D2(X, q) = (q − µ)>S−1(q − µ) (6.4)

Due to noise in data acquisition, the observed Mahalanobis distance d∗ of q to X

may drift from its true value. The Null Hypothesis, H0, assumes that q is an inlier

(D2(X, q) = 0), while the alternative hypothesis, HA, assumes that q is an outlier

(D2(X, q) > 0). Standard hypothesis testing checks the P–value, which measures the

probability of observing data towards the direction of the alternative hypothesis, assum-

ing that the Null hypothesis is true. Typically, one accepts H0 if the P–value is larger

than 5%, otherwise accepts the HA.

In our work, P–value measures the probability that D2(X, q) is larger than the observed

Mahalanobis distance d∗, assuming that q is an inlier. Thus, we define the probability

of inlier, P0, as:

P0 = Prob{D2(X, q) > d∗} = 1− F (d∗) (6.5)

where F (x) denotes the cumulative distribution function (cdf ) of Mahalanobis distances

D2(X, q).

When set X and a set of query vectors Q = {qi}, i = 1, . . . , L are multivariate normally

distributed in N dimensions, λD2(X, q) follows the Fisher—Snedecor distribution (or

F–distribution) with N and M −N degrees of freedom, where

λ =
M(M −N)

N(M + 1)(M − 1)
(6.6)

The cumulative distribution function (cdf ) of the F–distribution is:

F (x;α, β) = B(
αx

αx+ β
;
α

2
,
β

2
) (6.7)

where B indicates the regularized incomplete beta function:

B(x;α, β) =

∫ x

0
ta−1(1− t)b−1dt (6.8)

Cdf values of the F-distribution can be computed numerically using statistical packages,

such as MatlabTM .

If P0 is higher than a threshold, TH , then the Null hypothesis is valid, and q is accepted,

as an inlier; otherwise, q is rejected, as an outlier. Through varying TH , a ROC curve

can be generated (Sec. 6.2.2).
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In our approach, we first perform a fastNN search to assign a query vector to a gesture

category and then compute its Mahalanobis distance from the set of training examples

that belong to that same category. This way, we can compute a more robust estimate of

P0, since the training set contains instances from a single distribution instead of mixtures

of different distributions.

6.3 Experiments on gesture datasets

As a first step, we performed experiments using real gesture datasets (Sec. 5.3.1). Specif-

ically, we used the datasets 1–6 (Table 3.1), i.e. the EasyDigits (VGA video, digits),

KinectR–KinectT (Kinect camera, digits), KinectNonDigits (mathematical symbols),

Digits6D (Wii device, digits), Lower6D and Upper6D (Wii device, lower and upper–case

letters).

6.3.1 Case 1: out–of–vocabulary gestures

6.3.1.1 Separating digits from letters

We split the digits6D dataset into three subsets:

� digitsTree, used for building the fastNN tree (2 users – 200 examples)

� digitsR, used for invalid gesture classifier training, i.e. collecting statistics and

determining appropriate thresholds regarding the number of backtrackings and

cosine similarity scores (1 user – 100 examples)

� digitsT, used for testing/evaluation

Based on misclassification errors between digits and letters (Sec. 5.3.5), we excluded

the letters “I” , “O”, “Z”, “i”, “o” and “z” from our analysis. During training, we ran

MCS for digitsR (100 positive examples) and upper6D (3120 negative examples) and

kept the resulting similarity scores and number of backtrackings as features. During

evaluation, we performed the same process for digitsT (200 positive examples) and

lower6D (1200 negative examples). Please note that, while positive examples were taken

from the same distribution during statistics collection and evaluation, we opted to use

two fundamentally different negative sets; upper letters for statistics collection and lower

letters for evaluation, since our purpose is to determine an efficient method to reject

all out–of–vocabulary gestures, and not only those used when determining classifier

thresholds. Furthermore, splitting datasets in a user–independent mode decreases any

bias, but makes the verification part more challenging.
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Figure 6.3: (a) Precision–Recall trade–off for rejection of upper (training) and lower
(testing) letters by a system trained on 6D digits. Rejection rule based on the number
of backtrackings (Rule2 ) performs around 3% worse than classic similarity-based Rule1
and normalized–resampled DTW8. Standard un–normalized DTW performs worse than
DTW8. (b) Generalization performance based on the F1 scores for fixed thresholds.

Rule2 and DTW8 perform close to the ideal system of slope 1.

ROC curves Finally, we computed the Receiver Operating Characteristic (ROC)

curve, which shows the trade–off between Precision and Recall for each method. Al-

though the two classes (valid and invalid) are heavily skewed, with numbers of examples

differing by an order of magnitude, Precision–Recall analysis deals effectively with such

issues. As we note in Fig. 6.3–a, MCS Rule1 and DTW8 present similar behaviour

on the training set, with EER close to 0.79. On the other hand, Rule2 performs

around 3% worse (EER ≈ 0.76), while un–normalized DTW shows the worst behaviour

(EER ≈ 0.69).

Due to the different nature of training and testing sets (upper versus lower–case letters),

perfect generalization cannot be expected. Indeed, DTW8 and Rule1 perform approxi-

mately 9% worse (EER ≈ 0.70), Rule2 12% worse (EER ≈ 0.64) and DTW 15% worse

(EER ≈ 0.52). Fig. 6.3–b shows the F1 scores achieved for fixed thresholds between

training and testing sets. We observe that Rule1 and DTW8 present the best behaviour,

performing close to the ideal line of slope λ = 1, while Rule2 follows closely. Based on

the above results, MCS Rule1 and DTW8 seem to guarantee better generalization on

unknown vocabularies, compared to Rule2 and un–normalized DTW.

Overall, the above results suggest that it is possible to achieve high recall (≥ 0.9) with

satisfactory precision (> 0.6), proving that many invalid gestures can be eliminated

during gesture verification. While such elimination affects only system’s reliability when

DTW is used, it has the added benefit of improving computational efficiency in MCS

systems, as one can set an upper bound on the number of fastNN backtrackings. Fig.

6.4 presents Precision and Recall as functions of the threshold TB. As we see, the EER
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Figure 6.4: Effect of thresholding the number of backtrackings at various values.
While Recall remains almost unchanged, Precision drops at the testing set, due to
differences between upper and lower–case letters. The EER points can be achieved for

a low threshold (TB ≈ 20), resulting in increased computational efficiency.

point is achieved for TB ≈ 20, i.e. up to 10% of the training examples in the fastNN

tree can be checked before the gesture is classified as valid or invalid.

Information gain To confirm the above results, we also explored our alternative

evaluation method, based on the information gain (in bits), I(X;Y ), provided by a rule

over the naive rule of always selecting the class of maximum a priori probability (Sec.

6.2.2.2). Fig. 6.5 shows I(X;Y ) for all six rules and various values of the thresholds,

with peaks indicating the optimal threshold choices. Information gain is higher for the

testing set (lower6D) mainly because of higher initial entropy too (H(Y ) ≈ 0.6 bits

versus 0.2 for the training set), which offers greater chances for improvement. The low

values of H(Y ) confirm that the two classes are highly skewed, as two balanced classes

would show H(Y ) = 1. Once again we observe that it is possible to stop the fastNN

search at a low number of backtrackings (20 out of 200), achieving both computational

efficiency and high gesture verification results.

Rule3 Additionally, we evaluated Rule3, which takes into account both the number of

backtrackings and the cosine similarity score. In this case, we measured both information

gain and F1 scores for various parameter combinations, obtaining the 3D plots of Fig.

6.6. As we observe, both measures present similar behaviours, reaching their maxima for

high cosine similarity values and low number of backtrackings. It is worth noting that

Rule3 performs better than Rule1, although the difference is very small. However, Rule3

allows for better generalization, as it is quite flat in its peaks. In general, information

gain seems to be more promising as an evaluation technique, showing in a clear way that
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Figure 6.5: Evaluation of gesture verification rules by a system trained on 6D digits,
based on the information gain they provide over the prior class probabilities. The goal
is to reject upper (training) and lower (testing) letters. (a) MCS Rule1 (b) MCS Rule2

(c) DTW8 Rule1 (d) DTW Rule1 (e) MCS–DOS Rule1 (f) SVM Rule1
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: (a-b): Evaluation of gesture verification Rule3 by a system trained on
6D digits, based on the information gain they provide over the prior class probabili-
ties. Backtrackings threshold indicates the number of backtrackings allowed during the
fastNN search. The goal is to reject upper (a) and lower (b) letters in a system trained
on digits. (c-d) Corresponding normalized information gains for the same evaluation.

(e-f) F1 score for the same evaluation.
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the two datasets (lower6D and upper6D) are different, as confirmed by Fig. 6.3. On the

other hand, normalized information gain and F1 score reach similar maximum values in

both cases.

Depth–only Rule1 Finally, we evaluated the effect of using the Depth–Only–Search

version of fastNN along with MCS Rule1 (MCS–DOS). As described in Chapter 5,

Depth–Only–Search provides increased computational efficiency at the cost of slightly

reduced isolated recognition accuracy (Sec. 5.3.3 – 5.3.4).

Fig. 6.7 shows information gains of MCS–DOS compared to standard MCS. We observe

that MCS–DOS performs slightly worse than MCS. This observation agrees for the most

part with the results of sections 5.3.3 – 5.3.4, where we saw that MCS–DOS performs

worse for digits (2 − 12% drop in terms of recognition accuracy) and letters (3 − 7%

drop). These two results indicate that gesture verification is possible – up to some level –

during the depth–only stage of fastNN search, while allowing more fastNN backtrackings

increases isolated recognition accuracy.
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Figure 6.7: Evaluation of gesture verification Rule1 variations (standard MCS and
MCS–DOS) in a system trained on 6D digits, based on the information gain they

provide for (a) upper–case and (b) lower–case letters.

Indeed, as we observe in Fig. 6.8, performance of Rule1 is almost independent of the

number of backtrackings, TB, allowed during the fastNN search. Moreover, drop in

isolated recognition accuracy is negligible for the EasyDigits, KinectT and upper6D

datasets, while it is close to 1% for the digits6D and lower6D datasets when TB is lower

than 25% of the number of fastNN tree examples (Fig. 6.9).

Discussion While the above results are quite encouraging, one should keep in mind

that they may vary for different random splits of digits6D users into the three sets

(digitsTree, digitsR and digitsT). In our experiments, we explored only a few such splits,
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: (a-b): Evaluation of gesture verification Rule1 by a system trained on
6D digits, based on the information gain they provide over the prior class probabili-
ties. Backtrackings threshold indicates the number of backtrackings allowed during the
fastNN search. The goal is to reject upper (a) and lower (b) letters in a system trained
on digits. (c-d) Corresponding normalized information gains for the same evaluation.

(e-f) F1 score for the same evaluation.
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mainly due to the high computational cost imposed by DTW8. Although the results

varied a little, on average they were close to those presented in this section, with DTW8

showing the best overall behaviour, followed by Rule1 and Rule2. On the other hand, un–

normalized DTW always presented the worst performance, reinforcing the importance

of normalization.
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Figure 6.9: Isolated recognition accuracy (%) for noisy gestures of (a) lower and (b)
upper–case letters, when a fixed number of backtrackings, TB , is allowed during the
fastNN search. TB is shown as a percentage over the number of fastNN tree examples.

6.3.1.2 Separating digits from other mathematical symbols

Since the Kinect datasets include other mathematical symbols besides digits, we ex-

plored the case of separating digits from other mathematical symbols, considered as

out–of–vocabulary gestures. The experimental setup is shown on Table 6.2. Although

“KinectNonDigits” contains gestures completely different to digits, un–normalized DTW

yielded very poor results. On the other hand, Rule1 and DTW8 showed excellent per-

formance (EER = 1), as depicted by the ROC curves in Fig. 6.10. Quite interestingly,

Rule2 showed EER ≈ 0.93, although this is mainly a problem of Recall and not of

Precision. Indeed, by choosing TB = 100 (20% of the fastNN tree examples), Rule2

achieved Precision–Recall (1.0, 0.99) for the training and (0.98, 0.93) for the testing set.

Table 6.2: Experimental setup for gesture verification on the Kinect datasets

Usage dataset Number of examples

fastNN tree KinectR 500

Positives (Train) KinectR 479

Negatives (Train) KinectNonDigits 10

Positives (Test) KinectT 54

Negatives (Test) KinectNonDigits 40
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Figure 6.10: ROC curves for the various gesture verification methods on the Kinect
dataset.

We also saw that DTW8 and Rule1 could achieve information gains equal to the initial

class entropies, i.e. I(X;Y ) = 0.144 bits for the training and I(X;Y ) = 0.984 bits for

the testing set, thus reducing uncertainty to 0 bits. On the other hand, Rule2 could

achieve at most I(X;Y ) = 0.134 bits for the training and I(X;Y ) = 0.778 bits for the

testing set. Although a significant amount of uncertainty still remains after applying

Rule2, this is not a major drawback, since it can be eliminated through Rule1, provided

that most of the positive examples are accepted by the system (Recall ≈ 1). However,

the above results may have been affected by the small size of the Kinect dataset.

6.3.2 Case 2: completely random gestures

In this case, we generated (x, y) values drawn from a Gaussian random process N (0, σ2)

and used them for testing the proposed system. Using 200 digits from the digits6D

dataset to build the fastNN tree, we observed that Rule2 could achieve perfect separation

for TB ≈ 30, i.e. 15% of the number of fastNN tree examples. Indeed, random gestures

caused an average value of 185 backtrackings with a standard deviation of 27, while

positive examples required no more than 110 backtrackings (µ = 10, σ = 9). Similar

results were obtained for other datasets (EasyDigits and Kinect).

The above results prove that random trajectories, if no care is taken, may lead to

increased complexity during tree search, causing a very large number of backtrackings

(close to 90% of the tree examples). Early elimination of such gestures secures low

complexity and high system reliability.
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Figure 6.11: ROC curves for rejection (using Rule1) of noisy digits6D gestures for
different SNR values. (a) Standard Precision–Recall curves (b) True Positive Rate –

False Positive Rate curves. Separation is easier for higher noise.

6.3.3 Case 3: noisy gestures

This case involves vocabulary gestures with some additive noise N (0, σ2) and models

devices with sensor noise or users with trembling hand. A desirable property for a

recognition system would be to tolerate low noise levels and reject gestures with high

noise. In our experiments, we split the digits6D dataset into three subsets (digitsTree,

digitsR, digitsT ), as in Sec. 6.3.1. We treated digitsT as an invalid dataset, by adding

Gaussian noise at various SNR values (5 dB – 30 dB), while the objective was to check

discrimination power of the proposed system between digitsR and digitsT. Our target

was to verify increasing discrimination with increasing noise levels.

As we see in Fig. 6.11, discrimination ability of Rule1 between positive (i.e. noise-free

digits) and negative (i.e. noisy digits) examples is poor for low noise levels, since gestures

still remain recognizable. However, when SNR ≤ 15dB, the amount of noise is such

that it renders them closer to random gestures than valid digits.

6.3.4 Relationship of number of fastNN backtrackings to probability

of inlier

As described in Sec. 6.2.3.3, it is possible to associate a probability of inlier, P0, to

a query gesture, q, based on its Mahalanobis distance, D2(X, q), from a training set

of valid examples, X. In this section, we explore the relation between this probability

and the number of backtrackings, B, present during the fastNN search. As we show,

outliers produce a higher number of backtrackings (B is higher for lower P0), providing

additional insight to the use of Rule2 for gesture verification.
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Figure 6.12: Joint distribution of inlier probability and fastNN backtrackings, (P0, B),
for (a) digits and (b) out–of–vocabulary gestures, on a system trained on the digits6D
dataset. B is shown as a percentage over the number of fastNN tree examples. (c)
Conditional distributions of fastNN backtrackings for fixed inlier probability values,
Prob{B|P0} for a mix of digits and out–of–vocabulary gestures (at a ratio of 15 valid
to 85 invalid gestures). (d) Conditional distributions of inlier probability values for

fixed numbers of fastNN backtrackings, Prob{P0|B}.

To this end, we repeated the experiments of Sec. 6.3.1 on the three 6D datasets (digits6D,

upper6D, lower6D), in order to calculate the probability of inlier in addition to the

number of backtrackings, thus collecting pairs (P0, B) for the positive and negative

examples. We split the digits6D dataset into two disjoint sets: a training set, containing

2 out of 5 users, used to build the fastNN tree (digitsTree set) and a testing set, containing

3 out of 5 users, used to simulate positive query vectors (digitsRT set). Additionally, we

used the complete upper6D and lower6D datasets to simulate negative query vectors.

Please note that we considered all 5 user combinations for the digits6D dataset, resulting

in 5! = 120 splits, to collect more robust statistics.

Fig. 6.12 (a), (b) show the joint distributions of (P0, B) pairs for valid and invalid ges-

tures, correspondingly. We observe that invalid gestures exhibit lower inlier probability,

P0, while they cause a larger number of backtrackings, B, on average. One can trivially
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verify that query vectors from the training set (digitsTree) result in cosine similarity

values almost equal to 1, number of backtrackings almost 0 and probability of inlier

very close to 1. On the other hand, valid gestures from other users result in relatively

high P0 values (P0 ∈ [0.2, 0.5]) with relatively low number of backtrackings (B < 20%).

For comparison, most of the negative examples show P0 < 0.2 and B > 20%. P0 values

between 0.5 and 1 were hard to be obtained in a user independent mode (digitsRT set),

since different users have intrinsically different distributions of gesture vectors. In order

to generate such values, we introduced low levels of additive Gaussian noise to the train-

ing vectors (digitsTree) and used them as query vectors; in our figures, values higher

than 0.7 are in their majority due to noisy versions of the fastNN training examples.

Fig. 6.12–c shows the conditional distributions of fastNN backtrackings, B, for fixed in-

lier probability values, P0. We notice that the number of backtrackings, B, is less than

20% of the total number of tree examples with very high probability when P0 > 0.2, cor-

responding to valid query vectors. On the other hand, lower values of P0, corresponding

to invalid query vectors, result in an almost random number of backtrackings, with a bias

towards larger (B > 20) values. Similarly, P0 is almost fixed to 0 for B > 20%, while

it varies for lower B (Fig. 6.12–d). In other words, query vectors that require more

than 20% of the total number of tree examples in backtrackings are almost certainly

out–of–vocabulary gestures.

We also performed similar experiments on the Kinect dataset, using the experimental

setup of Table 6.2. As we observe in Fig. 6.13, results are quite similar to those of Fig.

6.12, although a different dataset is used.

Finally, we performed a similar experiment on the upper6D dataset, considering 13

letters as positive and 13 as negative classes. We used 5 (out of 13) users to build the

fastNN tree, and 2 distinct users for each of the other four subsets (positives/negatives

× validation/testing combinations). We repeated this experiment 100 times, each with

different random splits of users and classes. Fig. 6.14 shows the resulting distributions,

where we observe the same pattern for positive and negative examples.

6.3.5 Relating cosine similarity score and number of fastNN backtrack-

ings

As already suggested by the effectiveness of Rule3 (Fig. 6.6), cosine similarity score, P

is correlated with the number of fastNN backtrackings, B. Indeed, as Fig. 6.15 shows

for a system trained on 6D digits and tested on 6D digits and letters, positive examples

exhibit higher values of P compared to negative examples, as well as lower number of

backtrackings, B. These figures agree with the results of Fig. 6.6 for Rule3.
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Figure 6.13: Joint distribution of inlier probability and fastNN backtrackings, (P0, B),
for (a) digits and (b) out–of–vocabulary gestures, on a system trained on the KinectR
digits dataset. B is shown as a percentage over the number of fastNN tree examples.
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Figure 6.14: Joint distribution of inlier probability and fastNN backtrackings, (P0, B),
for (a) valid and (b) out–of–vocabulary gestures, on a system trained on the upper6D
dataset, for 100 random trials. B is shown as a percentage over the number of fastNN

tree examples.

To better explore the relationship between B and P , we performed several experiments,

varying the number of training examples and data dimensionality. Fig. 6.16–a shows

collected pairs (P,B), indicating that B can be coarsely modelled as a logistic function

of P , i.e.

B =
1

1 + e−θ0−θ1P
(6.9)

Indeed, such a model makes more sense than a linear one, since B converges to 100%

for P = 0 and 0% for P = 1. As Fig. 6.16–b shows, this model achieves 9% error

on average between predicted and actual values of B on average. Similar error values

were measured in different pairs, which were used as validation and testing sets, thus
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Figure 6.15: Joint distribution of cosine similarity and fastNN backtrackings, (P,B),
for (a) digits and (b) out–of–vocabulary gestures, on a system trained on the digits6D
dataset. B is shown as a percentage over the number of fastNN tree examples. (c)
Conditional distributions of fastNN backtrackings for fixed cosine similarity values,
Prob{B|P} for both digits and out–of–vocabulary gestures. (d) Conditional distribu-
tions of cosine similarity values for fixed numbers of fastNN backtrackings, Prob{P |B}.

indicating a case of high bias due to the use of just one feature (cosine similarity score).

Parameters θi were found to be θ0 = 11.5, θ1 = −15.3.

The error decreased to 8% after adding the inlier probability, P0, as an additional feature

and refitting a logistic function with both features, i.e.

B =
1

1 + e−θ0−θ1P−θ2P0
(6.10)

where θ0 = 8.5, θ1 = −6.7, θ2 = −11.1.

This small improvement is not surprising, since P and P0 are correlated, as suggested by

Fig. 6.17, although P0 seems to take lower values than P for both positive and negative

examples. Additionally, P0 varies mostly for positive examples, while P varies mostly
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(a) (b)

Figure 6.16: Modelling the number of backtrackings, B, as a logistic function of the
cosine similarity score, in a system trained on 6D digits and tested with 6D digits and

letters.

for negative examples. Seeking richer models and more expressive features is included

in our goals of future work.
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Figure 6.17: Joint distribution of cosine similarity and probability of inlier, (P,B),
for (a) digits and (b) out–of–vocabulary gestures, on a system trained on the digits6D

dataset.

6.3.6 Effect of dimensionality

Finally, we questioned the relationship between data dimensionality and gesture verifi-

cation performance. To this end, we repeated the experiment of Sec. 6.3.1, varying the

number of resampled points, N .

Fig. 6.18 shows the ROC curves produced after applying Rule1 (cosine similarity score)

and Rule2 (number of backtrackings) on the testing sets (digitsT versus lower–case

letters) when 4, 8 and 16 points are kept after resampling. Clearly, N = 4 is not a
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Figure 6.18: ROC curves with varying number of resampling points, N . Verification
performances seem to agree with recognition accuracies, in Fig. 5.2.

good choice, as it also presents reduced recognition performance (Fig. 5.2). On the

other hand, N = 8, N = 12 and N = 16 show rather similar verification performance,

agreeing with their similar recognition capabilities.
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Figure 6.19: Information gains of the two MCS rules with varying number of re-
sampling points, N , and threshold values. Rule1 (a) performs better than Rule2 (b),
offering 0.0385 more bits of information for N ≥ 8, confirming the result of Fig. 6.18.

The above results can be verified by computing information gains of the two rules at

various values of N , as shown in Fig. 6.19. A more intuitive verification arrives by

inspecting the distributions of inlier probability–fastNN backtrackings pairs. Indeed,

when N = 4, the boundaries between positive and negative examples become less clear,

as shown in Fig. 6.20.
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Figure 6.20: Distribution of inlier probability–fastNN backtrackings pairs, (P0, B),
for (a) digits and (b) out–of–vocabulary gestures, on a system trained on the digits6D
dataset, when only 4 trajectory points are kept after resampling. B is shown as a
percentage over the number of fastNN tree examples. One can compare to the clearer

plots when 8 points are used, in Fig. 6.12.

6.4 Minimum backtrackings classification

Since the original application of fastNN search was vector quantization for image coding

purposes, the number of backtrackings, B, was interpreted only as a rough measure of

computational efficiency. In our application, where the goal is classification, B could

also indicate the difficulty faced by fastNN to classify a specific query gesture. As

described in Sec. 5.1.2, fastNN arranges the training examples in a binary tree, during

its initialization phase. Our main assumption is that as long as a query vector, q, is

similar to one of the training examples, B (and the search time) will be relatively small.

On the other hand, if q is dissimilar to the training examples, then B will be quite large.

Based on the above hypothesis, we train C fastNN trees, one for each of the C gesture

categories. Given a query vector, q, we perform C fastNN searches, and measure the

corresponding cosine similarity–backtracking pairs, (pc, Bc), c = 1, . . . , C. To deal with

skewed classes, we compute the normalized number of backtrackings, bc = Bc
Mc

, where Mc

denotes the number of training examples in class c. We then locate the class presenting

the minimum bc and assign its label to q. We denote this method as MBC.

An alternative choice would be to combine pc, bc and compute a common score, PBc =

pc
α · bcβ, or equivalently, PBc = α log pc + β log bc. In this case, the query vector is

assigned to the class showing the maximum PBc. We denote this method as MBC–

MCS.

Table 6.3 shows recognition results on the four gesture datasets, for noiseless gestures

and the maximum possible number of users. Quite interestingly, MBC achieves good
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Table 6.3: Recognition accuracy (%) using minimum backtrackings classification

Dataset/Method MBC MCS MBC–MCS

EasyDigits 89.3 97.3 97.3

digits6D 84.5 98.7 99.2

lower6D 65.9 95.5 96.2

upper6D 71.5 97.6 97.6

recognition accuracy for the digit datasets (> 84%) and moderate accuracy on the letter

datasets (> 65%). Moreover, recognition accuracy drops when digits contain noise, as

highly noisy gestures are treated as invalid gestures. As we see in Fig. 6.21, when SNR

drops to extremely low values (SNR < 10), recognition accuracy becomes 10%, i.e.

equal to the accuracy of random prediction.

Overall, MBC is neither the best classifier, nor the most suitable for gesture recognition.

However, the above results hopefully provide additional insight to the link between

computational complexity and gesture recognition.
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Figure 6.21: Recognition accuracy of the MBC classifier for noisy gestures. As ex-
pected, accuracy decreases with noise.

6.5 Discussion

In this chapter, we presented our approach for gesture verification and rejection of invalid

gesture instances, based on thresholding the cosine similarity score and the number of

fastNN backtrackings required to classify an unknown gesture vector. Our approach can

effectively reject three main types of invalid gestures: out–of–vocabulary gestures, noisy

gestures and random movements.
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We additionally showed that there exists a relationship between the number of back-

trackings, cosine similarity score and the probability of inlier. This property leads to high

computational efficiency, as we may constrain the search time up to a certain number

of backtrackings, rejecting all other inputs as invalid gestures.

Finally, we showed a weak relationship between computational efficiency and recognition

accuracy, which may prove quite promising in the future.
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Gesture spotting
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7.1 Introduction

The final component of our approach involves gesture spotting on continuous hand

coordinate streams, which poses the joint problem of detecting time boundaries and rec-

ognizing gestures simultaneously. As already described in sections 1.3 and 2.2, spotting

methods may either try to first detect the time boundaries of the performed gestures

88
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and then apply standard isolated recognition techniques (direct approach), or form joint

hypotheses about both boundaries and categories of gestures (indirect approach). Our

approach is indirect, applying isolated recognition on multiple sliding windows, collect-

ing groups of conflicting overlapping gesture candidates and finally choosing the most

likely candidate.

Based on the results of Chapter 5, we know that Maximum Cosine Similarity (MCS)

recognizes the correct gesture category with probability > 96% for noiseless gestures,

provided that the gesture segmentation in time is accurate. We also know that a signifi-

cant amount of invalid gestures may be rejected by gesture verification rules, as described

in Chapter 6. Remaining invalid gestures, along with subgestures, i.e. meaningful parts

of longer gestures, and false positive gestures due to time window misalignment, form

groups of conflicting, overlapping gesture candidates at each time frame, out of which

only one corresponds to the ground–truth gesture. We refer to the process of evaluat-

ing overlapping candidates, such that only one is selected and reported by the spotting

module, as conflict resolution.

Conflict resolution is a challenging task because the trivial rule of choosing the candidate

of highest cosine similarity score (or lowest distance in Dynamic Time Warping [2])

cannot produce high spotting results. Typically, some subgesture modelling is required,

which takes into account the relationships between conflicting gesture candidates. To

this end, we propose a novel conflict resolution approach and explore its variations and

behaviour, based on specific parameters and gesturing scenarios.

In short, the major contributions of this chapter are:

� Proposing a novel method to perform conflict resolution, combining both the cosine

similarity score (measuring the quality of recognition) and the time duration of

gesture candidates.

� Introducing the usage of time boundaries when learning subgesture relationships,

which improves spotting results.

� Designing a special version of the Weighted Edit Distance [123] for recognition of

vocabulary words.

� Exploring various aspects of gesture spotting, such as time delay in announcing

spotting results, connectivity between gestures and order of gesture appearances.

In all cases, we conduct thorough experiments on real and synthetic gesture datasets,

as well as on real English literature texts.
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Figure 7.1: General structure of our gesture spotting approach. A group of overlap-
ping gesture candidates is formed until there is no further update or a certain maximum
time has elapsed from the earliest detected gesture. At that point, conflict resolution

takes place, leading to a possible announcement of spotting results.

7.2 Our approach

In this section, we describe our approach in detail. A block diagram is shown in Fig.

7.1.

7.2.1 Spotting single gestures

7.2.1.1 Forming groups of overlapping gestures

Assuming that a continuous stream of hand coordinates, (xt, yt) for each time frame, t,

is available, the first step of our approach is to form groups of conflicting overlapping

gesture candidates, which will be further processed in the next step (conflict resolution),

such that only one candidate survives.

Specifically, we consider W windows of various time durations, centered at each frame,

t, and apply fastNN–MCS–based isolated gesture recognition, as presented in Chapter

5. Each window produces one gesture candidate, g, of cosine similarity value Pg, number

of fastNN backtrackings, Bg, and time duration, wg. We then apply gesture verification,

as described in Chapter 6, using Rule3, with some properly chosen thresholds TB and

TP , to remove those candidates that are clearly invalid (low Pg and/or high Bg).

Subsequently, we combine Pg and wg, favoring those gestures that are similar to training

examples (higher Pg), but also those that are longer than others (higher wg). This is

done in order to avoid the subgesture problem, i.e. the fact that certain gestures contain

other gestures in their shape. Classic examples are the letters “I, P” that appear while

drawing the letter “B” (Fig. 7.2–a). Intuitively, we would like to favor longer gestures

over shorter ones, when they have comparable cosine similarity metrics.
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(a) (b)
Figure 7.2: Two typical cases of the subgesture problem. (a) Letters “I” and “P” also
appear while gesturing “B”. (b) Gesturing letter “H” involves two appearances of the
letter “I”. Please note that the order of appearance is different (and thus discriminative).

To this end, we define the combined score of a gesture g, having time duration wg and

cosine similarity Pg, as:

PTg = (wg)
α × (Pg)

β (7.1)

where α, β are shape parameters that can be established through cross–validation. An

alternative way of viewing the above score is as a linear combination of the logarithms

of Tg and Pg. For our experiments, we chose α = 1 and β = 32 through cross–validation

on a training set (Sec. 7.3.1.2).

Surviving gesture candidates (g, PTg) are added in a candidate list. If two entries be-

long to the same gesture category, we keep the one with higher cosine similarity score.

Additionally, we keep note of the candidate with the earliest starting time t0, as well as

of the candidate with the highest combined score, PTM . L frames after t0 we find the

group of overlapping candidates in [t0, t0 + L], sort them in descending order based on

their PT scores and keep the top K candidates that exceed a certain percentage of the

highest combine score, λ × PTM , gi, i = 1, . . . ,K, as the final conflict group. Using a

candidate list implies some time delay in the final reporting of spotted gestures, problem

common to all indirect gesture spotting systems [2].

Parameter L was chosen to guarantee inclusion of the maximum duration training exam-

ple. Parameters λ and K were selected in order to provide a good compromise between

recognition accuracy and computational complexity. Since we found λ = 0.45 and K = 4

to yield very good results on training sets, we chose such values for experiments on all

other datasets.

7.2.1.2 Conflict resolution

Conflict resolution is performed by taking advantage of the subgesture relationships

appearing during gesture formation. Specifically, we noticed that different gestures

involve different subgestures, which appear at different relative time positions. For

example, in Fig. 7.2–a, gesturing letter “B” produces a candidate gesture “I” in the first

one–third of the total time duration, a candidate “P” in the last 30% and a candidate
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“B” in the last 10%. Similarly, gesturing letter “H” produces a candidate “I” in the first

33% and a second “I” in the last 33% of the total time duration.

To learn such subgesture relationships, we ran the spotting process on training sets and

collected statistics, namely conditional probabilities, regarding class labels and their

order of appearance in the final conflict group, as well as their starting, tis and ending

times, tie, relative to the minimum and maximum group times. To reduce table size,

we uniformly quantized time values in Nb = 5 bins, with respect to the duration of the

longest gesture candidate. The underlying Bayesian network is shown in Fig. 7.3.

Figure 7.3: The Bayesian network which models the subgesture relationships between
gesture candidates.

During testing, we choose the candidate of maximum likelihood L(gi) as the final spotted

gesture:

L(gi) = Prob[g1, t
1
s, t

1
e, . . . , gk, t

k
s , t

k
e , gi] (7.2)

= Prob[gi] · Prob[g1, t
1
s, t

1
e, . . . , gk, t

k
s , t

k
e |gi] (7.3)

= Prob[gi] ·
K∏
k=1

Prob[gk, t
k
s , t

k
e |gi, g1, t

1
s, t

1
e, . . . , gk−1, t

k−1
s , tk−1

e ] (7.4)

= Prob[gi] ·
K∏
k=1

Prob[gk, t
k
s , t

k
e |gi] (7.5)

= Prob[gi] ·
K∏
k=1

Prob[gk|gi] · Prob[tks |gi, gk] · Prob[tke |gi, gk] (7.6)

where we make the simplifying assumption that, given the correct gesture category,

occurrences of gesture candidates are mutually independent and that ending time, tke , is

independent of the corresponding starting time, tks .

Assuming a uniform prior distribution over the vocabulary gestures, we get:

L(gi) =
K∏
k=1

Prob[gk|gi] · Prob[tks |gi, gk] · Prob[tke |gi, gk] (7.7)
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In practice, one uses the log–likelihood, to avoid numerical calculation underflows:

`(gi) =
K∑
k=1

logProb[gk|gi] + logProb[tks |gi, gk] + logProb[tke |gi, gk] (7.8)

7.2.1.3 Conflict resolution variations

While our subgesture relationships model is quite rich, in the sense that it models both

the gesture categories and their starting and ending times, it involves many probabilities

that have to be estimated from training data. Indeed, for a vocabulary of C gesture

categories, our complete subgesture model needs to estimate Mclass = C · (C − 1) prob-

ability values for Prob[gk|gi], Mstart = C · (C − 1) · Nb values for Prob[tks |gi, gk] and

Mend = C · (C − 1) ·Nb values for Prob[tke |gi, gk].

For the specific cases of digits and letters, we need to estimate Mclass = 90, Mstart = 450,

Mend = 450 probability values for the 10 digits and Mclass = 650, Mstart = 3250,

Mend = 3250 values for the 26 letters. While these numbers are quite large, especially

for the case of letters, the probability spaces are expected to be quite sparse, since a

lot of subgesture relationships may never appear in practice. For example, it is highly

improbable –or even impossible– to detect a candidate of letter “A” when actually

writing letter “Z”. Similarly, starting and ending relative times present sparsity, which

decreases the actual number of parameters. Nevertheless, we acknowledge that the

number of training examples could be a possible issue in subgesture relationship learning,

which should not be overlooked by a practical application system.

Based on the above observations, we considered the following variations on the subges-

ture relationships model:

� Complete subgesture model : complete model of subgesture relations, modelling

gesture categories as well as starting and ending time bins.

� Class–only model : reduced model, modelling only gesture dependencies, by ignor-

ing starting and ending times.

� Starting–time model : reduced model, modelling gesture categories and starting

times, by ignoring ending times.

� max PT score : no model at all, simple conflict resolution by reporting the gesture

candidate with the highest PT score.
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Please note that Class–only model is different from the method described by Alon et

al.[2]. While they also measured frequencies of subgesture occurrences, they never ac-

tually used them. Instead, their conflict resolution method involved hard subgesture

relationship rules, stating that a subgesture should always be replaced by a superges-

ture, when applicable. Thus, our work builds on the method of Alon et al., extending

it such that it handles subgesture relationships in a probabilistic fashion. Furthermore,

we introduce modelling relative time boundaries between subgestures and supergestures

(starting–time model and complete subgesture model).

7.2.2 Recognizing gesture words

While so far we considered inputs of separate digits and letters, it is also possible for the

user to gesture words that belong to a predefined vocabulary. In this case, we assume

that word boundaries can be easily detected by some direct scheme, through detection of

abrupt motion cues and pauses. We then use our method for gesture spotting to detect

single letters and perform word recognition by minimizing the Weighted Edit Distance

[123] between the query and vocabulary words, as described below. Although it would

be possible to avoid spotting altogether and recognize the complete word trajectory as a

single entity through standard isolated recognition, such method would be highly prone

to errors, due to different protocols of connecting word letters, as we will show in Sec.

7.4.

7.2.2.1 Weighted Edit Distance for word gesture recognition

Assuming two sequences of letters (strings), X = {x1, x2, . . . , xM} and Y = {y1, y2, . . . , yN},
the Edit Distance is defined as the minimum number of editing operations (insertions,

deletions and substitutions) required to transform sequence X to Y [124]. Comput-

ing the Edit Distance, D(X,Y ), is based on Dynamic Programming and resembles the

computation process of Dynamic Time Warping (DTW) [112].

Specifically, let D(i, j) denote the Weighted Edit distance between the first i and j letters

of sequences X and Y respectively. Then, D(i, j) can be computed recursively as:

D(i, j) = min


D(i− 1, j) + del[xi]

D(i, j − 1) + ins[yj ]

D(i− 1, j − 1) + sub[xi, yj ]

(7.9)
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where del[xi] defines the cost of deleting xi, ins[yj ] the cost of inserting yj and sub[xi, yj ]

the cost of substituting xi with yj . To initialize the process, we assume D(i, 0) =

del[xi], D(0, j) = ins[xj ],∀i, j.

A simplified version, called Levenshtein Distance or simply Edit Distance [124], considers

fixed edit costs as del[xi] = 1, ins[yj ] = 1 and

sub[xi, yj ] =

0, if xi = yj

2, if xi 6= yj

(7.10)

However, in the general case, these costs vary, depending on the application. For exam-

ple, text processors relate the substitution cost, sub[x, y], to the probability of mistyping

letter y instead of x, which depends on the relative positions of letters in keyboards.

In our approach, we use a training set of gesture sequences to measure the following

probabilities:

� Prob{y|x} : probability of recognizing gesture y while x was performed (substitu-

tion error)

� Prob{y|∅} : probability of recognizing gesture y while no gesture was performed

(insertion error)

� Prob{∅|x} : probability of recognizing no gesture while gesture x was performed

(deletion error)

� Prob{∅|∅} : probability of recognizing no gesture while no gesture was performed

(neutral case)

Usage of Prob{∅|∅} is necessary to better normalize the probability distribution Prob{y|∅}.
We estimated it as:

Prob{∅|∅} =
(# of intervals)− (# of insertions)

(# of intervals)
(7.11)

where C denotes the number of gestures in each training sequence and (# of intervals) =

(C − 1) · (# of sequences) the total number of intervals between consecutive gestures.

Finally, we define the edit costs as follows:

� sub[xi, yj ] = − logProb{yj |xi}

� ins[yj ] = − logProb{y|∅}

� del[xi] = − logProb{∅|xi}
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7.3 Experimental results for single gesture spotting

In this section, we present our experimental results for single1 gesture spotting on con-

tinuous hand coordinate streams.

7.3.1 Experimental setup

7.3.1.1 Datasets

GreenDigits, EasyDigits [2], KinectStreamOrdered and KinectStreamRepeat [10] datasets

already contain continuous gesture sequences of digits and we use them directly in our

gesture spotting experiments. However, the 6D datasets contain only isolated gestures.

Thus, we created artificially continuous sequences by connecting gestures with noisy

straight lines of random time duration d frames (d ∈ [70, 100], as measured on EasyDig-

its). Each sequence contains one instance from each gesture category, i.e. 10 for digits

and 26 for letters. We considered two cases for the relative positions of consecutive

gestures:

� Case I – user writes new gestures over previous gestures (“overwriting”)

� Case II - user writes new gestures consecutively (“writing towards infinity”)

Case I is adopted by the original EasyDigits and KinectStream datasets and models

natural space limitations – i.e. the fact that there is a limited camera view angle towards

the user. Case II (Fig. 7.4) models writing on paper and may occur in practice when

the user writes two or more consecutive gestures side by side in front of the camera,

before overwriting previously written gestures. It also appears in a completely different

problem, when a users writes text with a digital pen on a tablet touch–screen2. Since

a real–life application may involve a combination of the two writing cases, evaluating

performance on both cases provides some lower and upper bounds on future system

performance.

Digits in the EasyDigits and KinectStreamOrdered datasets appear in arithmetic order,

while the KinectStreamRepeat dataset shows repetitions of similar digits. Thus, per-

formance of previous spotting approaches [2, 10] on sequences of randomly appearing

gestures is untested. For this reason, we also evaluated our method on mixed datasets,

1The term “single” appears to distinguish this process from “word gesture spotting”, which involves
recognizing complete words and not just characters. We explore word gesture spotting in Sec. 7.4.

2In theory, the presented approach could also be applied to recognize digits and letters written by
digital pens on touch screens.
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(a)

(b)

(c)

Figure 7.4: Three artificially created sequences, by connecting isolated gestures with
straight line segments. (a) Digits6D: “5703168”. (b) Lower6D: “gesture”. (c) Upper6D:

“GESTURE”.

which were created synthetically by combining isolated gestures concatenated in random

order3.

During training, we collected subgesture statistics using the mixed datasets, in a user–

independent mode. Please note that the mixed datasets used during testing were not the

same as those used for training, in order to avoid overfitting. For the original EasyDigits

dataset, we used statistics from the GreenDigits dataset. For the KinectStreamOrdered

dataset, we learned statistics from KinectStreamRepeat. Finally, we split the Kinect-

StreamRepeat dataset into two disjoint subsets, learned a subgesture model separately

from each of them and applied it on the other subset. This way, spotting results remain

unbiased, since training and testing sets are disjoint.

While we use a significant number of training sequences per user, as shown in Table

7.1, such number may not be enough in certain cases. Specifically, our main concern is

about letters, where the number of probability distribution bins for starting and ending

gesture frames, Mstart,Mend, is extremely large (Mstart = 3250). On the other hand,

conditional probability bins for gesture categories involve a significantly reduced number

(Mclass = 650), and thus they may be learned more effectively. For such reasons, we

evaluate all four conflict resolution methods (Sec. 7.2.1.3), i.e. complete subgesture

model, class–only model, starting–time model and max PT score.

Table 7.1: Number of training sequences and model parameters for each dataset

Dataset Training sequences Mclass Mstart

EasyDigits 2700 90 450

Digits6D 1500 90 450

Lower6D 1200 650 3250

Upper6D 3600 650 3250

3We plan to make these datasets available to researchers for further testing.
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Figure 7.5: Recognition accuracy as a function of parameters α, β. Training was
performed on GreenDigits and validation on EasyDigits.

7.3.1.2 Choosing parameters

During testing, a gesture is rejected based on Rule3 (Sec. 6.2.1), i.e. if its cosine

similarity is less than TP and its number of backtrackings greater than TB. To minimize

false negatives, we chose conservative values, i.e. TP = 0.9 and TB = 15 − 20% of the

(positive) training examples in the fastNN tree. The window lengths, Wi, were chosen

based on the ranges of time durations in the training sets, with a step of 10 or 20 frames.

During testing, we always considered a leave–one–user–out setup.

As discussed earlier in the analysis section 7.2.1.1, shape parameters α, β used in calcu-

lating each gesture’s PT score, were given values α = 1 and β = 32, by using GreenDigits

for training and EasyDigits for validation – we used the original continuous datasets of [2]

and not the artificial ones. Although we obtained comparable results for β ∈ [20, 40] on

both GreenDigits and EasyDigits (Fig.7.5), we finally chose β = 32, since computation

of x32 can be efficiently implemented using 5 multiplications, as x32 = x25 4.

Values for parameters α, β, as well as those for λ = 45% (percentage of maximum PT

score used to retain gesture candidates), K = 4 (number of top candidates) and N = 5

(number of time bins to store subgesture statistics) were kept fixed for all datasets.

Parameter L (time window length for group of conflicting gestures) is set equal to 120%

of the maximum duration of a gesture in a dataset, to guarantee inclusion of most

probable gestures and time-windows (Tables 7.4 – 7.5).

4While this property is not crucial in floating–point arithmetic, it becomes valuable in fixed–point
implementations.
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7.3.1.3 Performance evaluation

Following [125], we measured Recognition accuracy (Rec.) and Reliability (Rel.), defined

as:

Rec. =
# of correctly recognized gestures

# of input gestures
(7.12)

Rel. =
# of correctly recognized gestures

(# of input gestures) + (# of insertion errors)
(7.13)

Similar to [2], we consider a detected gesture as “correct” if (1) its class is correct and

(2) it presents a time overlap of at least 50% with the ground truth gesture and vice

versa (50-50 Rule).

Although recognition accuracy corresponds exactly to Recall (Eq. 6.2), recognition reli-

ability differs slightly from Precision (Eq. 6.1), due to the appearance of false negatives

in the denominator of Recall. Nevertheless, it is still possible to compute a modified F1

score as:

F1 = 2 · Rec. ·Rel.
Rec.+Rel.

(7.14)

Please note that this definition does not correspond exactly to that of original F1 score

used in gesture verification (Eq. 6.3). However, it shows similar properties, since it is

equal to 1 (or 100%) for an optimal spotting system and 0 in the worst case.

7.3.2 Results using the complete model

As a first step, we evaluated our single gesture spotting approach using complete sub-

gesture relationships (Complete subgesture model), as described in section 7.2.1.

Tables 7.4 – 7.5 summarize experimental settings and recognition results for all continu-

ous datasets. We observe that our approach achieved satisfactory results on all datasets.

Compared to previous works, we achieved 92.3%(277/300) accuracy on the EasyDigits

dataset, versus 94.6%(284/300) of [2]. In this comparison, we should note that the best

result in [2] has been achieved by retaining between 4 and 6 hand candidate locations in

each frame, while our approach keeps only one such location. When only one location

is kept, accuracy of [2] drops to 75.6%, which is equivalent to that achieved by Oka

([63]). We achieved 94.3%(66/70) recognition accuracy on the KinectStreamOrdered

dataset, and 93.5%(362/387) on KinectStreamRepeat, i.e. 93.7%(428/457). In the orig-

inal work [10], Frolova et al. achieved 93.9%(200/213). Due to the different subsets

used, comparison can not be conclusive, although it indicates similar performance of the

two approaches.
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Table 7.2: Time delays on gesture spotting for the EasyDigits dataset

Digit Average ∆t Min ∆t Max ∆t

0 66 23 83

1 103 87 113

2 62 45 72

3 51 26 71

4 85 67 98

5 52 31 75

6 60 40 80

7 86 75 97

8 28 4 50

9 62 41 83

Tables 7.4 – 7.5 also show mean and standard deviation of the time delay, ∆t, between

ending time of spotted gesture and its announcement by the spotting module. Such time

delay is inherent to indirect spotting methods, caused by the usage of a list of candidate

gestures. We observe that ∆t varies from dataset to dataset and that it is comparable to

window lengths. In EasyDigits, ∆t = 65 frames, corresponding to 2.2 seconds (capture is

at a frame rate of 30 fps), which should be tolerable in most applications. Similarly, ∆t ≈
130 frames for the 6D datasets on average, corresponding to 2.5 seconds (sampling is at

60 fps). Table 7.2 shows analytical results for each gesture category for the EasyDigits

dataset. We note that the longest delays appear in “subgesture” digits, i.e. digits that

can be easily mistaken as parts of longer gestures, such as “1, 4, 7”. This result is

natural, since an expert system needs to wait to make sure that short gestures are not

parts of a longer gesture.

Regarding substitutions, we didn’t notice many systematic errors in our results. In

original EasyDigits, “7” was substituted by “1” (3/30), “6” by “0” (2/30) and ‘9” by

“1” (2/30). In synthetic EasyDigits (Case I, mixed), “9” corresponded to the worst

case of correct spotting (2353/3000 or 78%), being substituted by “1” (204/3000), “5”

(201/3000) and “7” (152/3000). In Upper6D (Case I, mixed), letter “I” was substituted

by “J” in 7% of the cases (280/3900). The only major issue of concern appeared in

Upper6D Case I, ordered), where letter “I” was substituted by “H” half of the times

(1537/3000). Since the combination “HI” is quite common in many English words (e.g.

“this”, “think”, “something”), this could be a serious problem of a practical spotting

system.

Insertion errors affect severely recognition reliability (Eq. 7.13). To better understand

the main sources of such errors, we repeated 4 of our spotting experiments on the

synthetic datasets (Case I, mixed) for EasyDigits, Digits6D, Lower6D and Upper6D,
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keeping the results of the intermediate sliding window searches, i.e. the gesture category

found and the gesture verification label (valid/invalid). Due to the excessive number of

results, we limited this experiment only to the first user of each dataset. Table 7.3 shows

the frequency of appearance for the major surviving candidates in each dataset, as well

as the corresponding insertion errors as percentages of the total number of insertions. As

we observe, the large number of downward–motion gestures (such as digit “1”, lower–

case letter “`” and upper–case letters “I” and “J”) in the list of candidate gestures

appears to be positively related to insertion errors.

Table 7.3: Major surviving candidates during gesture spotting

Dataset Surviving candidates Insertion errors

EasyDigits (Mixed) 1 (53%) 1 (67%), 4 (13%)

Digits6D (Mixed) 1 (43%) 1 (97%)

Lower6D (Mixed) ` (22%), c (12%), i, j (14%) ` (50%), c (28%), i, j (6%)

Upper6D (Mixed) I,J (41%), C (13%) I,J (61%), C (4%)

Regarding the order of appearance, we noticed that subgesture conditional probabilities

collected from mixed sequences can provide high performance for ordered sequences,

too. Nevertheless, evaluation on mixed sequences may offer greater insight about the

recognition accuracy, reliability and time delay of a gesture recognition system. Al-

though we didn’t cover each random permutation explicitly, due to the exponential size

of the problem, we considered a relatively large number of testing sequences. A peculiar

phenomenon may be seen in Case I for upper–case letters, which shows a drop of 3% in

recognition accuracy when compared to performance on mixed letters. Through further

investigation, we found out that the drop is mainly due to two errors: deletion of letter

“J” (1625 out of 3000 times) and substitution of letter “I” by “H” (1537/3000), as de-

scribed above. Although the combination “IJ” is not very frequent in English language,

it could be a serious problem in other languages. Please note again that these two prob-

lems appeared only in this ordered dataset and disappeared in its corresponding mixed

version.

We notice that overwriting (Case I) outperforms “writing towards infinity” (Case II)

by 3%− 8%, with the exception of the artificially created continuous Digits6D streams

(Ordered/Mixed). Through further investigation, we found out that low performance of

Case II compared to Case I in EasyDigits is due to consistent substitutions of digit “1”

by “7” and “4” when “1” is preceded by either “0” or “8”. This is in fact expected if one

considers the trajectory of a hand when drawing consecutively digits “0” and “1”, as

shown in Fig. 7.6–a, where it is virtually impossible to distinguish between a “genuine”

7, attached to “0”, versus a “1”, connected to “0” via a horizontal short line. Such a
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(a) b)

Figure 7.6: (a) Confusing digit “1” to “7” after recognition of digit “0”. (b) Avoiding
confusion due to different “7” shape in Digits6D datastream [3].

phenomenon is not present when Case I (overwriting) is used, and interestingly enough,

not present for the Digits6D sequence because of the different pattern used to draw the

digit “7”, as also shown in Fig. 7.6–b. One quick way to partially address this issue

would be to impose a certain minimum time–distance between gestures for continuous

gesture recognition, thus creating a “dead–time” between spotted gestures.

The only exception to the above rule is for the Digits6D datasets, where we notice that

Reliability (Rel.) is worse in Case I, while Recognition accuracy (Rec.) remains almost

the same. By inspecting the analytical spotting results, we saw that this issue is almost

entirely due to double insertions of digit “1” in Case II. By measuring the frequencies

of appearance for surviving gesture candidates (as in Table 7.3), we saw that digit “1”

appears 60% more often in Digits6D – Case I than in Case II, thus explaining to a great

extend this problem.

While our results are quite good for single gesture spotting applications, we would

like to estimate a theoretical maximum that a perfect conflict resolution method can

achieve, and thus understand the limits imposed by earlier components of our method

for isolated gesture recognition and verification. To this end, we counted the cases

where the “correct” candidate was found in the candidate list and reported it under

Possible Rec. columns in Tables 7.4 – 7.5. We observe that in most cases there is room

for improvement, indicating that advanced gesture verification and conflict resolution

techniques affect significantly the spotting results.

Comparing Possible Rec. to isolated recognition accuracies (Tables 5.2 – 5.6), we notice

that gesture spotting may actually perform better, assuming an ideal conflict resolution

module. This is in contrast to the most common belief that isolating gestures always

results into higher recognition accuracy. Intuitively, this result may be explained by

the continuous nature of data in gesture spotting; indeed, isolated recognition assumes

known –but also fixed– gesture time boundaries, while spotting allows choosing the most

prominent ones. As a result, shifting gesture boundaries even by a few frames may lead

to recognizing the correct gesture category, thus making the correct candidate available

in conflict resolution rule during gesture spotting.
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Overall, our results suggest that our approach is meaningful and can be applied in

many scenarios and vocabulary sets. Spotting digits seems to be easier than spotting

letters, while using position sensors instead of cameras results in higher performance,

due to more accurate hand coordinates. We also saw that indirect gesture spotting

techniques inherently exhibit some time delay in reporting the spotting results, as well

as insertion errors. On the other hand, they may actually result in higher recognition

accuracy, provided that a perfect conflict resolution method is available, outperforming

isolated recognition and direct spotting methods in that ideal case. Finally, establishing

clear protocols, such as imposing pauses between gestures or using gestures that avoid

subgesture problems can improve overall system performance significantly, although they

may compromise naturalness in user interaction.

7.3.3 Results using alternative conflict resolution methods

We also evaluated the three alternative methods for conflict resolution (Sec. 7.2.1.3),

i.e. class–only model, starting–time model and max PT score.

Tables 7.6 – 7.7 summarize experimental settings and recognition results when the class–

only model is used, i.e. when only interactions between gesture classes are modelled.

Comparing to Tables 7.4 – 7.5, we see that F1–scores of class–only model are around

0.7% lower than those of the complete subgesture model for digits, with differences being

smaller for the digits6D datasets.

Regarding lower and upper–case letters, using class–only model yields similar recognition

accuracies (Rec.) to those of complete subgesture model, but at the cost of 1% drop in

system’s reliability (Rel.), leading to slightly lower F1–scores. The same model seems

to fix the problem of ordered Upper6D letters (Case II), which now show recognition

accuracy equal to that on random Upper6D letters (Case II).

Tables 7.8 – 7.9 summarize experimental settings and recognition results when the

starting–time model is used, i.e. when interactions between gesture classes and starting

times are modelled. By inspecting the results, we see that performances are around

1% lower than those achieved using the complete subgesture model. Compared to the

class–only model, recognition accuracies for digits get improved by 1%, especially for

the Computer Vision–based approaches (original and synthetic EasyDigits), while they

remain almost unchanged for Digits6D, and slightly diminish for letters. This result

suggests that probably more training gesture sequences are needed during subgesture

model learning in the letter datasets.
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Tables 7.10 – 7.11 summarize experimental settings and recognition results when the

max PT score rule is used for conflict resolution, i.e. when we simply spot and report

the gesture candidate showing the highest PT score. It is quite surprising that results

for Case I are very close to those achieved by the other three methods. The only

exception is for upper–case letters, where we notice around 6 − 10% drop in F1–score.

This method also proves insufficient for the Case II datasets, where we notice drops of

around 5% for EasyDigits and lower6D, 10% for upper6D, but essentially no drop for

digits6D. Thus, when Case I is strictly used, the max PT score rule could be used quite

effectively and efficiently for spotting digits and lower–case letters, since it requires less

memory compared to the other three methods, which would need to store the subgesture

relationship probabilities.

Finally, it is worth noting that we also explored spotting the gesture candidate with the

highest cosine similarity score, which however yielded very low recognition accuracies

and reliabilities for all datasets (around 65% for digits and 27% for lower and upper–

case letters), proving that a more sophisticated conflict resolution scheme is necessary

for robust results.

7.3.4 Results using depth–only search fastNN

Additionally, we evaluated the performance of Depth–Only Search fast Nearest Neigh-

bor (DOS–fastNN) [106], which offers increased computational efficiency compared to

standard fastNN. As we showed in Sec. 5.3.3 – 5.3.4, DOS–fastNN performs worse than

fastNN in isolated recognition, providing lower recognition accuracies in all datasets.

Specifically, drop in accuracy may be low (2−3% in EasyDigits, digits6D and upper6D)

or high (7% in lower6D, 12% in KinectT), suggesting that DOS–fastNN would provide

moderate to bad spotting results. However, one should always keep in mind the continu-

ous nature of data in gesture spotting; indeed, isolated recognition assumes known –but

also fixed– gesture time boundaries, while spotting allows choosing the most prominent

ones. As a result, moving gesture boundaries even by a few frames may lead to recogniz-

ing the correct gesture category, thus making the correct candidate available in conflict

resolution rule during gesture spotting.

Tables 7.14 – 7.15 summarize experimental settings and recognition results when DOS–

fastNN is used along with the max PT score rule for conflict resolution. Comparing

with Tables 7.10 – 7.11, we observe around 1% drop in F1–score in most cases, with

the exceptions of EasyDigits (2% drop in Case I), KinectStreamRepeat (5% drop) and

Digits6D (almost zero drop in most cases). We observed similar drops when we used

the complete subgesture model instead of the max PT score conflict resolution rule.
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7.3.5 Effect of resampling parameter N

As described in Sec. 4.3.1, our gesture representation keeps only N trajectory points,

through standard linear downsampling. Although we chose N = 8 for our experiments,

one might question the performance of our system at higher N values. Indeed, as Fig.

5.2 suggests, choosing N = 12 may result into 3% better isolated recognition accuracy

on the GreenDigits dataset, for relatively low noise levels (SNR > 20 dB). On the other

hand, gesture verification when N = 8 performs slightly better than when N > 8, as we

showed in Sec. 6.3.6.

To this end, we repeated our spotting experiments using N = 12 for the max PT score

conflict resolution rule. However, in some datasets we noticed that a lot of gestures were

falsely rejected by the spotter, mainly because they caused a higher number of fastNN

backtrackings. Thus, we increased the value of threshold TB by 50% on all datasets.

Although this solution may not be the optimal one, it improved results in a universal

way, avoiding parameter over–tuning.

Tables 7.12 – 7.13 summarize experimental settings and recognition results for this case.

We observe that in some cases F1–score slightly increased or decreased compared to the

case of N = 8. Specifically, we see improved results for Case II and decreased results for

Case I, with the exception of the digits6D dataset. The most important improvement

seems to be in the lower6D dataset (3%). However, performance could be improved for

more appropriate threshold values.

To remove the effect of the TB threshold, we also evaluated the performance of Depth–

Only Search fast Nearest Neighbor (DOS–fastNN) [106] for N = 12. Our experimental

results for this case are shown in Tables 7.16 – 7.17. Comparing to the results of N = 8

(Tables 7.14 – 7.15), we notice that choosing N = 12 improves results in all datasets,

with the only exception of upper6D. Once again, the most important improvement seems

to be in the lower6D dataset (3%).

Based on the above results, we cannot reach easy conclusions: choosing a higher N value

may improve or worsen slightly the spotting results, depending on the nature of gesture

data. The only promising result was that of lower–case letters, which presented signifi-

cantly improved results for N = 12. Further investigation of the role of dimensionality

is included in our plans for future work.
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Table 7.4: Experimental results on continuous datasets, Case I – Writing on a 2D imaginary square (complete subgesture model)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

GreenDigits 30 270 45 0.9 [20, 30, . . . , 110] 130 99.7 98.0 95.1 96.6 62 25

EasyDigits 30 270 45 0.9 [20, 30, . . . , 110] 130 98.0 92.3 82.4 87.1 65 23

KinectStreamOrdered 7 800 80 0.9 [10, 20, . . . , 110] 130 100.0 94.3 93.0 93.6 85 13

KinectStreamRepeat 47 800 80 0.9 [10, 20, . . . , 110] 130 98.0 93.5 80.1 86.3 80 15

EasyDigits (Ordered) 3000 270 45 0.9 [10, 20, . . . , 110] 130 95.2 93.6 87.9 90.7 75 23

EasyDigits (Mixed) 3000 270 45 0.9 [10, 20, . . . , 110] 130 96.8 93.6 91.3 92.4 75 23

Digits6D (Ordered) 1800 500 90 0.9 [40, 60, . . . , 220] 260 99.2 97.3 90.0 93.5 142 35

Digits6D (Mixed) 1800 500 90 0.9 [40, 60, . . . , 220] 260 99.3 97.3 93.4 95.3 144 40

Lower6D (Ordered) 1500 1040 150 0.9 [30, 40, . . . , 160] 200 99.3 93.6 91.3 92.4 110 29

Lower6D (Mixed) 1500 1040 150 0.9 [30, 40, . . . , 160] 200 98.9 93.5 90.9 92.2 111 28

Upper6D (Ordered) 3900 1248 200 0.9 [20, 40, . . . , 200] 240 96.9 89.8 85.7 87.7 122 41

Upper6D (Mixed) 3900 1248 200 0.9 [20, 40, . . . , 200] 240 98.1 92.7 88.2 90.4 126 42

Table 7.5: Experimental results on continuous datasets, Case II – Writing towards infinity (complete subgesture model)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

EasyDigits (Ordered) 30 270 45 0.9 [10, 20, . . . , 110] 130 94.8 85.5 79.7 82.5 66 24

EasyDigits (Mixed) 30 270 45 0.9 [10, 20, . . . , 110] 130 94.9 87.0 83.2 85.1 66 26

Digits6D (Ordered) 7 800 90 0.9 [40, 60, . . . , 220] 260 99.4 98.3 96.2 97.3 141 33

Digits6D (Mixed) 3000 270 90 0.9 [40, 60, . . . , 220] 260 99.4 98.2 95.8 97.0 144 37

Lower6D (Ordered) 3000 270 150 0.9 [30, 40, . . . , 160] 200 98.0 90.4 87.8 89.1 105 26

Lower6D (Mixed) 1800 500 150 0.9 [30, 40, . . . , 160] 200 98.1 91.3 87.8 89.5 105 27

Upper6D (Ordered) 1800 500 200 0.9 [20, 40, . . . , 200] 240 96.0 88.8 83.6 86.1 119 43

Upper6D (Mixed) 1500 1040 200 0.9 [20, 40, . . . , 200] 240 96.4 89.0 84.0 86.4 119 43
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Table 7.6: Experimental results on continuous datasets, Case I – Writing on a 2D imaginary square (class–only model)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

GreenDigits 30 270 45 0.9 [20, 30, . . . , 110] 130 99.7 98.3 95.5 96.9 62 25

EasyDigits 30 270 45 0.9 [20, 30, . . . , 110] 130 98.0 92.3 82.7 87.2 65 23

KinectStreamOrdered 7 800 80 0.9 [10, 20, . . . , 110] 130 100.0 94.3 93.0 93.6 85 13

KinectStreamRepeat 47 800 80 0.9 [10, 20, . . . , 110] 130 98.0 94.8 79.6 86.5 80 15

EasyDigits (Ordered) 3000 270 45 0.9 [10, 20, . . . , 110] 130 95.2 92.5 87.1 89.7 75 23

EasyDigits (Mixed) 3000 270 45 0.9 [10, 20, . . . , 110] 130 96.8 92.6 90.2 91.4 74 23

Digits6D (Ordered) 1800 500 90 0.9 [40, 60, . . . , 220] 260 99.2 96.7 89.4 92.9 143 35

Digits6D (Mixed) 1800 500 90 0.9 [40, 60, . . . , 220] 260 99.3 97.5 93.5 95.5 144 40

Lower6D (Ordered) 1500 1040 150 0.9 [30, 40, . . . , 160] 200 99.3 93.5 91.1 92.3 110 29

Lower6D (Mixed) 1500 1040 150 0.9 [30, 40, . . . , 160] 200 98.9 93.1 90.2 91.6 111 28

Upper6D (Ordered) 3900 1248 200 0.9 [20, 40, . . . , 200] 240 98.1 92.5 88.2 90.3 123 42

Upper6D (Mixed) 3900 1248 200 0.9 [20, 40, . . . , 200] 240 98.2 92.5 87.8 90.1 126 42

Table 7.7: Experimental results on continuous datasets, Case II – Writing towards infinity (class–only model)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

EasyDigits (Ordered) 30 270 45 0.9 [10, 20, . . . , 110] 130 94.8 84.4 78.3 81.2 65 25

EasyDigits (Mixed) 30 270 45 0.9 [10, 20, . . . , 110] 130 94.9 85.8 81.5 83.6 66 26

Digits6D (Ordered) 7 800 90 0.9 [40, 60, . . . , 220] 260 99.4 98.1 96.0 97.0 141 33

Digits6D (Mixed) 3000 270 90 0.9 [40, 60, . . . , 220] 260 99.4 98.0 95.7 96.9 144 37

Lower6D (Ordered) 3000 270 150 0.9 [30, 40, . . . , 160] 200 98.1 90.3 87.6 88.9 105 26

Lower6D (Mixed) 1800 500 150 0.9 [30, 40, . . . , 160] 200 98.0 91.2 87.6 89.4 105 27

Upper6D (Ordered) 1800 500 200 0.9 [20, 40, . . . , 200] 240 96.1 88.1 82.6 85.3 119 43

Upper6D (Mixed) 1500 1040 200 0.9 [20, 40, . . . , 200] 240 96.4 88.0 82.9 85.3 118 43
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Table 7.8: Experimental results on continuous datasets, Case I – Writing on a 2D imaginary square (starting–time model)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

GreenDigits 30 270 45 0.9 [20, 30, . . . , 110] 130 99.7 97.7 94.5 96.1 62 25

EasyDigits 30 270 45 0.9 [20, 30, . . . , 110] 130 98.0 93.3 83.3 88.1 65 23

KinectStreamOrdered 7 800 80 0.9 [10, 20, . . . , 110] 130 100.0 91.4 90.1 90.8 85 13

KinectStreamRepeat 47 800 80 0.9 [10, 20, . . . , 110] 130 98.0 94.3 79.7 86.4 80 15

EasyDigits (Ordered) 3000 270 45 0.9 [10, 20, . . . , 110] 130 95.2 93.1 87.3 90.1 75 23

EasyDigits (Mixed) 3000 270 45 0.9 [10, 20, . . . , 110] 130 96.8 92.9 90.3 91.6 75 23

Digits6D (Ordered) 1800 500 90 0.9 [40, 60, . . . , 220] 260 99.4 97.1 89.6 93.2 143 35

Digits6D (Mixed) 1800 500 90 0.9 [40, 60, . . . , 220] 260 99.3 97.3 93.2 95.2 144 40

Lower6D (Ordered) 1500 1040 150 0.9 [30, 40, . . . , 160] 200 99.3 92.5 90.2 91.3 111 29

Lower6D (Mixed) 1500 1040 150 0.9 [30, 40, . . . , 160] 200 98.9 92.7 89.9 91.2 112 28

Upper6D (Ordered) 3900 1248 200 0.9 [20, 40, . . . , 200] 240 98.1 91.4 87.1 89.2 123 42

Upper6D (Mixed) 3900 1248 200 0.9 [20, 40, . . . , 200] 240 98.2 92.4 87.7 90.0 126 42

Table 7.9: Experimental results on continuous datasets, Case II – Writing towards infinity (starting–time model)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

EasyDigits (Ordered) 30 270 45 0.9 [10, 20, . . . , 110] 130 94.8 84.2 78.2 81.1 65 24

EasyDigits (Mixed) 30 270 45 0.9 [10, 20, . . . , 110] 130 94.9 85.7 81.6 83.6 66 26

Digits6D (Ordered) 7 800 90 0.9 [40, 60, . . . , 220] 260 99.4 98.1 96.1 97.1 141 33

Digits6D (Mixed) 3000 270 90 0.9 [40, 60, . . . , 220] 260 99.4 98.1 95.6 96.8 144 36

Lower6D (Ordered) 3000 270 150 0.9 [30, 40, . . . , 160] 200 98.0 90.2 87.2 88.7 105 26

Lower6D (Mixed) 1800 500 150 0.9 [30, 40, . . . , 160] 200 98.0 90.9 87.2 89.0 105 27

Upper6D (Ordered) 1800 500 200 0.9 [20, 40, . . . , 200] 240 96.1 88.3 83.0 85.6 119 43

Upper6D (Mixed) 1500 1040 200 0.9 [20, 40, . . . , 200] 240 96.6 88.5 83.4 85.9 119 43
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Table 7.10: Experimental results on continuous datasets, Case I – Writing on a 2D imaginary square (max PT score)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

GreenDigits 30 270 45 0.9 [20, 30, . . . , 110] 130 99.7 98.0 95.1 96.6 62 25

EasyDigits 30 270 45 0.9 [20, 30, . . . , 110] 130 98.0 92.3 82.7 87.2 65 23

KinectStreamOrdered 7 800 80 0.9 [10, 20, . . . , 110] 130 100.0 94.3 91.7 93.0 89 13

KinectStreamRepeat 47 800 80 0.9 [10, 20, . . . , 110] 130 99.5 94.3 80.3 86.7 80 15

EasyDigits (Ordered) 3000 270 45 0.9 [10, 20, . . . , 110] 130 95.3 91.8 86.5 89.1 75 23

EasyDigits (Mixed) 3000 270 45 0.9 [10, 20, . . . , 110] 130 96.8 91.6 89.1 90.3 74 23

Digits6D (Ordered) 1800 500 90 0.9 [40, 60, . . . , 220] 260 99.2 97.1 89.8 93.3 142 35

Digits6D (Mixed) 1800 500 90 0.9 [40, 60, . . . , 220] 260 99.3 97.6 93.7 95.6 144 40

Lower6D (Ordered) 1500 1040 150 0.9 [30, 40, . . . , 160] 200 99.3 91.2 88.2 89.7 110 29

Lower6D (Mixed) 1500 1040 150 0.9 [30, 40, . . . , 160] 200 98.9 91.0 87.8 89.4 111 28

Upper6D (Ordered) 3900 1248 200 0.9 [20, 40, . . . , 200] 240 98.2 85.1 78.7 81.8 126 41

Upper6D (Mixed) 3900 1248 200 0.9 [20, 40, . . . , 200] 240 98.2 84.3 77.5 80.7 128 42

Table 7.11: Experimental results on continuous datasets, Case II – Writing towards infinity (max PT score)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

EasyDigits (Ordered) 30 270 45 0.9 [10, 20, . . . , 110] 130 94.8 82.3 75.8 78.9 66 24

EasyDigits (Mixed) 30 270 45 0.9 [10, 20, . . . , 110] 130 94.9 81.0 76.5 78.7 67 26

Digits6D (Ordered) 7 800 90 0.9 [40, 60, . . . , 220] 260 99.4 98.1 96.1 97.1 141 33

Digits6D (Mixed) 3000 270 90 0.9 [40, 60, . . . , 220] 260 99.4 98.3 96.0 97.1 144 36

Lower6D (Ordered) 3000 270 150 0.9 [30, 40, . . . , 160] 200 97.8 85.7 82.6 84.2 106 27

Lower6D (Mixed) 1800 500 150 0.9 [30, 40, . . . , 160] 200 97.5 86.2 82.3 84.2 105 27

Upper6D (Ordered) 1800 500 200 0.9 [20, 40, . . . , 200] 240 95.1 79.1 72.0 75.4 121 42

Upper6D (Mixed) 1500 1040 200 0.9 [20, 40, . . . , 200] 240 95.4 78.1 71.0 74.4 120 42
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Table 7.12: Experimental results on continuous datasets, Case I – Writing on a 2D imaginary square (max PT score – N = 12)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

GreenDigits 30 270 70 0.9 [20, 30, . . . , 110] 130 99.7 97.0 90.9 93.9 61 25

EasyDigits 30 270 70 0.9 [20, 30, . . . , 110] 130 97.7 93.7 83.6 88.4 64 23

KinectStreamOrdered 7 800 120 0.9 [10, 20, . . . , 110] 130 100.0 94.3 91.7 93.0 87 12

KinectStreamRepeat 47 800 120 0.9 [10, 20, . . . , 110] 130 99.5 95.9 74.5 83.8 79 15

EasyDigits (Ordered) 3000 270 70 0.9 [10, 20, . . . , 110] 130 96.0 90.8 84.1 87.3 74 23

EasyDigits (Mixed) 3000 270 70 0.9 [10, 20, . . . , 110] 130 97.7 91.4 88.7 90.0 74 24

Digits6D (Ordered) 1800 500 140 0.9 [40, 60, . . . , 220] 260 99.4 97.9 90.5 94.1 144 35

Digits6D (Mixed) 1800 500 140 0.9 [40, 60, . . . , 220] 260 99.4 98.1 94.2 96.1 146 39

Lower6D (Ordered) 1500 1040 230 0.9 [30, 40, . . . , 160] 200 99.4 91.5 88.6 90.0 109 29

Lower6D (Mixed) 1500 1040 230 0.9 [30, 40, . . . , 160] 200 99.4 91.4 88.2 89.8 109 27

Upper6D (Ordered) 3900 1248 300 0.9 [20, 40, . . . , 200] 240 96.3 84.6 77.2 80.7 133 39

Upper6D (Mixed) 3900 1248 300 0.9 [20, 40, . . . , 200] 240 96.4 84.2 76.8 80.3 134 38

Table 7.13: Experimental results on continuous datasets, Case II – Writing towards infinity (max PT score – N = 12)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

EasyDigits (Ordered) 30 270 70 0.9 [10, 20, . . . , 110] 130 95.0 82.4 75.8 79.0 65 25

EasyDigits (Mixed) 30 270 70 0.9 [10, 20, . . . , 110] 130 95.5 81.6 77.1 79.3 67 26

Digits6D (Ordered) 7 800 140 0.9 [40, 60, . . . , 220] 260 99.4 98.0 96.0 97.0 140 34

Digits6D (Mixed) 3000 270 140 0.9 [40, 60, . . . , 220] 260 99.4 97.9 95.9 96.9 143 37

Lower6D (Ordered) 3000 270 230 0.9 [30, 40, . . . , 160] 200 99.0 89.1 85.4 87.2 102 26

Lower6D (Mixed) 1800 500 230 0.9 [30, 40, . . . , 160] 200 98.3 88.8 84.8 86.7 101 27

Upper6D (Ordered) 1800 500 300 0.9 [20, 40, . . . , 200] 240 94.8 80.5 73.1 76.6 124 40

Upper6D (Mixed) 1500 1040 300 0.9 [20, 40, . . . , 200] 240 94.9 80.1 72.5 76.1 124 40
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Table 7.14: Experimental results on continuous datasets, Case I – Writing on a 2D imaginary square (DOS – max PT score)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

GreenDigits 30 270 − 0.9 [20, 30, . . . , 110] 130 99.7 97.3 91.5 94.3 60 25

EasyDigits 30 270 − 0.9 [20, 30, . . . , 110] 130 98.3 92.0 82.4 86.9 63 23

KinectStreamOrdered 7 800 − 0.9 [10, 20, . . . , 110] 130 100.0 94.3 83.5 88.6 87 13

KinectStreamRepeat 47 800 − 0.9 [10, 20, . . . , 110] 130 99.2 94.3 80.9 87.1 79 15

EasyDigits (Ordered) 3000 270 − 0.9 [10, 20, . . . , 110] 130 95.1 90.9 83.0 86.8 73 22

EasyDigits (Mixed) 3000 270 − 0.9 [10, 20, . . . , 110] 130 96.8 91.0 87.2 89.1 73 24

Digits6D (Ordered) 1800 500 − 0.9 [40, 60, . . . , 220] 260 99.4 97.5 90.2 93.7 143 35

Digits6D (Mixed) 1800 500 − 0.9 [40, 60, . . . , 220] 260 99.3 97.5 93.6 95.5 144 40

Lower6D (Ordered) 1500 1040 − 0.9 [30, 40, . . . , 160] 200 99.1 90.4 87.4 88.8 107 30

Lower6D (Mixed) 1500 1040 − 0.9 [30, 40, . . . , 160] 200 98.7 90.2 86.9 88.5 107 29

Upper6D (Ordered) 3900 1248 − 0.9 [20, 40, . . . , 200] 240 98.7 84.5 77.3 80.7 125 42

Upper6D (Mixed) 3900 1248 − 0.9 [20, 40, . . . , 200] 240 98.6 83.6 76.0 79.6 128 42

Table 7.15: Experimental results on continuous datasets, Case II – Writing towards infinity (DOS – max PT score)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

EasyDigits (Ordered) 30 270 − 0.9 [10, 20, . . . , 110] 130 94.5 81.7 75.2 78.3 66 25

EasyDigits (Mixed) 30 270 − 0.9 [10, 20, . . . , 110] 130 95.3 80.6 75.7 78.1 67 26

Digits6D (Ordered) 7 800 − 0.9 [40, 60, . . . , 220] 260 99.4 98.0 96.0 97.0 141 34

Digits6D (Mixed) 3000 270 − 0.9 [40, 60, . . . , 220] 260 99.4 98.0 95.7 96.8 143 37

Lower6D (Ordered) 3000 270 − 0.9 [30, 40, . . . , 160] 200 97.7 84.6 81.1 82.8 99 27

Lower6D (Mixed) 1800 500 − 0.9 [30, 40, . . . , 160] 200 97.2 85.2 81.1 83.1 98 27

Upper6D (Ordered) 1800 500 − 0.9 [20, 40, . . . , 200] 240 95.3 78.6 71.1 74.7 120 42

Upper6D (Mixed) 1500 1040 − 0.9 [20, 40, . . . , 200] 240 95.4 77.3 69.9 73.4 118 42
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Table 7.16: Experimental results on continuous datasets, Case I – Writing on a 2D imaginary square (DOS – max PT score – N = 12)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

GreenDigits 30 270 − 0.9 [20, 30, . . . , 110] 130 99.3 97.0 90.1 93.4 61 25

EasyDigits 30 270 − 0.9 [20, 30, . . . , 110] 130 98.0 93.7 83.4 88.2 64 22

KinectStreamOrdered 7 800 − 0.9 [10, 20, . . . , 110] 130 100.0 94.3 83.5 88.6 87 13

KinectStreamRepeat 47 800 − 0.9 [10, 20, . . . , 110] 130 99.7 96.1 76.4 85.1 79 15

EasyDigits (Ordered) 3000 270 − 0.9 [10, 20, . . . , 110] 130 95.9 91.2 84.1 87.5 74 22

EasyDigits (Mixed) 3000 270 − 0.9 [10, 20, . . . , 110] 130 97.3 91.0 87.9 89.4 74 23

Digits6D (Ordered) 1800 500 − 0.9 [40, 60, . . . , 220] 260 99.4 97.8 90.6 94.0 144 35

Digits6D (Mixed) 1800 500 − 0.9 [40, 60, . . . , 220] 260 99.4 97.8 94.0 95.9 146 39

Lower6D (Ordered) 1500 1040 − 0.9 [30, 40, . . . , 160] 200 99.4 90.6 87.4 89.0 109 29

Lower6D (Mixed) 1500 1040 − 0.9 [30, 40, . . . , 160] 200 99.4 90.3 87.0 88.6 109 27

Upper6D (Ordered) 3900 1248 − 0.9 [20, 40, . . . , 200] 240 98.8 84.8 75.8 80.0 130 40

Upper6D (Mixed) 3900 1248 − 0.9 [20, 40, . . . , 200] 240 98.7 84.4 75.2 79.6 132 40

Table 7.17: Experimental results on continuous datasets, Case II – Writing towards infinity (DOS – max PT score – N = 12)

Dataset Test
se-
quences

Tree
exam-
ples

TB TP Windows L Possible
Rec.
(%)

Rec.
(%)

Rel. (%) F1 (%) µ∆t σ∆t

EasyDigits (Ordered) 30 270 − 0.9 [10, 20, . . . , 110] 130 94.6 81.9 75.5 78.6 66 25

EasyDigits (Mixed) 30 270 − 0.9 [10, 20, . . . , 110] 130 95.0 81.2 76.6 78.8 67 26

Digits6D (Ordered) 7 800 − 0.9 [40, 60, . . . , 220] 260 99.4 98.1 96.1 97.1 140 34

Digits6D (Mixed) 3000 270 − 0.9 [40, 60, . . . , 220] 260 99.4 97.8 95.7 96.7 143 37

Lower6D (Ordered) 3000 270 − 0.9 [30, 40, . . . , 160] 200 99.0 88.2 85.1 86.6 100 27

Lower6D (Mixed) 1800 500 − 0.9 [30, 40, . . . , 160] 200 98.5 87.9 84.2 86.0 100 27

Upper6D (Ordered) 1800 500 − 0.9 [20, 40, . . . , 200] 240 95.7 79.1 69.2 73.8 118 41

Upper6D (Mixed) 1500 1040 − 0.9 [20, 40, . . . , 200] 240 95.5 78.2 68.2 72.9 117 41
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7.3.6 Character spotting on real texts

While evaluating spotting algorithms on ordered and random sequences makes sense

for digit recognition purposes, letters usually appear in forms of words, obeying specific

grammatical rules. This property makes several letter pairs more frequent than others,

and it could possibly affect spotting performance.

To test this hypothesis, we segmented a real English text into 900 small sentences of 5

words each –we useed upper–case letters– and ran all spotting algorithms again 5. Ad-

ditionally, we repeated the above process for a real Italian text 6. Connections between

consecutive letters were created artificially, based on the overwriting mode (Case I –

Writing on a 2D imaginary square).

Our results, depicted in Tables 7.18–7.19, suggest a 2% recognition accuracy (Rec.) drop

between random and real sequences of capital letters. More severely, we observe a 7%

drop in system’s reliability (Rel.). However, we should keep in mind that subgesture

relationships were learned by random sequences and not by texts of the same language.

Further exploration of this issue is included in our plans for future work.

Table 7.18: Recognition accuracies on typical English text

Method Rec. (%) Rel. (%) F1 (%)

max PT 81.4 68.0 74.1

class–only 89.5 80.0 84.5

starting–time 89.9 80.7 85.1

complete subgesture 90.6 81.2 85.6

Table 7.19: Recognition accuracies on typical Italian text

Method Rec. (%) Rel. (%) F1 (%)

max PT 80.9 66.8 73.2

class–only 88.7 78.4 83.2

starting–time 88.8 78.7 83.5

complete subgesture 89.8 79.5 84.3

7.4 Experimental results for word gesture spotting

In this section, we present our experimental results for gesture spotting of words on

continuous hand coordinate streams.
5We used the first 4500 words of the short stories collection “The adventures of Sherlock Holmes”,

written by Sir Arthur Conan Doyle, 1892. The entire collection is in the public domain and is available
through Project Gutenberg http://www.gutenberg.org/ebooks/1661.

6We used the first 4500 words of the epic poem “La Divina Commedia: Paradiso”, written by Dante
Alighieri, 1308–1321. The entire poem is on public domain and is available through Project Gutenberg
http://www.gutenberg.org/ebooks/1011.
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7.4.1 Datasets and experimental setup

To evaluate our approach for recognition of word gestures, we use the “Motion Words”

dataset from the 6DMG database (Table 3.1), which contains continuous streams of 40

words, written on the air by 12 users (40 words, 5 examples/user/word, 2400 sequences

in total). These sequences are split in 4 sets, each containing 10 words with an average of

4 characters per word, corresponding to 4 different scenarios of using gestures to control

an integrated entertainment system, supporting selecting TV channels, music genres and

basic internet websites, as shown in Table 3.2.

Besides the original sequences, we also conducted experiments on 4800 artificially created

sequences (12 users, 40 words, 10 examples/user/word), using exactly the same dataset

structure (4 sets, 10 words per set, following Table 3.2).

In total, we evaluated the following methods:

� Isolated recognition, which treats the trajectory of a word as a whole and applies

standard isolate recognition using Maximum Cosine Similarity, as described in

Chapter 5. Recognition accuracy of this approach depends on the number of

trajectory points, N , kept after resampling.

� Spotting + Levenshtein distance, which first applies single gesture spotting (Sec.

7.2.1) and then uses the Levenshtein distance to recognize words (Sec. 7.2.2.1).

We tested all four conflict resolution variations (Sec. 7.2.1.3), i.e. max PT score,

class–only model, starting–time model and complete subgesture model.

� Spotting + Weighted Edit distance, which first applies single gesture spotting and

then uses the Weighted Edit distance to recognize words (Sec. 7.2.2.1). Once

again, we tested all four conflict resolution variations, as in the previous method.

7.4.2 Recognition accuracies of the various methods

Table 7.20 shows word recognition accuracies for the original Motion words dataset. We

observe that all spotting methods perform quite well, with starting–time model provid-

ing the highest recognition accuracies on average. In all cases, Weighted Edit distance

outperforms simple Levenshtein distance, as expected. In short, Edit distance variations

provide quite high word recognition accuracies. As a comparison, the character recogni-

tion accuracies were about 78% on average. Clearly, operating at the word level allows

for error correction, at the cost of additional delay in the announcement of spotting

results.
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It is quite surprising that standard isolated recognition provides the best results, even

when only 32 trajectory points are kept after downsampling. However, we suspect that

this result is highly dependent on the specific dataset, and would not generalize well if

the user imposed different types of connecting strokes between single character gestures.

Indeed, accuracy drops to 93% for the synthetic dataset(Table 7.21), as expected. On

the other hand, spotting approaches present very stable behaviour, proving that they

should be preferred over isolated recognition.

Table 7.20: Word recognition accuracies on the original Motion Words dataset

Method Set 1 Set 2 Set 3 Set 4 Avg.

Isolated recognition N = 16 98.2 99.2 99.0 96.7 98.2

Isolated recognition N = 32 98.8 99.7 99.8 99.7 99.2

max PT + Levenshtein dist. 89.0 90.7 85.0 85.2 87.5

max PT + Weighted Edit dist. 95.2 99.0 95.5 97.3 96.8

class–only + Levenshtein dist. 94.7 95.2 94.3 93.3 94.4

class–only + Weighted Edit dist. 96.0 98.8 97.2 96.5 97.1

starting–time + Levenshtein dist. 95.7 96.8 95.7 94.8 95.8

starting–time + Weighted Edit dist. 98.2 99.3 98.0 98.0 98.4

complete subgesture + Levenshtein dist. 94.3 95.7 94.2 93.3 94.4

complete subgesture + Weighted Edit dist. 97.5 98.8 96.7 97.0 97.5

Table 7.21: Word recognition accuracies on the synthetic Motion Words dataset

Method Set 1 Set 2 Set 3 Set 4 Avg.

Isolated recognition N = 16 91.4 93.5 89.8 87.7 90.6

Isolated recognition N = 32 90.9 95.3 93.5 92.2 93.0

max PT + Levenshtein dist. 93.0 95.8 90.0 90.3 92.3

max PT + Weighted Edit dist. 98.2 100.0 98.3 99.8 99.1

class–only + Levenshtein dist. 96.2 97.2 96.8 96.8 96.8

class–only + Weighted Edit dist. 99.3 99.7 99.3 99.8 99.5

starting–time + Levenshtein dist. 97.0 97.2 97.3 98.0 97.4

starting–time + Weighted Edit dist. 99.7 100.0 99.3 100.0 99.8

complete subgesture + Levenshtein dist. 95.5 95.5 95.8 91.8 94.7

complete subgesture + Weighted Edit dist. 99.7 100.0 99.2 99.8 99.7

7.4.3 Recognition accuracies for larger dictionaries

While Edit distance proved to be a very powerful method for word gesture recognition,

we should keep in mind that the dictionary size was quite small (10 words), allowing

for effective error correction and character disambiguation. Naturally, one could expect

that performance would drop for larger dictionaries. To take an estimate of such drop,

we repeated our experiments considering a dictionary of 40 words, through merging all

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 09:38:51 EET - 137.108.70.7



Chapter 7. Gesture spotting 116

4 sets together. In Table 7.22, we show only the average word recognition accuracies,

for brevity. As expected, accuracies drop, around 2% for the original dataset and 1%

for the synthetic dataset. We find this result quite encouraging, considering that the

dictionary size is 4 times bigger.

Regarding performances of the various spotting methods, results of Table 7.22 seem to

agree with those of Tables 7.20 – 7.21, with richer models (starting–time model, complete

subgesture model) and Weighted Edit distance providing the best results.

Regarding word confusions (in the original datasets), the most severe errors were caused

by words which are quite similar: “ABC”–“BBC” (4/60), “FB”–‘TBS” (6/60), “MLB”–

“MAP” (3/60) and “TV”–“TNT” (5/60). Clearly, such mistakes make sense, and may

be expected by most word recognition systems.

Table 7.22: Average word recognition accuracies on the Motion Words dataset with
all 40 words in the dictionary

Method Original dataset Synthetic dataset

Isolated recognition N = 16 97.5 82

Isolated recognition N = 32 98.5 87.7

max PT + Levenshtein dist. 76.5 82.9

max PT + Weighted Edit dist. 93.8 97.0

class–only + Levenshtein dist. 87.3 92.9

class–only + Weighted Edit dist. 95.0 98.8

starting–time + Levenshtein dist. 89.3 93.7

starting–time + Weighted Edit dist. 96.8 99.1

complete subgesture + Levenshtein dist. 87.3 93.8

complete subgesture + Weighted Edit dist. 95.0 99.2

7.5 Discussion

In this chapter, we explored gesture spotting on continuous streams of hand coordinates,

targeting detection and recognition of trajectories of digits and letters in an indirect way,

i.e. without using motion cues or other marks to detect the starting and ending time

boundaries of the performed gestures. Our approach is based on applying isolated clas-

sification through fastNN Maximum Cosine Similarity (fastNN–MCS), collecting groups

of overlapping gesture candidates and applying conflict resolution methods to reach the

final spotting result.

Our main contribution lies in proposing a novel method to perform conflict resolution,

combining both the cosine similarity score and the time duration of the candidate ges-

tures. Moreover, we introduced a probabilistic framework to learn and handle subgesture
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relationships, extending previous models which used strict rules for the gesture classes

[2]. Specifically, our approach models both categories and relative time boundaries of

the gesture candidates. Finally, we also experimented with gesture spotting on real

texts and used a properly modified version of the Weighted Edit Distance [123] for word

recognition, which takes into account the confusions made during single gesture spotting,

supporting small vocabularies of 10-40 words.
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Computational efficiency is an important issue in any gesture recognition system. All

interactive applications require real–time gesture spotting, which may become quite

challenging depending on the computing device (standard personal computer, mobile

phone or other device). In certain cases, offline or delayed recognition can be afforded,

typically during the training phase of a system.

The main goal of this work is to achieve high recognition accuracy and reliability at

low computational cost. Clearly, there is a trade–off between these two targets, which
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leads to a comparison between the state–of–the–art method, Dynamic Time Warping

(DTW), and and the method we chose, Maximum Cosine Similarity (MCS). As we will

show in this chapter, MCS offers a significant computational speedup, while at the same

time the loss in accuracy is minor (Chapter 5). This speedup is largely boosted by

tree-based fast Nearest Neighbor (fastNN) [106] and Single–Instruction–Multiple-Data

(SIMD) techniques [126].

In short, the major contributions of this chapter are:

� Providing a fair computational efficiency comparison between DTW and MCS

on two isolated gesture datasets, exploring various parameters, such as effect of

fastNN and SIMD instructions.

� Proposing a novel method to speedup DTW, using fastNN for initialization.

� Exploring performance of fastNN with varying number of training examples and

gesture classes.

� Building a real–time gesture spotting application.

In all cases, we conduct thorough experiments on real and synthetic gesture datasets.

8.1 Computational complexity of various recognition meth-

ods

8.1.1 Using fast Nearest Neighbor in gesture spotting

As described in chapters 5 – 7, our approach relies heavily on the tree-based fast Near-

est Neighbor (fastNN) algorithm of Katsavounidis et al.[106], which offers an exact

solution in nearly logarithmic time. This gain significantly reduces the computational

time needed for classification of new gesture candidates during the spotting procedure.

Nevertheless, our gesture spotting approach uses a sliding window over a continuous

stream of hand coordinates, resulting in a large number of fastNN searches in order

to form groups of gesture candidates. Since sparsity is an inherent feature of gesture

spotting, most of these candidates are invalid (out–of–vocabulary or almost random

trajectories) and they typically compromise the performance of fastNN (Chapter 6),

causing a large number of tree backtrackings.

To address this issue, we first set a threshold to limit the number of backtrackings up to

a certain level, rejecting as invalid all candidates which exceed that threshold (Rule2 in
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algorithm 1, Chapter 5). Although this method is inherently lossy, in terms of rejecting

some valid inputs as well, our spotting results suggest that this loss is quite low (about

2% – see column Possible Rec. (%) in Tables 7.4 – 7.11). As we will show later in this

chapter (Sec. 8.3.3), this technique also results into significant computational gain (4×
speedup).

8.1.2 Improving DTW using fastNN

One way to improve the computational efficiency of DTW search is by using a good

initial estimate of the global DTW distance. Ideally, the best such estimate would

be the true global minimum DTW distance, since then most of the vectors would be

eliminated through the LBKeogh lower bound [107].

In this work, we first perform a fastNN search and locate the vector showing the mini-

mum Euclidean Distance. We then compute the corresponding DTW distance and use

it as an initial estimate. A nice property of fastNN is that its initialization phase de-

pends only on the training examples and not on the query vector at all (as compared

to LBKeogh). Thus, its cost is fixed, since it is performed only once, before the search

starts and is thus negligible when a large amount of query vectors is tested.

Our experimental results (Sec. 8.3.2) suggest that the total cost of the fastNN search

and LBKeogh–DTW can provide a speedup of 1.3 − 1.5×, depending on the dataset.

To our knowledge, such initialization of DTW is novel. Although using the gesture

of minimum Euclidean Distance as the initial candidate may sound trivial, a straight–

forward application of full search is not computationally efficient. In contrast, fastNN

allows for a more efficient implementation, decreasing the initialization computational

cost at a significant level.

8.1.3 Support Vector Machines

For our experiments involving Support Vector Machines (SVM), we used LIBSVM [119],

a standard publicly available library, which offers efficient and robust implementations of

various SVM–related tasks, including training and testing. We improved computational

efficiency further, by precomputing the hyperplanes for the case of linear kernel (Eq.

5.7 – 5.8) and applying some standard programming optimizations in the probability

estimation part. In total, our modified version of LIBSVM shows a speedup of 5.8×.
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8.2 Comparing isolated recognition performances

8.2.1 Methods and Datasets

In order to provide a fair comparison between our approach and other recognition meth-

ods, we ran thorough experiments on the three Nintendo Wii 6D datasets, containing

digits (Digits6D) lower–case (Lower6D) and upper–case letters (Upper6D).

To make comparison fair, we considered only isolated recognition, since we did not have

any optimized implementation of DTW for spotting [2]. Thus, we evaluated the per-

formance of Maximum Cosine Similarity (MCS), which forms the basis of our gesture

recognition system. We also experimented with Depth-Only-Search MCS (DOS-MCS),

fastKNN–MCS Support Vector Machines (SVM), standard Dynamic Time Warping

(DTW) and its low–complexity variant DTW8.

8.2.2 Experimental setup

Our experiments were run on a typical desktop environment, consisting of an Intel(R)

CoreTM i7 CPU running Microsoft (R) WindowsTM 7 64–bit OS. We implemented all

methods in C, applying some basic code optimization and compiled them using Microsoft

(R) Visual Studio 2010, Release configuration, -Od compiler–optimized executable, to

make results as platform–independent as possible. Wherever applicable, we optimized

our code by using Single–Instruction–Multiple-Data (SIMD) techniques, namely using

the “SSE2” enhanced instruction set, which is supported by most modern Intel CPU

IA-32 and Intel-64 architectures [126].

In order to better differentiate and understand the factors that can contribute to higher

computation efficiency, we created the following variants of the 2 basic algorithms

(DTW8 and MCS):

� DTW8: unconstrained DTW with N = 8

� DTW8–Sakoe: DTW8 with Sakoe-Chiba band [113]

� DTW8–LBKeogh: DTW8-Sakoe with LBKeogh lower bound [107]

� DTW8–fastNN: DTW8–LBKeogh, initialized using fastNN (Sec. 8.3.2)

� model–DTW: probabilistic variant of DTW [2], as described in Sec. 5.2.1.1

� MCS: maximum cosine similarity (MCS) with N = 8
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� MCS–Partial: MCS with partial distance calculation [127]

� MCS–fastNN: MCS using fastNN as per [106]

� MCS–DOS: depth-only-search using fastNN as per [106]

� MCS–fastKNN5: extended version fastNN, which finds the 5 nearest neighbors

(Sec. 5.1.3)

Additionally, we evaluated the performance of Support Vector Machines (SVM), using

our improved version of the LIBSVM library [119] (Sec. 8.1.3).

8.2.3 Experimental results

Tables 8.1 and 8.2 show speedups for 6 methods, under both standard–C and SSE2

implementations, for the digits6D and lower6D datasets respectively. For clarity, we

normalized results using full-search MCS as point of reference.

Overall, MCS executes much faster than DTW, as expected by theoretical computa-

tional complexity (O(N) versus O(N2)), while it is easily vectorized using Intel’s SSE2

intrinsics [126]. Applying further constraints, such as Sakoe-Chiba band [113] and LB

Keogh [107], improved DTW performance by about 3×, but even the fastest DTW

implementation executed 5 times slower than the slowest (full–search) MCS.

On the other hand, model–DTW, the probabilistic variant of DTW [2], shows a fixed

computational cost, which is proportional to the number of gesture categories, while

it is independent of the number of training examples. Thus, it executed 2 − 6 times

faster than full–search MCS, although around 7 times slower than MCS–fastNN and up

to 40 times more slowly than MCS–DOS. However, model–DTW presented decreased

recognition accuracies in our isolated recognition experiments (Sec. 5.3.3 – 5.3.4).

Regarding MCS, we observe that fastNN greatly speeds up the search process, especially

for the larger Upper6D dataset, as expected [106, 121]. Specifically, the fastNN tree

contains 500 training examples for digits6D, and 3120 examples for upper6D. In the

next section, we explore this behaviour in detail.

SSE2 further improves results, although its impact is rather small – around 2× instead

of the theoretical maximum 4×, due to the limited number of arithmetic versus logical

operations involved in tree searching. An additional feature of MCS is that it allows

applications to trade–off an additional 3−10× acceleration for a modest (1−10%) drop

in recognition accuracy through the depth-only-search version (MCS–DOS).
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Table 8.1: Execution time speedup for all methods (digits6D dataset)

Method Standard C SSE2

DTW8 1
18× −

DTW8–Sakoe 1
13× −

DTW8–LBKeogh
1
6× −

model–DTW 2.3× −
MCS 1× 2.1×

MCS–Partial 2.1× 2.5×
MCS–fastNN 17.2× 28.3×
MCS–DOS 48.2× 77.3×

MCS–fastKNN5 8.1× 8.3×
SVM 6.5× 6.5×

Table 8.2: Execution time speedup for all methods (upper6D dataset)

Method Standard C SSE2

DTW8 1
18× −

DTW8–Sakoe 1
13× −

DTW8–LBKeogh
1
5× −

model–DTW 5.6× −
MCS8 1× 2.1×

MCS–Partial 2.5× 2.8×
MCS–fastNN 29.1× 37.7×
MCS–DOS 221.4× 382.6×

MCS–fastKNN5 15.0× 15.0×
SVM 6.1× 6.1×

8.3 Exploring computational efficiency of fastNN

In this section, we explore computational efficiency of the tree–based fastNN algorithm,

trying to offer additional insight on the future performance of our approach on unknown

gesture datasets.

8.3.1 FastNN and fastKNN

As a first step, we tested our implementation for fast K–Nearest Neighbor (fastKNN ),

which is a direct generalization of fastNN (Sec. 5.1.3). Table 8.3 shows time speedups

for various values of parameter K. Once again, we observe that speedup gain is higher

for the upper6D dataset, which contains more training examples.
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Table 8.3: Execution time speedup for fast KNN (Standard C)

Method digits6D dataset upper6D dataset

MCS8 1× 1×
K = 1 17.2× 29.1×
K = 3 11.5× 18.8×
K = 5 8.5× 14.9×
K = 7 6.3× 12.1×
K = 9 5.6× 10.9×
K = 11 4.6× 9.4×

8.3.2 Initializing fastNN and DTW

In this experiment, we tested our improved version of DTW8–LBKeogh, using the train-

ing example of minimum Euclidean Distance as a good initial estimate of the mini-

mum DTW distance example. Initialization was performed through fastNN search (Sec.

8.1.2). In our experiments, we evaluated both our approach and the ideal case, where the

true global minimum DTW distance is provided as input. Obviously, the computational

time required by fastNN is added to that of DTW.

Table 8.4 shows time speedups for two gesture datasets (digits6D and upper6D). As we

see, for the digits6D dataset, fastNN initialization provides a speedup of around 1.47×,

while it is very close to the ideal speedup (1.51×). Even more interestingly, for the large

upper6D dataset, the two initialization methods provide almost same speedup.

Table 8.4: Execution time speedup for DTW8–LBKeogh

Method digits6D dataset upper6D dataset

DTW8–LBKeogh 1× 1×
Ideal Init 1.51× 1.39×

fastNN Init 1.47× 1.39×

We also evaluated the initialization method of fastNN search. In its original form,

fastNN is initialized based on the distance of the query vector to the first leaf node

reached (Depth–only search). In our experiment, we artificially posed the global min-

imum distance as the initial distance. We evaluated both standard and ideal fastNN

by counting the number of backtrackings caused in each case. Our experiments on the

digits6D and upper6D datasets revealed that ideal fastNN only saves 5% of the back-

trackings, providing a speedup of 1.05×. This result shows that depth–only search stage

provides an almost optimal initial candidate for the rest of the fastNN search and thus

further optimization is probably meaningless.
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Based on the above results, we can conclude that depth–only search and fastNN search

provide almost optimal initial candidates for DTW and fastNN algorithms respectively,

at least for the specific gesture datasets we used in our experiments. Thus, future

research should probably focus on seeking alternative – possibly better – algorithms

rather than more effective initialization steps.

8.3.3 Efficiency of fastNN in gesture spotting

In this section, we evaluate the efficiency of using Rule2 in gesture spotting (Sec. 8.1.1).

To this end, we repeated 4 of our spotting experiments, on the synthetic mixed datasets,

Case I, for EasyDigits, Digits6D, Lower6D and Upper6D, keeping the results of the

sliding window searches, i.e. the number of backtrackings, cosine similarity score, found

gesture class and window length. We repeated these experiments twice: the first time

using the same threshold values as in our standard gesture spotting experiments (column

TB in Tables 7.4 – 7.11) and the second time with this constraint removed.

By counting the total number of backtrackings required in each case, we saw that Rule2

leads to 4 times less backtrackings on average (actual values ranged from 3.7× to 4.4×).

Moreover, Rule2 accepts around 5 − 7% of the candidates, rejecting all others at a

minimum cost of TB backtrackings. Thus, Rule2 is indeed a meaningful approach,

offering a significant computational speedup in the spotting procedure.

On the other hand, we saw that depth–only search fast Nearest Neighbor (DOS–fastNN)

provides a speedup of 1.5× over Rule2–fastNN, at the cost of lower F1–score (0 − 5%

drop, depending on the dataset, see Sec. 7.3.4). Summarizing partial results from

previous chapters, we see that DOS–fastNN performs much worse than standard fastNN

in isolated gesture recognition, but only slightly worse in the gesture verification and

gesture spotting tasks, with results varying depending on the capturing device and

gesture vocabularies. Additionally, it provides increased computational efficiency (1.5×),

thus becoming the best method when high recognition accuracy is not that critical.

8.3.4 FastNN with varying number of training examples

It is already known that the computational gain of fastNN is higher for a larger number

of training examples, M , stored in the tree structure [106, 121]. Indeed, as we saw in

Sec. 8.2.3, fastNN performs much more efficiently on the upper6D dataset instead of the

digits6D dataset. In this experiment, we explore this relationship in detail, producing

analytical curves of execution times with respect to the number of training examples.
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To this end, we varied the number of training examples per user and repeated our

experiments. Please note that we used all the training users included in each dataset, to

avoid bias from out–of–vocabulary examples. Fig. 8.1–a shows the per–query execution

time, T , as a function of the total number of training examples, M , in a log–log plot.

We observe that the relationship is captured by a straight line in the logarithmic axis,

i.e. by a power function curve in the standard axis.

Indeed, a power function curve

y = a ·Mk (8.1)

becomes a linear curve in the log–log plot:

log y = k · logM + log a (8.2)

where k is the slope of the line and log a the intercept on the log–y axis.
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Figure 8.1: Log–log plots, showing (a) execution time and (b) fastNN backtrackings
with varying number of training examples.

As expected, the slope of FullSearch is very close 1 for all three datasets (k ≈ 0.98 on

average), since its complexity is linear to the number of training examples, M . On the

other hand, the complexity of fastNN is sub–linearly related to M (k < 1) [106, 121].

We also note that the three FullSearch lines overlap almost perfectly to each other,

eliminating any suspicion for bias due to the experimental setup. On the other hand,

the fastNN lines present some variation, confirming that computational performance

is related to the nature of the data [121]. Indeed, similar differences appear in the

relationships between fastNN backtrackings, B, and M (Fig. 8.1–b).

To robustly estimate the slope for the fastNN lines, we used Least-Squares Estimation.

We further excluded the first two pairs obtained for the upper6D dataset, as they seem
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Figure 8.2: Estimated power curves, showing measured (a) execution time and (b)
fastNN backtrackings with varying number of training examples.

to belong to a different line. Please note that such decision rather decreases than in-

creases bias, as the slope tends to stabilize for larger numbers of training examples. The

corresponding power curves, along with the estimated slopes are shown in Fig. 8.2.

8.3.5 FastNN with varying number of vocabulary classes

While the results of previous section suggest that recognition of digits can be performed

in a more efficient way, compared to lower–case and upper–case letters, the analysis

ignores the different number of classes between digits and letters. For this reason, we

also investigate the role of the number of gesture vocabulary classes in computational

performance of fastNN.

To this end, we repeated the previous experiments, using only the first 10 classes from

each dataset. The resulting power curves for execution times and fastNN backtrack-

ings are shown in Fig. 8.3. We observe that the differences between datasets are now

smaller, with lower6D almost overlapping with digits6D. By comparing the number of

backtrackings for 10 classes (Fig. 8.3–b) to the number of backtrackings for 26 classes

(Fig. 8.2), we see that more classes (i.e. higher data diversity) result in more difficult

recognition. One may also observe the importance of basing comparisons on the number

of backtrackings: execution times in Fig. 8.3–a and Fig. 8.2–b differ, due to overall

computing system load (CPU usage, memory usage, etc.).

Finally, we performed an additional experiment on the upper6D dataset, varying the

number of classes. Fig. 8.4 show the corresponding results for some characteristic cases.

One can observe that once again data diversity affects the performance of fastNN.
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Figure 8.3: Power function curves, showing estimated (a) execution time and (b)
fastNN backtrackings with varying number of training examples, when only 10 classes

are used from each dataset.
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Figure 8.4: Power function curves, showing estimated (a) execution time and (b)
fastNN backtrackings with varying number of training examples and number of classes,

on the upper6D dataset.

Based on the above results, we can conclude that recognition of digits can be performed

in a more efficient way, compared to lower–case and upper–case letters, regardless of

the number of vocabulary classes. The reasons for these differences are not completely

revealed yet, but may be attributed to the different nature of the alphabets, since shapes

of letters are much more complicated than digits.

8.4 Real–time implementation

As a final step, we developed a real–time 2D camera–based application, to further ex-

plore the effectiveness of our gesture spotting approach. FastNN tree training used 270
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gestures from the original GreenDigits dataset. Our current experiments showed that

hand detection tasks are much more time consuming, while gesture spotting occupies

only a small portion of the execution time (5%). Further optimization, targeting low–

power, mobile devices, is included in our plans for future work.

Analytically, the hotspots found in our experiments were:

� Skin detection (8%): we used the precalculated skin color histograms, as described

in Sec. 4.1.3.2.

� Motion detection (6%)

� Connected component analysis (10%)

� Corner detection (13%)

� Optical flow estimation (20%)

� Morphological image processing (22%)

� Image processing & other operations (16%)

� Gesture spotting (5%)

8.5 Discussion

In this chapter, we evaluated the computational efficiency of our approach, providing a

fair comparison between DTW, SVM and MCS on two isolated gesture datasets, explor-

ing various parameters, such as effect of fastNN and SIMD instructions. Additionally,

we proposed a novel method to speedup DTW, using fastNN for initialization, which

resulted into 33% savings in computational time. In short, fastNN–MCS proved to be

highly efficient, which allowed us to build a real–time gesture spotting application, using

a standard 2D camera.

Additionally, we evaluated the performance of fastNN with varying number of training

examples and gesture classes, showing that the number of fastNN backtrackings can be

modelled as a power function of the number of training examples. Further investigation

of this interesting result is included in our plans for the future.
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In this chapter, we explore and evaluate local and global features for hand posture

recognition, i.e. recognition of static hand shapes, where most of the information lies in

finger configuration. Our main result regarding isolated posture recognition is that local

features, such as Fourier Descriptors, can be highly informative for certain vocabularies,

while global features, such as the number of fingers, can be used to improve the results

through search space reduction.

Moreover, we use a lot of the techniques described in Chapters 5 – 8, confirming several

important results, regarding the high computational efficiency of fast Nearest Neighbor

(fastNN) and its application on posture verification, based on the number of fastNN

backtrackings.

130
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9.1 Posture recognition

Our approach assumes a reliable hand detection first step, based on depth or 2D cameras,

as described in sections 4.1.2 and 4.1.3, respectively. We also assume that the posturing

hand remains still for a sufficient amount of time (posture locking phase), in a way to

trigger the system in order to proceed with feature extraction and posture recognition.

Hand detection results in a binary palm mask, out of which we can extract local shape

features, such as Fourier Descriptors (Sec. 4.3.2.1), or global features, based on finger

characteristics (Sec. 4.3.2.2), found by our method for finger detection (Sec. 4.2). Fig.

9.1 provides the general structure of our posture recognition system.

Figure 9.1: General structure of our proposed posture recognition system, using
color and depth information. Face detection guarantees the existence of a user. Finger
detection is optional, improving recognition results through search space reduction (as

described in Sec. 9.2.2).

9.1.1 Nearest Neighbor search

Given a set of training examples, U i, i = 1, . . . ,M , we first apply feature extraction (as

described in Sec. 4.3.2) to obtain their corresponding 1D signals ~ui. Using the same

process, we transform a test isolated posture into its corresponding query 1D signal, ~q.

We then classify ~q by locating the training vector û showing the Minimum Euclidean

Distance (Nearest Neighbor – NN):

û = arg min
~ui∈U
‖~q − ~ui‖2 (9.1)

and assigning its label to q.

As in the case of dynamic trajectories, we use the tree-based fast Nearest Neighbor (NN)

method of Katsavounidis et al.[106] for faster search.
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9.1.2 Posture verification

Posture verification accepts as valid the postures of a predefined vocabulary and rejects

all other palm–finger configurations. Invalid postures include all out–of–vocabulary pos-

tures, but also intermediate versions of valid postures, appearing during posture locking.

To deal with invalid postures, we use the standard rules described in Chapter 6, i.e.

Rule1, based on Euclidean Distance, and Rule2, based on the number of fastNN back-

trackings. Algorithm 2 summarizes the main steps of the unified posture recognition

and verification process.

Algorithm 2 Isolated posture recognition with rejection of invalid examples

Input: hand coordinates x, y
thresholds TB, TD

Output: Label C of the gesture

1: Represent posture as described in Sec. 4.3.2
2: (B, d, c)← fastNNsearch(x, y,N) . B: # backtrackings, d: Euclidean distance, c:

predicted class label
3: C ← CheckRule3(B, d, TB, TD, c) . Alternatively one can use Rule1 or Rule2
4: return C . C is the final recognition result

CheckRule1: Gesture is valid if d < TD
CheckRule2: Gesture is valid if B < TB
CheckRule3: Gesture is valid if B < TB AND d < TD

9.1.3 Posture locking

Posture spotting is typically achieved through holding the hand still on the air (posture

locking phase). In our work, we posed this assumption in a 2D camera system, perform-

ing hand detection using the method of Sec. 4.1.3, i.e. face detection, skin detection and

corner detection. When the variance of hand position over Ts frames was smaller than a

threshold Tv, we further performed feature extraction (FD(z)) and posture recognition.

In our implementation, we used Tv = 5 pixels and Ts = 30 frames, i.e. 1 second in a

VGA camera–30 fps system. However, values of Tv, Ts are application–dependent and

can be changed accordingly, to better fit a specific environment or user category.
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9.2 Experimental results

9.2.1 Experimental setup

For our experiments, we used the dataset of Ren et al.[13, 128], which contains an

alphabet of 10 different postures, with 10 examples from 10 different persons, i.e. 1000

postures in total (Fig. 3.3). As described in Sec. 3.2.2, the original work of Ren et

al.[13, 128] required the user to wear a black bracelet on the gesturing hand’s wrist, for

easier hand–palm separation. In our work, we avoid the use of a black bracelet, using

color information only for face detection during initialization and depth information for

all the other tasks, i.e. hand detection and segmentation (Sec. 4.1.2), finger detection

(Sec. 4.2) and posture representation (Sec. 4.3.2).

In total, we evaluated the following five methods:

� FD(z): Fourier Descriptor using the complex contour signal, z(n) (Eq. 4.7)

� FD(r): Fourier Descriptor using the signal of distances of contour points from

palm centroid, r(n), (Eq. 4.5)

� FD∗(z): FD(z), using the number of fingers for search space reduction

� FD∗(r): FD(r), using the number of fingers for search space reduction

� Fingers: Global representation, using finger characteristics (height, width) and

their relative distance from the leftmost finger (Sec. 4.3.2.2)

9.2.2 Isolated recognition

For our isolated recognition experiments, we used 10–fold cross-validation in a user–

independent mode, i.e. at each round we used 900 postures (9 people × 10 categories ×
10 examples) for training and the rest 100 examples for testing.

Our first experiment explores the role of the Fourier Descriptor parameter P on the per-

formance of the FD(z), FD(r), FD∗(z) and FD∗(r) methods. Please note that methods

FD(r) and FD∗(r) use half the number of features, compared to methods FD(z) and

FD∗(z), for fixed P . Fig. 9.2 shows recognition accuracies for various values of P . We

observe that the hybrid methods (FD ∗ (z) and FD∗(r)) outperform the purely local

methods (FD(z) and FD(r)), even for smaller P . Moreover, while FD(r) performs

1% worse than FD(z), this difference reduces to 0.4% for FD∗(z) and FD∗(r). The

higher accuracy of the hybrid methods may be explained by the very high accuracy
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on the number of fingers detected (996/1000). Based on the above results, we choose

P = 8 for all four methods, as a good compromise between recognition accuracy and

computatioanl efficiency.
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Figure 9.2: Recognition accuracy of the four Fourier Descriptor methods, for various
values of parameter P . Please note that methods FD(r) and FD∗(r) use half the

number of points, compared to methods FD(z) and FD∗(z).

Table 9.1 shows the best results achieved by each method, along with the results of our

global features (Fingers) and the global approach of Ren et al.[13, 128]. We observe that

our global features (Fingers) proved better than [13, 128] but not as good as the four

FD–based methods. Overall, these results suggest that local features, such as Fourier

Descriptors, can be very informative and sufficient for hand posture recognition, at least

for the specific vocabulary used in our experiments. On the other hand, global features,

such as the number of fingers, can be used to improve the results through search space

reduction. This is in contrast to Ren et al.[13, 128], who proposed and compared only

global methods, assuming that they are more robust than local features for posture

recognition.

Method Rec. Accuracy (%)

FD(z) 98.4%
FD(r) 97.3%
FD∗(z) 99.5%
FD∗(r) 99.1%
Fingers 96.3%
Ren et al.[13, 128] 93.9%

Table 9.1: Recognition accuracy for various methods. The FD∗ methods use Fourier
Descriptors and achieve search space reduction based on the number of fingers.

Table 9.2 shows the confusion matrix for the FD(z) method, which provides high recog-

nition accuracy (98.4%), without the need for finger detection. Assuming a uniform prior
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distribution on the 10 postures, initial entropy over gesture categories is reduced from

log2 10 = 3.3219 bits to 0.1133 bits. The corresponding normalized mutual information

(Eq. 5.13) was found to be 96.59%.

a(0) b(1) c(3) d(2) e(2) f(2) g(4) h(5) i(1) j(2)

a(0) 1

b(1) 0.99 0.01

c(3) 1

d(2) 1

e(2) 0.05 0.94 0.01

f(2) 0.01 0.99

g(4) 0.97 0.03

h(5) 0.01 0.97 0.01 0.01

i(1) 0.01 0.99

j(2) 0.01 0.99

Table 9.2: Confusion matrix for the FD(z) method, showing probabilities of misclas-
sification among the various classes. Posture naming follows the order used in Fig. 3.3,

while the numbers in parentheses indicate the number of fingers

Our second experiment involves varying the number of training users, in a leave–K–

users–out cross–validation scheme. Specifically, we considered K users for training set

and 10 −K users for validation, and averaged the results over 100 random rounds. As

we observe in Fig. 9.3, recognition accuracies follow the same trend as in Table 9.1, with

FD∗(z) being the best method and Fingers the least preferred. Quite interestingly, the

two hybrid approaches are almost invariant to the number of training users, showing

high results even for 1 user. Once again we see that finger detection may lead to much

higher recognition accuracies, especially for small posture vocabularies, as in our case

(10 postures).

9.2.3 Posture verification

We also evaluated the posture verification component of our system, based on Rule1

(Euclidean Distance) and Rule2 (number of fastNN backtrackings), as described in

algorithm 2. To this end, we considered 5 postures as positive and 5 as negative classes.

We used 2 users to build the fastNN tree, and 2 distinct users for each of the other four

subsets (positives/negatives × validation/testing). Finally, we produced the Receiver

Operating Characteristic (ROC) curves, showing the trade–off between Precision and

Recall for each verification rule.

The verification results may vary, according to the split of classes and the separability

of positive to negative examples. Fig. 9.4–a shows the ROC curves for a random split,
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Figure 9.3: Recognition accuracy of the five posture recognition methods with varying
number of training examples.
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Figure 9.4: (a)Precision–Recall trade–off for rejection of 5 out–of–vocabulary posture
classes by a system trained on 5 different postures. (b) Effect of thresholding the
number of backtrackings at various values. The EER points can be achieved for a low

threshold (TB ≈ 20), resulting in increased computational efficiency.

chosen such that it corresponds to the average case, i.e. not to the best or the worst.

However, it is worth noting that we didn’t observe big differences among curves in

other random splits (around 1% difference in the EER point). Fig. 9.4–b also shows

how Precision and Recall vary for different values of the backtrackings threshold, TB.

We observe that while Recall remains almost unchanged between training and testing

sets, Precision differs due to existence of different postures. The EER points can be

achieved for a low threshold (TB < 20% of the training examples), resulting in increased

computational efficiency.

We repeated this experiment 100 times, each with different random splits of users and

classes. Fig. 9.5 shows the resulting joint distributions of inlier probability and fastNN
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backtrackings, (P0, B), where we observe that invalid gestures show a lower probability

P0, while they cause a larger number of backtrackings B, in general. On the other

hand, valid gestures show higher P0, while B almost never exceeds 40% of the number

of fastNN tree examples. We also observe that B is lower for higher P0, as expected.

The above results agree with the results presented in Chapter 6 for dynamic trajectories.
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Figure 9.5: Joint distribution of inlier probability and fastNN backtrackings, (P0, B),
for (a) valid and (b) out–of–vocabulary gestures, on a system trained on 5 postures,
for 100 random trials. B is shown as a percentage over the number of fastNN tree

examples.

9.2.4 Computational efficiency

As a final step, we measured the computational efficiency of our Nearest Neighbor–based

approach for hand posture recognition. Our experiments were run on a typical desktop

environment, consisting of an Intel(R) Core(TM) i7 CPU running Microsoft (R) Win-

dows (TM) 7 64–bit OS. We implemented all methods in C, applying some basic code

optimization and compiled them using Microsoft Visual Studio 2010, Release config-

uration, -Od compiler–optimized executable, to make results as platform–independent

as possible. Wherever applicable, we optimized our code by using Single–Instruction–

Multiple-Data (SIMD) techniques, namely using the “SSE2” enhanced instruction set

supported by most modern Intel CPU IA-32 and Intel-64 architectures.

Table 9.3 shows speed–ups for four Nearest Neighbor variations for the FD(z) method,

under both standard–C and SSE2 implementations. We normalized results using full-

search Nearest Neighbor as point of reference. We observe that fastNN speeds up the

search process by 20× under standard C implementation and 31.5× when SIMD–SSE2

intrinsics are used.

We also observe a very important speedup of 77× and 131× when the depth–only version

of fastNN (DOS–NN) is used, under standard C and SSE2 implementations respectively.
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Table 9.3: Execution time speedup for 4 NN variations of the FD(z) method

Method Standard C SSE2

NN–Full Search 1× 2.1×
NN–Partial 1.9× 2.4×
NN–fastNN 19.9× 31.5×
NN–DOS 77.4× 131.3×

Quite interestingly, DOS–NN achieved 96.4% recognition accuracy, i.e. only 2% lower

than standard FD(z). Thus, high recognition accuracy may be achieved along with

significant computational speedup.

Finally, we explored the performance of fastNN with varying number of training exam-

ples, as we did for dynamic trajectories in Sec. 8.3.4. To this end, we varied the number

of training examples per user and repeated our experiments, using all training users

included in the dataset to avoid bias from out–of–vocabulary examples.

Fig. 9.6–a shows the per–query execution time, T , as a function of the total number of

training examples, M , in a log–log plot. We observe that the relationship is captured

by a straight line in the logarithmic axis, i.e. by a power curve in the standard axis.

As in Sec. 8.3.4, we estimated the slopes of the log–log curves using Least-Squares

Estimation and modelled them as power function curves (Eq. 8.1). As expected, the

slope of FullSearch was very close 1, implying complexity linear to the number of training

examples, M . On the other hand, the complexity of fastNN is sub–linearly related to

M , with slope close to 0.52 [106, 121]. As a comparison, the execution time slopes for

the three dynamic trajectory datasets were found to be approximately 0.45 for digits6D,

0.52 for lower6D and 0.70 for upper6D.

Fig. 9.6–b shows the per–query number of backtrackings, T , as a function of the total

number of training examples, M , in a log–log plot. The estimated slope us k = 0.73,

which is comparable to the slopes estimated for the digits6D (k = 0.73), lower6D (k =

0.74) and upper6D (k = 0.82) datasets.

Figs. 9.7 a–b show the corresponding power function curves for execution time and

fastNN backtrackings. We observe that 50 backtrackings are required on average when

1000 training examples are used, explaining the 20× speedup of fastNN (Table 9.3). We

also see the nice fitting of measured points to the estimated power curve, proving that

such analysis is quite meaningful and may generalize well on other parameter values.
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Figure 9.6: Log–log plots, showing (a) execution times and (b) fastNN backtrackings
with varying number of training examples.
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Figure 9.7: Power function curves, showing estimated (a) execution time and (b)
fastNN backtrackings with varying number of training examples.

9.3 Discussion

In this chapter, we evaluated our approach for hand posture recognition, based on local

and global features. Our experiments explored several aspects of the problem, such as

recognition with varying number of training examples, posture verification, real–time

posture locking and computational efficiency of fast Nearest Neighbor search (fastNN).

Our main result regarding isolated posture recognition is that local features, such as

Fourier Descriptors, can be highly informative for 10 simple hand shapes, achieving

state-of-the-art results on a challenging dataset. On the other hand, global features,

such as the number of fingers, can be used to improve the results through search space

reduction. This is in contrast to previous approaches [13, 128], which assumed that

global methods are always more robust for posture recognition.
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Regarding posture verification, we showed that Rule2, based on the number of fastNN

backtrackings (B), can be very effective in filtering out the majority of invalid examples.

More importantly, regarding the relationship between B and the inlier probability, P0,

we observed the same patterns as in recognition of dynamic trajectories, proving that

computational performance of fastNN is related to the number and nature of the training

and testing examples.

Our goals for future work include formal evaluation of our posture locking method on an

appropriately created dataset, where continuous recognition techniques may be applied,

such as sliding windows and max–voting decisions. We also intend performing experi-

ments on other datasets and exploring methods of fusing depth and color information.
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Conclusions and Future work
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10.1 Conclusions

In this thesis, we studied the problem of hand gesture recognition on continuous streams

of digits and letters, exploring various trade–offs between recognition accuracy and com-

putational efficiency on four fundamental tasks: hand detection and feature extrac-

tion, isolated recognition, gesture verification, and gesture spotting on continuous data

streams.

Specifically, in Chapter 4, we presented our approach for hand detection and a novel

technique for finger segmentation for various data acquisition sources. Moreover, we

presented our approach for gesture representation, targeting translation, rotation and

scaling invariance. Additionally, our approach is independent of the type of capturing

device.

In Chapter 5, we studied isolated recognition for trajectories of digits and letters. Our

approach is based on Maximum Cosine Similarity (MCS) and a tree–based fast Near-

est Neighbor algorithm. In our experiments, conducted on three publicly available

databases, we explored various parameters, such as recognition with a varying num-

ber of training users/examples, performance on noisy data and common recognition of

digits and letters. Chapter 5 confirmed the high recognition accuracy achieved by MCS,

making it a promising method for gesture spotting, as well.
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In Chapter 6, we studied the problem of gesture verification and presented our approach

for rejection of invalid gesture instances, based on thresholding the cosine similarity

score and the number of fastNN backtrackings required to classify an unknown gesture

vector. Our approach can effectively reject three main types of invalid gestures: out–

of–vocabulary gestures, noisy gestures and random movements. We additionally showed

that there exists a non–linear relationship among number of backtrackings, cosine sim-

ilarity score and the probability of inlier. This property leads to high computational

efficiency, as we may constrain the search time up to a certain number of backtrackings,

rejecting all other inputs as invalid gestures. Finally, we showed an interesting relation-

ship between computational efficiency and classification accuracy, through the Minimum

Backtrackings Classifier, which may prove quite promising in the future.

In Chapter 7, we proposed a complete gesture spotting framework for continuous streams

of digit and letter trajectories in an indirect way, i.e. without using motion cues or other

marks to detect the starting and ending time boundaries of the performed gestures. Our

approach is based on applying isolated classification through fastNN Maximum Co-

sine Similarity (fastNN–MCS), collecting groups of overlapping gesture candidates and

applying conflict resolution methods to reach the final spotting result. Our main contri-

bution lies in proposing a novel method to perform conflict resolution, combining cosine

similarity score and time duration of gesture candidates. Moreover, we introduced a

probabilistic framework to learn and handle subgesture relationships, extending previ-

ous models which used strict rules for the gesture classes. Specifically, our approach

models both categories and relative time boundaries of the gesture candidates. Finally,

we also experimented with gesture spotting on real texts and designed a special version

of the Weighted Edit Distance for word recognition, supporting small vocabularies of

10-40 words.

In Chapter 8, we evaluated the computational efficiency of our approach and demon-

strated its low cost compared to Dynamic Time Warping (DTW). Additionally, we

proposed a novel method to speedup DTW, using fastNN for initialization, which re-

sulted into 33% savings in computational time. In short, fastNN–MCS proved to be

highly efficient, which allowed us to build a real–time gesture spotting application, us-

ing a standard 2D camera. Additionally, we evaluated the performance of fastNN with

varying number of training examples and gesture classes, showing that the number of

fastNN backtrackings can be modelled as a power function of the number of training

examples. Further investigation of this interesting result is included in our plans for the

future.

Finally, in Chapter 9, we presented and evaluated our approach for hand posture recog-

nition, based on local and global features. Our experiments explored several aspects
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of the problem, such as recognition with varying number of training examples, pos-

ture verification, real–time posture locking an computational efficiency of fast Nearest

Neighbor (fastNN). Our main result regarding isolated posture recognition is that lo-

cal features, such as Fourier Descriptors, can be highly informative for 10 simple hand

shapes, achieving state-of-the-art results on a challenging dataset. On the other hand,

global features, such as the number of fingers, can be used to improve results through

search space reduction.

10.2 Future work

Our goals for future work include further research on hand and finger detection methods,

as well as evaluating them on new, larger datasets of postures and gestures. Additionally,

we intend exploring methods of fusing depth and color information.

We also intend to further investigate gesture spotting methods, trying alternative clas-

sifiers, such as Dynamic Time Warping (DTW), Hidden Markov Models (HMM) and

Conditional Random Fields (CRF), hoping that they may improve recognition results

without compromising computational performance. Another promising topic in gesture

spotting is that of conflict resolution, which seems to be the key concept of all indirect

spotting approaches.

Seeking relationships between computational efficiency, classification and verification,

attempting to relate the number of fastNN backtrackings and traditional pattern recog-

nition quantities, such as Euclidean and Mahalanobis distance, data dimensionality and

number of training examples and classes, is always a fascinating problem, although not a

trivial one, mainly due to its highly stochastic nature. Further investigation of such re-

lationship, including datasets from other domains, such as face and activity recognition,

is certainly included in our future plans.

Finally, we plan to develop more efficient hand and finger detection methods, and eval-

uate them on large datasets of postures and gestures, as well as through subjective

evaluations on real users. We also plan to perform a formal evaluation of our posture

locking method on an appropriately created dataset, where continuous recognition tech-

niques may be applied, such as sliding windows and max–voting decisions. We also

intend performing experiments on other datasets and exploring methods of fusing depth

and color information.
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Appendix A

Fast Nearest Neighbor algorithms

A.1 The Nearest Neighbor problem

Given a set of training vectors, U = {ui ∈ Rd, i = 1, . . . ,M}, and a query vector, q ∈ Rd,
the problem of Nearest Neighbor consists of locating the training vector û which shows

the minimum distance, d(q, ui):

û = arg min
~ui∈U

d(q, ui) (A.1)

In this work, we used Euclidean distance between two vectors q, u:

d(q, u) = ‖q − u‖2 (A.2)

A.2 Exact Nearest Neighbor algorithms

The obvious brute–force algorithm (Full Search) is to compute all distances in a lin-

ear way, showing computational complexity which is linear to the number of training

examples, M , and the data dimensionality, d, i.e. O(M · d). Partial Distance Search

(PDS) improves the Full Search algorithm through early termination of local distance

computation when it exceeds the running minimum distance [127], but its cost remains

nearly linear.

Besides PDS, a lot of fast Nearest Neighbor (fastNN) methods have been proposed in the

literature [106, 129–133], achieving nearly logarithmic time on average. Such algorithms

are typically based on partition trees, arranging training vectors in a tree data structure

in some appropriate way (initialization step). Initialization typically starts from the
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root of the tree and distributes training vectors across its b children based on b − 1

hyperplanes; it then continues recursively for all children nodes. During the searching

step, fastNN algorithms navigate the tree recursively until the first leaf node is reached;

at this point, a first solution is acquired (Depth–Only Stage – DOS). At that point,

backtracking to previous tree nodes is performed, examining the rest of the training

vectors. Computational efficiency comes from pruning many training vectors out of the

search based on effective lower bounds.

Partition tree–based algorithms vary based on the selection method of hyperplanes and

lower bounds. K–d tree [129, 130] was one of the first such methods, using hyper-

planes perpendicular to the coordinate axes, partitioning the search space into hyper–

rectangular regions (buckets), each containing a small number of training vectors [131].

K-d tree searching involves reaching a first candidate and setting a query hypersphere

which bounds the global minimum distance; it then searches exhaustively all buckets

which intersect with that hypersphere. Performance of k–d trees is typically compro-

mised at higher dimensions, since many buckets tend to intersect with the query hy-

persphere. Guttman [132] proposed R–trees, which partitions training vectors based on

hyper–rectangular regions (instead of hyperplanes), showing performance similar to k–d

trees for higher data dimensions.

Katsavounidis et al.[106] proposed a fastNN algorithm which partitions data based on

recursive applications of the k–means clustering method, while it uses a lower bound

based on projections of vectors on a maximum separating hyperplane. Since this is

the main fastNN algorithm used in this thesis, we described it in detail in Sec. 5.1.2.

McNames [133] improved the above algorithm by separating training vectors using their

projections on the principal axis of the training set (Principal Axis Tree – PAT). During

searching, a lower bound was used for pruning, derived by the law of cosines for triangles.

In his experiments [121], McNames compared 17 fastNN algorithms and showed that

PAT and the fastNN algorithm of [106] outperformed all other algorithms, while their

relative performance varied based on the type of training data.

A.3 Approximate Nearest Neighbor algorithms

While exact search can be efficiently performed when the data dimensionality, d, is quite

low, it may be prohibitively expensive for large d values. For this reason, a lot of approx-

imate fastNN algorithms have been proposed, each balancing between computational

efficiency, memory requirements and quality of search. Approximate algorithms can be
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generally classified into three categories [134]: (1) partitioning trees, (2) hashing tech-

niques and (3) graph–based techniques. In the following, we describe the most important

details of each category. For more information, the reader may refer to [131, 134].

Partition tree–based algorithms offer a depth–only search stage (DOS), which allows for

early termination of the search process. Alternatively, one may threshold the number

of backtrackings or the computational time during search. We explored this idea in

detail in Chapter 6, where we studied the trade–offs between recognition accuracy and

computational efficiency.

Locality Sensitive Hashing (LSH) [135] is a method to perform dimensionality reduction,

mapping similar vectors to the same buckets with high probability. Since performance

of LSH is highly dependent on the quality of the hashing functions used, many modifica-

tions and improvements have been proposed, such as parameter sensitive hashing [136],

kernelized LSH [137] and optimized kernel hashing [138]. While hashing techniques

have been successfully applied on many problems, Muja et al.[134] showed that they

are typically outperformed by the DOS variant of the most efficient partition tree-based

algorithms.

Graph–based techniques consider training vectors as the vertices of a graph structure,

while edges connect each vector to its nearest neighbor(s). The search procedure simultes

hill climbing, starting from a random initial point and moving towards the query vector

[139].
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