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Prologue 
 

This thesis is a study of a technique proposed by Sébastien Collette, John Iaconoy and Stefan 

Langermanz in their paper “Confluent Persistence Revisited” published in the Proceedings of 

the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms 2012. In this paper 

they propose a generic method for any data structure in the pointer machine model in order to 

perform efficient confluent persistence operations in terms of space and time costs.  

 

More specifically, their method proves that confluent persistence can be achieved at a 

logarithmic amortized cost with the restrictions: i) the data structure is in the bounded in-degree 

model, widely used in previous work ii) merging of two different versions of the data structure 

that contain the same nodes is not allowed. Under these restrictions following their method 

outperforms previous methods by a O(n/log n)-factor improvement. 

 

In order to help the reader to gain a better insight in their technique we show examples using 

Binary Search Trees. 

 

Chapter 1 is an introduction to the basic concepts of data structures in the pointer machine 

model and Confluent persistence. Also previous work and applications of confluent persistence 

are discussed. Chapter 2 deals with the presentation of the various data structures used in 

order to augment any data structure in the pointer machine model to a confluent persistent one. 

In Chapter 3 we discuss how it is possible to navigate through the group of data structures 

presented in the previous chapter and run examples using Binary Search Trees. Finally, in 

Chapter 4 the complexity analysis of the performance is discussed. 

 

GENERAL TERMS: Data Structures, Confluent Persistence, Pointer Machine Model. 

ADDITIONAL TERMS AND PHRASES: Binary Search Trees, Merging data structures, Bounded 

in-degree model, linked data structure, ephemeral data structure, partial persistence, full 

persistence.  
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1.1 Data Structures in the pointer machine model. 

 

A data structure is a well-defined collection of data that supports a set of well-defined operations 

to be performed upon it. The operations performed in a data structure can be partitioned into 

two groups: query operations, that do not modify the structure, and updates that do modify the 

structure. 

 

The data structures that we are going transform to confluent persistent data structures must 

belong to the pointer machine model. Data structures in the pointer machine model are 

described in Driscoll et al. [1] where they are referred as linked data structures. Data structures 

in this model have the following characteristics: 

1. They are composed of a finite collection of nodes. 

2. Each node contains a fixed number of fields. 

3. The fields of a node are information fields or pointer fields.  

4. Information fields can contain values of a specified type (integers, booleans, bit, etc.). 

The key information field is used to identify the node.  

5. Pointers fields contain pointers to another node or a null value indicating no node. We 

are going to refer to pointers as edges as this is a convention used in the paper 

describing the technique we are going to study [2]. If a node x contains a pointer field to 

another node y, we call y the successor of x and x the predecessor of y. 

6. All nodes in a structure are of the same type i.e. have exactly the same number of fields 

for each field type they contain. 

7. Each structure has a unique node designated as the root which provides access to the 

linked data structure. While temporary pointers are allowed during the execution of an 

operation, no pointers into the structure are permitted to be maintained between 

operations other than to the roots. 

8. Operations performed are a sequence of atomic operations all commencing from the 

entry point of the data structure i.e. its root. The atomic operations that we can perform 

are: 

a. Create a node. 

b. Delete a node. 

c. Follow an edge reading a pointer field. 
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d. Read value of an information field. 

e. Change field value of a node (including edges). Changing one field is stipulated 

to cost O(1) time. 

9. They must also support a merge operation where two roots are specified and at the 

end of the operation the second root is no longer considered to be a root; this implies 

that the connected components of the two roots have been merged. The merge 

operation is also a sequence of the above mentioned atomic operations 

 

1.2. Confluent Persistence 

 

Ordinary data structures are ephemeral as operations are performed only on their latest version, 

and in the case of an update, the current version is changed, and the past version is lost. 

Persistence is the concept, of allowing the execution of operations not just on the current 

version, but on past versions as well. There are three forms of persistence, partial persistence, 

full persistence and confluent persistence. 

 

With partial persistence one can execute query operations on any previous version of the 

structure, but updates are only performed on the current (latest) version. In this model of 

persistence the versions can be represented as a linear list (timeline) since a new version is 

being derived only from the latest version in the list. 

 

In full persistence, update and query operations may be performed on any version of the data 

structure that ever existed. In the case of an update on a past version, a new version is created, 

derived from that past version. In full persistence, versions no longer can be represented as a 

linear list, their topology can be represented by the version tree. In a version tree every node is 

a version, and an edge is drawn from every version to the version it was derived from. 

 

Finally, confluent persistence is the strongest form of persistence, it allows the same operations 

as in full persistence but it also introduces merge or otherwise referred as meld operations. 

Merge operations take two versions and merges them into one to produce a single new version. 

These types of operations are also referred as confluent updates. In confluent persistence, 

since each version is derived from one or more previous versions, the graph, formed by the 

versions, derivation relationship is no longer a tree, it is now the version directed acyclic graph 

(DAG). 
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1.3. Applications of persistence 

 

 

Below, we list some of the most important applications of persistence: 

 

1) Algorithm Design. In the area of computational geometry various algorithms use persistence 

to find efficient solutions to various problems. More specifically in [3] planar point location, 

algorithms are developed utilizing persistent search trees. Planar point location involves 

preprocessing a polygonal subdivision of the plane defined by n line segments so that, given a  

point q, the polygon containing q, can be determined quickly. As an example planar point 

location helps given GPS coordinates to find the region on a map where you are located. Also in 

[4], ray shooting problem is solved in a more efficient way using persistence. Ray shooting is the 

problem of determining the first intersection between a ray (directed line segment) and a 

collection of polygonal or polyhedral obstacles. In order to process queries efficiently, the set of 

obstacle polyhedra is usually preprocessed into a data structure. 

  

2) Problem solving. Again an example from computational geometry where persistence is used 

to solve optimally the segment intersection problem as shown in [5]. In more detail this involves 

a widely-used technique in computational geometry where by performing a sweep with a vertical 

line through a data set (set of points, set of segments, etc.), the set of items intersected by the 

line at every sweep step are stored in a data structure. If this data structure is made persistent, 

one can then retrieve all the information that has been swept through, by going back to previous 

versions. 

  

3) Control Version Systems where one wants to keep records of all versions of some 

information. Typical examples include version control systems [6], [7] such as Subversion, 

Mercurial, Git  and CVS. In these systems, all the versions of some files are stored, in order to 

be able to go back to any previous version of any file as well as merge two versions of a file or a 

directory of files. 

 

4) Finally, in code debugging as shown in [8] where persistent data structures are used so one 

can check, at any point during the execution of code what the value of any variable was. 
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1.4. Previous work 

 

Finding ways to efficiently perform partial and full persistence gained popularity in the 1980’s [7]. 

Persistence was firstly formally studied in [1] where a technique that converts data structures 

that belong in the pointer machine model and have bounded in-degree, was developed with a 

constant factor overhead (or otherwise referred as slowdown) in time and space for every 

operation. Overhead or slowdown is the extra time or space required to perform an atomic 

operation in a persistent data structure additional to the time and space required to perform the 

same atomic operation in the non-persistent implementation of the data structure.  In the paper 

showing the above technique, Driscoll et al. [1] mentioned confluent persistence as an open 

problem. Confluent persistence was formally defined in 1994 [9].  

 

Finally in 2003, Fiat and Kaplan [10] gave the first generic method to obtain confluently 

persistent structures. But their results show that the overhead may be often suboptimal since a 

merge of two versions can double the size of the data structure, and therefore in k merges, the 

persistent data structure will increase to a size equal to 2Ω(k). Fiat and Kaplan also prove a lower 

bound of confluent persistence, (      ) bits to store all versions where U is the total number 

of atomic update operations performed and e(D) is the “effective" depth of the version DAG, 

defined as the logarithm of the maximum number of different paths from the root of the DAG to 

each of its versions. In terms of upper bounds, their method has a space complexity of     

           bits and an overhead of              time per operation on the confluent 

persistent data structure. Their results are considered as suboptimal since the effective depth 

can be linear in the number of updates performed fig.1.1. In worst-case scenarios their results 

show that there is not an improvement over simply copying the whole data structure to create 

each new version. 
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Figure 1.1 

From [11] Version DAG where a string is concatenated with itself repeatedly and in such case 

e(D) is linear to the number of update operations (confluent updates). 

 

 

 

1.5. Restrictions of the technique. 

 

The technique we are going to study is an improvement in terms of complexity over the previous 

work presented above but with an additional restriction that confluent operations (merging) are 

allowed only between versions with no shared data nodes. Under this restriction O(log(n)) 

overhead for both time and space is possible following their technique. Also, their method does 

not take any measures to prevent the merging of data structures with common nodes and its the 

responsibility of the user to ensure that this never happens. The restriction of disjoint merges 

can be avoided by replacing one of the two common nodes with a duplicate before executing 

a merge operation but this may induce a space penalty equal to the size of the data structure 

being represented. 

 

Another restriction which is also present in the previous work mentioned above is the constant 

bound for the incoming degree of the nodes for the data structure under confluent persistence 

representation. This restriction can also be bypassed as we can replace each node with high in-

degree by a reversed balanced binary search tree (BST) of depth O(log maxdeg) where 

maxdeg is the maximum in-degree of a node. fig. 1.2. Incoming pointers are now pointing to the 

leaves of this reversed balanced BST and the root has the same number of outgoing pointers as 

the node to be replaced by this structure. This bypass of the second restriction induces only an 

O(log maxdeg) time penalty for the atomic operation “following a pointer”. There is no space 

penalty as the number of constant sized nodes added is linear to the number of incoming 
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edges. Also other operations such as creating, deleting a node do not induce a time or space 

penalty as we can ensure that all outgoing and incoming edges are deleted before deleting the 

node itself. 

 

 

Figure 1.2. Transforming a node with maximum in-degree 3 (maxdeg) to a set of nodes with in-

degree one using reversed balanced BSTs. 

 

1.6 Binary search Trees 

 

Throughout this thesis we are going to use Binary Search Trees (BSTs) to run examples of the 

technique involved in order to ease the reader understand the algorithms applied as well as the 

complexity analysis. We chose BSTs as they are easy to run and also their complexity analysis 

is simple as they are asymptotically linear O(n). The BST can be represented in the pointer 

machine model. A node in our BST implementation contains four fields: 

● a key field which is used to identify the node with distinct values selected from a totally 

ordered set. Duplicates of key fields are not allowed. 

● an information field where the data associated with the node is stored. 

● left and right pointer fields to the left and right children (sons) of the node. 

The nodes are arranged so the binary-search-tree property (symmetric order) is met, if x is a 

node, the key field in x is greater than all key fields in the items in its left subtree and smaller 

than all all key fields in the items in the right subtree of x. The BST has constant in-degree with 

value 1 and the tree root is the only entry node. 
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Operations of BSTs include: 

● Searching: We first visit the root node where we examine if the Key field (k) we are 

searching matches, it is greater or smaller than the current node’s key field (c). If k is 

greater than c we follow the right pointer visiting the right son node and in the opposite 

case we visit the left son node. Then we recursively apply the above comparison until we 

find a match or we end up in a leaf i.e. there is no match for our query. 

● Insert: We follow the above steps as in searching until we reach a leaf, where we place 

our node and update it’s parent left or right pointer field respectively. 

● Update information field: After locating the node by searching, we change the value of 

its information field. 

● Delete: There are three cases after performing a search operation to locate the node of 

interest: 1) Deleting a node with no children where we just simply remove it from the 

tree. 2) Deleting a node with one son where the node we want to remove its replaced by 

its son. 3) Deleting a node with two sons where the node we want to remove is replaced 

by the smallest node (i.e. with the smallest key field) in its right subtree. 

● Merge two binary search trees: where we create a sorted list with the nodes of the 

second BST and then we use this list to insert its nodes to the first BST one after 

another. 

In the case of confluent persistence for all the above operations we must determine also the 

version we are interested to perform the operation or in the case of a confluent merge the two 

versions we would like to merge.  
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2.1 Global Version Tree. 

 

The first data structure we need to construct is a global version DAG (V), associated to 

the data structure (D) we would like to augment as a confluent persistent data structure. In our 

examples to follow we presume that the versions in the version DAG have out-degree at most 2. 

This can be easily circumvented in case we want to create more than 2 versions from a single 

version by adding a constant number of dummy version nodes. For every operation in a version 

of D a new version vertex is added to V as a child to the version we performed an operation. A 

new version added to V is declared by an integer ID, its value assigned by a version counter 

that we increment each time a new version is created. Given the above, we expect each version 

vertex in V, other that the root, to be either the child of the version we are performing an 

operation or the child of two versions in the case of a confluent merge between two versions of 

D.  

 

Furthermore we maintain the following pointers in our global version DAG, V: 

1. Bi-directional pointers between parent and child versions in order to determine a 

child version from which version it was derived. 

2. A pointer from each version vertex v in DAG to the root node of D in version v in 

order to gain access to D via a version ID. 

 

2.2 Global Version Link-Cut Tree. 

 

The second data structure we need to maintain is a subgraph of V. This subgraph is a 

forest of disjoint trees, that includes all the version vertices of V but only a subset of its edges. 

This data structure maintains the properties of a link-cut tree as described in [1]. V and F are 

connected with bi-directional pointers between their corresponding versions so from a version v 

in V we can directly access the version v in F.  

Every new version added to V is also added in F in a similar manner. The edges of V 

that are not present in F are excluded as follows. After a confluent merge of two versions in F 

we find their lowest common ancestor and we delete (or cut) the two edges connecting this 

lowest common ancestor to its descendants, an example is shown on Figure 2.1. In case where 
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no lowest common ancestor is found, we do not cut any edge. Excluding these edges ensures 

that there are no cycles in subgraph F. 

 

In a link-cut tree the lowest node (with smallest ID-key field) on any path between two 

nodes can be determined in O(logn) time. In our case the lowest node in the path between two 

version nodes we would like to merge is their lowest common ancestor. Also it is possible to 

check if two nodes belong to the same tree of the forest in O(logn) time [1]. Therefore the cost 

of maintaining F along with V has a complexity of O(logn) amortized time. 

Finally if V is implemented as a sorted list figure 2.1 adding a new version if V and F can 

be achieved also in O(logn) amortized time. 

 

 

Figure 2.1 

V represented as a sorted list, arcs represent relationship between versions, arrows 

belong to sorted list, and F where the merge between versions 2 and 4 produce version 5. 

2.3 Compressed Local Version Tree. 

 

Thirdly for each node d of D we maintain a Local Version Tree, LVT(d), data structure 

which is also a subgraph of V. This subgraph of V includes only the version vertices of V where 

node d is present in D and also their corresponding edges. This local version tree is in fact a 

tree as stated by the following lemma. 
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Lemma 1. The local version DAG of a node is a tree. 

 

Proof. LVT is a connected graph since every new version added to LVT is a child of a 

version in LVT. If we assume that LVT(d) is not a tree then there exists a version vertex that is a 

child of two versions but this can be only the result of a confluent merge of two versions 

containing the same node which is forbidden by the constraint mentioned in 1.5 . 

 

In order to reduce the space and time required to maintain LVTs for each node, a 

compressed local version tree cLVT is stored instead. A cLVT(d) of a node d contain only 

versions where one or more of the fields of d were changed, figure 2.2. A vertex present in cLVT 

is termed explicit and the nodes for which all fields remained unchanged and are represented by 

their parents are termed implicit. Representatives of a version vertex v in a cLVT are denoted by 

rep(v). All the fields (key, data and pointer fields) of a node d in a version v are stored in the 

corresponding explicit node v in cLVT. 

 

2.4 Edge Overlays. 

 

Similarly to cLVT we maintain a local version tree for every edge between two nodes in 

D. This edge local version tree is termed as a compressed overlay tree cOV(a,b) (where a and b 

represent the nodes that this edge is connecting in D). The cLVT is a connected subset of the 

intersection of cLVT(a) and cLVT(b), figure 2.3. In order to maintain cOVs we must also apply 

the following rules adding explicit nodes when required:  

 

1. cOV(a,b) must always contain an explicit vertex for each version were the edge has 

been created or deleted. 

2. Each explicit vertex of cOV(a,b) must appear in both cLVT(a) and cLVT(b) (but not 

necessarily reversely). 
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Figure 2.2 

LVT and cLVT representations from [3]. Nodes 3, 4 and 8 of LVT(d) are implicit nodes in the 

cLVT(d) and are represented by nodes 1 and 2 respectively. 

 

2.5 Node-edge navigation structure. 

 

In order to navigate through the set of the above discussed data structures we need 

pointers interconnecting them, that they will allow us to visit target nodes in cLVTs in order to 

retrieve the values of their fields. The set of pointers we are going to apply is termed the node-

edge navigation structure. 
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There are three types of pointers that we are going to apply: 

1. Version-edge pointers. For each version v in a cLVT(a) in which an edge (a,b) 

existed, add pointers from v in cLVT(a) to its representative rep(a,b)(v) in cOV(a,b). 

For an explicit node in cLVT(a) that is not preset in cOV(a,b) we need to add a 

pointer to its representative rep(a,b)(v) in cOV which is its nearest ancestor present 

in both cLVT(a) and cOV(a,b) 

2. Edge-version pointers. pointers from all versions v in cOV(a,b) to the same 

version v in cLVT(a) and cLVT(b). 

3. Inverse edge-version pointers. a list of pointers, so that from a version node in 

cLVT(b) we can retrieve the list of its incoming edge-version pointers for edges that 

connect node b to their ancestors in D. 

 

In order to reduce the space required to store all the above pointers the technique of 

fractional cascading [2] is applied. We mark certain vertices in cLVTs as senators, for which we 

apply the above pointers. Two senators in a root-to-leaf path in a cLVT are at distance λ+1, 

where λ is a small constant defined later. Α senator node b, must appear explicitly in all its 

incoming cOV(a,b) as well as in the corresponding cLVT(a). If these newly inserted versions in 

cLVT(a) happen to become senators we will propagate senators to their neighbors and so on.  

 

 

Figure 2.3 

cOV representation from [3] for an edge between nodes a and b. 
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Chapter 3 Binary Search Tree Example - Navigation. 
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3.1 Synopsis of atomic operations. 

 

Before we run examples using Binary Search Trees we would like to resume the rules 

governing the building of the set of data structures we described in the previous chapter. 

 

Every atomic operation in our data structure will create a new version except the 

searching operation. A new version node is added in V and in F , as a child of the version(s) that 

we performing an operation on. For example in case we insert a node in version 5, a new 

version presumably number 6 will be the son of version 5 in V and F, similarly if we merge 

version 3 and 4 the new version derived from this merge assuming it receives from our version 

counter the id 5, version 5 will be the son of both 3 and 4. 

 

Then we create an explicit version node in cLVT(d), where d is the root of the data 

structure D in the new version v. This is done in order to keep pointers from each version in V to 

an explicit node in the corresponding root cLVTs, as discussed in section 2.1.  Also we add 

nodes for the new version v in cLVTs for all nodes in D that have their fields altered due to the 

atomic operation we are performing. For example if we insert node 6 as a left son of node 10 in 

version 2 and the new version created is 5 then we must include node version 5 in both cLVTs 

of node 6 (a new cLVT(6) is created)  and 10 as node 10 has its left pointer field altered. Adding 

a new node in a cLVT requires to check if it will become a senator. This done by checking if it 

has a senatorial ancestor in the cLVT at distance greater than or equal λ+1, in which case it 

needs to become a senator. In case it becomes a senator we also add the required version 

edge pointers, edge version pointers and if necessary we update the list of the inversion edge-

version pointers. This may require to add new nodes in cLVTs and cOV where we check again if 

new nodes in cLVTs need to become senators and so on.  

 

Altering, creating or deleting pointer fields of a node in D requires also to add explicit 

nodes in the cOV representing this pointer field - edge. Explicit nodes for a version v of an edge 

in cOV require that are present also in cLVTs of the nodes this edge connects. This may insert 

new nodes or senators in cLVT as above. 

 

In the case of a confluent merge, we need to find a lowest common ancestor and cut two 

edges in F. This merge operation then follows the above rule as it will include alterations in 

many pointer fields of various nodes. 
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3.2 Running an example with a Binary Search Tree. 

 

We will run an example using Binary Search Tree (BST) as D, which we would like to 

augment to a confluent persistent BST. We will show insertion, delete, merge and update 

operations however, searching a node is going to be discussed later in 3.2. Firstly we add a 

node by giving a command in the form: Insert (Key field of node, data field of node, version). We 

would like to insert node 10 with key field: 10, data field: D10 and this insertion is going to take 

place at version 0 since no others exist. This operation will create version 1. In figure 3.1 we 

firstly represent D in version 1, D is not stored but we include it in our figures in order to show 

how changes in BST affect our set of data structures. Global version Tree V and Link-cut 

Version Tree F are identical at this point. We insert in V and F node 1 which represents version 

1. We must always keep a pointer (root pointer denoted as RP) from V to the root of D for the 

version we just created. This is represented in the figure as root pointer RP to the compressed 

local version tree cLVT(10) and is pointing specifically to node 1 of cLVT10 shown in our figure 

as cLVT(10.1). Then we insert also node 1 in cLVT which is in grey as we choose to make a 

senators the roots of cLVTs. Senators will be represented as gray nodes in our diagrams. Next 

senator will be at distance λ+1 where λ we choose to be 2. Since there no edges to our senator 

we do not include any other navigation pointers. We finally store all fields of node 10 in D in 

cLVT(10.1) that is, its data field with value D10.  

 

 

 

Figure 3.1 Insertion of Node 10 in a BST. cLVT(10.1) denote node with key 1 in 

cLVT(10) 
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Next we insert node 6 in version 1, with the operation Insert(6, D6, 1). This will produce 

version 2 so node 2 in V and F is inserted. The root pointer for node 2 in V is cLVT(10.2) as we 

must ensure for each new version the root pointer from the V points to that specific version in a 

cLVT. Hence root pointers must always point to explicit nodes in root cLVTs. Hence node 2 

appears explicitly in cLVT for the above reason but also because some fields of node 10 have 

been altered. Node 10 has a new left pointer field pointing to node 6. Hence its left pointer field 

is also included in cLVT(10.2) as a left version-edge pointer VEPL. This left pointer field in D will 

point to node 6 but in our case points to edge overlay tree cOV(10.6).2. cOV(10.6).2 is created 

as an edge has been created between nodes 10 and 6 and it has an edge pointer to node 2 of 

the newly created cLVT(6). cLVT(6) is a senator and has a data field D6. 

 

 

 

Figure 3.2 Insertion of Node 6 in version 1 
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Our next operation is delete node 10 in version 1 denoted as Delete(10, 1). New version 

3 is inserted in V but D becomes empty so the RP in node 3 of V is null. In cLVT(10) node 3 is 

not inserted as in version 3 node 10 did not exist. Also cOV(10,6) and cLVT(6) are not affected 

by this operation. 

 

 

 

Figure 3.3 Deletion of node 10 in version 1. 

 

Then similarly to above we add node 9 figure 3.4 so in our next operation we can perform a 

merge of two versions that do not share the same nodes, figure 3.5. 
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Figure 3.4 Insertion of node 9 in version 4. 

 

 The merge in the following figure 3.5 is between versions 2 and 4 (Merge(2,4)). We 

perform the binary search tree confluent merge as follows. We insert nodes of 2nd version, 

version 4 in a sorted list. Note that version 2 and 4 are not allowed to include the same nodes. 

Then we insert each node of the sorted list in the first version, version 2. Hence a merge is a 

sequence of insertions for our set of data structures. Version 4 includes only node 9 in our 

example which is inserted after node 6 in version 2. A new edge is created so node 5 is 

included in cOV(6,9) and thus it must appear explicitly in cLVT(6) and cLVT(9). That is why 

node 5 is inserted in cLVT(9) although its data fields have not been altered since version 4 and 

node cLVT(9.4) could have been its representative. Also note that in F we cut the links to the 

sons of the lowest common ancestor of version 2 and 4. This will not happen in V not separately 

included in the figure. 
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Figure 3.5 Merge between versions 2 and 4. 
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Last we update the value of the data field of node 9 in version 4 so it value changes from D9 in 

version 4 to D9.1 in version 6. 

 

Version 6) Update (9, D9.1, 4)

D in version 6

V & F Link-cut Version Tree cLVT(10)

Key: 1
Data: D10

cOV(10,6)

Key: 2
EVP: cLVT(6.2)

cLVT(6)

Key: 2
Data: D6

1
RP: 

cLVT(10.1)

2
RP: 

cLVT(10.2)

3
RP:null

4
RP: 

cLVT(9.4)

Key: 2
Data: D10

VEPL: cOV(10,6).2

9

5
RP: 

cLVT(10.5)

Key: 5
Data: D6

VEPR: cOV(6.9).5

cOV(6,9)

Key: 5
EVP: cLVT(9.5)

cLVT(9)

Key: 4
Data: D9

Key: 5
Data: D9

Key: 5
Data: D10

VEPL: cOV(10,6).26
RP: 

cLVT(9.6)

Key: 6
Data: D9.1

 

 

Figure 3.6 Update the data field of node 9 in version 4. 

 

Next three operations are performed as above. The purpose of choosing the following set of 

operations it’s because we wanted to end with a set of data structures that will help us explain 

the act of navigation (searching) which is described in the following section. In the figures below 

we only present modifications in cLVT(6), cLVT(9) and cOV(6,9) for saving space in our draws.  
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What is worth noting in figure 3.9 is the node cLVT(9.9) should not be included in cLVT(9) as in 

version 9 node 9 in D is not present, however as an edge is deleted, in cOV(6,9) node 9 must 

be explicitly included and this forces node 9 to be also explicitly included in cLVT(9). 

 

Also note the introduction of two senators cLVT(6.9), cLVT(9.9) at distance λ+1  from their 

senator ancestors (in our examples we set λ to be equal to 2). In particular in cLVT(9.9) note 

that as a senator it has a list of inverse edge-version pointer, IEVP, that includes a pointer to its 

incoming edge in D. For reasons that we will become obvious later, version edge pointers VEP 

and EVP edge-version pointers are now included also as dashed arrows. 

Version 7) Update (9, D9.2, 5)

D in version 6

V & F Link-cut Version Tree

cLVT(6)

Key: 2
Data: D6

1
RP: 

cLVT(10.1)

2
RP: 

cLVT(10.2)

3
RP:null

4
RP: 

cLVT(9.4)

5
RP: 

cLVT(10.5)

Key: 5
Data: D6

VEPR: cOV(6.9).5

cOV(6,9)

Key: 5
EVP: cLVT(9.5)

cLVT(9)

Key: 4
Data: D9

Key: 5
Data: D9

6
RP: 

cLVT(9.6)

Key: 6
Data: D9.1

6

9

Key: 7
Data: D9.2

7
RP: 

cLVT(10.7)

10

 

Figure 3.7 Update the data field of node 9 in version 5. 
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Version 8) Update (6, D6.1, 7)

D in version 6

V & F Link-cut Version Tree

cLVT(6)

Key: 2
Data: D6

1
RP: 

cLVT(10.1)

2
RP: 

cLVT(10.2)

3
RP:null

4
RP: 

cLVT(9.4)

5
RP: 

cLVT(10.5)

Key: 5
Data: D6

VEPR: cOV(6.9).5

cOV(6,9)

Key: 5
EVP: cLVT(9.5)

cLVT(9)

Key: 4
Data: D9

Key: 5
Data: D9

6
RP: 

cLVT(9.6)

Key: 6
Data: D9.1

6

9

Key: 7
Data: D9.2

7
RP: 

cLVT(10.7)

10

8
RP: 

cLVT(10.8)

Key: 8
Data: D6.2

 

 

Figure 3.8 Update the data field of node 6 in version 7. 
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Version 9) Delete (9, 8)

D in version 9
V & F Link-cut Version Tree

cLVT(6)

Key: 2
Data: D6

1
RP: 

cLVT(10.1)

2
RP: 

cLVT(10.2)

3
RP:null

4
RP: 

cLVT(9.4)

5
RP: 

cLVT(10.5)

Key: 5
Data: D6

VEPR: cOV(6.9).5

cOV(6,9)

Key: 5
EVP: cLVT(9.5)

cLVT(9)

Key: 4
Data: D9

Key: 5
Data: D9

6
RP: 

cLVT(9.6)

Key: 6
Data: D9.1

6

Key: 7
Data: D9.2

7
RP: 

cLVT(10.7)

10

8
RP: 

cLVT(10.8)

Key: 8
Data: D6.2

Key: 9
Data: D6.2

VEPR: cOV(6.9).9

Key: 9
Data: D6.2

EVP: cLVT(9.9)
EVP: cLVT(6.9)

Key: 9
Data: D6.2

IEVP:[cOV(6,9).9]

9
RP: 

cLVT(10.9)

 

 

Figure 3.9 Delete node 9 in version 8. 
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3.3 Searching for a node. 

 

So far we have shown examples of inserting, deleting, updating and merging without 

explaining how do we search for nodes in the set of the above data structures (V, F, cLVTs and 

cOV). In this section we describe the act of navigating through this set and we also explain why 

senators are necessary. 

 

Firstly from the above examples it is obvious that we can easily determine the root d of D 

for a version v and all its fields. We search for v in V where there is root pointer RP to an explicit 

node in the root’s cLVT(d) for this version. In figure 3.6 it is shown that all RP point to explicit 

nodes in the corresponding cLVTs.  

 

From the explicit nodes in a root cLVT and by following the rules concerning D we follow 

edges. For example in binary trees we need to determine if we will follow the right or left pointer 

by comparing the key of the node we are searching to the key of node we are visiting. As an 

example in figure 3.5 what if we would like to determine the value of node 6 in version 2. We 

search for version 2 in V and from the there we follow the RP to node cLVT(10.2). We know that 

we are in a node with key field 10 and and we would like to find node 6 which is smaller hence 

we need to follow left pointer VEPL(cOV(10,6).2). We visit node cOV(10,6).2 and from there we 

follow EVP(6.2) where we end in node cLVT(6.2) where we can read all fields of node 6 in 

version 2. From the above we understand that following pointers as if all nodes were explicitly 

present in our set of data structures will be straightforward. 

 

However the act of browsing through our set of data structures becomes more trivial 

when visiting nodes that are implicit i.e. they are not present in cLVTs and pointers lead to their 

explicit representatives. As an example we use a part of our set of data structures shown in the 

following figure 3.10 which we constructed in the series of examples above, figures 3.1-9. What 

if we wanted to find the value of node 9 in version 7. During our search we enter cLVT(6) in 

node cLVT(6.5) this is a representative node as we are searching for version 7 and we are in a 

version node with key field 5. Whenever we are redirected to a representative node we act as 

follows:  
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Figure 3.10 Navigation Example I 

 

We locate the first vertex, on the path from the representative node e.g. cLVT(6.5), we 

have just arrived to the root of the cLVT, that explicitly exists in the edge we want to follow 

cOV(6,9). In our case it happens to be same node that we are at, cLVT(6.5), so there is no need 

to locate an ancestor. This may be a senator, or any version in which the edge (6,9) was 

modified, created or deleted. We also find the descendant vertex in the cLVT that is also 

explicitly present in cOV(6,9), the edge we would like to follow. Note that the distance between 

these nodes will always be at most λ+1, due to fractional cascading. In our example that is 

cLVT(6.9). In case there is no such descendent we will only use the first node (cLVT(6.5)) and 

this case will be examined later. We follow both VEPR of cLVT(6.5) and cLVT(6.9) to nodes to 

cOV(6,9).5 and cOV(6,9).9 and from there we follow EVP to nodes cLVT(9.5) and cLVT(9.9).  

In order to locate node 7 in cLVT(9) or its representative we browse the path bottom-up from 

cLVT(9.9) to cLVT(9.5). As we are looking for version 7 we stop as soon as the key of nodes we 

are visiting is smaller or equal to 7 and this is node we are searching for and all its fields can be 

read. In our example we have an explicit node for version 7 in cLVT(9). 
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In the other case where there is not a descendent in cLVT(6) figure 3.11, there are two 

possibilities. If cLVT(9.5) is a leaf in cLVT(9) then cLVT(9.5) is the representative of the node we 

are searching. Otherwise we need to determine if node 7 in cLVT(9) belongs to the left or the 

right subtree of cLVT(9.5). In all cases the node in cOV that redirected us in cLVT(9) must be a 

leaf otherwise there must have been a descendent node in cLVT(6), which it should have been 

detected earlier. Next we cut in F (temporarily) the one or two incoming edges connecting to the 

node with same key value as the the node we are at, in our case node 5 in F since we are at 

cLVT(9.5), figure 3.12. 

 

Due to the constraint that we can not merge versions that share the same nodes and the 

fact that we have been redirected from a leaf in cOV all implicit and explicit nodes in the subtree 

of node cLVT(9.5) belong to the same component in F and are explicitly present in F (F includes 

explicitly all version nodes). Otherwise if this component in F is not connected this will indicate 

that we have merged versions that share the same nodes. 

 

Moreover due to fractional cascading and the fact that we have been redirected from a 

leaf in cOV, we know that cLVT(9.5) can only have a constant number of explicit descendants 

(we will calculate this in the next chapter) which is a function of λ. Next we need to locate the 

node (in our case node 7) we are searching in F and its representative or explicit node in the 

cLVT.  

 

 

Figure 3.10 Navigation Example II 
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F Link-cut Version Tree

1
RP: 

cLVT(10.1)

2
RP: 

cLVT(10.2)

3
RP:null

4
RP: 

cLVT(9.4)

5
RP: 

cLVT(10.5)

6
RP: 

cLVT(9.6)

7
RP: 

cLVT(10.6)

8
RP: 

cLVT(10.7)

Cutting temporarily these 
edges 

Isolated component in F we 
must graph search

 

 

Figure 3.11 Graph Search in an isolated component of F. 

 

But our example is simple to illustrate the complexity of such an act since in cLVT(9) and 

F, only a small number of nodes are present and node cLVT(9.5) has only one node as a 

subtree. In figure 3.12 we show a more complicated example to understand how this final act of 

searching can be performed in O(logn) time. 
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Figure 3.12 A more complicated navigation example 
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In Figure 3.12 suppose we are searching node 17 in this final act of navigation and the 

isolated component in F is rather large, hence a graph search is not indicated as it will be 

performed in more than logarithmic time, O(logn). Also suppose that node cLVT(9.5) is a 

senator and its subtree is fully occupied such as any possible insertion will cause another 

senator to be created. Hence Its subtree a balanced binary tree with size 7 due to λ value set to 

2. There are 2 possible paths in F where node 17 could be located, path between nodes 10 and 

20 and path between nodes 10 and 22 all other 4 paths shown in cLVT (5,10), (5,9), (9,14), 

(9,15) are excluded as 17 is not in their range. We binary search the nodes of these two paths 

as they appear in increasing order. In the first detection of node 17 we stop and we understand 

that node 10 in cLVT is the representative of node 17. From the above example we understand 

that with the help of the connected component in F and the bounded in size subtree of cLVT we 

need to perform a constant number of binary searches in certain paths in F.  

 

Hence, due to the link-cut and min-heap properties of F searching a node in our set of data 

structures can be achieved in O(logn) time.  

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 11:36:30 EET - 137.108.70.7



 
Confluent persistence for data structures in the pointer machine model.  

Panayiotis Vlastaridis AEM: 322         37 

 

Chapter 4 Complexity Analysis. 
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4.1 Size of a senator subtree. 

 

In the previous chapter during the operation of searching we saw that we may have to 

search for a node in the subtree of a senator in a cLVT. In the following Lemma we prove that 

the minimum size of a senatorial subtree is a function of λ. 

 

Lemma 2. Let v ∈  cLVT(d) be a senatorial version. If one of its subtrees contains i > 0 

senators, it has size at least 3i/2, provided λ ≥ 2. 

 

Proof. A node is a senator if and only if it has no senatorial ancestor at distance less 

than λ+1. In our examples we fixed λ to be 2, hence the distance between senators is 3 as 

shown in figure 4.1. The smallest subtree with the largest number of senators versus non-

senator ratio, is a complete balanced binary tree with i senators in the leaves (in our example i = 

2), connected to a path from v of length     ⌈       ⌉ (also in the figure below this 

equation equals to 2). The complete balanced tree has size larger or equal to 2i - 1 (in our case 

it has size of three). Hence the total number of nodes in the subtree is at least:          

⌈       ⌉, which is always larger or equal to 3i/2 i.e. ⌈       ⌉        ⁄ , provided λ ≥ 2. 

 

 

Figure 4.1. Lemma 2. Proof 
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4.2 The cost of adding a new explicit node in cLVT. 

 

We will prove the below lemma using the potential method [1]. 

 

Lemma 3.  Adding a new explicit version v in the local version tree cLVT(d) of a node 

d ∈  D takes O(1) amortized time and space. 

 

Proof. We set as potential function argument that whenever a new explicit version is 

added to a node d, we increase the potential of cLVT(d) by a constant γ. We want to prove that 

γ, a constant, upper bounds the amortized cost of node insertions in a cLVT.  

 

We set the cost of adding a non-senatorial node to be one unit of potential as we only 

need to create a new vertex. Hence, after an insertion of a non senatorial the overall potential 

has increased by γ-1.  

 

In calculating the cost of adding a senator we have to take into account that we may also 

need to add a new explicit version in every edge overlay cOV(d’, d), and a new explicit version 

in each cLVT(d’) where d’ are parent nodes of d . If Δ is the in-degree of node d, this means a 

2Δ extra insertions at most. Hence the increase in potential after a senatorial insertion is γ-1-2Δ. 

 

At the ith senator insertion the subtree has size at least 3i/2, proved in Lemma 2. Thus, 

the potential is at least 3i(γ-1)/2- 2iΔ after the insertion. If we set γ ≥ (4Δ+1)/3 , the overall 

increase in potential will be always greater or equal to zero. In the case senator creation is 

propagated to other cLVTs the above rule still holds in the other cLVTs.   
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4.3 Overall Performance. 

 

Lemma 4. Given a version v, deriving a new version takes O(log n) amortized time and 

space (either through a new branch or a confluent merge). 

 

Proof. We calculate the cost by summing up the costs of the following operations we 

perform each time a new version v is created: 

 

○ Firstly we add the new version v in V and in F in O(log n) time and O(1) space. 

Finding the place in V and F where the v must be placed can be done by binary 

search in case V is implemented as a sorted list. 

○ We must explicitly add v version in cLVT(d), where d is the root of the data structure 

at version v. From V we can easily access the previous version in cLVT(d) under 

which the new vertex is inserted at a constant distance. This new explicit version 

might be a senator, in which case we will have to propagate explicit versions in 

some neighbors of d. Lemma 3 declares that this can be done in O(1) amortized 

time and space. 

○ For a confluent merge operation, we need to find a lowest common ancestor and cut 

two edges in F. This due to the link-cut properties of F costs O(logn) amortized time.  

○ Finally perform the necessary additions in the corresponding cLVTs and cOVs which 

as shown in the Lemma 5 below can be done in O(log n) amortized time and space. 

 

Lemma 5. Creating or deleting an edge, or modifying any field of a node d in the data 

structure at version v takes O(log n) amortized time and space. 

 

Proof. Any operation in D will create a new version. According to the above Lemma 4 

this is done in O(log n) time. After creating a new version in V, F and cLVT(d), where d is the 

root of D at version v, we will perform the necessary modifications in the corresponding cLVTs 

and cOVs that we find after browsing through our structure which costs O(logn) as explained in 

our previous chapter, section 3.2. According to Lemma 3, adding nodes to cOV and cLVTs 

when necessary costs O(1) amortized time, as they consist in modifying a constant number of 

nodes, and adding a constant number of explicit versions, even if creation of senators is 

propagated to neighbor nodes. 
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Theorem. A data structure D with maximum in-degree maxdeg can be made confluently 

persistent using O(Ulog(maxdeg)) space and time, where U is the number of operations 

performed to create all versions of the structure. Each subsequent modification of the structure 

takes O(log n) amortized time and O(1) space. Browsing the structure costs O(log (maxdeg) log 

(n)) amortized time per edge traversed. This holds provided no confluent merge operation uses 

twice the same node. 

 

Proof. In Chapter 1 section 5 we showed how we can transform and maintain the 

structure so that the maximum in-degree is always bounded by Δ, for Δ ≥ 2. If we set λ = 2 and γ 

= 3, all lemmas hold. Any operation performed in D can be represented by a constant number of 

nodes and pointers in our set of data structures. Following a pointer between two nodes in our 

structure (d, d’) only implies to look, in the cLVT(d), for vertices in a O(λ)-neighborhood, which is 

achieved in O(log n) time; and using a constant number of pointers, from cLVT(d) to cLVT(d’) 

using cOV(d; d’). However our transformation for bounded in-degree in section 1.5 implies a 

O(log maxdeg) factor on following a pointer. 

 

Corollary for data structures with bounded in-degree by a constant. A data structure D 

with constant in-degree can be made confluent persistent using Θ(U) space, where U is the 

number of operations performed to create the structure. Each subsequent modification of the 

structure or new version created takes O(log n) amortized time and O(1) space. Browsing the 

structure costs O(log n) amortized time per edge traversed. This holds provided no merge 

operation uses twice the same node. 
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