

1

UNIVERSITY OF THESSALY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Master Thesis

“Study of the effect of optimizations on
OpenCL code when executed on different

heterogeneous architectures”

Authors

Theocharidis Konstantinos

Kalogirou Christos

Supervisor

Antonopoulos Christos, Assistant Professor

Committee Members

Bellas Nikolaos, Associate Professor

Potamianos Gerasimos, Associate Professor

Volos, July, 2013

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

2

Πανεπιστήμιο Θεσσαλίας

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μεταπτυχιακή Διπλωματική Εργασία

“Μελέτη επίπτωσης βελτιστοποιήσεων σε
κώδικα OpenCL κατά την εκτέλεση σε

διαφορετικές ετερογενείς αρχιτεκτονικές”

Συγγραφείς

Θεοχαρίδης Κωνσταντίνος

Καλογήρου Χρήστος

Επιβλέπων Καθηγητής

Αντωνόπουλος Χρήστος, Επίκουρος Καθηγητής

Μέλη Επιτροπής

Μπέλλας Νικόλαος, Αναπληρωτής Καθηγητής

Ποταμιάνος Γεράσιμος, Αναπληρωτής Καθηγητής

Βόλος, Ιούλιος, 2013

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

3

Ευχαριστίες

 Θα θέλαμε να ευχαριστήσουμε τους καθηγητές μας, κύριο Αντωνόπουλο Χρήστο, κύριο

Μπέλλα Νικόλαο και κύριο Ποταμιάνο Γεράσιμο για τη στενή συνεργασία τους και τη βοήθειά τους.

Επίσης θέλουμε να ευχαριστήσουμε τις οικογένειές μας και τους φίλους μας για τη στήριξή τους.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

4

Περίληψη

Η παρούσα διπλωματική εργασία μελετά την επίδραση διαφόρων βελτιστοποιήσεων σε

κώδικα OpenCL πάνω σε διαφορετικές ετερογενείς αρχιτεκτονικές. Το ενδιαφέρον της επιστημονικής

κοινότητας προς τις τελευταίες προέκυψε με τους περιορισμούς που έθεσε η κατανάλωση ισχύος και

η παραγωγή θερμότητας, με την παύση της ισχύος του νόμου του Moore.

Αρχικά, ο παράλληλος προγραμματισμός επιτυγχάνονταν μέσω multi-core επεξεργαστών,

many-core καρτών γραφικών, αλλά και άλλων επιταχυντών, όπως τα FPGAs. Το πρόβλημα που

δημιουργήθηκε όμως ήταν ότι κάθε μία από αυτές τις αρχιτεκτονικές είχε το δικό της

προγραμματιστικό μοντέλο και ο κώδικας χρειαζόταν να ξαναγραφεί για να είναι μεταφέρσιμος

ανάμεσα στις αρχιτεκτονικές. Το γεγονός αυτό οδήγησε στην δημιουργία των ετερογενών

συστημάτων και για αυτό το 2009, η Khronos έβγαλε το μοντέλο προγραμματισμού OpenCL. Το

OpenCL εγγυάται πως ο ίδιος κώδικάς τρέχει ορθά σε όλες τις αρχιτεκτονικές, αλλά δεν μπορεί να

εγγυηθεί τίποτα για την απόδοσή του. Συνεπώς, άρχισαν να διερευνούνται διάφορες τεχνικές

βελτιστοποίησης οι οποίες να είναι ικανές να προσαρμόσουν την απόδοση μιας αρχιτεκτονικής σε

αυτήν μιας άλλης.

Η προσπάθεια αυτή αποτέλεσε και το κίνητρο της εργασίας μας, στην οποία μελετούμε

διάφορες βελτιστοποιήσεις και διάφορα υπολογιστικά πρότυπα εφαρμογών για να βρούμε

συγκεκριμένα, ποιες τεχνικές βελτιστοποίησης ευνοούν ποια υπολογιστικά πρότυπα και μέσω ποιων

αρχιτεκτονικών γίνεται κάτι τέτοιο. Ιδιαίτερη σημασία έχει το γεγονός ότι πέρα από τα πειραματικά

αποτελέσματα που παρατίθενται, γίνεται ιδιαίτερη προσπάθεια στο να αιτιολογηθεί ο λόγος που

αυτά προέκυψαν.

Οι τεχνικές βελτιστοποίησης οι οποίες εξετάστηκαν ήταν οι α) Geometry, b) Vectorization, c)

Loops και d) Branches και οι εφαρμογές πάνω στις οποίες εξετάστηκαν ήταν οι lud, crc, needle, srad

και bfs. Οι εφαρμογές αυτές αποτελούν μέρος των 13 Dwarfs του Berkeley. Οι αρχιτεκτονικές οι

οποίες χρησιμοποιήθηκαν ήταν ένας Intel Xeon E5645, μία NVIDIA GeForce GTX480 και μία AMD

Cayman.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

5

Abstract

This master thesis studies the effect of different optimizations on OpenCL code when executed

on different heterogeneous architectures. The interest of scientific community towards the latter

arose with the saturation of Moore’s law. This happened as frequency scaling began to reach its limits

due to physical constraints such as power consumption and heat generation.

Firstly, the parallel programming achieved via multi-core CPUs, many-core GPUs and other

accelerator devices, like FPGAs. However, the problem was that each one of such architectures had its

private programming model and the code needed to be rewritten so as to be portable among

architectures. This fact led to the genesis of heterogeneous systems and for this reason, in 2009, the

Khronos consortium introduced OpenCL, a programming standard which guarantees functional, but

not performance portability among different architectures. Therefore, developers began to search for

optimizations, whose implementation, can adapt the performance of one accelerator device to the

same levels of another.

This searching stimulated our interest for this project, through which we evaluate various

optimizations and computational patterns in order to reveal which specific optimization techniques

benefit which certain computational patterns and on which certain architectures this happens. It is

very important that the underlying cause-result relation, for optimizations and parametric choices

improving or degrading the performance on a particular architecture, is also sought out.

The optimization techniques that examined were the a) Geometry, b) Vectorization, c) Loops

and d) Branches and the applications on which they are applied were a subset of the 13 Berkeley

dwarfs. These were the applications lud, crc, needle, srad and bfs. Last but not least, the architectural

devices that used were an Intel Xeon E5645 CPU, an NVIDIA GeForce GTX480 GPU and an AMD

Cayman GPU.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

6

Table of contents

Chapter 1 ... 8

Introduction ... 8

1.1 Contributions ... 9

1.2 Thesis Outline ... 10

Chapter 2 ... 11

Hardware Architectures .. 11

2.1 Intel Xeon E5645 .. 11

2.2 NVIDIA GeForce GTX480 .. 12

2.3 AMD Cayman architecture ... 16

2.4 Comparison of a GPU and a CPU ... 19

Chapter 3 ... 21

Basic Concepts of Parallel Computing and OpenCL .. 21

3.1 Parallel Computing ... 21

3.1.1 Flynn's Taxonomy .. 21

3.1.2 Levels of Parallelism .. 22

3.1.3 Processor Architectures.. 22

3.2 Open Computing Language (OpenCL) ... 24

3.2.1 Platform Model .. 24

3.2.2 Execution Model .. 25

3.2.3 Memory Model .. 27

Chapter 4 ... 28

The 13 Dwarfs ... 28

Chapter 5 ... 31

Related Work .. 31

Chapter 6 ... 34

Analysis of optimizations on dwarf benchmarks .. 34

6.1 lud.. 35

6.1.1 Analysis of lud_perimeter kernel ... 35

6.1.1.1 Data Dependencies .. 35

6.1.1.2 Basic code segment ... 36

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

7

6.1.1.3 Optimization Efforts and Results .. 37

6.1.2 Analysis of lud_internal kernel.. 47

6.1.2.1 Data Dependencies .. 47

6.1.2.2 Basic code segment ... 48

6.1.2.3 Optimization Efforts and Results .. 49

6.2 crc .. 66

6.2.1 Analysis of compute kernel .. 66

6.2.1.1 Data Dependencies .. 66

6.2.1.2 Basic code segment ... 67

6.2.1.3 Optimization Efforts and Results .. 68

6.2.1.3 Unfeasible Optimizations .. 79

6.3 needle .. 80

6.3.1 Analysis of needle_opencl_shared_1 kernel ... 80

6.3.1.1 Data Dependencies .. 80

6.3.1.2 Basic code segment ... 82

6.3.1.3 Optimization Efforts and Results .. 83

6.3.1.4 Unfeasible Optimizations .. 86

6.4 srad .. 87

6.4.1 Analysis of srad_cuda_1 kernel .. 87

6.4.1.1 Data Dependencies .. 87

6.4.1.2 Basic code segment ... 88

6.4.1.3 Optimization Efforts and Results .. 88

6.4.1.3 Unfeasible Optimizations .. 92

6.5 bfs .. 92

6.5.1 Analysis of kernel1 kernel ... 92

6.5.1.1 Data Dependencies .. 92

6.5.1.2 Basic code segment ... 93

6.5.1.3 Optimization Efforts and Results .. 94

Chapter 7 ... 99

Conclusion .. 99

References ... 103

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

8

Chapter 1

Introduction

 According to Moore's Law, the number of transistors on a chip roughly doubles every two

years. This law has stayed valid over the years by cramming more and more transistors into the same

core. As frequency scaling began to reach its limits due to physical constraints such as power

consumption and heat generation, the area of chip, known as “Dark Silicon” [13], which can’t be

powered at the same time with the others due to power limitations, started to increase dramatically.

It is characteristic that studies reveal that the amount of dark silicon in 22nm technology is around 20%

and it predicts it will be more than 50% at 8nm. Therefore, the question is, what is the point in scaling

down and increasing the number of transistors per chip if we can’t use them? This question led the

scientific community to focus on the idea of heterogeneous systems and parallel computing.

 The many-core CPU system, such as that of Intel i7 processor technology and the many-core

architectures that support general purpose programming on GPUs via appropriate programming

models, such as the CUDA (Compute Unified Device Architecture) programming model of NVIDIA, are

two fundamental paradigms that support parallelism. However, the interest for better performance

and parallelism has now led to heterogeneous computing, involving CPUs and other highly parallel

multi-core architectures, like GPUs and FPGAs. The aim of heterogeneous computing is to overcome

the problem of dark silicon by exploiting with the best manner the accelerator devices that participate

in the computation process. This can be done by assigning each task to the accelerator device that can

execute it faster and more power efficiently in comparison with the others. This can be derived from

the fact that some devices are more able to execute certain computational patterns than others and

the verification of this observation is one of the motivations of this thesis.

 Additionally, the arising problems of using different programming models on different

architectures pose also for heterogeneous systems. Rewriting the code for each device limits the

opportunities for remapping the code on a different architecture, therefore, in 2009, the Khronos [1]

consortium introduced OpenCL [2], a programming standard which supports programs that execute

across heterogeneous platforms including CPUs, GPUs, FPGAs and other accelerators. The key merit

of OpenCL is that it allows programmers to write code which is at least functionally independent of

the underlying architecture. It provides easy-to-use abstractions and a broad set of programming APIs

which are based on the C language.

 However, OpenCL guarantees functional portability but not performance portability. Though

OpenCL compliant, each architecture is designed according to specifications decided by its

manufacturer. This creates the problem of the same program exhibiting unpredictably different

performance on hardware with similar technical capabilities. The hardware can be from different

manufacturers or even different generations of the same model. Functional portability is necessary

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

9

but ensuring performance portability is also essential from a developer’s point of view.

 If an application written in generic, platform independent OpenCL code, is not fast enough to

be usable on a platform, then developers will prefer to program the application in the platform’s

native language or resort to platform-specific optimizations in OpenCL, which however, may limit

both the functional and mainly the performance portability of the code. Nevertheless, the application

might have to be written more than once for the application to work optimally on multiple platforms.

As this adds to undue overhead for the developers, a more feasible solution will be to optimize the

application individually for each platform. This method could be applied for exploring the OpenCL

optimization space. Since programs are guaranteed to be portable, developers could tune an OpenCL

program which was meant for one architecture and make it optimized for another without losing

correctness.

 Therefore, the goal of this thesis is to find out if there are specific standard optimizations

which are good for specific computational patterns and architectures. Such optimizations could be

applied automatically (maybe), alleviating the programmer from the burden of platform-specific

optimizations and enhancing code portability. This can be achieved by taking a subset of the 13

OpenCL dwarfs of Berkeley [4] and apply on them a set of optimizations while they are executing on

different architectures. Finally, an evaluation and analysis of these results aids in understanding one

the respective architecture in more detail and also helps in interpreting which form of computational

pattern is more suitable to be optimized for which accelerator device.

1.1 Contributions

 The main contribution of this thesis is identifying which optimization parameters prove

beneficial or not for the Intel CPU, AMD GPU and NVIDIA GPU devices that used, taking into account

the different computational and communicational patterns on which they are tested. Furthermore,

one more contribution is the finding of which of the afore-mentioned optimizations can keep the

performance portable among which devices.

 Moreover, another significant contribution is that the underlying cause-result relation for

optimizations and parametric choices improving or degrading the performance on a particular

architecture is also sought out. The results of the experiments are analyzed to provide a deeper

understanding of the underlying architecture and to realize the suitability of specific optimizations

applying on specific computational patterns and architectural devices.

 Additionally, along with the afore-mentioned contributions, further gains from this thesis are

that the programmers working with OpenCL will have a better understanding of how to develop

programs with optimal performance and that the identified parameters can be later incorporated into

a compiler which will then automatically apply the specific optimizations based on the target

architecture.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

10

 1.2 Thesis Outline

 This thesis is organized into seven chapters including this chapter. The organization is as

follows:

 Chapter 2: Presents the hardware architectures that used for the experiments and analyzes

the most fundamental architectural parts of them.

 Chapter 3: Gives a background perspective of the concepts and terminologies used throughout

this thesis. Parallel computing and OpenCL are some of the concepts which are discussed.

 Chapter 4: Presents the 13 Dwarfs and explains in brief their characteristics discussing the

scientific areas on which they are applied.

 Chapter 5: Discusses the related work. Prior work in exploration of optimization space,

benchmarks used, etc., are presented in comparison to the work done in this thesis.

 Chapter 6: Presents the experimental results and analyzes the HW/SW interactions on each

architecture resulting to the positive and negative effect of optimizations.

 Chapter 7: Concludes this thesis by presenting in detail the conclusions and take-home points

and discussing directions of future work.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

11

Chapter 2

Hardware Architectures

 This chapter discusses in brief the hardware was used for the experiments. We focus on the

characteristics that are more relevant to our study. They were a CPU and two GPUs, an Intel Xeon

E5645, a NVIDIA GeForce GTX480 and an AMD Cayman.

2.1 Intel Xeon E5645

 The CPU was used for the experiments belongs to Intel Xeon 5600 family and more specifically

its name is Intel Xeon E5645 [9], [10]. Its architecture codename is Westmere and is built in 32nm.

The following Figure 2.1 shows how this processor is organized.

Figure 2.1: The die of the Intel Xeon E5645 [9]

The package contains six cores and each core can run two threads simultaneously if possible,

using the Hyperthreading Technology. This means that a maximum number of twelve threads running

simultaneously are feasible, if the two threads of a core do not have to share common resources of

this core. Otherwise the maximum number of threads is six, one in each core. The standard frequency

of the processor is at 2,4GHz but under heavy workload can reach the frequency of 2.67GHz. Also the

package contains a Memory Controller with max memory capacity support of 288GB and max

bandwidth of 32GB/s.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

12

Like all modern processors, the E5645 has a cache memory with different levels. There are 3

levels of cache. The first level is separate for each core with a capacity of 32KB. The second one is also

separate for each core with a capacity of 256KB. The third and last one is the biggest reaching the

capacity of 12MB. As it is shown in the picture, is a big part of the chipset and is common for all

processors. Its position on the die is crucial and is designed next to the cores for low latency access.

This processor like his predecessors embeds some instruction sets known as SSE. It provides

the latest packages the SSE4.1 and SSE4.2 which are single instruction multiple data (SIMD)

instructions. The SSE4.1 adds instructions that improve compiler vectorization and provides a hint

that can improve memory throughput when reading from uncacheable WC memory type. The SSE4.2

provides a rich set of string and text processing capabilities that traditionally required many opcodes.

2.2 NVIDIA GeForce GTX480

 Unlike a central processor, a graphic card processor has a totally different architecture. The

graphic card that is presented is the NVIDIA GeForce GTX480 [11] using the Fermi architecture.

The block diagram of Fermi is shown in Figure 2.2. Fermi’s lithography is in 40nm. A Fermi GPU

contains 15 streaming multiprocessors of 32 CUDA cores each. Each multiprocessor can manage up to

1.536 threads meaning that we can have 23.040 threads in flight (1.536 threads * 15 multiprocessors).

These threads cannot run concurrently but it is useful to have so many threads in order to use

another warp for computations when the current warp is accessing the memory. We can run

concurrently up to 480 threads (32 CUDA cores * 15 streaming multiprocessors).

Figure 2.2: Fermi’s block diagram [11]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

13

 The GPU uses GDDR5 memory which is partitioned in six channels. Each channel’s interface is

64 bit and the memory’s interface is 384 bit. Fermi can support up to 6GB of GDDR5 RAM and GTX480

has 1536MB partitioned in six chipsets. The host interface is responsible for the connection of the

CPU to the GPU via PCIe. The GigaThread global scheduler distributes thread blocks to SM thread

schedulers.

The next level is called streaming multiprocessor (SM) and is organized like in Figure 2.3. Each

multiprocessor has 32 CUDA cores designed to execute 32 instructions from a bundle of 32 threads,

which NVIDIA calls a warp. The cores of a SM also share the registers, the caches, the local memory,

and the load/store units (LDST) of their own SM. There are 16 LDST units in each multiprocessor

allowing source and destination addresses to be calculated for sixteen threads per clock. The special

function units (SFUs) handle complex math operations, such as square roots, reciprocals, sines, and

cosines. Each SFU executes one instruction per thread, per clock.

Figure 2.3: Fermi’s SM [11]

 The smallest compute unit is called CUDA core and it is shown in Figure 2.4. It contains a

pipelined floating-point unit (FPU), a pipelined integer arithmetic logic unit (ALU), some logic for

dispatching instructions and operands to these units, and a queue for holding results. It does not have

its own register file or L1 cache like CPUs. It does not even have a load or store unit to access memory.

A CUDA core incorporates the new IEEE 754-2008 floating-point standard, providing the fused

multiply-add (FMA) instruction for both single and double precision arithmetic, improving the over a

multiply-add instruction (MAD) performance by doing a multiplication and addition with a single final

rounding step.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

14

Figure 2.4: Fermi’s CUDA core [11]

 The older GPU generations were designed for graphic applications and there was not a need

for a high double precision performance. But HPC applications need double precision arithmetic.

Fermi is designed specially to offer unprecedented performance in double precision. It can perform

up to 16 double precision fused multiply-add operations per SM per clock.

 Fermi also uses a model of dual-issue, as shown in Figure 2.5, to achieve peak hardware

performance. Each SM features two warp schedules and two instruction dispatch units. This allows

two warps of a SM to be executed concurrently. The schedulers select two warps and issue one

instruction from each warp to sixteen cores of this warp. Warps execute independently and the

schedulers do not need to check for dependencies from within the instruction stream. The dual-issue

model can execute two integer instructions, two floating instructions, or a mix of integer, floating

point, load, store and SFU instructions. However, double precision instructions do not support dual

dispatch.

Figure 2.5: The dual issue model [11]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

15

 The more recent graphic cards have also different cache levels like processors because of the

general purpose C or C++ programs they execute. Traditional GPU architectures support a read-only

‘‘load’’ path for texture operations and a write-only ‘‘export’’ path for pixel data output, an approach

that is not appropriate for general purposes programs. The Fermi architecture addresses this

challenge by implementing a single unified memory request path for loads and stores, with an L1

cache per SM multiprocessor and unified L2 cache that services all operations. The Fermi’s memory

hierarchy is shown in Figure 2.6.

The first level of Fermi consists of the Shared Memory and the L1 Cache and is shared by the

CUDA cores of a multiprocessor but its multiprocessor has its own Shared Memory and L1 Cache. The

total capacity of the first level is 64KB. It is configurable and the developer can choose either 16KB of

Shared memory and 48KB of L1 Cache or 48KB of Shared memory and 16KB of L1 Cache.

 The second level is the L2 Cache. The capacity of this level is 768KB, is shared by all the

streaming multiprocessors and services all load, store and texture requests. L2 Cache shares data

efficiently across the GPU. In the block diagram of Fermi it is seen that the L2 Cache is wisely put in

the center of the chipset. The distance of the L2 Cache is the same for all the multiprocessors and at

the same time is very close to them for low latency access.

Figure 2.6: Memory hierarchy of Fermi [11]

 Fermi also offers faster atomic operations. Atomic memory operations are important in

parallel computing. Fermi secures that atomic operations such as add, min, max and compare-and-

swap are performed without the interruption by other threads. These atomic operations performance

is up to 20x faster than the previous NVIDIA’s generations due to a combination of more atomic units

in hardware and the addition of L2 Cache.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

16

 Another important improvement is the technology of the Gigathread Thread Scheduler. This

scheduler is responsible for distributing blocks to various SMs. Fermi’s scheduler provides greater

thread throughput, dramatically faster context switching, concurrent kernel execution and improved

thread block scheduling. Context switch is up to 10x faster than previous generation. The concurrent

kernel execution is shown in Figure 2.7. This improvement allows small kernels of the same

application to run concurrently in order to achieve a better GPU utilization.

Figure 2.7: Gigathread Thread Scheduler [11]

2.3 AMD Cayman architecture

 The second graphic card we used was an AMD Cayman [12] and its block diagram is shown in

Figure 2.8. Cayman packs up in 24 cores, which AMD calls a “SIMD” and are tuned up to 0.88GHz and

uses lithography of 40nm. Each core is a 16-wide SIMD processor and each SIMD lane is a 4-wide

VLIW. So, there are totally 64 execution units in each core. NVIDIA calls a bundle of 32 threads a warp

and these 32 threads must execute the same instruction per cycle. A Cayman has to execute the same

instruction for 64 threads and AMD calls it a wavefront.

 Each SIMD can have up to 8 work-groups in-flight. Each work-group is 1 or 4 wavefronts

meaning the maximum number of wavefronts is 32 for a SIMD and when the dispatch processor

schedules two wavefronts for execution in a SIMD, they will run to completion. However, the actual

number of wavefronts will depend on the resources needed such as registers and local data share.

Each SIMD has 16K registers which have to share between 1-32 wavefronts. These registers hold four

32-bit values, so it is critically important to hold data packed in 128-bit chunks.

 Cayman includes two dispatch processors. They are responsible for managing the executing

kernels and scheduling wavefronts onto the cores. Each dispatch processor is responsible for the half

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

17

of the SIMDs. Also each dispatch can launch 248 wavefronts in-flight. That means that we can have

496 wavefronts with 64 work-items each. So there can be 31.744 work-items in-flight across GPU at a

given time.

Figure 2.8: Cayman’s block diagram [12]

The Cayman’s VLIWs have been fundamentally re-designed in order to match with general

purpose workloads. Figure 2.9 shows the new architecture of a SIMD. Cayman’s VLIW enhances four

pipelines the XYZW pipelines to handle all the operations. AMD’s VLIW pipelines are a multi-precision,

staggered design that can bypass results between the pipelines. The operations in a VLIW bundle can

be independent like a 4-wide SIMD, but this is not necessary.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

18

Figure 2.9: A Cayman’s SIMD [12]

 The VLIWs are statically scheduled. In contrast with NVIDIA‘s SM design which requires

scheduling between the two issue ports. Fermi has to handle the contention for the shared load-store

unit and the special function unit and also executing 64-bit instructions across both execution

pipelines. AMD‘s approach burdens the compiler because it must find substantial instruction level

parallelism (ILP) within each work-item. It is more difficult to achieve peak performance on AMD GPUs

because static scheduling is less flexible.

 One of the biggest problems when programming on GPUs is the bandwidth of the PCIe.

Although Cayman uses PCIe2.1 and not PCIe3.0, has managed to achieve faster data transfers through

PCIe. The predecessors were using two DMA controllers, each one controlled transfers in a single

direction. The Cayman DMA controllers are both bidirectional, which increases the realizable

bandwidth for the PCI-Express link.

 Like the Fermi architecture Cayman has a similar memory hierarchy too. AMD makes extensive

use of two explicitly addressed memory structures and separate read and write paths, each with

specialized caches. It separates the write and read data paths for improving performance, but

achieving coherence is very expensive.

 The first level memory cache is in the SIMD and is called Local Data Share (LDS). It is 32KB and

is exposed through the OpenCL and Direct Compute specifications, which require a 16KB and 32KB

array. This level is shared only by the work-items of a work-group. LDS is a 32 way banked structure

and includes bank conflict detection serializing the access to each bank. So, N accesses in the same

bank means that the bandwidth will be reduced by a factor of N.

 The second level memory is the Global Data Share (GDS). It is 64KB and is shared by the entire

GPU. It is similar to LDS but it is used for the communication for an entire kernel and not a work-group.

It is also 32 way banked structure and is not a part of a SIMD. It is a globally shared structure and

available to each SIMD. The GDS is a structure that does not correspond to anything in the OpenCL or

DirectCompute specification unlike the LDS.

 Cayman also offers two levels of non-coherent texture caches which are read-only memories.

AMD uses virtual memory addresses and the Texture Memory Unit (TMU) is responsible for translate

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

19

these addresses for accessing the texture cache. The L1 cache memory is 8KB and is organized in 64B

lines, so that aligned accesses in each quarter wavefront will target a single cache line. This can

achieve a performance of 1.3TB/s.

 Maximizing the bandwidth helps the GPUs to hit high performance. One of the keys for

maximizing bandwidth is memory coalescing. Memory coalescing means grouping together aligned

reads or writes that have good locality. Each coalesced memory access can use a single address and

request, while moving many pieces of data. AMD uses two levels for exploiting locality. The first level

is maximizing the utilization of each 128-bit register, which can hold four 32-bit data values. The

second level of locality is coalescing together 4 different 16B accesses into a single cache line access.

 The last level of cache memory is the L2 cache. The L2 cache is shared by all the SIMDs and is

512KB. The L2 is partitioned with a 64KB slice for each of the 8 GDDR5 memory channels. These slices

can read a 64B line per cycle achieving a bandwidth of 450GB/s to the L1 caches and L2’s intent is to

exploit locality of data too.

 Each memory channel uses a write combining cache that multiple writes are coalesced to a

single cache line into one transaction. The WCCs also buffer up many writes so that they can be

performed in a single batch and achieve maximum bandwidth. Simple stores can proceed from the

WCC to the memory controllers. AMD uses the term FastPath for that. However, more complicated

memory accesses go through additional hardware and require extra latency and bandwidth, along

what AMD terms the CompletePath.

 The highest level in memory hierarchy is the GDDR5 memory. The memory controllers are 64-

bits wide and drive two 32-bit GDDR5 channels. There are 8 channels for the communication with the

graphics memory. The memory controller’s intent is to maximize bandwidth via memory coalescences

and write buffering.

2.4 Comparison of a GPU and a CPU

 A GPU is similar to a CPU if they are considered as a compute device. But there are a lot of

differences between their architectures.

 The first difference is the way they like to execute instructions. A GPU emphasizes massively
threaded throughput and SIMD performance, rather than the latency of a single instruction stream. A
CPU is clocked very higher than a GPU and is good at executing the instructions single-threaded. The
higher clock speed helps them to compensate for the lower number of cores. On the other hand a
GPU is not efficient in a serial code.
 The second difference lies in the control unit. Each core of a CPU has its own control unit and

can run independently from the others, meaning that each core can execute different blocks of

instructions at a given time. The cores of a GPU cannot do that. There is a control unit in each SM or

SIMD. So, the cores of a SM or a SIMD have to execute the same instructions in parallel.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

20

 There is also a difference in caches. A CPU is designed to have many levels of cache memory

and the last level has usually a big capacity. Since later years GPUs did not use caches, they started to

use caches when it was found that they are useful for general purpose applications. Latest

generations have also different levels of cache memory but they do not have so many levels as a CPU.

Also they have smaller cache memories than CPUs and some GPU architectures, as the Cayman have

read-only caches.

 Another difference is that GPUs usually have vector processors which do not have advanced

features such as branch prediction, and out of order execution. This enables GPUs to have much

higher number of computational units (see Figure 2.10) due to the lesser complexity and the larger

space available on the die. CPUs however have such advanced features since they are designed for

general-purpose computation.

 Last but not least, one very important difference between them is the context switching. On

GPUs, thread context switching is implemented in hardware, which enables it to switch between

thousands of threads very quickly. CPUs depend on the operating system to take care of context

switching and this is much slower.

Figure 2.10: CPUs consist of a few number of cores (2 to 6), whereas GPUs

 consist of hundreds of cores

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

21

Chapter 3

Basic Concepts of Parallel Computing and OpenCL

3.1 Parallel Computing

 In this section, fundamentals of parallel computing will be presented.

 Dual-core and quad-core processors on CPUs, general-purpose GPU computing and more

recently, heterogeneous computing are the most basic forms of parallelism. In heterogeneous

computing, tasks are executed in parallel on CPUs, GPUs, FPGAs and other devices obtaining

unprecedented levels of performance.

3.1.1 Flynn's Taxonomy

 According to Flynn’s taxonomy [3], architectures are classified based on the presence of single

or multiple streams of instructions and data. There are four classifications as listed in the Figure 3.1.

The descriptions are provided below.

SISD: An architecture in which a single processor executes a single instruction to operate on data

stored in a single memory.

SIMD: An architecture in which multiple processing elements execute the same operation on multiple

data simultaneously.

MISD: An architecture in which multiple processing elements perform different operations on the

same data. This can be seen in a pipeline architecture where the same data moves along a pipeline

and different operations are performed on it.

MIMD: An architecture in which different processing elements perform different operations on

different pieces of data. The data can be stored in a shared memory or a distributed memory.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

22

Figure 3.1: Flynn’s Taxonomy classifies architectures into four categories based

 on the presence of single or multiple streams of instructions and data [3]

3.1.2 Levels of Parallelism

 In this section, the three levels of parallelism are introduced, namely, instruction-level

parallelism, task-level parallelism and data-level parallelism.

Instruction-level Parallelism: In instruction-level parallelism (ILP), more than one instruction is

executed during a single clock cycle. Though the program to be executed might be following a

sequential execution model, various micro-architectural techniques such as out-of-order execution or

pipe-lining can be applied to exploit ILP.

Task-level Parallelism: In task-level parallelism, each processor executes a different thread or process

on the same or different data. For e.g., in a dual core processor, two different cores can execute two

different threads at the same time. If the threads are part of the same process, the data being worked

upon can be the same. Task-parallelism emphasizes on distributing the process or thread across

parallel processing nodes.

Data-level Parallelism: In data-level parallelism, each processor executes the same thread or process

on different data. For e.g., adding two vectors can be done in a single clock cycle if there are as many

processors as the number of additions to be performed. This model is in sync with the SIMD model.

Data-parallelism emphasizes on distributing the data across parallel processing nodes.

3.1.3 Processor Architectures

 A multi-processor system, as its name suggests is a single computer system which has multiple

processing nodes. Multi-processors can be classified based on their execution model. Various

processor architectures which form the basis and are implemented in many of the current CPUs and

GPUs are presented along with a discussion of their features and shortcomings.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

23

Vector processors: In vector processors, there are multiple, pipelined functional units which has the

capability to execute single instructions on vectors or arrays of data. All the functional units execute

the instructions in lock-step fashion on the local data. According to Flynn’s taxonomy, vector

processors follow the SIMD model. Vector processors are very power-efficient as the units consist of

simple execution units. There is no instruction checking done at runtime and no other complex

features implemented in the processor. Taking the simplicity into account, the space required for the

units on the die is also considerably smaller, thereby leading to higher number of units and more

power efficiency.

VLIW processors: The VLIW architecture takes advantage of ILP, by executing multiple instructions in

parallel but the difference being that the schedule of instructions is determined when the program is

compiled. It has multiple execution units like vector processors, but it is capable of executing different

instructions at the same time. The VLIW architecture is more power hungry than vector processors.

Unlike super-scalar processors, the schedule of instructions is statically determined by the compiler,

rather than by the processor.

Super-scalar processors: In super-scalar processors, multiple functional units are available on the

processor so that multiple instructions can be executed per clock cycle. Data dependencies between

instructions are dynamically checked at runtime for doing this. Super-scalar processors are different

from multi-core processors where the redundant units are entire processors and parallelism is

achieved by executing one thread per core. Though super-scalar processors process multiple data

items in a single clock, they do not process multiple data items for a single instruction. Super-scalar

processors are much more power-hungry than VLIW and vector processors due to their dynamic

behavior. The units are more complex due to added functionalities such as out-of-order execution,

branch prediction, etc.

Multi-core processors: Multi-core processors contain multiple independent cores on a single chip

(also known as chip multiprocessor). Though the cores are independent, they do share some

resources such as cache memories, main memory between them. Sharing cache memories aids in

exhibiting task-parallelism where the cores can work on the same data simultaneously. In addition,

implementing multiple functional units (such as ALUs) in a single core aids in data-parallelism.

According to Flynn’s taxonomy, it follows the MIMD model. Multi-core processors can implement

super-scalar or vector architectures or even a hybrid of both for added performance benefits. Most

real programs get maximum benefit with a mixture of both data-parallelism and task-parallelism.

Most of the processors being manufactured now, try to support a combination of these

configurations.

Many-core processors: Many-core processors are similar to multi-core processors but with a much

higher number of cores. It is not required that all the cores have to be all on a single chip, but all the

cores will be in a single processor package. They are designed for a higher degree of parallelism,

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

24

supporting advanced levels of scalability. Many-core processors follow the MIMD model. They usually

consist of simpler elements such as vector processors, whereas multi-core processors usually consist

of more complex elements such as super-scalar processors. Each core in many-core processor is

simple, small, and independent from each other. Typically, a multi-core processor will have fewer

cores (two to six) whereas many-core processors usually have 32 or more cores.

3.2 Open Computing Language (OpenCL)

 OpenCL is an open industry standard maintained by the Khronos Group for writing programs

that execute across heterogeneous computing devices such as CPUs, GPUs and other processors. The

OpenCL framework provides a runtime system, libraries and a programming language which is an

extension to the standard C language (based on C99). This helps programmers to develop portable

general-purpose software which can take advantage of all the different platforms that support

OpenCL.

 The write once, run anywhere behavior of OpenCL is the one major property which sets it

apart from other such languages for the GPU. During runtime, the OpenCL code is compiled just-in-

time for the particular architecture and hence the programmer needs not bother about which target

architecture the program will be running on, as long as it supports OpenCL. OpenCL supports both

data-parallel and task-parallel programming models, as well as the hybrid of them. Primarily driving

the design is the data-parallel model. It also provides a broad set of programming APIs using which

developers can query and identify the actual device capabilities and create efficient code.

3.2.1 Platform Model

 The OpenCL specification defines a platform as a host connected to multiple OpenCL devices

which are composed of a number of compute units. Compute units can be further divided into a

number of processing elements. Figure 3.2 illustrates how all of these devices interact together. A

brief description for each is provided below.

Host: A host usually consists of a CPU and is responsible for running the host application. The host

application runs natively on the host and submits commands to the OpenCL device. The commands to

be submitted are queued up in a data structure called the command queue which is then scheduled

onto the device. Execution of kernels, reading and writing of memory objects are examples of some of

the commands which are submitted.

Devices: A device can correspond to a multi-core CPU, a GPU, a FPGA, a APU etc. A single device is

composed of a number of compute units, such as the individual cores in a multi-core CPU.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

25

An aspect to be noted of this model is that, provided the host device also supports OpenCL,

programmers can partition a program into serial code and parallel code which are best suited for the

CPU and the GPU, respectively. Thereby, the execution can go back and forth between the devices

making the best utilization of them.

Figure 3.2: The OpenCL Platform Model specifies a host which is usually

a CPU connected to multiple OpenCL compute devices such as GPUs or APUs.

The compute devices consist of a collection of compute units (cores) which are

 further composed of multiple processing elements [2]

3.2.2 Execution Model

 In this section, the OpenCL execution model is presented. Before talking further about the

execution, the various terms used are introduced.

Program: An OpenCL program consists of one or more kernels and auxiliary functions which are used

by the kernels. Programs are written in an OpenCL-C language. The language has extensions which are

for e.g., specifying memory spaces and also additional keywords for specifying a function as a kernel

function. The OpenCL compiler which is a part of the runtime compiles programs to create binaries

which can be executed or saved for later loading.

Kernel: The kernel is a function in an OpenCL program that is executed on a device. The return types

of kernels are always void as all inward and outward communication is done through the memory. All

the necessary operations such as copying of memory objects, setting kernel arguments etc., required

for the kernel execution are managed by the host application.

Work-Item: Instances of the kernel are executed in parallel on the compute units of the device. The

same kernel code is executed by all the work items concurrently, but the specific path taken can vary

based on the algorithm. Work-items are identified in two ways - one is by using a global ID and the

second way is through a combination of a local ID and work-group ID, which will be explained in detail

in the next segment.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

26

Work-Group: As mentioned before, a collection of work-items are assigned for execution on a single

compute unit. This collection of work-items is called as a work-group. When a kernel is enqueued for

execution, two parameters pertaining to work-groups can be specified, which are the global work size

and the local work size. The global work size is the total number of kernel instances or work-items

that are to be started for computation, whereas the local work size is the number of work-items that

are assigned to one work-group. So the number of work-groups will be always equal to the global

work size divided by the local work size. If the local work size is not specified, then the OpenCL

implementation will decide how to break down the global work-items into appropriate work-groups.

In case there are more work-groups than the available number of compute units, the work-groups will

be scheduled one by one on the compute units. A compute unit will always concurrently finish

executing the work-items in one work-group before executing work-items from another work-group.

 In OpenCL, the execution model is based on parallel execution of the kernel, with the process

involving both the host and the compute device. The steps involved in kernel execution are listed in

the Figure 3.3. The Figure 3.4 shows how each of the steps presented in the Figure 3.3 relate to the

host and the compute device. Although the host is required for the initial setup of the execution

process, the compute device executes the kernel independent of the host and so the host can

perform other computations in the meantime. The only way for the host and the compute device to

communicate is by copying data from the host memory to the device memory and vice versa.

Debugging OpenCL programs are therefore quite difficult as the only way to ensure computation is

done correctly is to copy the data back to the host and then verify the output.

 Figure 3.3: The steps involved in an OpenCL Figure 3.4: The interactions between the host and

 kernel execution [2] compute device for a kernel execution [2]

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

27

3.2.3 Memory Model

 In this section, the memory model of OpenCL is presented. The memory in OpenCL devices is

classified into five regions - global, constant, texture, local and private. The task of deciding the region

to store data is solely up to the programmer. Figure 3.5 shows the memory hierarchy as defined by

OpenCL. A brief description of each of the memory regions is provided below.

Figure 3.5: The OpenCL Memory Model defines four regions of memory accessible to

 work-items while executing a kernel. The global memory in the compute device is

 accessible to the host also [2]

Global Memory: The global memory region is the main means of communication between the host

and the device. The host can create read/write buffers on the global memory of the device using

commands. It is accessible to all the work-items and a programmer can use the global address space

qualifier in a kernel to denote that an object is to be stored in global memory. Though it is usually the

largest space available on the device, the access latency is also much larger compared to the other

regions.

Constant Memory: The constant memory is a part of the global memory, but the difference between

them is that while the host can read and write into this region, the kernel has read-only access. The

constant address space qualifier is used to denote that an object is to be placed in constant memory.

Local Memory: The local memory is named as such as it is the memory that is available only to a local

work group. In other words, the local memory is made private to a compute unit. So the compute

units local memory will be accessible to all the work-items that are part of the same work-group. The

space available is much smaller, but has low latency compared to the global region. Using the local

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

28

memory, work-items in a work-group can share data among them quickly and synchronize their

execution. The local address space qualifier is used to denote that an object is to be placed in local

memory.

Private Memory: This memory region is accessible to only a single work-item. This is the fastest and

the smallest memory that is available to a work-item. The private address space qualifier is used to

denote that an object is to be placed in private memory.

Chapter 4

The 13 Dwarfs

 The increasing proliferation of heterogeneous computing platforms presents the parallel

computing community with the challenge of evaluating the efficacy of such parallel architectures,

particularly given the diversity of hardware architectures and their associated (non-interoperable)

programming environments.

 OpenCL and 13 Dwarfs or OCD for short [4] is a benchmark suite that aims to provide a future-

proof software methodology to enable the evaluation of hardware innovation across a variety of

architectures. To this end, application kernels following computation and communication patterns are

selected from the Berkeley 13 Dwarfs. The focus is on these because they offer a diverse set of

patterns, each of which is relevant across a variety of domains. For example, the n-body method is

relevant across physics, chemistry, and a variety of other domains.

 Overall, it is believed that OpenCL and the 13 Dwarfs will provide a useful baseline for the

evaluation of platforms and runtime systems across application domains. In the future, representative

applications for each dwarf will be prepared hoping that in this way a set of implementations will be

created which may be used to make generalizations about the higher-level patterns and the

effectiveness of a given platform for executing a given pattern.

 An indicative brief description of each of the 13 Berkeley dwarfs follows:

Dense linear algebra: Consists of dense matrix and vector operations. It has a high ratio of math-to-

load operations and a high degree of data interdependency between threads.

Application areas: Linear Algebra (LAPACK, ATLAS), Data Mining (Streamcluster, K-means)

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

29

Sparse linear algebra: Solves the same problem as dense linear algebra but has matrices with few

non-zero entries. To reduce space and computation, such algorithms store and operate on a list of

values and indices rather than proper matrices, resulting in more indirect memory accesses.

Application areas: Finite Element Analysis, Partial Differential Equations

Spectral methods: Transform data from/to either a spatial or temporal domain. The execution profile

is typically characterized by multiple stages of processing, where dependencies within a stage form a

“butterfly” pattern of computation.

Application areas: Fluid Dynamics, Quantum Mechanics, Weather Prediction

N-body methods: Calculate interactions between many discrete points and are characterized by large

numbers of independent calculations within a timestep, followed by all-to-all communication

between timesteps.

Application areas: Molecular Modeling, Molecular Dynamics, Cosmology

Structured grids: Organize data in a regular multidimensional grid, where computation proceeds as a

series of grid updates. For each grid update, all points are updated using values from a small

neighborhood around each point. The neighborhood is normally implicit in the data and determined

by the algorithm.

Application areas: Image Processing (SRAD), Physics Simulations (HotSpot)

Unstructured grids: Possess data structures, e.g., linked list of pointers that keep track of the location

and neighborhood of points which are used to update the location. Like sparse linear algebra, updates

typically involve multiple levels of memory reference indirection, as an update to any point requires

first determining a list of neighboring points and then loading values from those neighboring points.

Application areas: Computational Fluid Dynamics, Belief Propagation

MapReduce: Captures the repeated independent execution of a map function and results are

aggregated at the end via a reduce function. No communication is required between processes in the

map phase, but the reduce phase requires global communication.

Application areas: Distributed Searching, Sequence Alignment, Parallel Monte Carlo Simulations

Combinational logic: Exploits bit-level parallelism in order to achieve high throughput. Such a

workload involves performing simple operations on very large amounts of data.

Application areas: Encryption & Decryption, Hashing

Graph traversal: Visits and evaluates a number of objects in a graph. Such algorithms typically involve

a significant amount of random memory access for indirect lookups. The bottleneck is generally due

to access latency rather than access bandwidth.

Application areas: Searching, Sorting, Collision Detection

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

30

Dynamic programming: Solves a complex problem by solving a series of simpler subproblems.

Application areas: Graph Problems (Floyd's All-Pairs shortest path, Bellman - Ford algorithm),

 Sequence Alignment (Needleman – Wunsch, Smith - Waterman)

Backtrack & branch-and-bound: Approaches generally search a very large search space to find a

globally optimal solution. Because the search space is so large, an implicit method is needed to prune

the search space to make this approach computationally tractable.

Application areas: Artificial Intelligence (N – Queens), Integer Linear Programming,

 Boolean Satisfiability, Combinatorial Optimization

Graphical models: Map variables into nodes and conditional probabilities into edges, e.g., Bayesian

networks.

Application areas: Computational Biology (Sequence homology search), Machine

 Learning (Hidden Markov Models), Embedded Computing (Viterbi decode)

Finite state machines: Capture a system whose behavior is defined by states, transitions defined by

inputs and the current state, and events associated with transitions or states. These dwarf algorithms

are highly dependent on conditional operations and interdependent data, which are also commonly

found in graph traversal.

Application areas: Video Decoding, Parsing, Compression,

 Data Mining → Reverse Engineering the Brain

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

31

Chapter 5

Related Work

 In this section some indicative related works will be presented about the performance

portability of OpenCL on heterogeneous architectures.

 There are few publications that have studied the performance portability of OpenCL on

heterogeneous architectures. In [5] Rul et al. have studied the performance portability of OpenCL.

The study has been done on four different architectures, including an Intel Core i7 720 - QM (a 1.60

GHz quad-core), an NVIDIA Tesla c1060, an ATI FirePro V8700 and a Sony/Toshiba/IBM Cell

Broadband Engine (Playstation 3). For the experiments, three Parboil benchmarks (cp, mri-fhd, mri-q)

and three optimization parameters (loop unrolling, vectorization, number of threads in a thread block)

were used.

 They found that when optimizing for CPUs, loop unrolling is not an important optimization for

these kernels, but loop unrolling is crucial for good performance on Cell. For Tesla, the thread block

size is the most important parameter, while big loop unrolling factor degrades performance on Tesla.

Also, while the Tesla and FirePro respond largely similarly to the optimizations, the FirePro is much

more sensitive to parameter values for the optimizations and it has different optimal parameter

values than the Tesla. Furthermore, when adding vectorization, this degradation becomes even larger

and the optimal unrolling factor becomes smaller.

 They conclude that the impact of the optimizations varies hugely between architectures,

confirming the need for architecture-specific optimization and that the OpenCL does not support

performance portability. However, they have only observed the behavior of the benchmarks and have

not looked into the causes for the behavior. In this thesis, this has been improved upon by explaining

the rationality behind the behavior of the benchmarks for each architecture.

 Another indicative work about the OpenCL portability and performance on software

heterogeneous architectures is a master thesis [6]. In this survey, well-known image-processing

algorithms (binarization, dct, convolution, sum, histogram) are evaluated on three different

architectures (NVIDIA Fermi GTX 470, AMD Evergreen HD 5850, Intel Core Nehalem i7-930).

 The author has shown that for GPUs the basic optimizations that are useful someone to

implement on OpenCL code are the maximization of parallel execution, the memory access coalescing,

the local memory usage and the loop unrolling. The architecture of the AMD GPU is comparable to

the architecture of the NVIDIA GPU, but one significant optimization parameter that has extra the

AMD is the VLIW packing. Efficient use of AMD GPU hardware requires that the kernel contains

enough parallelism to fill all VLIW slots. This can be achieved in two ways, by loop unrolling or by

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

32

using explicit vector data types.

 On the other side, this thesis states that for OpenCL to reach hardware efficient

implementations on a CPU a different mapping as compared to the GPU implementations is required

and some important optimization techniques are the maximization of parallel execution and the

exploitation of cache hierarchy. The available parallelism on a CPU is limited to the width of the vector

units inside a core multiplied by a relatively small number of cores, while for the cache hierarchy to

improve the performance of a program, the program should contain spatial and/or temporal locality.

Moreover, it is recommended that in order to improve the performance on an Intel CPU, one must

avoid to use local memory and barrier synchronization instructions, offered by OpenCL. Local memory

for CPUs is mapped onto a region of the global memory and it isn't low-latency, while the barrier

synchronization is unnecessary if someone assigns one work-item per work-group in CPUs.

 Generally, it is shown that OpenCL cannot guarantee performance portability, as the

architectural philosophy gap between CPUs and GPUs is huge and an optimal implementation for a

CPU performs very badly on GPUs. As an indicative example, for most of the algorithms tested, the

Intel optimized implementations only launch one thread per Compute Unit, which results in heavy

under-utilized Compute Units on the GPUs.

 Finally, in one of the most promising works that was published recently [7], the performance

of OpenCL programs is evaluated on out-of-order multi-core CPUs from the architectural perspective.

In this paper, the authors evaluated various aspects of OpenCL programs, including scheduling

overhead, instruction-level parallelism, data location, locality and vectorization, comparing OpenCL to

conventional parallel programming models for CPUs such as OpenMP. Their study was performed on

two different architectures (Intel(R) Xeon (R) CPU E5645, NVIDIA GeForce GTX 580) and for the

experiments they used simple applications and Parboil benchmarks [8].

 Key findings of their evaluation are that opting for a large work-group size and coarsening the

granularity of work per work-item are helpful for better performance on CPUs, because each one of

them causes the reduction of the total number of work-groups which entails reduction of total

context-switches. Coarsening GPUs, this survey verifies that as expected, they have different

optimization requirements compared with CPUs, as they need many work-groups to exploit the vast

parallelism execution opportunities that their hardware offers. However, a small work-group size is

also bad on GPUs, since it makes GPUs unable to launch many warps within a streaming

multiprocessor, thus minimizing the opportunities to overlap computation with data accesses.

 Moreover, they observed that the large ILP value helps performance on CPUs. For example, in

the case of ILP = 1, the next instruction depends on the output of the previous instruction; but in the

case of ILP = 2, there is an independent instruction between two dependent instructions. They

showed that an increasing ILP benefits the CPUs, while it keeps the performance in about the same

levels for GPUs. Another important finding is that adding affinity support to OpenCL may help

performance in some cases, due to the fact that this can lead to fewer cache misses on the private

caches of CPU processors. Last but not least, this survey shows that vectorization can improve the

CPU performance, as the vectorized code would result to less thread creation compared to non-

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

33

vectorized code, since SIMD instructions can perform computation on more than one data item at the

same time.

 Generally, this paper shows that since OpenCL has the same background as CUDA, most

OpenCL applications are written to better utilize thread level parallelism (TLP), which is a scheme that

cannot be applied on CPUs since even when the TLP of the application is large, the physical TLP

available on CPUs is limited by the number of CPU cores, so that the context switching overhead is

much higher on CPUs than on GPUs, for which this overhead is negligible. However, considering the

characteristics of CPU architectures, the OpenCL application can be optimized further for CPUs, and

the programmer needs to consider these insights for portable performance.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

34

Chapter 6

Analysis of optimizations on dwarf benchmarks

 In this section we tested the optimizations Geometry (Granularity, Geometry of work-items),

Vectorization (Vector Types), Loops (Loop Unrolling) and Branches (Padding) and the OpenCL Berkeley

dwarfs on which they are evaluated are the applications lud, crc, needle, srad and bfs. Moreover,

some important things referred about the cache memory and the cache lines, in the applications that

the latter affect the performance. This happens in kernels that make use of local memory and we

tried to find which computational patterns offer more cache hits and how data should be organized in

memory for better performance.

Geometry was the first optimization we tested. We separated it in two categories: granularity

and Geometry of work-items. Testing granularity leads to the reduction of the number of work-items,

but to the increment of the workload in each of them. This is expected to improve the performance of

the CPU, because they are designed to execute many instructions per work-item and reduces the

number of context switches, but it can be proved catastrophic for the GPUs. Changing the Geometry

of work-items means that we keep the same number of the total work-items as the initial code, but

the size of each work-group or grid is different. It is important to remember here, that except for the

cases that our kernel is called iteratively, the work per work-item remains the same.

 Vectorization is supported by architectures with vector type units such as the Intel CPU and

the AMD GPU. The NVIDIA GPU can sometimes execute some instructions vectorized because of the

double issue. In order to use vectorization, the data must be allocated on a consecutive memory area.

We expect that if the vectorization can be applied on an application, it will give a speedup because it

lets two or more instructions to be executed concurrently in the same clock cycle.

 The loop unrolling is one of the most popular optimizations. It is supposed that can boost the

performance because it can hide the cache misses, leads to better use of registers, or it can re-

schedule the instructions in the loop. Different steps in loop unrolling may give a totally different

performance. Moreover, AMD GPU and Intel CPU are expected to take advantage of their ILP metric

that support.

 Last but not least, we inspected how the branches affect the performance. Branches can kill

the performance of a GPU because of the divergencies but it can also affect the CPU. We tried to

eliminate them to see the difference of the performance on the code.

 We must also mention that through an experimental study that we done in a set of our

benchmarks, we found that the work-groups execute per core in Intel CPU and the work-items within

them execute sequentially. Namely, each work-group is assigned to a core of Intel CPU and when it

finishes its execution, a context switch happens in order another one to take place in this core.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

35

6.1 lud

 In LU Decomposition, a matrix is decomposed into a product of two matrices, a lower

triangular and upper triangular matrix. Application lud belongs to the dense linear algebra category of

dwarfs and comprises three kernels, the lud_diagonal, lud_perimeter and lud_internal. The most

time-consuming kernel is the lud_internal and the lud_perimeter follows. The time of lud_diagonal is

negligible and this kernel does not be considered in the analysis and implementation of this thesis.

6.1.1 Analysis of lud_perimeter kernel

6.1.1.1 Data Dependencies

 In lud_perimeter kernel half of the work-items of each work-group fill the local, per work-

group peri_row array, while the others fill the local, per work-group peri_col array. Every work-item in

both computations follows a form of computation which is similar to the prefix_sum pattern. Namely,

in every consecutive iteration more calculations are done per element per work-item compared to

the previous iteration. Figure 6.1 shows the way that the calculations are performed in this kernel.

Figure 6.1: The first image depicts the computation data dependencies of local, per work-group peri_row array,

 where the second image depicts the respectives for local, per work-group peri_col array

 The local, per work-group dia array is used only for reading. Moreover, the BLOCK_SIZE that is

used in the original version of the code is 16 (as verified by the Figure 6.1), but the work-group size is

32 (2 * BLOCK_SIZE), so 16 work-items correspond to peri_row and 16 work-items correspond to

peri_col. The BLOCK_SIZE here is the TILE_SIZE of local memory.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

36

 The arrays peri_row and peri_col are 2-dimensional BLOCK_SIZE*BLOCK_SIZE size local, per

work-group arrays. As can be inferred from the Figure 6.1, work-items 0 to 15 of peri_row have

vertical data dependencies on their private calculation data and as they don’t have any dependencies

among them, they are executed in parallel in each iteration. On the other hand, work-items 16 to 31

of peri_col have horizontal data dependencies on their atomic computations and they are also

executed in parallel in each iteration, since they do not need any synchronization points among them.

Furthermore, we must mention that in Figure 6.1, the first row of peri_row doesn’t be included

because it doesn’t participate in computations.

 Last but not least, we must mention that the lud_perimeter kernel is executed iteratively. The

number of work-groups decreases by one in each consecutive iteration and the work-group size

remains constant in all kernel calls.

6.1.1.2 Basic code segment

 The time-consuming code segment of lud_perimeter kernel on which our optimizations are

applied, presented here in order to help one to realize better the form of communication and

computation that exists.

If (get_local_id(0) < BLOCK_SIZE) {

 idx = get_local_id(0);

 for (i = 1, i < BLOCK_SIZE; i++) {

 for (j = 0; j < i; j++)

 peri_row[i][idx] -= dia[i][j] * peri_row[j][idx];

 }

}

else {

 idx = get_local_id(0) – BLOCK_SIZE;

 for (i = 0; i < BLOCK_SIZE; i++) {

 for (j = 0; j < i; j++)

 peri_col[idx][i] -= peri_col[idx][j] * dia[j][i];

 peri_col[idx][i] /= dia[i][i];

 }

}

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

37

6.1.1.3 Optimization Efforts and Results

1) Execution Geometry

a) Granularity

 2x, 4x, 8x and 16x coarsening of the workload per work-item is tested.

Larger coarsening per work-item is better for the Intel CPU, whereas it proves catastrophic for GPUs.

In kernel lud_perimeter, 2x coarsening means that the work-group size reduces from 32 to 16, while

with 4x coarsening it reduces from 32 to 8 and so on. Therefore, the work per work-item is gradually

bigger along work-group size reduction.

 Specifically, we use the Figure 6.1 to explain it further. We choose the 4x coarsening case for

that and the induction to other cases is similar. We have explained previously how the data

dependencies of peri_row and peri_col arrays are per work-item. In 4x coarsening case, the work-

group size reduces from 32 to 8 and this means that 4 work-items per work-group are responsible for

the computation of peri_row and the other 4 are responsible for the computation of peri_col. Namely,

the work-item 0 of peri_row array will get the summed work of work-items 0 to 3 of initial

implementation, work-item 1 will get the summed work of work-items 4 to 7 and so on. In other

words, in initial implementation during the first iteration, work-item 0 computes the element

peri_row[1][0], work-item 1 computes the element peri_row[1][1] and so on. Instead, in 4x

coarsening case during the first iteration, work-item 0 computes the elements peri_row[1][0] to

peri_row[1][3], work-item 1 computes the elements peri_row[1][4] to peri_row[1][7] and so on.

Therefore, it is obvious that the coarsening per work-item in 4x coarsening case, as related to

peri_row array, increases by 4 compared to initial implementation.

 Additionally, similar is the situation for the computation of peri_col array. However, the thing

that deserves to mention here is the following. As the Granularity optimization leads usually to a form

of data that it is feasible to be vectorized due to the consecutive memory locations that the data have,

it is good when one applies that to take that into consideration. Observing the second image of Figure

6.1, that of peri_col case, we see that the coarsening here can be implemented per column and not

per row, as in the case that happens in peri_row array. This holds because the data dependencies per

work-item have vertical form for peri_row case, while they have horizontal form for peri_col case.

The problem is that the consecutive data per column cannot be vectorized, since they do not belong

to successive memory locations. For example peri_col[0][0] and peri_col[1][0] elements belong to

different memory locations. A solution to this is the transition of peri_col array that gives the same

computational pattern that peri_row array has and the things that explained previously can exactly be

applied in this case. Therefore, the coarsening per work-item is the same for peri_row and peri_col

local, per work-group arrays and the Vectorization optimization (we will refer to that later in this

section) can very effectively be implemented.

 Figure 6.2 and Figure 6.3 depict the results for matrix dimension 4096 and 8192.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

38

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 63,321,554 ns 110,547,551 ns 30,023,648 ns

2x coarsening 60,574,101 ns 174,268,240 ns 55,017,120 ns

4x coarsening 57,433,163 ns 279,506,877 ns 65,330,656 ns

8x coarsening 51,001,526 ns 495,125,112 ns 83,164,480 ns

16x coarsening 54,496,953 ns 925,336,786 ns 116,684,256 ns

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x coarsening 1 0.63 0.55

4x coarsening 1.10 0.40 0.46

8x coarsening 1.24 0.22 0.36

16x coarsening 1.16 0.12 0.26

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 352,030,387 ns 410,034,996 ns 100,092,608 ns

2x coarsening 250,110,372 ns 653,036,769 ns 183,355,968 ns

4x coarsening 221,658,341 ns 1,065,818,329 ns 218,478,112 ns

8x coarsening 196,498,045 ns 1,901,088,454 ns 278,167,008 ns

16x coarsening 203,916,734 ns 3,571,183,673 ns 391,285,888 ns

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x coarsening 1.40 0.63 0.55

4x coarsening 1.59 0.38 0.46

8x coarsening 1.79 0.22 0.36

16x coarsening 1.73 0.11 0.26

Figure 6.2: Execution times and speedup of optimization ‘Granularity’ in

 lud_perimeter kernel for matrix dimension 4096 and 8192

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

39

Figure 6.3: Speedup graphical representation of optimization ‘Granularity’ in

 lud_perimeter kernel for matrix dimension 4096 and 8192

 As can be inferred from the Figure 6.2, both GPUs perform gradually poorer along the increase

of coarsening and equally for both matrix dimensions. This can be explained via the fact that gradually

more hardware units remain unexploited. The total work-groups per kernel are the same, compared

to the initial implementation, and independent from the increase of coarsening per work-item, but

the number of work-items inside them reduces and this results to a degradation in the parallelism

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2x 4x 8x 16x

Sp
e

e
d

u
p

Coarsening

Matrix dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2x 4x 8x 16x

Sp
e

e
d

u
p

Coarsening

Matrix dimension 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

40

that the warp/wavefront execution unit of NVIDIA/AMD can exploit.

 An indicative example that explains that, is the case of 16x coarsening of AMD GPU, where the

total number of wavefronts in the first call of lud_perimeter kernel for matrix dimension 4096 is 255

and remains the same as in the initial implementation. However, each wavefront of initial code

utilizes the half of the work-items that includes, whereas in 16x coarsening case, the wavefront

utilization drops to 2 work-items. This happens as in the first case there are 255 work-groups of 32

work-items, while in the second case there are 255 work-groups of 2 work-items.

 On the other hand, coarsening the workload of work-items is beneficial for the Intel CPU,

because the total number of work-items reduces and this results to fewer context-switches. Context

switches are associated with significant overhead on CPUs due to the operating system intervention.

The Intel CPU performance is gradually better along higher coarsening and its maximum is achieved

with 8x coarsening, resulting to 4 work-items per work-group. Moreover, it is worth to mention that

the speedup over the CPU execution is, as expected, much better for matrix dimension 8192, since

the overhead of context switches is higher, as much more kernel calls are done and this results to a

higher number of work-groups to be handled.

b) Geometry of work-items

 In this category, two alternative BLOCK_SIZE values, namely 32 and 64 are evaluated in the

lud_perimeter kernel. We remind that the case of BLOCK_SIZE = 16 corresponds to the initial

implementation. However, only the case of BLOCK_SIZE = 32 it was feasible to implement for the Intel

CPU and the NVIDIA GPU. BLOCK_SIZE = 32 it was unfeasible to be evaluated for the AMD GPU due to

the maximum work-group size limitations of lud_internal kernel. Furthermore, the same reason

explains why BLOCK_SIZE = 64 operates as a deterrent for all the architectures.

 The lud_internal kernel uses 2-dimensional BS*BS size work-groups and BS = 32 yields work-

groups of size 1024, while BS = 64 yields work-groups of size 4096. The maximum work-group size for

the AMD GPU is 256 work-items, while this value is 1024 for the Intel CPU and the NVIDIA GPU. The

lud_perimeter kernel belongs to the same program as lud_internal kernel does and the BLOCK_SIZE

parameter is common among them. As can be inferred, this means that the execution parameters of

one kernel affect the other. If lud_perimeter kernel was executed separately, the BS = 128 would be

the maximum value to be evaluated for all the architectures, since this kernel uses work-groups of

2*BLOCK_SIZE size.

 The results of this optimization effort are not good for all the devices that used due to the

prefix_sum form of the computation. With the increase of BLOCK_SIZE in lud_perimeter kernel, the

total number of work-groups reduces, the number of work-items inside them increases, but the work

per work-item increases geometrically for the computation of local, per work-group arrays peri_row

and peri_col. With the term geometrically we mean that in every consecutive loop iteration during the

computation of peri_row and peri_col, the workload per work-item doubles compared to the one that

each of them has in the previous iteration. Moreover, taking into account that the arrays peri_row

and peri_col are 2-dimensional of BS*BS size, an increase in BLOCK_SIZE leads to a higher degree of

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

41

geometric increase of afore-mentioned computations, as more elements in both local, per work-

group arrays must be computed per work-item. In short, the work per work-item gets significantly

more compared with the initial kernel implementation.

 The reason that Intel CPU performance degrades less than that of NVIDIA GPU during the

BLOCK_SIZE change is the fact that Intel compiler implements a form of implicit vectorization in

peri_row array and can execute general-purpose code, such as prefix-sum pattern in this kernel, faster

per work-item. Namely, the much more added workload per work-item during the change of

BLOCK_SIZE from 16 to 32, affects less the performance of CPU work-items, as they have the ability to

execute faster a sequential code, like the prefix-sum per work-item pattern of data dependencies, in

our case. Furthermore, the reduction of total work-groups entails fewer context-switches for Intel

CPU and less parallelism for NVIDIA GPU.

 Figure 6.4 and Figure 6.5 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 63,321,554 ns 110,547,551 ns 30,023,648 ns

BS 16 to 32 130,281,197 ns ----- 164,805,536 ns

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 16 to 32 0.49 ----- 0.18

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 352,030,387 ns 410,034,996 ns 100,092,608 ns

BS 16 to 32 521,613,660 ns ----- 554,673,600 ns

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 16 to 32 0.67 ----- 0.18

Figure 6.4: Execution times and speedup of optimization ‘Geometry of work-items’ in

 lud_perimeter kernel for matrix dimension 4096 and 8192

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

42

Figure 6.5: Speedup graphical representation of optimization ‘Geometry of work-items’ in

 lud_perimeter kernel for matrix dimension 4096 and 8192

2) Vectorization

 Vectorization is tested in this kernel on code that resulted after the Granularity optimization.

Vector Types

 The way that shows how the consecutive memory locations of peri_row and peri_col data

elements are induced from the initial code, was analyzed previously in Granularity optimization sub-

section. The point is that the afore-mentioned analysis makes feasible and effective the

implementation of vectorization on these data. The degree of vectorization that can be applied ranges

from 2 (2x vectorization case) to 16 (16x vectorization case). The value of 16 is the upper limit of

vectorization, as the matrix dimensions of both local, per work-group arrays peri_row and peri_col is

16. Moreover, we must mention that the local array dia it was not effective to be vectorized, since its

data pattern can’t yield consecutive memory locations and the use of vectorization to this array would

be useless and ineffective.

 Vectorization proves very effective for the Intel CPU and the degrees of 4 and 8 are the ones

that achieve the best performance. The vectorization is not considered for GPUs, since the form of

code that the Granularity optimization induces in lud_perimeter kernel is very unsuitable for them, as

it was explained previously in the relative section. Namely, as the coarsening of workload per work-

item increases, less work-items per work-group are used and this results to more and more work-

items within a warp/wavefront for NVIDIA/AMD GPU to be inactive and useless. In other words, the

degree of underutilization of a warp/wavefront gets gradually higher with the increase of coarsening

per-work item.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

4096 8192

Sp
e

e
d

u
p

BS 16 to 32

Matrix dimension 4096 & 8192

Intel CPU (Intel runtime)

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

43

 Figure 6.6 and Figure 6.7 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

Initial Code 63,321,554 ns

2x vectorization 48,461,563 ns

4x vectorization 31,535,570 ns

8x vectorization 28,353,160 ns

16x vectorization 44,411,482 ns

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

Initial Code 352,030,387 ns

2x vectorization 173,823,526 ns

4x vectorization 112,223,109 ns

8x vectorization 115,138,060 ns

16x vectorization 228,075,795 ns

Figure 6.6: Execution times and speedup of optimization ‘Vectorization’ in

 lud_perimeter kernel for matrix dimension 4096 and 8192

Figure 6.7: Speedup graphical representation of optimization ‘Vectorization’ in

 lud_perimeter kernel for matrix dimension 4096 and 8192

0

0,5

1

1,5

2

2,5

3

3,5

2x 4x 8x 16x

Sp
e

e
d

u
p

Vectorization

Intel CPU Vectorization

matrix dimension 4096

matrix dimension 8192

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

2x vectorization 1.31

4x vectorization 2.00

8x vectorization 2.23

16x vectorization 1.42

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

2x vectorization 2.00

4x vectorization 3.14

8x vectorization 3.00

16x vectorization 1.54

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

44

 As can be deduced from the Figure 6.6, the effect of vectorization is greater for matrix

dimension 8192 compared to that of 4096 and for both matrix dimensions is gradually bigger except

for the case of 16x vectorization, where the performance falls. The reason for that is that Intel CPU

recommends for float data (the type of data that kernel lud_perimeter uses) vector width with degree

of 4. Therefore, a big increase of this width can cause an inappropriate use of vector types, since

many of the operations that exceed the preferred vector width are done serially and the parallelism

among threads reduces. This is the reason also why 4x vectorization and 8x vectorization yields the

best performance which fluctuates in the same levels for both matrix dimensions that used.

3) Loops

Loop Unrolling

 In this category, three optimization parameters are examined.

 Case_1: Implementation of full loop unrolling in all the outer loops of kernel and implementation

of loop unrolling with step 2 in the even inner loops of kernel

 Case_2: Implementation of full loop unrolling in all the outer loops of kernel and implementation

of full loop unrolling in the even inner loops of kernel

 Case_3: Implementation of full loop unrolling in all the outer loops of kernel and implementation

of full loop unrolling in all the inner loops of kernel

 The result is that loop unrolling generally improves the performance of GPUs, while the

performance of Intel CPU remains constant in all cases in this kernel. Namely, AMD GPU performs

better compared to initial code and as move from one case to another for matrix dimension 4096,

whereas for matrix dimension 8192 degrades a little the performance in last case compared to its

previous case. On the other side, NVIDIA GPU performs best in the last case and gradually better

along cases for both matrix dimensions that used. What’s more, the speedup of NVIDIA GPU is the

same for both matrix dimensions, whereas the speedup of AMD GPU is much better for matrix

dimension 4096 due to the fewer kernel calls that done, as explained further below.

 Figure 6.8 and Figure 6.9 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

AMD GPU NVIDIA GPU

Initial Code 110,547,551 ns 30,023,648 ns

Case_1 81,375,458 ns 24,675,360 ns

Case_2 64,221,663 ns 19,134,592 ns

Case_3 49,767,109 ns 11,906,592 ns

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

45

Optimizations /
Devices (4096)

AMD GPU NVIDIA GPU

Case_1 1.36 1.22

Case_2 1.72 1.57

Case_3 2.22 2.52

Optimizations /
Devices (8192)

AMD GPU NVIDIA GPU

Initial Code 410,034,996 ns 100,092,608 ns

Case_1 307,785,108 ns 81,931,456 ns

Case_2 266,473,002 ns 63,210,848 ns

Case_3 287,662,116 ns 39,366,848 ns

Optimizations /
Devices (8192)

AMD GPU NVIDIA GPU

Case_1 1.33 1.22

Case_2 1.54 1.58

Case_3 1.43 2.54

Figure 6.8: Execution times and speedup of optimization ‘Loop Unrolling’

 in lud_perimeter kernel for matrix dimension 4096 and 8192

0

0,5

1

1,5

2

2,5

3

Case_1 Case_2 Case_3

Sp
e

e
d

u
p

Loop Unrolling

Matrix dimension 4096

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

46

 Figure 6.9: Speedup graphical representation of optimization ‘Loop Unrolling’ in lud_perimeter kernel for matrix

 dimension 4096 and 8192

 The reason that loop unrolling proves so effective for AMD GPU is that its VLIW processors can

reduce the average number of ALU instructions executed per work-item. Specifically, the ALU

instructions executed per work-item in initial implementation are 2257, in Case_1 are 1409, in Case_2

are 1262 and in Case_3 are 1110 for both matrix dimensions that used. Furthermore, the number of

general purpose vector registers used by the kernel is 21, 12, 14 and 20 respectively.

 The VLIW architecture takes advantage of ILP by executing multiple instructions in parallel,

which means that it is capable of executing independent or dependent instructions at the same time.

Dependent instructions can be executed in parallel due to the four execution pipelines of the 4-wide

VLIW (VLIW4), which consists the simpler execution unit of AMD Cayman architecture. Loop unrolling

in lud_perimeter kernel creates many consecutive dependent instructions, so the afore-mentioned

pipelines of every VLIW4 of every SIMD core are exploited as the degree of unrolling increases.

Specifically , these instructions are for array peri_row, peri_row[i][idx] -= dia[i][j] * peri_row[j][idx],

peri_row[i][idx] -= dia[i][j+1] * peri_row[j+1][idx], peri_row[i][idx] -= dia[i][j+2] * peri_row[j+2][idx]

and so on and for array peri_col, peri_col[idx][i] -= peri_col[idx][j] * dia[j][i], peri_col[idx][i] -=

peri_col[idx][j+1] * dia[j+1][i], peri_col[idx][i] -= peri_col[idx][j+2] * dia[j+2][i] and so on.

 Of course, we must mention that if we had independent instructions, the VLIW architecture would

offer even higher parallelism as none of the data would need to be pipelined within and among

VLIW4 execution units of AMD GPU.

 Furthermore, the fact that the full loop unrolling that we implemented for matrix dimension

4096 in last case proves the best performing option for AMD GPU, can be explained observing that it

helps the compiler to exploit the maximum of parallelism that ILP offers in kernel lud_perimeter. The

deviation of speedup among matrix dimensions of 4096 and 8192 can be attributed to the increased

number of kernel calls between them. Namely, taking into account that the number of ALU

instructions for matrix dimension 4096 in each case is the same with the respective one of matrix

0

0,5

1

1,5

2

2,5

3

Case_1 Case_2 Case_3

Sp
e

e
d

u
p

Loop Unrolling

Matrix dimension 8192

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

47

dimension 8192, we can infer that the overhead of times that lud_perimeter kernel is called is much

higher than the benefit that the reduction of ALU instructions offers in each one of the kernel

executions that done. We must mention that in the first call of kernel, for matrix dimension 4096, 255

work-groups are used with 32 work-items in each one of them, while for matrix dimension 8192 there

are 511 work-groups of 32 work-items. Moreover, we remind that the lud_perimeter kernel is called

iteratively with a decreasing by one number of work-groups in each consecutive iteration keeping

constant the size of work-items in each one of them.

 On the other hand, NVIDIA GPU does not have vector processors in its hardware, but as it can

be seen from Figure 6.8, the loop unrolling optimization also benefits it and more than AMD,

especially for matrix dimension 8192. This happens, as NVIDIA is able to exploit the vast register file

that possesses. Therefore, as the degree of unrolling increases during the transition from one case to

another, the performance gradually improves, since the cumulative register requirements by all work-

items doesn’t seem to exceed the capacity of the register file. Additionally, it is important to mention

that there is no speedup deviation for NVIDIA GPU between the matrix dimensions 4096 and 8192,

since the overhead in this case is not affected by the number of times that this kernel is called and

the faster execution times that NVIDIA GPU achieves compared to AMD GPU for both matrix

dimensions that used, as can be verified by Figure 6.8, can justify that.

 Last but not least, it is worth to note that the execution on the Intel CPU is not affected by

Loop Unrolling optimizations. This happens because in lud_perimeter kernel there aren’t any

independent instructions between dependent ones for both computations of arrays peri_row and

peri_col, and this results to the CPU ILP metric be unexploited.

6.1.2 Analysis of lud_internal kernel

6.1.2.1 Data Dependencies

 This kernel calculates the inner product of BS elements of a column with BS elements of a row

of an array M and stores the result in the corresponding position in the M. At first, two matrices are

allocated in the local memory with size BSxBS. These matrices are named peri_row and peri_col.

Then each work-item of each work-group is responsible for storing in these matrices the

corresponding element from the matrix M. When all the work-items of a work-group have stored in

their elements to the matrices, the computations begin as it is shown in Figure 6.10. Each work-item

of a work-group is responsible for calculating the value of an element by calculating the inner product

of the corresponding row of the peri_col with the corresponding column of the peri_row and storing it

in the array of the global memory. In our example we suppose that the BS is 4 and the size of the

array is 8x8.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

48

 The algorithm uses 2-dimensional work-groups. The work-groups are BSxBS and the original BS

is 16:

 localWorkSize[0] = BLOCK_SIZE;

 localWorkSize[1] = BLOCK_SIZE;

 The total number of the work-items differs in each kernel invocation. The first iteration has the

most work-items and their number decreases in each iteration because there are fewer inner

products to be calculated. The kernel is invoked one time in each iteration of a for-loop. In each

iteration the step i of the loop is increased by BS and the total work-items are calculated by the

following formula, where it is obvious that the lower bound of globalWorkSize depends on the

matrix_dim and the BS. Different values in these variables lead to a different lower bound.

 globalWorkSize[0] = ((matrix_dim-i)/BLOCK_SIZE-1)*localWorkSize[0];

 globalWorkSize[1] = ((matrix_dim-i)/BLOCK_SIZE-1)*localWorkSize[1];

Figure 6.10: Pattern of lud_internal kernel

6.1.2.2 Basic code segment

 We present the code of the stores to the local memory from the global memory and the

computation of the inner product of each element and the store of it to the global memory.

global_row_id = offset + (get_group_id(1)+1)*BLOCK_SIZE;
global_col_id = offset + (get_group_id(0)+1)*BLOCK_SIZE;

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

49

peri_row[get_local_id(1)][get_local_id(0)] =
m[(offset+get_local_id(1))*matrix_dim+global_col_id+get_local_id(0)];

peri_col[get_local_id(1)][get_local_id(0)] =
m[(global_row_id+get_local_id(1))*matrix_dim+offset+get_local_id(0)];

barrier(CLK_LOCAL_MEM_FENCE);

sum = 0;
for (i=0; i < BLOCK_SIZE; i++)
 sum += peri_col[get_local_id(1)][i] * peri_row[i][get_local_id(0)];
m[(global_row_id+get_local_id(1))*matrix_dim+global_col_id+get_local_id(0)] -= sum;

6.1.2.3 Optimization Efforts and Results

1) Execution Geometry

a) Granularity

Choosing the total number of the work-items and the workload of each of them is crucial for

optimizing an application. We made experiments with coarsening 2x. That means that the work-items

in each work-group were decreased from 256 to 128. Also each work-item was responsible for storing

two elements in each matrix in the local memory, taking them from the global memory, instead of

one and calculating two inner products instead of one.

The CPUs are designed to execute more efficiently many instructions in one work-item than a

few instructions in many work-items. On the other hand GPUs prefer to execute only a few

instructions per work-item. We tested scheduling 2x, 4x and 8x workload per work-item in two

different ways.

1st way:

 In this scenario we divided the localWorkSize[0] by a factor of 2, 4 and 8. This means that the

work-items in local_id(0) had to do 2x, 4x or 8x workload as shown in Figure 6.11. The work-items in

local_id(0) are responsible for the peri_row matrix in the loop. Increasing their workload, each work-

item gets two elements of the matrix instead of one. But these two elements are BS elements apart.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

50

Figure 6.11: granularity 2x on get_local_id(0)

Accessing two elements that are BS positions apart did not work for the CPU because a CPU

prefers to access adjacent elements, because of the locality in a cache line. Although a CPU may

prefer to have more workload per work-item, accessing the matrix in such a way gave a worse

execution time than the initial. The NVIDIA GPU had a slightly worse execution time, as expected, but

the difference was too small. GPUs are designed for fine grain parallelism and coarsening the

parallelism may decrease their performance unless there is a reduction in their utilization.

On the other hand, the AMD GPU had a small speedup. The number of ALU instructions was

increased per work-item from 40 to 60. However, the total number of work-items was decreased by a

factor of 2. So there were less ALU instructions in total from the initial code. Initially we had

16,646,400 work-items executing 40 ALU instructions each, meaning there were 665,856,000 ALU

instructions executed totally. Decreasing the work-items to 8,323,200, the ALU instructions executed

per work-item increased to 60, but there were 499,392,000 executed totally. Also with the use of the

VGPRs, the vector type registers were increased from 5 to 8.

Testing a bigger coarsening, the performance was the same for the Intel CPU but there was a

great loss for the GPUs. This happened because of the higher rate of cache misses. More specifically

the cache hit rate decreased from 26% to 13%.

 Figure 6.12 and Figure 6.13 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 1.99 sec 1 sec 0.23 sec

2x coarsening 4.5 sec 0.85 sec 0.25 sec

4x coarsening 4.2 sec 1.5 sec 0.44 sec

8x coarsening 4.2 sec 3.7 sec 0.91 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x coarsening 0.44 1.18 0.92

4x coarsening 0.47 0.67 0.52

8x coarsening 0.47 0.27 0.25

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

51

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 16.2 sec 7.68 sec 1.9 sec

2x coarsening 34.2 sec 7 sec 2 sec

4x coarsening 29.2 sec 15.78 sec 3.65 sec

8x coarsening 32.3 sec 36.43 sec 7.49 sec

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x coarsening 0.47 1.10 0.95

4x coarsening 0.65 0.49 0.51

8x coarsening 0.5 0.21 0.25

Figure 6.12: Execution times and speedup of optimization ‘Granularity’ in

 lud_internal kernel for matrix dimension 4096 and 8192

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2x 4X 8X

Sp
e

e
d

u
p

Coarsening

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

52

Figure 6.13: Speedup graphical representation of optimization ‘Granularity’ in

 lud_internal kernel for matrix dimension 4096 and 8192

2nd way:

 In this case we divided the localWorkSize[1] by a factor of 2, 4 again. In this case the work-

items in local_id(1) had to do 2x, 4x or 8x workload. These work-items were responsible for the

peri_col matrix in the loop as shown in Figure 6.14. Increasing their workload, each work-item gets

two elements of the matrix instead of one, but in this case the two elements are adjacent.

Figure 6.14: granularity 2x on get_local_id(1)

 Testing the new implementation we observed that the CPU had a better execution time than

the initial one. Accessing the matrix in a more correct way gave us better results. Also fewer work-

0

0,2

0,4

0,6

0,8

1

1,2

2x 4X 8X

Sp
e

e
d

u
p

Coarsening

Matrix Dimension 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

53

items on a CPU means fewer context switches which cost too much because they are controlled by

the software. The NVIDIA’s execution time was a little worse, as expected again, but showed us that

this optimization did not affect it. The AMD GPU had the same results as previously. The number of

ALU instructions was increased per work-item from 40 to 60 again, but the total number of the ALU

instructions was smaller. The number of VGPRs was increased again from 5 to 8 too. Also the cache

hit rate increased from 26% to 49%.

 Testing coarsening 4x, we observed that all the architectures had the same execution time

compared to coarsening 2x. The problem arose with the coarsening 8x for AMD GPU. The ALU

instructions per work-item and the cache hit rate was the same again but the ALUPacking metric

decreased from 78% to 67%. This is the ALU vector pack efficiency and indicates how well the Shader

Compiler packs the scalar or vector ALU in the kernel. What is more, a value below 67% indicates that

ALU dependency chains may be preventing full utilization of the processor.

 Figure 6.15 and Figure 6.16 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 1.99 sec 1 sec 0.23 sec

2x coarsening 1.7 sec 0.85 sec 0.25 sec

4x coarsening 1.7 sec 0.88 sec 0.22 sec

8x coarsening 1.8 sec 1.78 sec 0.28 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x coarsening 1.17 1.18 0.92

4x coarsening 1.17 1.13 1.05

8x coarsening 1.1 0.56 0.82

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 16.2 sec 7.68 sec 1.9 sec

2x coarsening 13.2 sec 7 sec 2 sec

4x coarsening 14.1 sec 9.22 sec 1.8 sec

8x coarsening 14.2 sec 15.1 sec 3 sec

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x coarsening 1.22 1.10 0.95

4x coarsening 1.14 0.83 1.05

8x coarsening 1.15 0.5 0.63

Figure 6.15: Execution times and speedup of optimization ‘Granularity’ in

 lud_internal kernel for matrix dimension 4096 and 8192

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

54

Figure 6.16: Speedup graphical representation of optimization ‘Granularity’ in

 lud_internal kernel for matrix dimension 4096 and 8192

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2x 4X 8X

Sp
e

e
d

u
p

Coarsening

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2x 4X 8X

Sp
e

e
d

u
p

Coarsening

Matrix Dimension 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

55

b) Geometry of work-items

 In this section we tested different sizes of the BS. The initial BS was 16. The total number of

the work-items in each work-group was 256 initially because the work-groups were 2-dimensional as

previously stated. We could only test a BS that was 32 because a 2-dimensional BS 32x32 is the

maximum for the NVIDIA and the Intel CPU. What is more, we could not test this BS for the AMD GPU

because we were already at its limit, which is 256 work-items per work-group.

 Increasing the BS there was a speedup for the CPU. Having a bigger BS means that the

matrices in the local memory are larger and the work-groups are fewer as we can understand from

the formula:

globalWorkSize[0] = ((matrix_dim-i)/BLOCK_SIZE-1)*localWorkSize[0];

 Also the matrices in the local memory are accessed by the work-items of one work-group. All

the work-items of each work-group are executed on one core of the CPU, all sharing the same local

memory of that core. When the computations start there is one cache miss for the data that is

fetched for the first time of each work-item. When this data is accessed from the same or other work-

items in the same work-group for a second time there is a cache hit. Having more work-items in a

work-group offers us fewer cache misses than work-groups with a small number of work-items for

such computational patterns that reuse some values.

 The NVIDIA GPU had a better execution time too. Fermi usually does not like to have 1024

work-items per work-groups and its performance is decreased with such geometry. Each SM supports

up to 32768 registers and each work-group up to 16384. The current kernel uses only one register and

thus, having more work-items does not make them stall. Also using one register and 1024 work-items

the occupancy was 1.

 Figure 6.17 and Figure 6.18 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 1.99 sec 1 sec 0.23 sec

BS 16 to 32 1.55 sec ----- 0.20 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 16 to 32 1.28 ----- 1.15

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 16.12 sec 7.68 sec 1.9 sec

BS 16 to 32 12.84 sec ----- 1.78 sec

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

56

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 16 to 32 1.26 ----- 1.07

 Figure 6.17: Execution times and speedup of optimization ‘Geometry of work-items’ in

 lud_internal kernel for matrix dimension 4096 and 8192

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2x

Sp
e

e
d

u
p

Distribution of work-items

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

57

Figure 6.18: Speedup graphical representation of optimization ‘Coarsening’ in

 lud_internal kernel for matrix dimension 4096 and 8192

2) Vectorization

Vector Types

 Applying vectorization on this kernel was feasible but not too effective. Vectorization can only

be applied to favorably aligned, neighboring elements in memory. The kernel calculates the inner

product of a row and a column of two 2-dimensional matrices. So, we had to transpose the one matrix

in order to calculate the inner product of a row and a row of these matrices as shown in Figure 6.19.

We made the inversion on the load from the global to the local memory but the effect of this was bad

increasing the execution time of the kernel. This happened due to more cache misses. For example in

the execution with BS 16 there were only 16 cache misses while in the new implementation there

were 256 cache misses. The yellow line in the Figure is stored in the first cacheline in the initial load

burdening with one cache miss. Storing the matrix transposed in the local memory in the second case

there is a cache miss for each element.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

2x

Sp
e

e
d

u
p

Distribution of work-items

Matrix Dimension 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

58

Figure 6.19: The initial and the inverted load

 Figure 6.20 and Figure 6.21 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 1.99 sec 1 sec 0.23 sec

transposed matrix 4.10 sec 1.78 sec 0.77 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

transposed matrix 0.48 0.56 0.3

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 16.12 sec 7.68 sec 1.9 sec

transposed matrix 35 sec 13.9 sec 6.16 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

transposed matrix 0.46 0.55 0.3

Figure 6.20: Execution times and speedup of the ‘transposed load implementation’ for

 matrix dimension 4096 and 8192

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

59

Figure 6.21: Speedup graphical representation of optimization ‘transposed matrix’ in

 lud_internal kernel for matrix dimension 4096 and 8192

Although this different approach did not work, we could now apply vectorization on this.

Vectorization gave us a speedup in comparison with the approach we had made in order to transpose

the second matrix. But the execution time was bigger than the initial time. Vectorization is a very

good technique and can give a great speedup when it can be applied efficiently in an application,

0

0,1

0,2

0,3

0,4

0,5

0,6

2x

Sp
e

e
d

u
p

transposed matrix

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

0

0,1

0,2

0,3

0,4

0,5

0,6

2x

Sp
e

e
d

u
p

transposed matrix

Matrix Dimension 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

60

especially in architectures with vector type units because they are designed to calculate more than

one element per cycle if these elements are adjacent in a matrix or a vector. In our case we first had

to set the matrices right and only then could we apply vectorization. Therefore we did not have a

speedup in comparison to the initial code.

Although vectorization enhanced the performance of CPU, it was catastrophic for the AMD in

one experiment and more specifically for a matrix 8192x8192. The problem was on the last level the

8x. The execution time was 2 times slower. The ALUPacking metric was decreased from 78% to 69%

and the cache hit rate from 26% to 15%.

Figure 6.22 and Figure 6.23 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

transposed matrix 4.10 sec 1.78 sec 0.77 sec

Vec. 2x 3.80 sec 1.75 sec 0.76 sec

Vec. 4x 2.40 sec 1.68 sec 0.63 sec

Vec. 8x 2.46 sec 1.68 sec 0.66 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Vec. 2x 1.07 1.02 1.01

Vec. 4x 1.7 1.06 1.22

Vec. 8x 1.67 1.06 1.17

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

transposed matrix 35 sec 13.9 sec 6.16 sec

Vec. 2x 32 sec 13.7 sec 6.14 sec

Vec. 4x 22.1 sec 15.9 sec 5 sec

Vec. 8x 22.4 sec 35 sec 5.2 sec

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Vec. 2x 1.09 1.01 1.01

Vec. 4x 1.59 0.85 1.23

Vec. 8x 1.56 0.4 1.18

Figure 6.22: Execution times and speedup of ‘Vectorization’ against the transposed load implementation

 for matrix dimension 4096 and 8192

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

61

Figure 6.23: Speedup graphical representation of optimization ‘Vectorization’ in

 lud_internal kernel for matrix dimension 4096 and 8192

 Figure 6.24 and Figure 6.25 depict the results for matrix dimension 4096 and 8192.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2x 4x 8x

Sp
e

e
d

u
p

Vectorization

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2x 4x 8x

Sp
e

e
d

u
p

Vectorization

Matrix Dimension 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

62

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 1.99 sec 1 sec 0.23 sec

Vec. 2x 3.80 sec 1.75 sec 0.76 sec

Vec. 4x 2.40 sec 1.68 sec 0.63 sec

Vec. 8x 2.46 sec 1.68 sec 0.66 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Vec. 2x 0.52 0.57 0.3

Vec. 4x 0.83 0.59 0.36

Vec. 8x 0.82 0.59 0.34

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 16.12 sec 7.68 sec 1.9 sec

Vec. 2x 32 sec 13.7 sec 6.14 sec

Vec. 4x 22.1 sec 15.9 sec 5 sec

Vec. 8x 22.4 sec 35 sec 5.2 sec

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Vec. 2x 0.5 0.56 0.32

Vec. 4x 0.73 0.48 0.38

Vec. 8x 0.72 0.22 0.36

Figure 6.24: Execution times and speedup of ‘Vectorization’ against the initial implementation for

 matrix dimension 4096 and 8192

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

63

Figure 6.25: Speedup graphical representation of optimization ‘Vectorization’ in

 lud_internal kernel for matrix dimension 4096 and 8192

3) Loops

Loop Unrolling

The last optimization for this kernel was the loop unrolling. We did the loop unrolling with step

2 and step 4. Loop unrolling is useful because it can hide the cache misses or allow the instructions to

be scheduled better. It can improve the performance using a technique called pipeling. Each

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

2x 4x 8x

Sp
e

e
d

u
p

Vectorization

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

2x 4x 8x

Sp
e

e
d

u
p

Vectorization

Matrix Dimension 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

64

instruction can be split into a sequence of dependent steps. The first step is to fetch the instruction

from the memory and the last to store the result in the memory. Pipeling can execute different steps

of many instructions to increase instruction throughput and seeks to keep every portion of the CPU

busy with some instruction. Although the loop unrolling offers these advantages, the execution times

were the same with the initial ones, except for the unrolling with step 4 on CPU, where it was slightly

faster.

Figure 6.26 and Figure 6.27 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 1.99 sec 1 sec 0.23 sec

Unroll 2 1.99 sec 1 sec 0.24 sec

Unroll 4 1.90 sec 0.98 sec 0.24 sec

Unroll 8 2.02 sec 1 sec 0.25 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Unroll 2 1 1 0.95

Unroll 4 1.05 1.02 0.95

Unroll 8 0.98 1 0.92

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 16.12 sec 7.68 sec 1.9 sec

Unroll 2 15.21 sec 8 sec 1.9 sec

Unroll 4 15.42 sec 7.68 sec 1.9 sec

Unroll 8 15.6 sec 7.76 sec 1.9 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Unroll 2 1.06 0.96 1

Unroll 4 1.05 1 1

Unroll 8 1.07 0.99 1

Figure 6.26: Execution times and speedup of optimization ‘Loop Unrolling’ in

 lud_internal kernel for matrix dimension 4096 and 8192

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

65

Figure 6.27: Speedup graphical representation of optimization ‘Loop Unrolling’ in

 lud_internal kernel for matrix dimension 4096 and 8192

0,85

0,9

0,95

1

1,05

1,1

2x 4x 8x

Sp
e

e
d

u
p

Loop Unrolling

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

0,9

0,92

0,94

0,96

0,98

1

1,02

1,04

1,06

1,08

2x 4x 8x

Sp
e

e
d

u
p

Loop Unrolling

Matrix Dimension 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

66

6.2 crc

Cyclic Redundancy Check (CRC) is an error-detecting code which is designed to detect errors
caused by network transmission or any other accidental error. Specifically, CRC is designed to catch
burst errors in data that is transferred. Polynomial division is performed on the data stream S by the
CRC polynomial. This polynomial is predetermined. The remainder from this division is the CRC value.
This value is typically added to the end of the data stream as it is sent out. When the receiver divides
the received data stream, the division will return no remainder on a successful transmission.

Application crc belongs to the combinational logic category of dwarfs and aparts from one
kernel, the compute kernel. All the optimizations that studied, applied in this kernel.

6.2.1 Analysis of compute kernel

6.2.1.1 Data Dependencies

 In compute kernel every work-item is responsible for the computation of one element

(unsigned char type) of the data stream size (data_stream_size) and there is no dependency on data

between different work-items. The dependency is located on the value that this element takes which

affects the next iteration of a for loop that executed 32 times per work-item. Within the loop

statement, exists an if statement that defines if the afore-mentioned unsigned char value must

change or not. Therefore the parallelism per work-item can be found in the check condition of these if

statements among the iterations of loop. Figure 6.28 depicts the data dependencies of compute

kernel.

Figure 6.28: Data dependencies of compute kernel

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

67

 As can been seen from the afore-depicted figure, the first column corresponds to work-item 0,

the second to work-item 1 and the last to work-item with the highest global id. Every work-item has a

private variable, which called temp, and executes one loop iteration 32 times. The processing of

variable temp is independent among work-items and therefore the latter can all executed in parallel

at each iteration step. We must mention that with the names temp_1, temp_2 and temp_32 we

denote the instant values that variable temp has at each iteration.

 Within loop there is an if statement which defines if the value of variable temp changes or not.

If it changes, the instant value of temp that follows, needs the previous instant value in order to be

computed, otherwise, it takes the same value as its previous instant has (the value of temp doesn’t

change among consecutive iterations). For instance, instant value temp_2 is computed via an

arithmetic expression in which instant value temp_1 participates if the check condition of if statement

holds, otherwise temp_2 takes the value of temp_1 as it is. Therefore, as can be inferred, the data

dependencies of compute kernel have a vertical per work-item dependency pattern.

 Last but not least, it’s worth to mention that the compute kernel is called one time and the

way that the work-group size (local_size) and the total number of work-items (global_size) are

defined, is the following:

local_size = maximum_per_work_group_size

if ((data_stream_size % local_size) == 0) {

 global_size = data_stream_size;

}

else {

 global_size = ((data_stream_size / local_size) + 1) * local_size;

}

6.2.1.2 Basic code segment

 The code of compute kernel is small and can be presented here as it is so as to help one to

realize better the form of communication and computation that exists. The num_size here represents

the data_stream_size.

unsigned int tid = get_global_id(0);

if (tid < num_size) {

 int val = num_size – tid;

 int i = 0;

 unsigned char temp = g_num[tid];

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

68

 for (i = 0; i < numTables; i++) {

 If (((val >> i) % 2) == 1) {

 temp = g_tables[i*256 + temp];

 }

 }

 g_answer[tid] = temp;

}

6.2.1.3 Optimization Efforts and Results

1) Execution Geometry

a) Granularity

 In this category, four optimization parameters are examined in compute kernel. In every one of

them, more work added per work-item. Therefore, 2x, 4x, 8x and 16x coarsening per work-item is

tested. 2x coarsening means that the work-item computes two elements of data stream, while 4x

coarsening corresponds to four elements, 8x coarsening to eight and 16x coarsening to sixteen.

 The result is that larger coarsening per work-item proves gradually better for Intel CPU and

AMD GPU, whereas in NVIDIA GPU gets poorer in the case of 8x coarsening and ends to the same

performance with initial implementation of compute kernel in the case of 16x coarsening. The

speedup is independent of the data stream size that used for both GPUs, while it is bigger, as data

stream size increases, for Intel CPU. The best performance achieved in 16x coarsening case for Intel

CPU and AMD GPU, while the 2x or 4x coarsening is the most suitable for NVIDIA GPU.

 Figure 6.29 and Figure 6.30 depict the results for data stream size (num_size) 50,000,000,

100,000,000 and indicatively for num_size 200,000,000.

Optimizations /

Devices
(50,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 1,254,630,292 ns 290,753,334 ns 38,345,792 ns

2x coarsening 1,175,741,674 ns 240,108,667 ns 32,125,920 ns

4x coarsening 1,059,316,692 ns 222,618,556 ns 32,211,808 ns

8x coarsening 1,040,567,243 ns 211,527,112 ns 33,862,304 ns

16x coarsening 1,034,929,668 ns 205,409,667 ns 36,038,400 ns

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

69

Optimizations /
Devices

(50,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x coarsening 1 1.21 1.19

4x coarsening 1.18 1.31 1.19

8x coarsening 1.21 1.37 1.13

16x coarsening 1.21 1.42 1

Optimizations /
Devices

(100,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 2,486,422,284 ns 591,497,333 ns 76,708,192 ns

2x coarsening 2,604,607,235 ns 487,691,777 ns 64,008,160 ns

4x coarsening 2,031,097,642 ns 434,757,778 ns 64,394,464 ns

8x coarsening 2,002,005,016 ns 427,972,000 ns 67,547,168 ns

16x coarsening 1,948,490,480 ns 416,722,222 ns 72,094,048 ns

Optimizations /
Devices

(100,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x coarsening 1 1.21 1.19

4x coarsening 1.22 1.36 1.19

8x coarsening 1.24 1.38 1.13

16x coarsening 1.28 1.42 1

Optimizations /
Devices

(200,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 5,102,533,206 ns 1,192,723,444 ns 153,434,400 ns

16x coarsening 3,884,520,078 ns 843,412,000 ns 143,868,288 ns

Optimizations /
Devices

(200,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

16x coarsening 1.31 1.41 1

 Figure 6.29: Execution times and speedup of optimization ‘Granularity’ in compute kernel for num_size 50,000,000,

 100,000,000 and indicatively for num_size 200,000,000

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

70

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2x 4x 8x 16x

Sp
e

e
d

u
p

Coarsening

Data stream size 50,000,000

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2x 4x 8x 16x

Sp
e

e
d

u
p

Coarsening

Data stream size 100,000,000

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

71

 Figure 6.30: Speedup graphical representation of optimization ‘Granularity’ in compute kernel for num_size

 50,000,000, 100,000,000 and indicatively for num_size 200,000,000

 The reason that larger coarsening per work-item helps the Intel CPU to perform well is that the

total number of work-groups per kernel is reduced dramatically as the coarsening per work-item

increases. The work-group size remains the same and each work-item processes more elements of

data stream, but this yields fewer context switches and this is very beneficial for CPUs, as the

operation system intervenes fewer times. A characteristic example can be the fact that in initial code,

the kernel is called for Intel CPU and data stream size 200,000,000, with 195,313 work-groups of 1024

work-items, whereas in 16x coarsening case it is called with 12,208 work-groups of 1024 work-items.

 On the other side, AMD GPU performs well with larger coarsening, as it makes effective use of

its hardware paths. Specifically, an indicative paradigm is that for data stream size 200,000,000 in

initial code, the FastPath is 0 and the CompletePath is 781,252, whereas in 16x coarsening case the

FastPath is 195,316 and the CompletePath is 0. The PathUtilization in the first case is 25%, while in the

second is 100%. The values of paths denote the total kilobytes written to the video memory of AMD

GPU through their utilization. Generally, the FastPath does not support atomics or sub-32 bit data

types, while the CompletePath supports them. In compute kernel, larger coarsening leads each work-

item to use bigger data-types (vector types) so as to process effectively more elements and this has as

a result the utilization of hardware FastPath instead of CompletePath, something that is very

significant for enhancement in performance for our AMD GPU.

 Another important reason that explains the great performance that AMD GPU achieves via the

use of larger coarsening per work-item is the decrease of average number of ALU instructions

executed by the total number of work-items within kernel and the increase of the number of general

purpose vector registers used by the kernel. For instance, for data stream size 200,000,000, in initial

code, the total average number of ALU instructions that executed is 200,000,000 * 444.62

= 8.89 * 1010, while in 16x coarsening case, this number drops to 12,500,224 * 4936.54 = 6.17 * 1010.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

16x

Sp
e

e
d

u
p

Coarsening

Data stream size 200,000,000

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

72

The first multiplier is the total number of work-items per kernel, while the second is the average

number of ALU instructions executed per work-item. Moreover, the increase of vector registers used

by the kernel means that the respective computations are done faster in the second case.

 Last but not least, as can be derived from the Figure 6.29, for the cases of 2x coarsening and 4x

coarsening, NVIDIA GPU seems to make effective use per work-item of the registers that each one of

them has and this enhances the performance. However, coarsening per work-item larger than 4,

causes bad utilization of hardware resources, as the total number of work-groups drops significantly.

b) Geometry of work-items

 In this category, five optimization parameters are examined in compute kernel. Namely, the

maximum work-group size of initial implementation reduces /2, /4, /8, /16 and /32. The results are

disappointing for both GPUs (mainly for AMD GPU) that tested and are independent of the data

stream size that used.

 Figure 6.31 and Figure 6.32 depict the results for data stream size (num_size) 50,000,000,

100,000,000 and indicatively for num_size 200,000,000. The results are presented only for GPUs, as

the performance of Intel CPU remains steady among the afore-mentioned optimization efforts.

Optimizations /

Devices
(50,000,000)

AMD GPU NVIDIA GPU

Initial Code 290,753,334 ns 38,345,792 ns

BS max to /2 292,913,444 ns 37,170,528 ns

BS max to /4 350,808,889 ns 37,081,504 ns

BS max to /8 686,559,333 ns 37,099,104 ns

BS max to /16 1,358,387,000 ns 42,651,520 ns

BS max to /32 2,668,649,667 ns 79,585,120 ns

Optimizations /
Devices

(50,000,000)

AMD GPU NVIDIA GPU

BS max to /2 1 1

BS max to /4 0.83 1

BS max to /8 0.42 1

BS max to /16 0.21 0.90

BS max to /32 0.11 0.48

Optimizations /
Devices

(100,000,000)

AMD GPU NVIDIA GPU

Initial Code 591,497,333 ns 76,708,192 ns

BS max to /2 591,379,111 ns 74,348,352 ns

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

73

BS max to /4 708,741,445 ns 74,135,040 ns

BS max to /8 1,386,998,445 ns 74,206,368 ns

BS max to /16 2,743,588,777 ns 85,506,016 ns

BS max to /32 5,384,053,111 ns 159,707,520 ns

Optimizations /
Devices

(100,000,000)

AMD GPU NVIDIA GPU

BS max to /2 1 1

BS max to /4 0.83 1

BS max to /8 0.43 1

BS max to /16 0.21 0.90

BS max to /32 0.11 0.48

Optimizations /
Devices

(200,000,000)

AMD GPU NVIDIA GPU

Initial Code 1,192,723,444 ns 153,434,400 ns

BS max to /32 10,895,424,667 ns 320,562,656 ns

Optimizations /
Devices

(200,000,000)

AMD GPU NVIDIA GPU

BS max to /32 0.11 0.48

Figure 6.31: Execution times and speedup of optimization ‘Geometry of work-items’

in compute kernel for num_size 50,000,000, 100,000,000 and indicatively

for num_size 200,000,000

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

74

0

0,2

0,4

0,6

0,8

1

1,2

/2 /4 /8 /16 /32

Sp
e

e
d

u
p

BS max to

Data stream size 50,000,000

AMD GPU

NVIDIA GPU

0

0,2

0,4

0,6

0,8

1

1,2

/2 /4 /8 /16 /32

Sp
e

e
d

u
p

BS max to

Data stream size 100,000,000

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

75

 Figure 6.32: Speedup graphical representation of optimization ‘Geometry of work-items’ in compute

 kernel for num_size 50,000,000, 100,000,000 and indicatively for num_size 200,000,000

 The bad results can be attributed to the ineffective utilization of hardware resources that

GPUs offer. An indicative paradigm can be the fact that for AMD GPU and data stream size

200,000,000 in initial code, compute kernel is called with 781,250 work-groups of 256 work-items,

while in BS max to /32 case, it is called with 25,000,000 work-groups of 8 work-items in each of them.

A wavefront in AMD GPU is the basic parallel execution unit and aparts from 64 work-items which

execute in parallel in every cycle. The reduction of work-group size leads to poor utilization of

hardware resources and has as a result many of them to prove useless and unexploited, causing at the

same time unnecessary hardware scheduling overhead.

 The lower degradation of performance in NVIDIA GPU can be explained knowing that in

NVIDIA the respective basic parallel execution unit called warp and comprises 32 work-items.

Therefore, the underutilization of hardware resources exists, but is less in its case.

 Something that it‘s worth to mention here is the steady performance of Intel CPU. 195,313

work-groups of 1024 work-items in initial code transform to 6,250,000 work-groups of 32 work-items

for data stream size 200,000,000 without any loss or gain of performance. Presumambly, the

overhead of context switches in compute kernel is minor compared to the computation overhead per

work-item.

0

0,1

0,2

0,3

0,4

0,5

0,6

/32

Sp
e

e
d

u
p

BS max to

Data stream size 200,000,000

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

76

2) Loops

Loop Unrolling

 In this category, five optimization parameters are investigated. The first parameter is 2x loop

unrolling, the second is 4x loop unrolling, the third is 8x loop unrolling, the forth is 16x loop unrolling

and the last is 32x loop unrolling. The performance results are gradually better as the degree of loop

unrolling increases for all the devices that used. What’s more, the speedup is a little higher in Intel

CPU for larger data stream sizes, whereas remains unaffected between different data stream sizes in

both GPUs.

 Figure 6.33 and Figure 6.34 depict the results for data stream size (num_size) 50,000,000,

100,000,000 and indicatively for num_size 200,000,000.

Optimizations /

Devices
(50,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 1,254,630,292 ns 290,753,334 ns 38,345,792 ns

2x loop unrolling 1,174,701,296 ns 269,877,667 ns 34,979,744 ns

4x loop unrolling 1,100,311,153 ns 259,103,222 ns 32,358,560 ns

8x loop unrolling 1,006,472,444 ns 253,875,222 ns 31,236,224 ns

16x loop unrolling 986,318,872 ns 251,222,000 ns 30,707,360 ns

32x loop unrolling 939,605,499 ns 193,335,667 ns 30,368,736 ns

Optimizations /
Devices

(50,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x loop unrolling 1 1 1.10

4x loop unrolling 1.14 1.12 1.18

8x loop unrolling 1.25 1.14 1.23

16x loop unrolling 1.27 1.16 1.25

32x loop unrolling 1.33 1.50 1.26

Optimizations /
Devices

(100,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 2,486,422,284 ns 591,497,333 ns 76,708,192 ns

2x loop unrolling 2,346,486,526 ns 549,576,334 ns 69,977,984 ns

4x loop unrolling 2,102,031,729 ns 528,980,555 ns 64,739,680 ns

8x loop unrolling 1,921,112,067 ns 518,508,333 ns 62,511,488 ns

16x loop unrolling 1,876,315,374 ns 513,093,889 ns 61,460,192 ns

32x loop unrolling 1,784,348,121 ns 396,903,333 ns 61,075,264 ns

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

77

Optimizations /
Devices

(100,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

2x loop unrolling 1 1 1.10

4x loop unrolling 1.18 1.12 1.18

8x loop unrolling 1.29 1.14 1.23

16x loop unrolling 1.32 1.15 1.25

32x loop unrolling 1.39 1.49 1.26

Optimizations /
Devices

(200,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 5,102,533,206 ns 1,192,723,444 ns 153,434,400 ns

32x loop unrolling 3,770,744,351 ns 804,700,556 ns 123,113,664 ns

Optimizations /
Devices

(200,000,000)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

32x loop unrolling 1.35 1.48 1.25

 Figure 6.33: Execution times and speedup of optimization ‘Loop Unrolling’ in compute kernel for num_size

 50,000,000, 100,000,000 and indicatively for num_size 200,000,000

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2x 4x 8x 16x 32x

Sp
e

e
d

u
p

Loop Unrolling

Data stream size 50,000,000

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

78

 Figure 6.34: Execution times and speedup of optimization ‘Loop Unrolling’ in compute kernel for num_size

 50,000,000, 100,000,000 and indicatively for num_size 200,000,000

 A general reason that explains the uniform improvement in performance to all the devices

relates with the known advantages that the optimization technique of loop unrolling offers. These are

that fewer instructions are executed per work-item and that each architecture makes more effective

use of the registers that possesses.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2x 4x 8x 16x 32x

Sp
e

e
d

u
p

Loop Unrolling

Data stream size 100,000,000

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

1,1

1,15

1,2

1,25

1,3

1,35

1,4

1,45

1,5

32x

Sp
e

e
d

u
p

Loop Unrolling

Data stream size 200,000,000

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

79

 But, in more detail, as we said, AMD’s VLIW pipelines are a multi-precision, staggered design

that can bypass results between the pipelines. The operations within a VLIW bundle (VLIW4) can be

independent (just like a 4-wide SIMD). This means that ideally four pairs of serially dependent or

independent instructions can be packed into a single VLIW bundle. We remind that the best is having

independent instructions so as not use the pipeline’s transfer within and among VLIW4 units. In

compute kernel this happens for the consecutive if statements that the technique of loop unrolling

creates. For instance, the if statements if (((val >> i) % 2) == 1), if (((val >> i+1) % 2) == 1) ,

 if (((val >> i+2) % 2) == 1) and if (((val >> i+3) % 2) == 1) can grouped in a single VLIW4 unit and

executed in paralllel with a very effective way reducing the average number of ALU instructions

executed per work-item.

 A characteristic case is that for data stream size 100,000,000 where ALU instructions in initial

implementation are 440, whereas in the two most indicative cases, 16x unrolling and 32x unrolling,

this number falls to 381 and 238 respectively. The huge increase of speedup for AMD GPU during the

transition from 16x unrolling case to 32x unrolling case can be attributed to the fact that the number

of general vector registers used by the kernel in the second case increased from 3 to 18 and this

results to better utilization of VLIW4 execution units and dramatic reduction to ALU instructions.

 On the other side, NVIDIA GPU doesn’t have vector processors, so it cannot handle very

effectively a form of code that is overwhelmed by if statements, since this doesn’t let it make optimal

use of registers in comparison with an unrolling without branches, whereas Intel CPU can exploit

effectively its ILP characteristic in compute kernel compared to the case of lud_perimeter kernel

because in this kernel some independent instructions intermediate between dependent ones.

 A paradigm which exhibits that is the case where instruction temp = g_tables[(i + 2) * 256 +

temp] is dependent with the instruction temp = g_tables[(i + 1) * 256 + temp] provided that the

relative if condition of the latter holds, but among them intermediates the independent instruction

if (((val >> i+2) % 2) == 1) and Intel CPU can take advantage of its ILP metric to all of the instruction

dependencies of this form. Moreover, higher degree of loop unrolling creates more these instruction

dependencies, so the speedup gets gradually higher.

6.2.1.3 Unfeasible Optimizations

1) Vectorization

Vector Types

 The optimization technique Vectorization wasn’t feasible to be implemented here, since the if

statement of compute kernel code doesn’t guarantee that the check condition will give the same

logical result (true or false) for the if statements of successive elements of data stream size.

Vectorization requests that the vectorized data must be executed in the same clock cycle and this

can’t happen in this kernel.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

80

6.3 needle

Needleman-Wunsch is an algorithm for calculating optimal global alignment of two DNA
sequences. All-pairs matching are represented by an NxM 2D matrix. Usually the matrix dimensions N,
M are equal and some typical values for these are 4096, 8192, 16384. Matrix cells are scored from
northwestern-most to southeastern-most (wavefront computational pattern), depending solely on
northern, northeastern, and eastern neighboring scores. Finally, the algorithm backtracks through the
array to return an optimal alignment.

Application needle belongs to the dynamic programming category of dwarfs and aparts from
two kernels, the needle_opencl_shared_1 kernel and the needle_opencl_shared_2 kernel. Execution
times of these kernels are exactly the same, as both kernels have the same code and follow the same
communication and computation pattern. Therefore, the analysis of both of them would be
unnecessary, so the optimization efforts implemented solely on needle_opencl_shared_1 kernel and
the explanation of the results is done only for this kernel. The difference among both kernels can be
depicted in Figure 6.35. Blue boxes correspond to kernel_1, while red ones to kernel_2.

6.3.1 Analysis of needle_opencl_shared_1 kernel

6.3.1.1 Data Dependencies

 This kernel supports two sequences with the same length, which can be divided by 16. The

kernel is called iteratively and the number of iterations depends from the work-group and the 2D

matrix dimension sizes. In each successive call of kernel, more work-groups are used with the same

work-item size and work-groups follow a wavefront computation pattern. The maximum number of

work-groups is needed in order to compute the elements of main diagonal of 2D matrix that used.

This point also denotes the end of needle_opencl_kernel_1 kernel and after that begins the iterative

execution of needle_opencl_kernel_2 kernel, as can be seen in Figure 6.35. The synchronization point

among work-groups is the different kernel calls that done.

 Additionally, the work-items within work-groups apply also the wavefront computation

pattern. This means that they are allocated in order to fill all the diagonal elements of work-group size

iteration per iteration and there is a sunchronization point among previous and next diagonals among

consecutive iterations. The number of active work-items increases as the size of diagonal increases in

each next iteration. However, this happens only till the main diagonal of work-group size, since after

this point the number of active work-items gradually decreases.

 In short, the wavefront form of computation and communication is among the work-items of

work-group and among work-groups of kernel. Furthermore, the data dependencies of each work-

item within a work-group can be shown in Figure 6.36.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

81

Figure 6.35: Wavefront computation pattern of work-groups in needle for a 2D matrix

 of size 64*64 = 4096 elements with work-group size 16*16 = 256 work-items

 As can be deduced from the Figure 6.35, iter1 is the iteration counter of

needle_opencl_shared_1 kernel, while iter2 is the iteration counter of needle_opencl_shared_2 kernel.

The cummulative work per kernel is slightly more in the kernel_1 and this happens as this kernel

computes iteratively all the elements of the respective 2D matrix till its main diagonal, whereas

kernel_2 computes all the rest till the complete computation of total matrix elements. Moreover, it

must be noted that during the transition from one iteration to another a different kernel call is done

in both kernel cases and operates as a synchronization point of the current computed elements of 2D

array.

Figure 6.36: Data dependencies of work-item in needle

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

82

6.3.1.2 Basic code segment

 The code fundamentals of needle_opencl_shared_1 kernel presented here so as to help one to

realize better the form of communication and computation that exists.

int bx = get_group_id(0);

int tx = get_local_id(0);

for (int m = 0; m < BLOCK_SIZE; m++) {

 if (tx <= m) {

 int t_index_x = tx + 1;

 int t_index_y = m – tx + 1;

 temp[t_index_y][t_index_x] = maximum(temp[t_index_y – 1][t_index_x – 1] +

 ref[t_index_y – 1][t_index_x – 1],

 temp[t_index_y][t_index_x – 1] – penalty,

 temp[t_index_y – 1][t_index_x] – penalty);

 }

 barrier(CLK_LOCAL_MEM_FENCE);

}

for (int m = BLOCK_SIZE - 2; m >= 0; m--) {

 if (tx <= m) {

 int t_index_x = tx + BLOCK_SIZE - m;

 int t_index_y = BLOCK_SIZE – tx ;

 temp[t_index_y][t_index_x] = maximum(temp[t_index_y – 1][t_index_x – 1] +

 ref[t_index_y – 1][t_index_x – 1],

 temp[t_index_y][t_index_x – 1] – penalty,

 temp[t_index_y – 1][t_index_x] – penalty);

 }

 barrier(CLK_LOCAL_MEM_FENCE);

}

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

83

6.3.1.3 Optimization Efforts and Results

1) Execution Geometry

a) Geometry of work-items

 In this category, two optimization parameters are examined in needle_opencl_shared_1 kernel.

In the first one, the BLOCK_SIZE of initial implementation that has size 16 changed to 32 and in the

second case it changed to 64. It wasn’t feasible to collect all the execution times of all the devices

during the afore-mentioned changes due to the local and global memory limitations that the latter

have.

 The result is that generally the use of larger BLOCK_SIZE enhances the performance in AMD

GPU and degrades the performance in NVIDIA GPU. In Intel CPU the performance doesn’t change for

all the combinations of work-group size and sequence lengths that used.

 Figure 6.37 and Figure 6.38 depict the results for sequence length 4096, 8192 and 16384. The

execution times represent the total execution time of kernel including all the kernel calls.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 48,643,800 ns 75,390,113 ns 6,841,248 ns

BS 16 to 32 49,030,091 ns 46,194,110 ns 12,490,464 ns

BS 16 to 64 insufficient local
resources

insufficient local
resources

29,570,672 ns

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 16 to 32 1 1.63 0.55

BS 16 to 64 ----- ----- 0.23

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 189,728,472 ns out of bounds
device memory

23,510,992 ns

BS 16 to 32 176,210,298 ns out of bounds
device memory

39,227,440 ns

BS 16 to 64 insufficient local
resources

out of bounds
device memory

105,930,064 ns

Optimizations /
Devices (8192)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 16 to 32 1 ----- 0.60

BS 16 to 64 ----- ----- 0.22

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

84

Optimizations /
Devices (16384)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 678,118,668 ns out of bounds
device memory

out of bounds
device memory

BS 16 to 32 661,343,873 ns out of bounds
device memory

out of bounds
device memory

BS 16 to 64 insufficient local
resources

out of bounds
device memory

out of bounds
device memory

Optimizations /
Devices (16384)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 16 to 32 1 ----- -----

BS 16 to 64 ----- ----- -----

 Figure 6.37: Execution times and speedup of optimization ‘Geometry of work-items’ in needle_opencl_shared_1

 kernel for sequence length 4096, 8192 and 16384

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

16 32 64

Sp
e

e
d

u
p

BS changes

Sequence length 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

85

Figure 6.38: Execution times and speedup of optimization ‘Geometry of work-items’ in needle_opencl_shared_1

kernel for sequence length 4096, 8192 and 16384

 The reason that the BS 16 to 32 case improves significantly the performance in AMD GPU is

that the product total kernel calls * execution time per kernel call is smaller when work-group size 32

is used. It is characteristic that execution time per kernel is higher in the case of BS 32, as the number

of average ALU instructions executed per work-item increases, but this adds a small overhead

compared to the times that this kernel is called.

0

0,2

0,4

0,6

0,8

1

1,2

16 32 64

Sp
e

e
d

u
p

BS changes

Sequence length 8192

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

0

0,2

0,4

0,6

0,8

1

1,2

16 32 64

Sp
e

e
d

u
p

BS changes

Sequence length 16384

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

86

 On the other hand, in NVIDIA GPU the pre-referred overhead is much higher compared to the

initial implementation and gradually increases as the work-group size increases. This can be attributed

to the fact that NVIDIA GPU does not have vector processors as AMD does and the added more

workload per work-item proves detrimental. Moreover, it is important to note that for all the values

of BLOCK_SIZE, the total number of warp/wavefront divergencies per kernel remains the same for

NVIDIA/AMD GPU respectively.

 Another important point to mention is that for BS 64 in this kernel, AMD GPU would utilize

with the best manner its hardware if its local and global memory limitations let it do that, while

NVIDIA GPU does that for BS 32. For BS > 32, NVIDIA GPU executes more parts of its work-groups

serially and this degrades much the performance, beyond of the fact that the workload per work-item

increases as the work-group size increases.

 In Intel CPU, although totally fewer work-groups per kernel call are used when the BLOCK_SIZE

increases and this causes fewer context switches that benefits the CPUs, the large computation

overhead per work-item has as a result the performance to remain steady through all work-group size

changes.

6.3.1.4 Unfeasible Optimizations

1) Execution Geometry

b) Granularity

 This optimization Geometry sub-category wasn’t feasible to be implemented here, as the

workload per diagonal isn’t the same and so there is not a safe manner to add uniformly more work

per work-item. This optimization would be feasible if the initial code padded to a form where every

diagonal would have the size of main diagonal of work_group size that used.

2) Vectorization

Vector Types

 Vectorization optimization wasn’t feasible to be implemented here for the same reasons that

Granularity optimization doesn’t. Usually, the latter optimization forms the appropriate conditions so

as the first can be applied. In case that this doesn’t happen, vectorization can’t be implemented too.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

87

 3) Loops

Loop Unrolling

 Loop Unrolling optimization technique cannot be applied effectively in

needle_opencl_shared_1 kernel due to the serial form of work-items execution and the existence of

synchronization points among the transition from one diagonal to another. However, it is tested in

the kernel, but the performance remained in the same levels, as expected, in all the devices that used.

6.4 srad

 Srad belongs to the structured-grid applications. These applications organize their data in a
multidimensional grid. They perform a series of calculations for each element using the neighborhood
around them.

6.4.1 Analysis of srad_cuda_1 kernel

6.4.1.1 Data Dependencies

 At first this kernel loads one segment of the matrix in the global memory to a smaller matrix in

the local memory for faster computations. It uses 2-dimensional work-groups in order to suit better

the 2-dimensional arrays. Then each work-item of a work-group calculates four values using the green

points around the red one in the matrix, called this the “east”, “west”, “north” and “south” values as

shown in Figure 6.39 that are stored in four matrices in the global memory. After composing these

four values of the four green points the new value is calculated and this value is stored in the output

matrix in the global memory too.

Figure 6.39: Computational pattern of

 srad_cuda_1 kernel

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

88

 Calculating values in such structures usually leads to a different treatment of the points in the

edges of the matrices. For example there is not a “north” element for the elements that are in the

first row. So, in the current algorithm there are four more matrices allocated in the local memory,

each one for the “west”, “east”, “north” and “south” elements of a matrix. These matrices are filled

with the corresponded values needed and are used only for the elements in the edges.

6.4.1.2 Basic code segment

temp[ty][tx] = get the corresponding element of the matrix in the global memory

If(element==in the edge of the matrix){

 set the right matrix “south”, “north”, “east” or “west”

}

jc = temp[tx][ty];

If(element==in the edge of the matrix){

 Special treatment with the corresponding matrix “south”, “north”, “east” or “west”

}

else{

 n = temp[ty-1][tx] - jc;
 s = temp[ty+1][tx] - jc;
 w = temp[ty][tx-1] - jc;
 e = temp[ty][tx+1] - jc;
}

Store the n, s, w and e to the corresponding matrices in the global memory

Calculate the value from the n, s, w and e and store it to output matrix in the global memory

6.4.1.3 Optimization Efforts and Results

1) Padding

 In many-core computing it is often better to perform redundant work, even if the results are
to be discarded, rather than to suffer the overhead of branches. This is more obvious in GPUs because
of their parallel throughput and their sensitivity to divergent execution of threads within the same
warp/wavefront. Branches usually have a negative effect on the execution time of a code. CPUs

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

89

sometimes use branch prediction algorithms to improve the performance. However, the problem of
branches is more obvious in GPUs because of the divergencies.
 The computational pattern of the srad requires many branches in order to separate the inner
values from the values in the edges. The srad_cuda_1 kernel also separates the inner points from the
others creating a large number of branches. This means more divergence for the GPUs and more
context switches for the CPUs and more instructions to be executed for both a CPU and a GPU.
 Our first goal for the current kernel was to eliminate all the branches. A technique called
padding is used for such algorithms. The padding is shown in Figure 6.40. At first, the suitable size of
the matrix must be allocated. The new size depends on the original size of the matrix and the depth
of the neighborhood. One important thing in padding is that the same number of the work-items with
the original code must be kept.

Figure 6.40: The padding technique

In our example we suppose that the neighborhood has depth 1. So the new size of the matrix
is (size+2) x (size +2). The white elements in the matrix are the points of the initial matrix and the
reds the points needed for the computation for those in the edges. Instead of having four more
matrices the “north”, “south”, “east” and “west”, the values needed for the points in the edges are
stored in the red area. Now, all the points are treated in the same way and there is no need for
branches.
 The elimination of the branches led to less instruction for execution by all the architectures.
The instructions were decreased to half of the initial code. Moreover the cache hit rate was increased
by 10%. The CPU also had fewer context switches. The GPUs stopped to suffer divergencies because
of the branches overhead. The divergence is one of the biggest problems for a GPU because all the
work-items of a warp or a wavefront must execute the same instructions in a given time. If halves of
the work-items of a warp or a wavefront execute a different branch from the other halves of work-
items then all these work-items cannot be executed concurrently and their halves have to stall.
Moreover, the ALUPacking metric was increased from 40 to 54 for the Cayman.
 Although the GPUs execute a code in the same way in general, there were different speedups
for the NVIDIA and the AMD. This happens because of the different sizes of a wavefront and a warp. A
wavefront has 64 work-items and a warp 32. Fewer work-items in a warp result usually in fewer

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

90

divergences per warp in a code. So, eliminating all the branches the AMD had a better gain than the
NVIDIA.

Figure 6.41 and Figure 6.42 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 0.233 sec 0.036 sec 0.0056 sec

padding 0.067 sec 0.018 sec 0.0040 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

padding 3.48 2 1.4

Figure 6.41: Execution times and speedup of optimization ‘Padding’ for matrix dimension 4096

Figure 6.42: Speedup graphical representation of optimization ‘Padding’ in

 srad_cuda_1 kernel for matrix dimension 4096.

One more advantage of the padding in the current kernel is that there is no need of the

matrices for the red elements. These matrices were allocated in the local memory and the use of this
memory was decreased from 6144B to 2432B leading to fewer cache misses. Also more useful data
can be stored in the local memory such as a larger padded matrix.

0

0,5

1

1,5

2

2,5

3

3,5

4

Sp
e

e
d

u
p

padding

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

91

2) Execution Geometry

Geometry of work-items

 In this section, we tried to find the optimal BS. The work-groups are 2-dimensional with BS size

each dimension. The initial BS was 16, meaning that there were 256 work-items per work-group.

 We first tested the CPU changing the BS from 16 to 32 having a total number of 1024 work-

items per work-group ,which is the maximum number of work-items per work-group we can get for

this architecture. The new execution time was slightly slower and maximizing the size of the work-

group did not give any gain for this pattern. However, there was not a big loss either, meaning that

the size of the work-group is not a significant point for the srad.

 Next, we tested the NVIDIA GPU. The results were different from the CPU. NVIDIA allows up to

1024 work-items per work-group, but also each SM can have up to 1536 work-items. So, the number

of the work-items per work-group must be an integer divisor of the maximum number of work-items

per SM. Also the total number of the work-groups should not be more than 8 [15]. The result of these

is that the optimal numbers of the work-items are 192, 256, 384, 512 and 768. The initial code had

256 work-items and changing the BS to 32 we had 1024 work-items, which is not an optimal number.

That is why the result of the 1024 work-items is worse. One more factor that the BS 32 was worse is

the number of the registers per work-item. There are 20 registers per work-item. Work-groups with

1024 work-items and 20 registers per work-item suffer a loss of performance.

 Finally we tried to test the AMD GPU but this was not feasible. The Cayman supports up to 256

work-items per work-group and we were already at the maximum number of them.

Figure 6.43 and Figure 6.44 depict the results for matrix dimension 4096 and 8192.

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 0.067 sec 0.019 sec 0.0040 sec

BS 16 to 32 0.074 sec ----- 0.0058 sec

Optimizations /
Devices (4096)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 16 to 32 0.9 ----- 0.69

Figure 6.43: Execution times and speedup of optimization ‘Geometry’ in srad_cuda_1 kernel for

matrix dimension 4096

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

92

Figure 6.44: Speedup graphical representation of optimization ‘Geometry’ in

 srad_cuda_1 kernel for matrix dimension 4096.

6.4.1.3 Unfeasible Optimizations

 The current kernel does not have any loops and optimizations such as loop unrolling and

loop fission could not be examined.

6.5 bfs

 The bfs belongs to graph-traversal applications which calculate the cost of the nodes of a

graph. The inputs are the number of edges and the nodes that visit each node.

6.5.1 Analysis of kernel1 kernel

6.5.1.1 Data Dependencies

 The current application uses an one-dimensional array of structs to keep the data of each node,

one more one-dimensional array to keep the edges of each node and one last one-dimensional to

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
Sp

e
e

d
u

p

BS 32

Matrix Dimension 4096

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

93

keep the cost of each node. Also there are created as many work-items as the number of the nodes.

Each work-item calculates the cost of each node. At first, a max number (max) of each node is

calculated, which is the sum of the first visited (starting) node of this node and the number of its

edges (num_of_edges). Then a loop of (max – starting) iterations is executed checking all the visiting

nodes of the current node increasing their cost. For our experiments we used the graph65536.txt file.

Figure 6.45 depicts the data dependencies pattern of bfs.

Figure 6.45: Data dependencies pattern of ‘bfs’

6.5.1.2 Basic code segment

tid = get_global_id(0);
max = (g_graph_nodes[tid].no_of_edges + g_graph_nodes[tid].starting);

for(int i = g_graph_nodes[tid].starting; i < max; i++)
{
 id = g_graph_edges[i];
 if(!g_graph_visited[id])
 {
 g_cost[id] = g_cost[tid] + 1;
 }

}

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

94

6.5.1.3 Optimization Efforts and Results

 This kernel uses a one-dimensional work-group. The number of the work-items per work-

group depends on the number of the total nodes. If the total nodes are fewer than the maximum

number of the work-items supported per work-group for the current architecture then the work-

group size is equal with the number of the nodes, otherwise it is equal with the maximum number of

the work-items per work-group. This is calculated by the following formula:

clGetDeviceInfo(device_id,CL_DEVICE_MAX_WORK_ITEM_SIZES,sizeof(size_t)*3,&maxThreads, NULL);

maxThreads[0] = no_of_nodes < maxThreads[0] ? no_of_nodes : maxThreads[0];
size_t localWorkSize[1] = {maxThreads[0]};

And the total work-items are calculated by:
size_t WorkSize[1] = {no_of_nodes + (no_of_nodes%maxThreads[0])};

a) Granularity

 We tested two different cases for the coarse grain. The first case was to divide the number of

the work-items per work-group by a factor of 2 and the second one was to divide the number of the

work-groups by a factor of 2. In both cases we had the same number of the total work-items but the

geometry between the 2 cases was totally different.

1st case:

 In this case we divided the number of work-items per work-group by a factor of 2. The

Cayman’s performance was better than the performance of the initial code again. More specifically,

the ALU instructions were increased almost twice compared to the initial implementation, but the

total number of them was lower. For example, the total number of the work-items was 32768 while in

the initial code was 65536. In the first kernel invocation there were 17 ALU instructions per work-item

for this case and 9 for the initial code. So, we now had 564,592 instructions in total, while the initial

code had 597,688. Also the total number of the wavefronts was divided by a factor of 2 from 1024

initially to 512.

 On the other hand, the Intel CPU and the NVIDIA GPU did not get any gain from that and their

execution times were very similar to the initial ones.

 Figure 6.46 and Figure 6.47 depict the results for 65536 nodes.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

95

Optimizations /
Devices (65536

nodes)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 0.024 sec 0.056 sec 0.000713 sec

Size of Work-
groups/2

0.024 sec 0.041 sec 0.000721 sec

Optimizations /
Devices (65536

nodes)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Size of Work-
groups/2

1 1.37 0.98

Figure 6.46: Execution times and speedup of optimization “Granularity” with size of work-groups

 divided by 2

Figure 6.47: Execution times and speedup of optimization ‘Granularity’ for bfs for 65536 nodes

2nd case:

 In this case we kept the same size of the work-group with the initial code but we had the

halves of them. The results for this case were the same with the 1st case. The low level metrics were

too similar compared to the 1st case thus we had the same results.

 Figure 6.48 and Figure 6.49 depict the results for 65536 nodes.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2x

Sp
e

e
d

u
p

Coarsening

65536 nodes

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

96

Optimizations /
Devices (65536

nodes)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 0.024 sec 0.056 sec 0.000713 sec

Number of Work-
groups/2

0.024 sec 0.041 sec 0.000721 sec

Optimizations /
Devices (65536

nodes)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Number of Work-
groups/2

1 1.37 0.98

Figure 6.48: Execution times and speedup of optimization “Granularity” with number of

 work-groups divided by 2

Figure 6.49: Execution times and speedup of optimization ‘Granularity’ for bfs for 65536 nodes

b) Geometry of work-items

 In this section we tested different sizes of the work-group. The size of the work-groups was

initialized to the maximum number of each architecture. So, for the Intel and the NVIDIA architectures

the size of the work-groups was 1024 and for AMD 256. We tested the sizes of 128, 256, 512 and 1024.

There was not a significant improvement for any of the architectures and the execution times were

almost the same with the initial ones. There was not a difference in the low level metrics too.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

2x

Sp
e

e
d

u
p

Coarsening

65536 nodes

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

97

 Figure 6.50 and Figure 6.51 depict the results for 65536 nodes.

Optimizations /
Devices (65536

nodes)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 128 0.023 sec 0.052 sec 0.000659 sec

BS 256 0.024 sec 0.056 sec 0.000698 sec

BS 512 0.022 sec ----- 0.000689 sec

BS 1024 0.023 sec ----- 0.000713 sec

Optimizations /
Devices (65536

nodes)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

BS 256 0.95 1.07 0.94

BS 512 1.05 ----- 0.96

BS 1024 1 ----- 0.92

Figure 6.50: Execution times and speedup of optimization “Geometry of work-items”

Figure 6.51: Execution times and speedup of optimization ‘Geometry of work-items’ for bfs for 65536 nodes

2) Loops

Loop Unrolling

 The loop unrolling optimization was applied in this section, but this could not be done directly.

As it was said previously the number of the iterations for each node is not constant for all the work-

0

0,2

0,4

0,6

0,8

1

1,2

256 512 1024

Sp
e

e
d

u
p

Distribution of work-items

65536 nodes

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

98

items. What is more, we cannot know if the number of the iterations is an odd or an even number. So,

we had to check all the possible cases, creating branches and increasing the complexity of the code.

The branches resulted in more instructions for execution in all the architectures and in more

divergences for the two GPUs. As a result, there was not any improvement for any of the

architectures. We only tested the loop unrolling by a step of 2 because for bigger steps the code was

even more complex.

 Figure 6.52 and Figure 6.53 depict the results for 65536 nodes.

Optimizations /
Devices (65536

nodes)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Initial Code 0.024 sec 0.056 sec 0.000713 sec

Unrolling 0.031 sec 0.064 sec 0.000756 sec

Optimizations /
Devices (65536

nodes)

Intel CPU
(Intel runtime)

AMD GPU NVIDIA GPU

Unrolling 0.77 0.86 0.94

Figure 6.52: Execution times and speedup of optimization “Loop Unrolling”

Figure 6.53: Execution times and speedup of optimization ‘loop unrolling’ for bfs for 65536 nodes

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2x

Sp
e

e
d

u
p

Unrolling

65536 nodes

Intel CPU (Intel runtime)

AMD GPU

NVIDIA GPU

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

99

6.5.1.4 Unfeasible optimizations

 We could not apply vectorization because of the if-statement that checks if the for-loop should

be executed. In order to apply vectorization we should use the component of each vector unit and

make the calculations in each component separately.

Chapter 7

Conclusion

 The optimization categories that examined in this thesis are a) Geometry, b) Vectorization, c)

Loops and d) Branches. The implementations of the Berkeley dwarfs on which they are applied are the

applications lud, crc, needle, srad and bfs. The basic conclusions of our study are the following:

1) Geometry

 Larger coarsening benefits significantly the Intel CPU, as the total number of work-groups

reduces and this results to fewer context switches which cost much to CPUs (lud_perimeter). Instead,

the afore-mentioned reduction degrades the performance of GPUs, as it causes great load imbalance

within cores of warp/wavefront execution units of NVIDIA/AMD GPU respectively (lud_perimeter).

Generally we can say that this results to fewer work-items per work-group, namely limited

opportunities to hide memory latency), or fewer work-groups which, after a point, will result to

inability to exploit all streaming multiprocessors of the GPU. Moreover, this load imbalance is bigger

in AMD GPU, as its wavefronts comprise 64 work-items, while NVIDIA warps comprise 32 work-items

(lud_perimeter, crc). Moreover, the reduction of context switches has greater impact on speedup gain

for bigger data sizes on kernels that executed iteratively and their work-items execute little

instructions (lud_perimeter). However, larger coarsening can help AMD GPU to perform better in

cases, like crc, where can exploit the hardware FastPath instead of using its ineffective CompletePath.

 In applications where each work-item has many instructions to execute (lud_perimeter,

needle), an optimization that increases this workload degrades more the performance of GPUs rather

than that of CPU. This happens, as Intel CPU work-items have higher clock frequency and can execute

faster a heavy serial code. However, in some cases, like crc, bfs, heavy workload per work-item and

few work-items per kernel are not bad for both CPUs and GPUs (especially for AMD GPU), as the

product total number of work-items per kernel * average number of ALU instructions executed per

work-item can prove beneficial. This means that although the ALU instructions increase, the number

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

100

of work-items decrease significantly and therefore the total number of ALU instructions executed per

kernel is less.

 Another interesting case is when the performance of Intel CPU remains steady (crc, needle),

although context switches are reduced. This happens only in kernels that the overhead is defined by

the many instructions that a work-item must execute and the overhead of context switches is minor

compared to the computation overhead per work-item. Additionally, we also observed cases in

iteratively called kernels, like needle, where the product total kernel calls * execution time per kernel

call gets smaller as work-group size increases and this benefits the AMD GPU and degrades the

performance of NVIDIA GPU, although the number of wavefront/warp divergencies remains constant

during the work-group size change. This holds, since NVIDIA doesn’t have vector processors to

execute fast their work-item instructions and the overhead of execution time per kernel is higher than

the one of reduced number of kernel calls that work-group size change offers. Instead, AMD GPU can

take advantage of its VLIW architecture and the overhead of increase of ALU instructions which

defines the execution time per kernel is minor compared to the one of reduced number of kernel calls.

 Last but not least, it is observed that there should not be less work-groups than the number of

the cores of the CPU, because some cores will be idle. Having more work-items in a work-group and a

few work-groups increases the performance of the applications that use the local memory such as the

internal kernel of the lud. More work-items sharing the same local memory means less cache misses

because each core has a separate local memory and the work-items reuse the data in cache in such

patterns. Each work-group is executed in one only core thus a few work-groups with many work-items

offer less cache misses. In other applications such as bfs that did not give any gain but we can infer

that it is a useful optimization because it did not worsen the performance in any application.

2) Vectorization

 Vectorization is a technique that allows two or more adjacent elements in a consecutive

memory area to be executed concurrently as it enables, using the vector types that each architecture

provides, a group of them to be executed in the same clock cycle. The size of group depends from the

degree of vectorization that implemented. Many architectures adapt this technique to increase their

performance. The Intel CPU and the AMD GPU has vector type units to perform this action, while the

NVIDIA GPU does not have any.

 Therefore, in cases like lud_perimeter kernel of lud, the Intel CPU can make effective use of

vectorization on float types and the implementation degrees of 4 and 8 yield the best performance.

Generally, vectorization is one of the main optimizations used in high performance computing and

can give a speedup in patterns like calculating the inner product of two vectors or adding the

elements of two arrays, but in some cases it is difficult to use it in an application, like in lud_internal

kernel, because it demands a consecutive memory area. The application may need a different

treatment in order to apply the vectorization, killing the performance sometimes. Nevertheless, it is

recommended for use when the application allows it, like lud_perimeter kernel as we said.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

101

3) Loops

 The optimization technique of loop unrolling was tested. It is useful to unroll the loops in order

to exploit better the register file of each device, schedule more efficiently the instructions and utilize

the pipelines that almost all the architectures offer, so as some instructions in the loop to be executed

in parallel. However, the testing of the loop unrolling on the internal kernel of the lud and on the bfs

doesn’t give any speedup for any of the platforms, but there was not a loss of performance too.

Unrolling a loop does not always give a gain but it can be applied on the code because we usually

expect to have speedup.

 The cases that exhibit the benefits of loop unrolling are the kernels lud_perimeter and

compute of applications lud and crc respectively. In the first kernel loop unrolling creates serially

dependent instructions and AMD GPU exploits its VLIW pipelines and this results to significant

reduction of the number of ALU instructions that are executed per work-item. In our experiments

performance improves as the degree of unrolling increases. In the second kernel, there are some

independent instructions among dependent ones and AMD VLIW architecture can make a more

effective use of its VLIW4 execution units.

 Additionally, NVIDIA in the first case can exploit much better the vast register file that

possesses, while in second kernel, the branches of if statements hinder it from utilizing effectively its

cumulative register capacity. Instead, Intel CPU performs much better in the second case, as the

presence of some independent instructions among dependent ones helps it to take advantage of ILP.

This can’t happen in the first kernel, since all the instructions that the latter has, after loop unrolling

implementation, are sequentially dependent.

4) Branches

 The branches were tested on the srad dwarf. The initial code had many branches. When the

branches were eliminated there was a speedup for all the platforms. Eliminating them all, there was

not any divergence for the GPUs, which is one of the biggest problems decreasing their performance

significantly. The CPU had a better performance because there were fewer instructions to be

executed and less context switches. The elimination of the branches led to less context switches

among the work-groups. Generally, branches can slow down the execution time of an application.

Moreover, in architectures like GPUs, it is preferable to have more computations than branches and

in some cases this is preferable for a CPU too.

 The future aim of this thesis is to apply more optimization techniques, such as fixed point

arithmetic, texture memory interpolation, associative cache and others, on the afore-mentioned and

on more computation and communication patterns (the rest of the 13 OpenCL Berkeley dwarfs). The

basic goal is to identify which computational patterns better match which architectures via which

optimizations so as the performance can be portable among different architectural devices and

revealing which accelerator device is most suitable to execute a certain computational task. Through

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

102

this thesis, several very important aspects of the above themes have been illustrated in practice with

experimental results and justifications, but in order one to be able to generalize the benefits that

heterogeneous systems can offer, more applications and more optimizations are needed to be

evaluated.

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

103

References

[1] Khronos OpenCL Working Group, “The OpenCL Specification (version 1.1)”, 2011

[2] Aaftab Munshi, Benedict R. Gaster, Timothy G. Mattson, James Fung, Dan Ginsburg, “OpenCL
 Programming Guide”, 2011

[3] M. Flynn, “Some Computer Organizations and Their Effectiveness”, in IEEE Trans. Comput.,
 C-21:948+, 1972

[4] W. Feng, H. Lin, T. Scogland, J. Zhang, “OpenCL and the 13 Dwarfs: A Work in Progress”,

in ICPE ’12 Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering, 2012, pp 291-294

[5] Sean Rul, Hans Vandierendonck, Joris D’Haene, Koen De Bosschere, “An Experimental Study on

 Performance Portability of OpenCL Kernels”, in 2010 Symposium on Application Accelerators in

 High Performance Computing (SAAHPC ’10), Knoxville, TM, USA, 2010

[6] Jarno van der Sanden, “Evaluating the Performance and Portability of OpenCL”, Master thesis

 under supervision of H. Corporaal and C.Nugteren, Electonic Systems Group-Faculty of Electrical

 Engineering, Eindhoven University of Technology, 2011

[7] Joo Hwan Lee, Kaushik Patel, Nimit Nigania, Hyojong Kim, Hyesoon Kim, “OpenCL Performance

 Evaluation on Modern Multi Core CPUs”, in Multicore and GPU Programming Models, Languages

 and Compilers Workshop (PLC 2013), 2013

[8] D. Grewe, M. F. P. O’Boyle, “A static task partitioning approach for heterogeneous systems
 using OpenCL”, CC 2011:286-305

[9] Intel Corporation, “Intel Xeon Processor 5600/5500 Series Platforms for Embedded
 Computing”, 2010

[10] http://ark.intel.com/products/48768/Intel-Xeon-Processor-E5645-12M-Cache-2_40-GHz-5_86-
GTs-Intel-QPI

[11] NVIDIA Corporation, “Whitepaper: NVIDIA’s Next Generation CUDA Compute Architecture
 Fermi”, 2009

[12] David Kanter, “Real World Technologies: AMD’s Cayman GPU Architecture”, 2010

[13] Wiki Answers, “What is dark silicon”, http://wiki.answers.com/Q/What_is_dark_silicon

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

http://ark.intel.com/products/48768/Intel-Xeon-Processor-E5645-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/products/48768/Intel-Xeon-Processor-E5645-12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://wiki.answers.com/Q/What_is_dark_silicon

104

[14] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,

 Kurt Keutzer, David A. Pattrerson, William Lester Plishker, John Shalf, Samuel Webb Williams,

 Katherine A. Yelick, “The Landscape of Parallel Computing Research: A View from Berkeley”,

 EECS Department, University of California, Berkeley, Technical Report No. UCB/EECS-2006-183,

 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html, 2006

[15] Yuri Torres, Arturo Gonzalez-Escribano, Diego R. Llanos, “Using Fermi architecture knowledge

 to speed up CUDA and OpenCL programs, in Parallel and Distributed Processing with

 Applications (ISPA), 2012 IEEE 10th International Symposium on, pp 617-624

[16] Intel Corporation, “Writing Optimal OpenCL Code with Intel OpenCL SDK”,

 http://software.intel.com/file/37171

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 12:06:23 EET - 137.108.70.7

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://software.intel.com/file/37171

