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ABSTRACT OF THE DISSERTATION

Exploiting Reconfigurable Heterogenous Parallel Architectures in a Multitasking Context:
A Systems Approach

by
Dimitris Syrivelis

Doctor of Philosophy, Graduate Program in Computer Engineering
University of Thessaly, April 2009
Dr. Spyros Lalis, Chairperson

In the recent years, the continuous performance increase of the sequential execution on si
CPU systems is facing an upper bound because it primarily relied on the respective circuit op
ating frequency improvement, which has already reached its limits. This low-level performan:
bottleneck caused a chain reaction to the above abstraction layers and practically changed the
computing systems are being built. Nowadays, realizing parallelism at all the design levels o
computing platform is the main goal of the respective domain research efforts. Application dev:
opers need to improve their skills and take into account architecture-level platform details to dec
the optimal application partitioning, while respective re-targetable toolchains have been develoj
to automate tasks and abstract complexity to the extent possible. On the other hand, traditic
general-purpose operating system support and related concepts have not been particularly reco
ered in the emerging broader context of parallel applications, tools and architectures but prima
focus on the efficient task scheduling on shared memory homogeneous and symmetric multic
systems of limited scalability. In this dissertation, we introduce new concepts at the operati
system-level to take advantage of the runtime reconfiguration of hardware to exploit its bene
under a general purpose context. Regarding application development, we demonstrate the e
tiveness of two different application development framework approaches that are tightly integrat
with novel operating system support for optimal execution on many-element arrays. We outli
how these contributions allow the operating system to efficiently distribute any type of platfor
resources, deal with performance asymmetry and load balance, at runtime, parallel applicati
that execute concurrently on the emerging parallel reconfigurable platforms. We have implemer
prototypes of every proposed concept and we report the results of real life experiments.
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Chapter 1

Introduction

Reaching the silicon frequency barrier has resulted in a bloom of radically different parallel cor
puting platform designs that are now becoming the mainstream approach to achieve better pel
mance. Recently proposed parallel platform configurations are very diverse, and their only comn
characteristic is the synergistic use of many tightly-coupled processing elements like traditional
struction set processors, graphics processors, application specific circuits and reconfigurable h
ware. While the previous platform designs allowed a rather clean separation of concerns and n
imal interaction between hardware designers, operating system and application developers, nc
days, efficient execution and flexible resource utilization requires a good understanding of varic
cross-layer details.

Obviously, boosting application development and execution performance on parallel platforr
is now the main concern of many research efforts. To that end, most recently proposed framewc
support the development of applications based on the assumptioallthla¢ required target re-
sources will bededicatedo the developed program throughout its execution. This seems a reaso
able choice to make mainly because the traditional time-sharing technique that was used to ach
multitasking on single- or limited multi-CPU systems (shared memory, up to 16 cores) cannot
used efficiently on the emerging massively parallel platforms. Typical examples are parallel pi
cessor arrays, reconfigurable hardware systems-on-chip and multi-general purpose GPU platfo
that have a few hundreds of processing elements (not necessarily ISA processors). Interconnec

between the processing elements are dedicated direct links and each one has private local me
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to achieve independent execution. Indeed, for the time b&iegperating system support on such
platforms usually runs on a master CPU and is used to deploy highly optimized applications whi
have been developed to occupfix@damount of resources. If another resource demanding appli
cation arrives at the system, and it cannot be given the required amount of resources, it will hav
wait for the previous one to finish.

Emerging fine-grained reconfigurable hardware technology introduces additional challenge:
the parallel platform development tools and runtime support. It is now possible for the same ha
ware platform to form different hardware resource configurations, even at runtime, that can acce
ably perform the execution of radically different applications. Levels of reconfigurability may var
from fully reconfigurable “soft” FPGA-based architectures, that can be reconfigured to form di
ferent accelerator circuits, to Instruction-Set Processor (ISP) Processor Array designs that fea
reconfigurable dedicated interconnections. As the technology and the respective tools matu
commercial systems appeared that employed hardware reconfigurability to primarily support
so-called “softcore” platform updates, exactly as it happens with software updates. Nowadays,
configurable platforms can be further customized independently before each application execut
This process takes place in a static manner, before application loading, and can be repeated fo
next application after the current one finishes execution. Note that with the term “Reconfigural
Parallel” we are referring to all platforms that support a form of h/w supported parallelism ar
h/w reconfigurability at any level, and do not explicitly imply the Field Programmable Gate Arra
(FPGA) platforms. For example many core platforms with reconfigurable interconnections knov
as Massively Parallel Processor Arrays (MPPAS), are also considered as Reconfigurable Par
Processor Array (RPPA) platforms.

Building general purpose multitasking systems that can take full advantage of parallel recc
figurable hybrid platform capabilities will allow the end-user to effectively run different and no
necessarily a priori known tasks on the same device for concurrent execution. Execution per
mance will not be compromised if the hardware reconfigurability can be exploited at runtime al
the platform can be optimally adapted to carry out a given workload. To that end, in case of resou

shortage, one could consider tthgnamic distributiorof available resources between concurrently
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executing applications. In other words, if a new applicatioives, currently deployed applica-
tions could be re-configured to free some resources that can be exploited by it. Similarly, when
application finishes, the released resources can be reassigned to speedup the rest of the workl

We envision a more radical exploitation of hardware reconfigurability. Current approaches
all design levels of Reconfigurable Parallel (RP) systems assume that the target platform is me
for dedicated execution and will never be used in a multitasking context. Even in the cases
dedicated systems where two or more applications are to be executed concurrently, the resource
statically assigned to the participating applications during design time. Accordingly, in a respecti
usage scenario, if only one of the aforementioned predefined applications needs to be execute
won't be able to use more resources than the statically assigned amount, despite the fact tha
rest are not occupied. Ideally, on a system that features hardware support to exploit paralleli
the applications should be able to take advantage of the available resources to improve execu
whenever possible. With this feature, RP systems would be capable to efficiently accelerate typ
general purpose workload.

In the context of this work, we attempted the integration of the runtime hardware reconfigurab
ity of platforms that are currently considered for dedicated execution with the concept of dynan
resource distribution and the mainstream multitask computing. More specifically, we introduce ¢
propriate software concepts to all abstraction levels of a general purpose multitasking system so
it can be realized on hybrid Reconfigurable Parallel platforms (RP) that are currently being used i
dedicated context. More specifically we propose: i) a device driver model and low-level interacti
with hardware, ii) respective kernel-level mechanisms, iii) user-level reconfiguration control infra
tructures, and iv) a programming framework for Reconfigurable Parallel Processor Arrays (RPP:
that includes two different approaches and models to address the new challenges. We have
prototyped several multi-element hybrid softcore architectures using the Xilinx Platform Stud
suite, which include custom hardware modifications that improve the Hw/Sw components syner
Finally, we developed prototypes of every proposed concept and tools and we deployed them
two different FPGA-based platforms with 5 customized implementations of different well-know

applications that were executed according to a variety of workload scenarios.
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As it happens with any other computing platform, RP systemsairsuitable for the accelera-
tion of all types of applications. As a rule of thumb, an application can be accelerated via paral
execution only if the respective computation type inherently contains parallelism. In the sectio
that follow we present the application domain that is suitable for RP systems and we discuss
considerations that are introduced by multitasking at the programming framework level, the op

ating system services and kernel support and the respective hardware platform issues.

1.1 Application Domain

All the application computations that contain parallelism can take advantage of RP systems. M
specifically, there are two basic categories of parallelism: spatial and temporal.

In the first case that is depicted in figure 1.1A belong all applications where the same col
putation or different computations can be applied on different blocks of data independently, tt
type is also known as data parallelism. Taking advantage of the physical presence of more t
one instances of the same or different resource types, target platform can process larger chucl
data at the same time and the respective execution is accelerated compared to the single res
operation.

In the second case that is depicted in figure 1.1B, the application can be divided to stage:
execution that are assigned to different resource instances. Each stage can perform proce:
independently as soon as data are received from the previous one. In these configurations,
stage delivers processed data only to the next one and therefore the computation forms a so-c.
pipeline. Since data are delivered to the next stage after the current stage finishes proces:
acceleration is realized after initial network loading is completed and every stage has data tow
on concurrently. This acceleration can be realized in streaming applications.

Finally there are application computations which can take advantage of a combination of t
aforementioned parallelism categories. In this case depicted in figure 1.1C the interconnected st:
of application execution form a graph that is similar to the Kahn process network [1]. The targ
platform dedicated interconnections between the available processing elements can be reconfig

to satisfy the computation parallelization needs.
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A)

TR

Figure 1.1: In case A) the application is divided in 4 tasks efsame type that perform the same
computation to different but equal portions of data. In case B) the application is divided in stag
of execution which are interconnected and form a pipeline. Case C) is a combination of A) and
and forms a graph.

Even if spatial and temporal parallelism are not possible, RP platforms with fine granulari
processing elements like FPGAs can be reconfigured to form application specific accelerators
the case of applications that only use dedicated accelerators, parallelism can be realized only a
multitasking workload level were the available resources can be distributed among the running
plications. Note, that fine-grained hardware processing elements like FPGA Lookup Tables (LU
cannot be dynamically shared between hardware accelerators and have to be statically assignec
ing design time. On the other hand, it is possible for these softcore accelerator cases to suppor
dynamic re-routing of these elements to accommodate more than one accelerators concurrentl
case they are sufficient LUT resources). For the time being, placement and routing on the FPC
is static and arbitrary accelerators may not be concurrently accommodated unless they have |
designed to coexist and the hardware has been appropriately configured to include them. Chal
are not possible at runtime.

Since they are very versatile, RP platforms are suitable for a wide range of applications. Ty

ically I/0O bound applications may not be optimally served, but even in these cases a part of

5
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computation may still be appropriate for acceleration. Tloeesthe best candidates are computa-

tions that perform CPU-intensive data transformations and operate on data block streams. Indice
examples are block cipher algorithms for encryption or authentication, data (de)compression al
rithms that are widely used in data storage, and encoding algorithms for video or audio. Note t
combinations of these application types comprise typical multitasking workload of an everyd:

general purpose system.

1.2 Programming Framework Considerations for Multitasking
on RP Platforms

Achieving parallelism is more easily said than done. Several programming frameworks [2] ha
been proposed to abstract the design complexity of an application partitioning into independ
entities that can be executed in parallel. Partitioning decisions are based on the computation
pendencies and require extensive experience in order to be manually carried out by a program
Most frameworks observe the load distribution of a sequential execution of the computation a
automatically decide partitioning and static load balancing.

There are two basic approaches to application partitioning: Coarse-grained and fine-grain
The former is usually applied to an algorithmic-level where a computation is divided in small tasl|
that can execute independently and is realized in most cases with code source-level restructul
This approach is appropriate for PR platforms with powerful processing elements (CPUs or GPL
also known as Massively Parallel Processor Arrays(MPPAs). Because of source level changes
code can be further augmented during the restructuring process to cooperate with the platform |
time and enable execution coordination during multitasking. On the other hand, the fine-grain
approach takes place after code analysis and during compilation, where small, usually loop fr
ments are scheduled to execute independently. In these cases the target platform features a
number of appropriately customized simple execution units, which are not typical CPU cores, tt
can be optimally exploited for fine-grained partitioning. An example is the Garp Array [3] ant

the respective toolchain [4]. Obviously the fine-grained approach significantly reduces possible
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pendencies between independent execution entities, siesghie partitioning decisions and has the
potential to impressively boost performance. A drawback is that the computation to communicati
ratio decreases with the processing load of each independent entity and, therefore, the partitio
granularity benefit is bounded. In some examples this limit can be very low, e.g, in decompress
computations.

One of the major concerns that affects partitioning decisions is static load balancing. This
because parts with larger loads become the speedup bottleneck. In addition, uneven load distribt
results in suboptimal resource utilization especially in cases of temporal parallelism where the n
stage has to wait for the previous one to finish. Obviously coarse-grained partitioning performar
is more vulnerable to radically diverse subcomputation loads which in the case of pipelines r
result to extremely poor performance.

Automatic partitioning and static load balancing are the most important of the runtime pe
formance challenges that the proposed frameworks for PR platforms deal with. The main focu:
typically on the programming concepts and the abstractions that support rapid development, req
less programming effort and enable source reuse. Other than that, the development of applicat
is based on the assumption tladit the required target resources will dedicatedto the program
throughout its execution. Moreover, for the time being, the operating system support on PR pl
forms usually runs on a master CPU and is used to deploy highly optimized applications which ¢
expected to have been developed to occufixed amount of resources. If another resource de-
manding application arrives at the system, and it cannot be given the required amount of resour
it will have to wait for the previous one to finish.

As a different approach, in case of resource shortage, one could considgntmaic distribu-
tion of available resources between concurrently executing applications. In other words, if a ni
application arrives, currently deployed applications could be reconfigured to free some resour
that can be exploited by it. Similarly, when an application finishes, the released resources car
reassigned to speedup the rest of the workload.

Since general purpose computing and radical multitasking environment may only be realiz

on instruction-set architecture (ISA) processors, dynamic resource redistribution cannot be reali

7

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 01:19:35 EET - 137.108.70.7



on tiled architecture platforms [5] that primarily featureglhly customized, application specific
processing elements. The latter platforms may only support a primitive form of multitasking k
allowing the immediate loading of applications that utilize resource combinations which can |
hosted concurrently, regardless of their arrival at the system. This approach requires only opera
system support and it will be discussed in the next section.

Moreover, General Purpose GPU (GPGPU) platforms like Nvidia CUDA [6] organize the GPL
into groups that are connected to local group-level shared memory and may also access gl
memory if needed. Unfortunately, hardware-level support is used to control in a simple roun
robin manner the concurrent execution of programmer defined lightweight threads that belong
the same computation. While we believe that next generations of multi-GPGPU platforms will
more versatile in this respect, we do not consider them in the implementation prototypes since
coordination of execution is not software controlled.

On the other hand, parallel ISA processor arrays that feature dedicated interconnections
be efficiently used for multitasking. Commercial examples are Ambric processor which featur
360 32-bit processors [7], picoChip with 300 32-bit processors [8] and Intellasys SEAforth with 4
32-bit cores [9]. Academic examples are the 36-core Asap processor [10] which is very similar
Ambric and PARO [11] which is used to build processor arrays on reconfigurable hardware. All

these architectures come with respective programming tools.

1.2.1 Task Migration and Load Balancing Support

While we believe that each PR platform processing core should be used in dedicated mode, we
believe that it is a good idea for programming frameworks to produce application executable entit
which are flexible enough to operate with a varying number of assigned cores that is determine:
load time and can be changed during execution. Each application to be deployed on the PR sh
request resources from the underlying OS and execute on the provided number of cores. In 0
for this approach to be feasible, application executables should be produced in a way that allc
more than one (predefined) tasks to execute on the same core, in a transparent fashion. Belov

discuss two different approaches that could be used to achieve this.
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1.2.2 Distributed OS Client Approach

Onre solution is for each MPP core to feature a thin runtime layer which provides tasks with &
the necessary abstractions that decouple their code from specific bus addresses and core ids
to employ a (simple) mechanism that takes care of task migration and execution on a single c«
The local runtime instances would be controlled by a full-fledged OS support that runs on a Mas
CPU. In this case, the programming framework would only have to produce application task e
cutables that would be properly linked against this thin runtime layer. This approach is depicted
figure 1.2A.

Several performance issues have to be considered in this case. Firstly, task migration invol
transfer of actual executable code and a coordinated suspend/resume scheme, which is not ec
achieve in case of runtime rearrangements and can cause serious performance degradation give
RP array core runtime instances must communicate with a central service on the Master CPU ¢
a multi-hop interconnection infrastructure. Put in other words, each time an application adapts
execution, in practice, it needs to be reloaded. Moreover, to balance the application load betw
cores, each node should be capable of determining the load of each task running on it in or
to report it to the central service, introducing additional overhead and complexity. Last but n
least, code migration implies that all PR cores are of the same architecture. While current
platforms usually feature the same CPU architectures, processor arrays on reconfigurable harad
could be used to employ different architectures, customized to certain types of computations. Si
hardware reconfiguration has the potential to introduce heterogeneous PR platforms, it would
nice for the aforementioned support to work on heterogeneous PR systems as well. As a spe
case of heterogeneity, the Master CPU itself could be used to execute some of the applicatic

tasks as well.

1.2.3 Integrated Task Execution Control

This approach requires each core to be fitted with a very small Basic Input Output System (BIC
that mainly helps with initial application loading. Contrary to the other frameworks, code migratio
is avoidedby building, for each core architecture and local runtime environmesiigeimage

9
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that containgll the tasks of the application. Cores that are of the same architecture and execute
same runtime are loaded with a copy of the same executable. In this case, simple execution cot
is statically included in the application image to coordinate local task execution (the BIOS is ign
rant of this functionality). Global coordination decisions are taken on the Master CPU, queryit
the operating system for resource availability. The Master CPU can also be exploited to perfo
computation iterations (sequentially) in an efficient profiling mode to gather data that can help
make better partitioning decisions. Note that the OS merely provides information about the av:
able resources but partitioning decisions are taken by application-level logic (that is automatice
generated by the toolchain). An indicative setup of this kind is depicted in Figure 1.2B

Application data flows between cores primarily transfer data blocks for processing, but they m
also carry control commands downstream. Distinguishing between the two data types is suppo
in hardware by all the dedicated interconnection architectures. Control commands can be u
to set appropriate control information indicating which tasks should be executed locally by ea
core. With this approach the execution flow cardigaamicallyredirectednsidethe PR CPU array
without requiring the Master CPU to communicate with each core individually. Also, if new re-
sources are to be occupied that do not feature the application executable, the closest processotr
the same architecture and BIOS combination can provide the new member with the copy neec
However, while the previous approach enables a transparent dynamic task migration and load
ancing without the involvement of the programming framework, in this case this functionality i
achieved through a combined interaction between development and runtime environment.

It must be noted that in some cases the application image size may exceed the local RP C
memory capacity. In this case the toolchain can build an appropriate number of different ima
types each one containing a partial number of the application tasks. This introduces a lower bo
for the number of cores that will be needed for application execution, but this is a hardware cc
straint.

A good example of a programming framework that produces modularized flows of executic
that are controlled by an integrated runtime environment i€tlek modular router [12]. This soft-

ware is used to create packet processor engine configurations that can be used to quickly impler
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novel OSI layer 3 protocols, which may also execute as a paltediriux kernel network stack in

real life setups. The programmer has to develop C++ objects using the provided underlying runti
extensions as well as a high-level language for defining the interconnections between them to fc
processing configuration files. Taking advantage of this architedliek supports the so called

hotconfig feature. The runtime instantiates as many modules (called elements) as the prograrn
defines at development time which are not necessarily used in all defined configurations. A n
configuration file can be loaded at runtime and with minor overhead€libk running instance

can switch between configurations which is very desirable feature for this class of network apy
cations. WhileClick has been developed for a totally different purpose, we found many propose
concepts appropriate for a PR CPU array programming framework that can support task migrat

and dynamic load balancing.

1.3 Prototype Frameworks for PR CPU Array Platforms

These considerations inspired us to design and implement an PR platform development framew
core with two different programming models. The first model is based on the OpenMP paradic
and introduces source annotations that can be regarded as OpenMP extensions for distributed r
ory PR CPU array targets. The basic idea behind this practical approach was the extractior
coarse-grained, mostly temporal, parallelism out of existing sequential applications. The obvic
benefit is the extensive reuse of existing codebase, which is a major motivation for rapid syst
development. We were patrticularly interested to investigate, for PR CPU arrays, the potential
an incremental approach that still uses a form of the traditional sequential programming and &
as a first step of realizing pipelined parallel programming into the computing mainstream. This
the heart of the OpenMP concept as well. In Chapter 3 we present this approach and respec
framework design to achieve multitasking by using the concepts that we discussed in 1.2.3.
Taking advantage of the experience of our first programming model and after revisiting initi
concepts for multitasking throughout the first framework design, we deveRipedt, a prototype
programming framework with a different programming model that additionally supports task m

gration to achieve load balancing and enables multitasking on PR CPU platforms. Following t

12

Institutional Repository - Library & Information Centre - University of Thessaly
09/12/2017 01:19:35 EET - 137.108.70.7



approach described in Section 1.P®eltfeatures a simple form of runtime execution control, in-
tegrated into the application executable, making it possible to seamlessly execute the programr
defined tasks (called components)amy number of cores. Notablgipelt explicitly focuses on
supportingpipelinedcomputations.

We have developed working prototype implementations of both programming models toolchal
with respective runtime support for a custom PR CPU array platforiicofoblazesoft processors
deployed on a Xilinx FPGA target. The Master CPU is also a Microblaze thatu@hisuxand is

interfaced to all other platform peripherals like network and storage.

1.4 Runtime Hardware Reconfiguration

Reconfigurable hardware is no longer used only for prototyping purposes. End-user applications
nowadays deployed on reconfigurable platforms and take advantage of the reconfiguration abi
Since this type of applications require specific, per-application platform changes to execute,
basic perquisite for multitasking is the ability to optimally (re)distribute resources on demand al
at runtime.

This could have been an easy task for the Operating System if the hardware runtime rec
figuration was entirely handled in hardware and therefore seamless to software. While there
significant research efforts to support this with the so-called Dynamic Partial hardware Reconfic
ration (DPR) in FPGA's and other reconfigurable systems like the aforementioned parallel proc
sor arrays with reconfigurable interconnections, the few runtime reconfiguration scenarios that
currently supported by this approach are not adequate for typical multitasking. More specifical
in DPR, the reconfigurable resources are statically grouped in hardwired areas that can be ir
pendently reconfigured and the development toolchain has to be aware of partial reconfiguras
scenarios during design time in order to appropriately place logic into these predefined areas. F
a multitasking perspective this is not optimal.

In our approach we abstract runtime hardware reconfiguration entirely in software and we ot
rely on a basic full scale reconfiguration mechanism. We achieve this transparency at the opera

system level with proper kernel support and we distribute available RP resources with a correspc
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ing system service that performs the respective housekeapohgontrols the reconfiguration pro-
cess. We have implemented a prototype that deals with the most radical reconfiguration scene
Entirely soft System-on-Chip (SoC) platform with several soft-cpu(s) on FPGA chip, running

full-fledged Linux.

1.5 Outline of this Dissertation

The rest of this dissertation is organized as follows.

In Chapter 2 we present in detail the proposed system-level support design that enables run
reconfiguration of the underlying Parallel Reconfigurable platform. A prototype uClinux imple
mentation (with both kernel- and application-level support) that runs on an FPGA soft platform
also described along with experimental results for the case of a well known application. In additic
hardware extensions that improve Hw/Sw synergy are also proposed.

In Chapter 3 we present a programming model and a framework that enables the code sou
level restructuring of existing C language codebase by extending the annotations concept of Ope
[13]. With this approach, coarse-grained parallelism is extracted out of existing sequential apj
cations, and along with a simple dynamic load balancing scheme, regular well known applicatic
are accelerated on Parallel Reconfigurable Processor Array (PRPA) targets and in a multitasl
context.

In Chapter 4 we preseRtipelt, a programming model for PRPAs that is based on the evolving
concept of wired components[14][12][2]. WhiRpelthas a reasonably steeper learning curve than
our first OpenMP-based approach, we consider it a cleaner design, that better supports dyne
load balancing and can optimally suit any PRPA resource organization. Morégvelt has been
augmented to inherently support multitasking by building applications that are flexible with th

required amount of resources which can be (re)configured at will and at runtime.
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Chapter 2

Application and System-level Support for

Runtime Hardware Reconfiguration

This chapter discusses the design and implementation of a system-level mechanism and cc
sponding application-level support that enables programs running on a PR SoC to modify the |
derlying platform at runtime. Applications may request the addition and/or removal of processil
elements, that are referred to as “devices”, or the modification of their interconnections at any pc
in time. In the presented prototype implementation we used an FPGA-based platform and requ
are handled in a coordinated way via a separate user-level process that fetches the approf
FPGA configuration bistream from an exernal server. System reconfiguration is implemented vi
fast suspend-resume mechanism with support for dynamic softcore device address manageme
achieve flexible device placement on the reconfigurable fabric. Even though our approach does
rely on advanced (and expensive) FPGA hardware that supports dynamic partial reconfigurat

the obtained functionality is sufficient for a wide range of application scenarios.

2.1 Introduction

The technology of RP Systems has the potential to change the way computing systems are b
built. While RPs, especially FPGA-based, are not as fast or energy saving as corresponding AS
[15] they have the considerable advantage of flexibility: it becomes possible to reconfigure a syst
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not only in terms of software but also in terms of underlyingdwaare support. In order to exploit
this potential one faces challenging issues, such as codesigning hardware and software compor
and seamlessly deploying hardware logic on platforms.

In this context it is of particular importance to support a flexible yet robust runtime recon
figuration, allowing for the dynamic downloading and installation of new softcore component
This opens the way for a wide range of possible application scenarios regarding automated sys
upgrades and customized platform (re)configuration. For example, one may introduce several h
ware/software codesigned components that employ customized hardware codecs, accelerator
customized CPUs to offload the main CPU, boost performance and lower power consumption. -
system could also decide which modules fit concurrently on the reconfigurable fabric and sel
the most appropriate combination, based on the current state and explicitly provided specificatic
Even more radical adaptation can be realized on systems with a softcore main CPU, in which ¢
it becomes possible to add mechanisms that track CPU usage and create application execution
files. This information can in turn be exploited to fine-tune specific CPU components as well
to select the most beneficial combination of application-level hardware accelerators. Notably, |
efficient online profiling for softcore CPU platforms investigated in [16] could provide the basis fo
such work.

Runtime reconfiguration in essence translatesansparencyi.e. the ability to maintain sys-
tem and application state so that execution may proceed after (or even during) system reconf
ration without the need for a restart/recovery procedure. Compared to platforms where the FP
is merely a peripheral of the CPU, this is harder to achieve in a system-on-chip (SoC) because
entire system and application runtime state resides within the reprogrammable fabric itself. Spe
ically, in order for the runtime state to be kept intact, the FPGA hardware must: (i) support parti
reconfiguration; (ii) retain the main softcore logic active while it is being reconfigured; (iii) offer
the means for self-controlling the reconfiguration process [17]. For the time being, FPGA vendc
provide these features only in expensive product families, and even these devices have constr;
in terms of the dynamic partial reconfiguration (DPR) that can be achieved in practice. For tf

reason approaches that rely on advanced FPGA hardware are not suitable for cheap commc
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platforms, or systems with considerable reconfigurationirements that cannot be implemented
given the current limitations of DPR.

In this chapter we present work on achieving runtime reconfiguration for SoC platforms featt
ing a softcore CPU, without relying on advanced FPGA features. Our goal is to let applications a
and remove softcore devices dynamically. The main contributions of this work are: (1) the introdt
tion of a system-level mechanism and application-level support for reconfiguring a SoC platfor
at runtime, (2) an implementation that runs on an off-the-shelf embedded device, and (3) a prc
of-concept demo system. We underline that our approach is entirely implemented in software, tl
does not achieve the same functionality that is (theoretically) possible via DPR. It nevertheless [

vides considerable runtime flexibility that is sufficient for most conventional application systems

2.2 Approach overview

The goal of our work is to support runtime reconfiguration for SoC platforms that feature a sofca
CPU. Specifically, we wish to let applications dynamically add and remove softcore devices tf
can be accessed via a fast bus or memory mapped I/O. For example, special hardware acceler:
bus drivers and controllers for external hardware, or extra CPU softcore units, could be installed
demand, according to the requirements of the applications running on the system. Again, we st
that this functionality is to be achieved without relying on DPR capable hardware, correspondi
partial bitstream generation tools support or any other hardware-level runtime reconfiguration te
nology. This way we can take advantage of simpler RP platforms that support only the basic f
reconfiguration as well and end up with a very portable design which is not even specific to t
FPGA technology. The next subsections give an overview of our approach, motivating the varic

decisions taken.

2.2.1 The Concept

Our approach is based on a suspend-resume technique, as follows. In a first step, before the a

reconfiguration process begins, the FPGA bitstream corresponding to the new hardware layou
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Figure 2.1: The main phases of the reconfiguration scheme

the entire SoC is stored in external memory (we do not address the computation of the bitstre
per se). Then, the system saves its current runtime state and initiates FPGA programming. W
this completes, the system restarts and control goes to the first stage loader. This checks whetl
reconfiguration took place, in which case it overrides the default boot sequence, restores the s:
system state and adjusts basic system device information. Finally, prior to resuming normal e
cution, the device drivers are notified in order to handle the side-effects of FPGA reconfiguratic
most notably to initialize / restore the state of the devices. A schematic illustration of this proce
is given in figure 2.1.

Despite the fact that the entire FPGA is programmed from scratch in a conventional fashic
the reconfiguration flexibility provided to the application level is comparable to what would hav
been possible using techniques that rely on DPR. We note that, in principle, the same scheme c
also be used to enable a radical modification of the softcore CPU itself (changing the softce
CPU characteristics according to application workload has been shown to boost performance [1
However, our approach cannot be applied if part of the FPGA logic is required to remain acti

during reconfiguration, e.g. for hard real-time applications.
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2.2.2 Device Address Assignment

Given that peripheral devices can be added and removed dynamically, the management of de
addresses (more specifically, channel ids for devices that are accessed via a fast bus or spe
addresses in the case of memory mapped I/O) becomes a central design issue.

The “obvious” approach of a priori assigning each softcore device a fixed address is not attr.
tive. In the case of fast bus access this would considerably limit the number of devices that ¢
be supported because only a few different channel ids are typically supported in such architectu
This holds to a far lesser extent for memory mapped I/O, but then again the corresponding add|
range (though large) is not infinite. Thus an artificial upper bound for the number of peripher
devices that can be considered is introduced in this case too. What'’s probably worse, to avoid c
flicts, some central authority or service would be required to assign channel ids and address rar
to each softcore device being (ever) developed.

It is possible to eliminate these drawbacks by assigning addresses dynamically, when a devic
first installed in the system. Still, in this case, each time the system reconfigures, the new platfc
memory layout would have to be computed based on the current configuration and so as to en:
that the addresses of all devices that continue to be a part of the new configuration remain valid. 1
implies that the new system image must be produced in an online fashion, taking such constra
as input.

To maximize flexibility, we do not require device ids and addresses to remain fixed acro
system reconfiguration(s). This decouples the process of computing the new system image from
dynamic constraints, other than the type and number of softcore devices that need to be place
the FPGA. Furthermore, rather